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ABSTRACT 

The yield estimation provides information that help growers to make decisions in order to optimize 

crop growth and to organize the harvest operations in field and in the cellar. In most vineyard 

estates yield is forecasted using manual methods. However, image analysis methods, which are 

less invasive low cost and more representative are now being developed. The main objective of 

this work was to estimate yield through data obtained in the frame of Vinbot project during the 2019 

season. In this thesis, images of the grapevine variety Syrah taken in the laboratory and in the 

vineyards of the “Instituto Superior de Agronomia” in Lisbon were analyzed. In the laboratory the 

images were taken manually with an RGB camera, while in the field vines were imaged either 

manually and by the Vinbot robot. From these images, the number of visible berries were counted 

with MATLAB. From the laboratory values, the relationships between the number of visible berries 

and actual bunch weight and berry number were studied. From the data obtained in the field, it 

was analyzed the visibility of the berries at different levels of defoliation and the relationship 

between the area of visible bunches and the visible berries. Berry-by-berry occlusion showed a 

value of 6.4% at pea-size, 14.5% at veraison and 25% at maturation. In addition, high and 

significant determination coefficient were obtained between actual yield and visible berries. The 

comparison of estimated yield, obtained using the regression models with actual yield, showed an 

underestimation at all the three phonological stages.  This low accuracy of the developed models 

show that the use of algorithms based on visible berry number on the images to estimate yield still 

needs further research.  
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RESUMO 

A estimativa da produção fornece informações que auxiliam os produtores a otimizar o 

crescimento da cultura e a organizar a vindima. Na maioria das empresas vitícolas, o rendimento 

é estimado usando métodos manuais. No entanto, métodos de análise de imagem que são menos 

invasivos, de baixo custo e mais representativos estão sendo desenvolvidos. O principal objetivo 

deste trabalho é estimar a produtividade por meio de dados obtidos no âmbito do projeto Vinbot 

durante o ciclo de 2019. Foram analisadas imagens da casta Syrah tiradas em laboratório e nas 

vinhas do Instituto Superior de Agronomia de Lisboa. No laboratório as imagens foram tiradas 

manualmente com uma câmera RGB, enquanto no campo as videiras foram fotografadas quer 

manualmente quer usando o robô Vinbot. O número de bagos visíveis obtidos a partir destas 

imagens foram correlacionados com o peso real do cacho e com o rendimento em três estados 

fenológicos. A partir dos valores de laboratório, foram estudadas as relações entre o número de 

bagos visíveis e o peso real do cacho e o número de bagos. A partir dos dados obtidos no campo, 

foi analisada a visibilidade dos bagos em diferentes níveis de desfolha e a relação entre a área 

dos cachos visíveis e os bagos visíveis. A oclusão bago por bago apresentou um valor de 6,4% 

ao bago de ervilha, 14,5% no pintor e 25% na maturação. Obtiveram-se elevados e significativos 

coeficientes de determinação na análise de regressão entre a produção real e o número de bagos 

visíveis. A comparação da produtividade estimada pelos modelos de regressão, com a 

produtividade real, apresentou uma subestimação em todas as fases fenológicas. Esta baixa 

precisão dos modelos desenvolvidos mostra que o uso de algoritmos baseados no número de 

bagos visíveis nas imagens para estimar o rendimento ainda precisa de ser mais estudado. 
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RESUMO ALARGADO 

A estimativa de rendimento representa a previsão do potencial de produção da vinha. Fornece 

informações sobre as medidas a serem tomadas, a fim de otimizar o crescimento da cultura e 

organizar a operação de colheita no campo e na adega. O principal objetivo da viticultura de 

precisão é minimizar os custos de produção e, entretanto, melhorar a qualidade da colheita, 

garantindo a preservação do meio ambiente. Nos últimos anos, a estimativa do rendimento tornou-

se um dos tópicos importantes da viticultura. Os métodos atuais para estimar o rendimento são 

trabalhosos, destrutivos, imprecisos e caros. Na verdade, o tamanho da amostra é 

frequentemente muito pequeno em comparação com a variabilidade espacial de um vinhedo, 

portanto, as estimativas de produção serão imprecisas. A previsão clássica da produção é obtida 

através do conhecimento de dados históricos ou de medições feitas manualmente na vinha. 

Normalmente, o rendimento é previsto com métodos manuais. No entanto, com o objetivo de 

melhorar a estimativa de rendimento, métodos baseados em análise de imagem, que são menos 

invasivos, de baixo custo e mais representativos estão a ser estudados. Além disso, outras 

tecnologias inovadoras foram desenvolvidas na agricultura, por exemplo, o robô VINBOT que é 

uma nova plataforma terrestre capaz de estimar o rendimento através da metodologia de análise 

de imagens. O principal objetivo deste trabalho é estimar a produtividade por meio de dados 

obtidos no âmbito do projecto Vinbot durante o ano de 2019. Nesta dissertação, foram analisadas 

imagens da casta Syrah, colhidas em laboratório e em vinhas do Instituto Superior de Agronomia, 

Lisboa. No laboratório as imagens foram tiradas manualmente com uma câmera RGB, enquanto 

no campo as videiras foram fotografadas quer manualmente quer usando o robô Vinbot. O número 

de bagos visíveis obtidos a partir destas imagens foram correlacionados com o peso real do cacho 

e com o rendimento em três estados fenológicos (bago de ervilha, pintor e maturação). A partir 

dos valores de laboratório, foram estudadas as relações entre o número de bagos visíveis e o 

peso real do cacho e o número de bagos. A partir dos dados obtidos no campo, foi analisada a 

visibilidade dos bagos em diferentes níveis de desfolha e a relação entre a área dos cachos 

visíveis e os bagos visíveis. A oclusão bago por bago apresentou um valor de 6,4% ao bago de 

ervilha, 14,5% no pintor e 25% na maturação. Obtiveram-se elevados e significativos coeficientes 

de determinação (R2 = 0,60 ** ao bago de ervilha, R2 = 0,68 *** na fase de pintor e R2 = 0,61 ** 

na maturação) na análise de regressão entre a produção real e o número de bagos visíveis. 

Finalmente, a produtividade foi estimada usando modelos de regressão baseados na relação 

entre a porosidade da sebe e o número de bagos, combinados com os valores do peso do bago 
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determinado em laboratório à vindima. Em seguida, a estimativa do rendimento foi comparada 

com o valor real, obtendo-se um erro de -51% ao bago de ervilha, -33,3% ao pintor e -37,8% à 

maturação. Conclui-se que, apesar da estimativa do rendimento poder ser obtida através destas 

técnicas de análise de imagem, a baixa precisão dos modelos desenvolvidos indicam que o uso 

de algoritmos baseados no número de bagos visíveis nas imagens ainda é uma metodologia que 

precisa de ser mais estudada. 
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1. INTRODUCTION 

The yield estimation represents the forecast of the vineyard winegrape potential (Diago et al., 

2012). It is an important point for any wine industry because it allows to improve the management 

of vineyards and to obtain the desired wine quality (Diago et al., 2012; Liu et al., 2013). In fact, it 

provides information about the measures to be taken, with the aim to optimize crop growth 

monitoring and to organize the harvest operation (Nuske et al., 2011a; Diago et al., 2012; Liu et 

al., 2013; Aquino et al., 2018b). The yield forecasting is also important from an economic point of 

view, as it provides the knowledge to plan field and cellar work, management wine and grapes 

market and to invest with more confidence in capital equipment (Diago et al., 2012; Liu et al., 2013). 

In addition, the result of yield prediction depends on the phenological phase in which it was carried 

out and also on the different climate and soil conditions of the vineyard plots (Nuske et al., 2011a).  

Typically, the yield forecasting is predicted by manual methods, but they are labor intense, 

expensive, difficult to implement and some are destructive (Nuske et al., 2011a; Nuske et al., 

2014a; Di Gennaro et al., 2019). These current methods are also unrepresentative because the 

estimation is evaluated on a certain percentage of the vineyard and then extended for the whole 

vineyard (Nuske et al., 2011a; Nuske et al., 2011b; Nuske et al., 2014a).  

In the last years, the yield estimation has become one of the most studied topics in viticulture with 

the aim of finding less invasive, low cost and representative technologies. Moreover, there has 

been an increase of innovative technologies in agriculture and in the next years these technologies 

will reach an exponential increase but even higher performance solutions and reduced costs 

(Diago et al., 2012; Matese and Di Gennaro, 2015). For example, VINBOT robot is a new ground 

platform that can estimate yield through image analysis methodology (Matese and Di Gennaro, 

2015: Lopes et al., 2017; Victorino et al., 2020). 

 

1.1. The aims of the work 

The objective of this work is to study a non-destructive, cheap and timesaving technique to 

estimate yield in order to improve crop-forecasting. Images of the grapevine variety Syrah taken 

from laboratory and field during the  year 2019 by the ISA research team, were analyzed in this 

thesis. 
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The first step of thesis work was to collect data with the Vinbot and to develop models to estimate 

the non-visible berries during the period between the berry pea-size and the harvest stages, in 

order to obtain the yield estimation. The second step was to estimate yield and to compare it 

against the actual one.  
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2. LITERATURE REVIEW 

2.1. Precision Viticulture 

Vineyards are characterized by a high heterogeneity due to different factors, therefore each parcel 

has different crop, soil and seasonal weather characteristics that lead to different vine physiological 

response (Matese and Di Gennaro, 2015; Searcy, 2008). The precision viticulture (PV) is defined 

as a technique to manage and to monitor of spatial variations in any physical biological and 

chemical variables that means management differentiation of each parcel of the vineyard in order 

to fulfil the real needs (Hall, 2002; Matese and Di Gennaro, 2015). The main aim of precision 

viticulture is minimizing production costs and in the meantime improve crop quality while ensuring 

the preservation of the environment (Fernandez et al., 2013). Therefore, to achieve this goal, the 

PV deals with observation and collection data of each vineyard plot in order to apply the correct 

amount of production inputs (fertilizer, pesticides, seed etc.) and reduce input costs (Searcy, 2008).  

 

2.1.1. The basis of Precision Viticulture 

The main objective of the monitoring process is to obtain the maximum amount of georeferenced 

information in the vineyard. (Fernandez et al., 2013; Matese and Di Gennaro, 2015). 

Geolocation is the process that determines the relationship between spatial information and its 

geographical position. In this way, it is possible knowing the different spatial data detected in the 

vineyard. Geolocated data are obtained thanks to technologies such as Global Positioning System 

(GPS), Geographic information Systems (GIS) that are the basis of precision viticulture (Searcy, 

2008; Matese and Di Gennaro 2015). 

Global Position System is a space based navigation system that calculates its position on the earth 

through data received by four or more satellites and thanks to a network of fixed ground based 

reference stations that improve the signal accuracy. The GPS technology is used for tasks that 

require high precision, such as crop mapping, soil sampling, distribution of fertilizers and 

pesticides, automatically driven machines and robots. The GPS can be used in combination with 

Geographical Information System, which is a software able to process and map spatial data in 

order to help viticulturists to make management decisions (Hall et al., 2002; Matese and Di 

Gennaro, 2015).  
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2.1.2. Sensors 

In precision viticulture, a wide range of sensors is available to monitor different parameters that 

characterize the plant features, environment and they are employed in precision viticulture for 

remote and proximal monitoring of geolocated data (Matese and Di Gennaro, 2015). 

Sensors are non-destructive methods that can be used to improve crop management, phenology 

monitoring, yield monitoring, canopy geometric characterization etc (Genè-Mola et al., 2020). 

Especially optical sensors can work at different wavelengths, in various domains of the 

electromagnetic spectrum. The most luminous spectrum regions investigated are: 

• Ultraviolet (UV) from 0,01 to 0.40 μm  

• Visible (VIS) wavelength in the range from 0.40 to 0.75 μm;  

• Near infrared (NIR) from 0.75 to 3 μm;  

• Medium infrared (MIR) from 3 to 8 μm;  

• Thermal infrared (FIR) from 8 μm to 0.1 cm;  

• Microwave (MW) from 0.1 cm to 100 cm. (Brancadoro and Carvanelli, 2010). 

These sensors detect and record the light emitted from the surface or ground targets, the amount 

of light reflected by them is specific for each kind of targets and correspond to the spectral 

signature. The latter can be represented on XY graph, where on the ordinate there is the 

reflectance value and, on the abscissa, the spectrum wavelength (Matese and Di Gennaro, 2015). 

The most common sensors used in precision viticulture are thermal, multispectral, hyperspectral 

and RGB sensors, all of them supply 2D information. The thermal sensor is used to measure the 

temperature of the leaf to understand the water stress of the vine. Multispectral and hyperspectral 

sensors detect the health, nutritional status, and vigor of the vines, but the first one is characterized 

by a reduced range and less resolution than the hyperspectral sensor. Moreover, recent studies 

lead to the introduction of 3D sensors. The acquisition of 3D information occurs from depth 

cameras, structure from-motion approaches, stereo vision and light detection and ranging (multi-

beam LIDAR) sensors. LIDAR sensor is able to do a georeferenced 3D reconstruction of each 

single plant and make spatial variability maps of the volumetric size of the canopy, directly linked 

with the leaf area index (LAI). These sensors are used to estimate parameters such as crop growth, 

height, shape and leaf area but also the applications of pesticide treatments, irrigation, pruning 

and crop training. LIDAR is less used for yield estimation as it is more expensive than the other 

sensors (Matese and Di Gennaro, 2015; Genè-Mola et al., 2020).  
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2.1.3. Remote sensing 

Remote sensing is a process that involves observing or measuring at distance the characteristics of a 

particular target, which images can be obtained by satellites, aircraft and unmanned aerial vehicles 

(UAVs). About satellites their used has great potential but the spatial resolutions are not sufficient for 

precision viticulture due to the narrow vine spacing, other limitations are linked to the temporal 

resolution and cloud cover that can occur at the time the satellite passes. Aircrafts monitor the ground 

with wide flight range and high payload in terms of weight and dimensions; in this way, they are able 

to manage a large number of sensors. Aircrafts provide higher ground resolution as compared to 

satellites, depending on the flying altitude. It is economically viable only on areas of more 10 ha 

because it has reduced flexibility of the time acquisition, due to the rigid schedule of flight planning 

and high operational costs (Matese and Di Gennaro, 2015). UAVs, sometimes wrongly called “drones”, 

are fixed or rotary platforms that are able to fly autonomously or can be controlled at visual range by 

a pilot on the ground. In the first case the UAV is characterized by a complex system of flight control 

sensors (gyros, magnetic compass, GPS, pressure sensor and triaxial accelerometers) controlled by 

a microprocessor. These sensors allow performing a wide range of monitoring operations; in fact, 

UAVs associated with them have a high spatial ground resolution, possibility of highly flexible and 

timely monitoring, due to reduce planning time. These technology is ideal in vineyard of small size (1-

10 ha) especially in areas with a higher heterogeneity. However, UAV platforms have an important 

limitation in term of payload weight and operating times (Turner et al., 2011; Matese and Di Gennaro, 

2015). 

 

 

2.1.4. Proximal sensing 

Proximal sensing technology is characterized by detection of the target features done closely to the 

using sensors on the ground (fixed or mobile). In this case, sensors can be placed on vehicles like 

robots, tractors or quad and they work similarly to satellite and airborne sensors (Rosell et al., 2009). 

An example of this technology is the wireless sensor network (WSN), used to monitor important 

variables of the grape production, processing the data and transmitting the information to the users. 

WSN consisting in a network of peripheral nodes characterized by: a sensor board equipped with 

sensors that detect the information and a wireless module that transmit data from the nodes to a base 

station. In the latter data are stored and accessible to the end user, while the nodes of sensors are 

positioned in representative areas of the vineyard (Matese and Di Gennaro, 2015). Another example 

is monitoring soil variability by measuring the electrical conductivity by mobile platforms equipped with 
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soil electromagnetic sensors and GPS for continuous measures. The soil electrical conductivity is 

related to texture and depth, water retention capacity, organic matter content and salinity. Instead, 

there are many systems to monitor vineyards through the high resolution screening of the canopy side 

across the row (crop sensors) coupled with GPS. Regarding crop sensors, some examples are: 

GrapeSense collecting information on the height and the texture of the vines along the row; 

GreenSeeker and Cropcircle are multispectral sensors that obtain information for vegetation indices 

calculation. Finally, ultrasonic sensors can allow non-destructive yield monitoring that can be 

integrated in mechanical harvesters in order to obtain a vineyard productivity. While optical sensors 

can be used to monitor grape quality such as Spectron which is a portable spectrophotometer for 

grape maturation monitoring and Multiplex, a portable optical sensor that can quantify the grape 

polyphenols and chlorophyll content using fluorescence. (Matese and Di Gennaro, 2015; Ferrandino 

et al., 2017). 

 

2.1.5. Robotic platforms 

Use of robots in viticulture is in development and nowadays robotics is still at a prototype stage. In 

the last years there has been an increase of innovative technologies in agriculture and in the next 

years, it will reach an exponential increase with higher performance solutions and reduced costs. 

Following are different examples of robots projects (Matese and Di Gennaro, 2015). 

VineRobot project, coordinated by Televitis Research Group at the University of La Rioja, monitors 

different features such as yield, vigor, water stress and the quality of the grapes and this robot 

represent a tool to be used as a decision support to the grower to improve the management of the 

vineyard. The VineRobot is equipped with several sensors like fluorescence, multispectral, RGB 

for machine vision, thermal infrared, and GPS (Matese and Di Gennaro, 2015; VineRobot, 2020).  

The VINBOT project coordinated by the Spanish Robotnick Automation Company, has a robotic 

platform with open-source software. This robot allowed a 3D reconstruction of the canopy with 

sensors and it allowed to determine the vine vigor with multispectral cameras and to obtain 

important information such as the productivity estimation (Matese and Di Gennaro, 2015; VINBOT, 

2020) 

The Wall-Ye robot is a product developed for vineyard monitoring. This robot can acquire data on 

each vine and produce a detailed vineyard map and it can carry out precision pruning respecting 

the architecture of each vine. It can be monitor by an application for the iPad (Matese and Di 

Gennaro, 2015; Wall-YE, 2020). 
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The VineGuard robot proposed by Gurion University in Israel is a prototype for foliar applications. 

This robot has a set of sensors to move, a robotic arm used for grape harvesting and a artificial 

intelligence to guide the robot in a series of operation such as localization, assessment of the 

maturation state, selection and detachment of the grapes from the vine (Matese and Di Gennaro, 

2015; VineGuard, 2020).  

The Vitirover project is produced by Xavier Davis Beaulieu, this robot can cut the grass up to a 

distance of 2-3 cm from the base of the vine in full respect of the plant. The power system is 

completely self-sufficient thanks to a solar panel. The Vitirover has a GPS and it can work 

independently but can also be controlled by computer or smartphone applications for iPhone, 

BlackBerry and Android (Matese and Di Gennaro, 2015; Vitirover, 2020). Finally, the American 

company Vision Robotics Corporation has produced a prototype able to carry out precision pruning 

thanks to optical sensors that perform a 3D reconstruction of the vine structure (Matese and Di 

Gennaro, 2015; Vision Robotics, 2020). 

 

2.2. Yield forecasting 

The yield estimation is an important tool for taking decisions relating to crop load adjustment and  

yield management in order to optimize plant growth and to improve fruit quality, it also outstands 

for its economical relevance (Nuske et al., 2011b; Aquino et al., 2018bblomgernhiggin; Di Gennaro 

et al., 2019;). Therefore, these forecasts are necessary for growers as it predicts the amount of 

grapes that will be harvested in the year in question (Sabbatini et al., 2012). In fact, the most 

common form to represent the yield of a vineyard is the amount of grapes and it is influenced by 

different variables such as vine health, weather conditions, site capability and cropping history. 

Moreover, the crop load for the same site can vary from year to year due to business and viticultural 

factors such as soil conditions, diseases, pests, climate and variation in vineyard management 

practices. (Whalley and Shanmuganathan, 2013; Komm and Moyer, 2015). Therefore, the 

grapevine yield estimation is subject to a high spatial variability leading to a variability in quality 

resulting in a greater difference in grape prices (Hall et al., 2002). The method to estimate yield is 

based on the count of yield components such as number of vines/ha, number of nodes/vine, 

number of shoots/node, clusters/shoot, flowers/cluster, berries/cluster and berry weight (Martin et 

al., 2003). The current manual methods are labor intensive, destructive, inaccurate, expensive and 

spatially sparse. Indeed, the sample size is often too small in comparison to the spatial variability 

in a vineyard, therefore the yield estimations will be not very accurate (Nuske et al., 2011a). Typical 

yield forecast is obtained through: knowledge of historical data (e.g. the rainfall, airborne pollen, 
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temperature, crop yields in 15-20 years) or manually measurements taken in the vineyard. The 

classical yield estimation methods consist of manual collection and weighting of the crop of limited 

plant sample previous to harvest, but these yield data maybe not representative. In alternative, 

yield forecast can be also obtained multiplying the total number of berries and the berry weight (Liu 

et al., 2013; Whalley and Shanmuganathan, 2013; Acquino et al., 2018). Nevertheless, in the last 

years the image analysis represents an inexpensive, non-destructive way of capturing precise 

information about the vineyard in a single crop growth cycle, while traditional methods take into 

account historical data. Therefore, non-invasive imaging-based methods are used to make 

possible the efficient and continuous capture of detailed information from plants during their life 

(Liu et al., 2013; Whalley and Shanmuganathan, 2013).  

 

2.2.1. Manual methods 

Manual methods to estimate yield is based on the count of yield components, listed in the previous 

paragraph. The first step is to determine the number of vines to be considered according to the 

size of the vineyard. Yield components can be forecasted between the budburst and harvest period 

and after obtaining the results, they will be extended to the whole vineyard. Therefore, the yield 

estimation can be inaccurate, since the elements are too small, compared to the space variability 

of the field (Martin et al., 2003; Nuske et al., 2011b). In fact, for this reason, a more intensive 

sampling is carried out in order to obtain higher reliability of yield estimation. The spatial variability 

is correlated especially from the environment that individual plants such as meso-climate, edaphic 

factors etc., this point like annual variability entails problems in the management of the production 

(Dunn et al., 2014). Moreover, the yield component bunches per vine is the major contributor of 

yield variation (60%-80%) for Cabernet Sauvignon, Chardonnay and Shiraz (Dunn et al., 2014). 

Usually yield forecasts are conducted in the period from budbreak to just before harvest, but a very 

early yield forecast can be obtained during dormancy (before budbreak), estimating node fertility. 

Yield can be forecast through equation 1, considering bud fruitfulness index (IF) that is obtained 

as inflorescences per bust node (Clingeleffer et al., 2001; Dunn et al., 2014):   

Yield (t/ha) = (IF season/ IF previous seasons) * historical average yield (t/ha)               Equation 1 

In Clingeleffer et al., (2001) study it was shown how counting total nodes, shoots, fruitful shoots, 

bunches per vine and the percentage of bud burst, by the Merbein bunch count method, yield 

components that allow to obtain a yield prediction. These predictions are carried out between 

budburst and flowering like the assessment of flowers number per clusters since before that period 
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clusters are not visible (Martin et al., 2003). Since the manual flower number counting is a time-

consuming process, there is another efficient method to count them, which examining a good 

relationship between inflorescence length, dry weight and flower number. These last techniques 

allow an early berry number prediction, but it is affected from the fruit-set conditions (Dunn et al., 

2014). 

The early forecasts are imprecise, because they are subject to many factors as the flowers number 

estimation is affected by vigor, number of nodes, cluster order, temperature, irradiance, biotic and 

abiotic stress. However, the most promising early yield predictor is the number of primary 

branches. In fact, in Clingeleffer et al., (2001) and in Dunn and Martin, (2007) studies, showed that 

the number of primary branches per inflorescence had a high influence on the total flowers number 

per inflorescence and consequently on the bunch weight, in addition, in both studies this 

relationship was stable season to season.   

The number of berries depends on the total number of flowers but especially on the amount of 

these that set successfully and are maintained through the harvest. (Dunn and Martin, 2007). 

These can be forecasted at any time until harvest, but usually there are many berries lost after 

flowering, so the better estimation is assessed after fruit-set and before harvest. Therefore, it is 

possible to calculate the yield prediction through the formula (Eq. 2) from Clingeleffer et al., (2001), 

knowing the number of berries per bunch, the number of bunches per vine, the total number of 

vines and the berry weight: 

Yield (g) = n. of vines * #bunches/vine * #berries/ bunch * berry weight (g) * harvest efficiency                                

Equation 2 

The equation 2 estimates the bunches/vine from bunch counts, berries per bunch through sampling 

bunches, predict average berry weight (historical data) and lastly harvest efficiency. The latter is 

calculated as the ratio between the amount of grapes arrived in the cellar and in the patch at 

harvest, it takes values from 0.85 (inefficient machine harvesting with transport losses) to 1 (hand 

harvesting very close to the winery) (Dunn et al., 2014). Clingeleffer et al., (2001) showed a high 

margin of error in the yield estimation (with equation 2) might be caused by the difference in the 

number of berries per bunch between the post-fruit set and pre-harvest. This error may be partially 

attributed to the multiplication of the berry weight (historical data), this happens because 

environmental and cultural factors that may influence it are not taken into account in that equation 

2.  
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In Dunn et al., (2014) yield estimation based on berry count carried out after fruit set, allows an 

error of around 15%-20%. As said above, yield can be estimated at any time during the growing 

cycle of the vine. However, to obtain more accuracy, predictions can be done near to harvest, for 

this reason veraison is a good time to predict it. Yield forecasting can be calculated using historical 

data and berry growth factor as in the equation 3 and 4 (Clingeleffer et al., 2001). 

   Bunch weight harvest (g) = Bunch weight (g) * berry growth factor                                    Equation 3 

Berry growth factor= cluster weight at harvest (historical data) / cluster weight (veraison)           Equation 4 

Close to harvest, usually a week or few days before it, it is a good time to estimate yield because 

there is very little change in the crop weight. Moreover, if predicted yield is carried out in accurate 

way, the value will be close to the actual yield. Clingeleffer et al., (2001) proposed the equation 5 

to estimate yield from historical data (average yield): 

Yield (t) = (average yield (kg) / vine * total number of vines / vineyard ) / 1000                                       

Equation 5 

 

2.2.2. Aeropalynological method 

Aeropalynological forecast model (APFM) is an instrument that allows the yield estimation during 

flowering stage, measuring the pollen concentration in air. It is a valuable tool as it takes into 

account factors such as preflowering conditions, plant vigor and health that influence the crop 

production (Cunha et al., 2003). According to Cunha et al., (2003) study the pollen was captured 

by using Cour trap that was placed in an upright according to the wind direction during pollen 

season for a period of 3-4 days. In this method the pollen grains captured by hydrophilic vertical 

gauze filters with an area of 400 m2, are expressed in number of pollen grains/m3. It is possible to 

make an equation or model relates the amount of pollen with the amount of wine production. APFM 

shows a good regional crop estimation, but some disadvantages of this estimation model are the 

complex laboratory process and it does not allow separating pollen by variety, region or producer 

(Cristofolini and Gottardini, 2000; Cunha et al., 2003). 

 

2.2.3. Trellis tension method 

In Blom and Tarara, (2009) study, a dynamic method of yield estimation against to traditional static 

methods is analyzed the trellis tension method (TTM). This system is based on the tension changes 



 

11 

 

of the wire, which supports the main trellis. The yield forecast is obtained from the following 

equation 6: 

Yt,c= (Ya/Tt,a)*Tt,c                                                                                                               Equation 6 

Where Yt,c is the yield predicted at any time (t) of the current year, Ya is the yield from an antecedent 

year, Tt,a is the trellis wire tension at the time t from the antecedent year, Tt,c is the wire tension at 

time t of the current year. It has been demonstrated that the margin of error of the use of this model 

is equal to or slightly lower than traditional methods. Moreover, the authors explain that in order to 

improve the estimation of the yield through TTM, it is necessary to have a greater number of 

historical data on which to base the forecast. 

 

2.2.4. Agrometeorological models 

Agrometeorological models are obtained from multiple regression between climatic variables 

measured during relevant phenological phases and yield. Therefore, it allows a better 

understanding of the relationships between climate and yield. Crop estimation can be obtained 

through descriptive methods, linear regression or yield simulations. This model analysis the 

behaviour of the crop based on the main climatic variables such as temperature, rainfall, soil 

moisture etc., to which it is subjected. This method is very variable and not easy to extrapolate, for 

this reason it is less used in yield estimation (Sivakumar et al., 2000). 

 

2.2.5. Image analysis 

As explained above, manual methods to estimate yield are laborious, subjective and time 

consuming (Tardaguila et al., 2013). In this regard, recently, it has been developed indirect method 

to have a rapid and accurate yield forecasting based on computing and assessing the image 

analysis acquired with video and digital imaging. The technique allows the automated analysis of 

grapevines videos and images taken manually or from sensors positioned on vehicles such as 

tractors, quad, remote controlled and robotic vehicles previous mentioned (Fuentes et al., 2014).  

In Tardaguila et al., (2013) study, it is being confirmed that image analysis represents a simple and 

computationally cheap method, without the need of contact to assess canopy features and yield 

estimation, indeed this study shows the strong relationship between the yield and the data obtained 

using computer vision. Therefore, this method is an important tool that offers the advantage to 

collect data like images or videos that will be studied by image analysis system able to 
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acknowledge objects in images using algorithms and different methodologies (Fuentes et al., 2008; 

Tardaguila et al., 2013; Victorino et al., 2020). Therefore, image analysis as manual methods are 

used to detect yield components such as shoots, flowers, bunches, berries and bunch traits in 

different phonological stages (Victorino et al., 2020). However, image analysis are used more to 

determine leaf area rather that the yield since the visibility of yield components are limited and less 

exhibited to the sensor. Visibility of yield components is affected to different factors such as shape, 

size, color (bunches) and quantity of them, but also canopy development, especially during the 

ripening period and harvest in non-defoliated situation. These factors are in turn influenced by the 

characteristics of the variety such as bunch compactness, vigor, leaves shape and length of the 

internodes. (Diago et al., 2012; Fernandez et al., 2013; Victorino et al., 2020).  

 

2.2.5.1. RGB and HSV color spaces 

The most known and used image-acquisition method is the application of colour-based to detect 

grapes in images. It is an easy, cheap and non-destructive technique based on the separation in 

the RGB and HSV color spaces; it is necessary only a commercial RGB (Red, Green and Blue) 

camera (Diago et al., 2012; Fernandez et al., 2013; Liu et al., 2013). This method requires a 2D 

sensor, which gives 2D information, and it is useful for yield mapping and monitoring (Genè-Mola 

et al., 2020). After the acquiring of the RGB image, the second step is to transform it to L*a*b* 

color space known as CIELAB color space (Fig. 1) (Fernandez et al., 2013).  

 

Figure 1. CIElab colour space (Cortez et al., 2017). 
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The latter is an international standard for color measurement developed by the Commission 

International d’ Eclairage (CIE) in 1976 (Diago et al., 2014). Coming back on the three coordinates 

they are: “L*”, which represents the luminosity layer, “a*” the chromaticity-layer indicates where 

color falls between red-green axis and “b*” indicates where the color falls between blue-yellow 

axis. These represent the description of the color that is hue, saturation and brightness (HSB), the 

first one tells if the color is red-green, blue-yellow, the saturation tells the level of the color intensity 

and the brightness tells the color light intensity (Cotton, 1996; Tkalčič and Tasič, 2003). To 

understand a scene or the characteristics of the images, it is used the Computer Vision. The latter 

is an Artificial Intelligence that includes an illumination system, a charge-coupled device (CCD) 

that converts the images obtained from the camera into a digitized one, and a computer with an 

adapt software for image processing and interpretation of the results. The illumination system is 

an important tool because it helps to identify the objects and the color calculation process needs 

a light standardization (Rodriguez-Pulido et al, 2012). First, to carry out the image processing there 

is need to determine a region of interest (ROI) to analyze (Diago et al., 2019).  

 

 

2.2.5.2. Image segmentation 

The next step of image analysis is the image segmentation. It is a process that deals with dividing 

images into segments. Segments are objects or part of them, constituted in sets of pixels. Image 

segmentation arranges pixels in greater components to eliminate the need to consider individual 

pixels as units of observation (Minaee et al., 2019). Segmentation represents the basis for the 

detection and classification of the images. It is divided in two levels: semantic segmentation and 

instance segmentation. The first one classifies pixels in classes defined as “bunch”, “trunk”, “shoot”, 

“leaf”, “gap” and “trellis”. While instance segmentation identifies each instance of each object. 

(Diago et al 2019; Minaee et al., 2019).  

In the last years image segmentation using deep learning convolutional neural networks (CNNs) 

that is an improvement of the standard neural network (NN). NN is an algorithm that allows the 

computer to learn descriptive criteria of the desired image regions just from the image data itself 

(Rudolph et al., 2019). It is a mathematical model imitate the human brain, in fact connected 

processors called neurons form it. (Reyes and Sastre, 2014). CNN includes two main phase, the 

first one is the extraction of features, where in multiple convolution layers alternate to pooling layers 
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generate more complex class features, in order to reduce the image size in pooling levels. The 

second one is the classification phase where multiple fully connected layers derive class labels 

based on the derived image features Fully Convolutional Networks (FCNs) use convolutional 

layers to process different input sizes, while CNN cannot manage. Convolutional layers classify 

every pixel to determine the context of the image. In fact from FCN transforms the height and the 

width of the intermediate layer feature map in the input image size.  (Minaee et al., 2019; Rudolph 

et al., 2019). In the last years, this method was improve in Mask Region-based Convolutional 

Neural Network (Mask R-CNN). The aim is to differentiate each individual object (object detection) 

and classified in order to determine its exact location and differentiate it from any other object (even 

belonging to the same class).The region-based networks extract possible Regions of Interest (ROI) 

(object detection), then the characteristics of each region will be obtain by using CNN (Zabawa et 

al., 2020).  

There are also other image segmentation techniques commonly used:  

 Thresholding: divides an image in a foreground and the background. The images are 

converted to binary images and a specific threshold value separates pixels in one or two 

levels (Minaee et al., 2019). 

 K-means clustering: an algorithm assigns each pixel to one of the groups (K represents the 

number of groups) based on the feature similarity. Therefore, does not work on already 

defined groups but forms them (Minaee et al., 2019).  

 Histogram-based image segmentation: uses a histogram to group pixels based on “grey 

levels”. The background is a defined grey level and it is the biggest entity. Therefore in the 

histogram, it is represented as the large peak, while the object represents the smaller peak 

with another grey level (Otsu, 1979; Minaee et al., 2019). 

 

2.2.5.3. Image analysis to detect shoots 

An early yield estimation allows to growers to regulate sensibly yield. In Liu et al., (2017) an 

automatic system was developed to count shoots prior to fruit-set in order to estimate yield. A 

robust shoot detection framework was used combined with an algorithm. Data were collected in 

form of videos of shoots, it was taken during day time, therefore there were different adversities to 

overcame: varying lighting conditions, shadows, change of shoot position in the field of view, 

reflections, objects in the field of view such as cordon, wire, posts, ecc. To solve these issues, 

images from videos were divided in sub-windows and processed as object candidates. Given that 
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illumination conditions changed during the video, it was not possible to apply the common 

segmentation method that is converting images in a binary one using a threshold value. Therefore 

it was replaced with a dynamic threshold method proposed by Otsu (1979). Since each time 

illumination conditions and scenario changed labels are required, it was proposed an unsupervised 

feature selection based on the correlation of three filters (Kendall et al., 1946; Higgins, 2003; He 

et al., 2005). In this study particularly good results were obtained accuracy of 86.8% and harmonic 

average (F1) between Recall (the percentage of actual berries detected by the algorithm) and 

Precision (the percentage of berries correctly detected) of 0.90 considering that the forecast was 

done before fruit-set stage.  

 

2.2.5.4. Image analysis to detect flowers 

Yield estimation depends mainly on two phenological stages: flowering and fruit-set, as they define 

the number of berries per bunch. The fruit-set is subjected to varietal and clonal variability and it is 

affected by physiological, environmental and pathological factors. Therefore, it may be possible to 

obtain an accurate fruit-set estimation by counting the number of flowers per inflorescence through 

image analysis. The latter is cheaper, faster and simpler than manually method and the main 

objective is to improve the quality of forecasting. Three steps characterize this method; the first 

one is the image pre-processing involving conversion of the image from RGB to CIELAB color 

space and an initial segmentation separating the flowers from the background. The second step is 

the flowering counting, where flowers correspond to brighter areas as they present a higher degree 

of light reflection. The third step is to remove other material than flowers from the brighter area 

selected. The results have been validated from the software and in addition it has been showed 

the conjunction between yield estimation through the flowers number and fruit set rate (Diago et 

al., 2014, Aquino et al., 2015; rn et al., 2017). Rudolph et al., (2019) show another cheap and non-

invasive approach to estimate the number of flowers. The method is divided in four steps, the first 

is image taking with camera; the second is the identification and localization of inflorescences 

through the image segmentation FCN ideal for small geometry and high density of flowers. Then 

the flowers were extracted and finally data were evaluated. 
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2.2.5.5. Image analysis to detect the bunches and berries 

As previously explained traditional method to detect bunches and berries are expensive and time 

consuming, while method based on image analysis are fast, accurate, simple and inexpensive 

(Diago et al., 2014). Grossetete et al., (2012) show how to detect the number of berries using 

photos taken with the Smartphone camera during the period between flowering and veraison. 

Images analysis are obtained using an integrated flash, because berries surface reflects the light 

and the maximum point of reflection is on the center of them. The image analysis is made thanks 

to an image processing algorithm is based on the correlation between the Gaussian profile and the 

neighborhood of each pixel, called correlation map. The white pixels correspond to the reflection 

areas of each berries, but more specular area can occur on the same berry, therefore the last step 

deals with solving the issue by morphological dilation. Moreover, several authors, were able to 

obtain a strong relationship (R2=0.92) between the real and estimated number of berries by using 

a polynomial model. (Grossetete et al., 2012). The real value was detected by counting the number 

of berries manually for each image of the bunch taken with the Smartphone. This procedure was 

carried out for several years, on different cultivars and in different areas (Grossetete et al., 2012). 

Other methods use RGB images but they are distinguished by image processing. In Diago et al., 

(2012) the images are obtained before and after defoliation and cluster thinning. In addition, a white 

background was placed behind the canopy in order to avoid confounding effects from background 

and no artificial illumination is used. This method allowed the images set process, the 

discrimination of the canopy in seven different parts or classes (grapes, wood, background and 

four classes of leaf and the increasing of leaf age) and the calculation of their areas (Fig. 2) (Diago 

et al., 2012; Fernandez et al., 2013). Each class is being focused by selecting a set of 

representative pixels for each part in order to obtain the clustering around them. In Diago et al., 

(2012) study is shown an accurate estimation of the leaves and the grapes in fact the classifier of 

the performance for the identification exceeded the 90%. After defining ROI, the image analysis is 

carried out by a clustering algorithm based on the Mahalanobis distance that deals with identifying 

the pixels of each class. The Mahalanobis distance measure the similarity between an unknown 

sample group and a known one. Therefore, the algorithm uses a known sample of values to classify 

an unknown set of pixels into groups, based on the RGB color values of each pixel. After that, pixel 

samples for each group are selected manually and some indices are computed by image analysis 

(Diago et al., 2016; Diago et al., 2019). 
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Figure 2. Example of manual selection of reference pixels (Diago et al., 2012). 

In Nuske et al., (2011a) study, the RGB camera is mounted on a vehicle and the yield estimation 

is made before veraison. The algorithm used for image analysis has three steps. The first one is 

to detect the potential position of the berries with the radial symmetry transformation (Loy and 

Zelinsky, 2003) that uses the circular shape of berry to detect it. The second step is to identify with 

deep learning FCN the points of grapes or not-grapes. The last step is to group the nearby berries 

in clusters. Finally, the authors compared the estimation of berries number with the harvest crop 

weights to test the yield forecasting accuracy. Further berries were not counted by the algorithm 

due to occlusion berry-by-berry, yet despite this, the linear regression between berries detected 

and harvest crop weight showed a R2=0.74. They demonstrated that is possible to obtain 

automated yield estimation with an error of less than 9.8 % of the real weight, analyzing the shapes 

and the texture of the berries (Doutor et al., 2018). 

In Nuske et al., (2014b) study was presented an efficiently method to detect and count 

automatically berries. The work is carried out during the night using camera system mounted on a 

ground-vehicle and the illumination to optimize for low motion blur. The authors developed an 

algorithm based on three main visual cues: color, shape and texture. First of all, it was estimated 
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berries position in the images using a shape transform, after that classify these locations using 

color and texture descriptions. Moreover, a second camera facing backward from the vehicle is 

positioned to trace its position in order to avoid a multiple count of a single berry. They were shown 

a linear relationship between the image berry count and the harvest weight with a R2  between 0.6 

and 0.73. 

Aquino et al., (2017) has used a smartphone camera for image acquisition to estimate the number 

of berries per bunches during the night on five different varieties. After the acquiring of the RGB 

image, it is transformed it to L*a*b* color space. First, to carry out the image processing there is 

need to determine a region of interest (ROI) to analyze. After that, the image analyses are 

developed by MATLAB using the berry-segmentation algorithm. This latter includes two steps, in 

the first one a set of berries candidate are extracted from the image by means of a morphological 

filtering, the bright spots produced by the light reflection on the berries surface detected by finding 

regional maxima illumination. The second step provides for the discard of the candidates that do 

not corresponded to berries, named false positive. To determine them the authors consider six 

descriptors and use them to test and compare two different methodology that are Support Vector 

Machines (SVM) and Neutral Networks (NN). Then, a probability map in form of image is created 

with the values obtained from NN. After this, the new image is binarized using the threshold 

automatically provided by Otsu’s method (Otsu, 1979). Moreover, the linear correlation between 

the number of the real berries per cluster and the number of berries per cluster automatically 

detected, show a R2=0.75. In Aquino et al., (2018a) the berry-segmentation algorithm was 

improved in terms of the percentage of berries detected and berry classification, increasing from 

six to fourteen the number of descriptors to discard false positives. In fact, it was recorded an 

increase of Recall and Precision, than the values obtained in Aquino et al., (2017). In addition this 

algorithm tested initially using Matlab, was ported to smartphone through vitisBerry app (Fig.3).  



 

19 

 

 

Figure 3. Illustration of the berry-segmentation algorithm on cluster images included in the 

vitisBerry application: (a) original image; (b) extracted ROI; (c) berry candidates represented in 

blue colour; (d) image in which each candidate is represented according to its computed 

probability of being berry (the brighter, the higher probability); (e) binary image illustrating the 

candidates confirmed as berry; (f) final result showing the found berries (Aquino et al., 2018). 

 

NN method was used also in Behroozi-Khazaei and Maleki, (2017) work that develop an algorithm 

to segment bunches, obtaining the 99.4% of accuracy.  

In Herrero-Huerta et al., (2015) study, 3D models of grapes that were obtained in field were used 

to estimate yield. This work proposes a non-invasive, accurate yield estimation and low-cost 

method with the aim to eliminate the subjectivity due to temporal and spatial variability of grape 

production. The method was a combination between Photogrammery Workbench software 

developed by the authors, used to reconstruct bunches in 3D model and compute vision.  However, 

the 3D models generate some issues such as having only the visible side of the bunch or having 
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deal with the occlusion and geometrical complexities of the bunches themselves. The first problem 

it is solved by the acquisition of the image such as their position, because will affect the final 

accuracy (in term of prospective ray intersection) and completeness in terms of overlap between 

image) of the 3D. Finally it was studied the relationship between actual and estimated number of 

berries obtaining a R2= 0.80.  

In Lopes et al., (2017) work canopy features and yield were estimated comparing the real data with 

the estimations obtained by the VINBOT. The images were analyzed using image analysis 

algorithms (ImageJ 1.48V) where the bunch area was extracted, and then it was computed in pixel 

and converted into actual cm2. Finally, the estimated area of bunches was converted into 

kilograms. In this study, it was demonstrated an acceptable performance for canopy features 

estimation but an underestimation of real yield mainly due to bunch occlusions.  

In Santos et al., (2020) grapes detection was based on a state-of-art artificial vision system that 

relies on convolutional neural networks (CNNs), that deals with the classification of the images and 

three-dimensional associations. CNN can solve several problems found in other methods such as 

variation in pose, illumination, shape and large inter-class variability, obtaining accurate results. 

The first step of this technique is named semantic segmentation (a pixel classification to determine 

fruit), the second step was the fruit localization by bounding boxes. The last step is the instance 

segmentation that is the identification of berries pixels in the box, thanks to that the occlusion of 

leaves, trunks, other clusters etc. can be addressed (Fig.4).  
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Figure 4. Example of different steps for grapes detection (Santos et al., 2020). 

In this study, it was calculated F1, achieving values superior to 0.9, despite the difficulty of berries 

detection due to shape, size and compactness. Therefore, this method allowed a more accurate 

assessment of berries number, with the separation of each cluster from other structures in the 

image that allows a more accurate assessment of fruit size and shape. Moreover, they showed 

that 3D models produced by structure-from-motion or SLAM Simultaneous Localization And 

Mapping can be employed to track fruits, avoiding double counts and increasing tolerance to errors 

in detection. 

In Zabawa et al., (2019), Phenoliner, a field platform based on a grapevine harvester was used to 

acquire images replacing harvest tools with camera to take photos. Single berries were detected 

in images through an automatic and robust detection pipeline based on the definition of three 

classification classes “berry”, “edge” and “background” and the application of a neural networks. 

Every berry was colored with one of four colors and then, an edge was estimated with a determined 

size. This kind of classification helped the differentiation between single berries in the cluster. A 



 

22 

 

connected component algorithm determined the number of berries. In addition it allowed not only 

the counting and identification of the position of berries, but also the investigation of their size. 

Finally, berries were detected with an accuracy of 94% in the Vertical Shoot Position (VSP) system 

and in a Semi Minimal Pruned Hedge (SMPH) with 85.6%. This is caused by a major covered of 

grapes by canopy in SMPH, while in VSP, grapes are positioned on the bottom of the canopy and 

they are not much occluded. In Zabawa et al. 2020 study, the results obtained with the approach 

mentioned in Zabawa et al., (2019) was compared with two different images segmentation 

methods, the Mask-RCNN and U-Net (popular architecture of FCNs) (Rudolph et al., 2019). The 

new method, achieved a major accuracy against the other two. However, the correlation between 

detected and actual berries was very high and better than in Zabawa et al., (2019), but the 

tendency was to underestimate the berries number, due to the bunch compactness. Furthermore, 

unlike the other methods, approach can be inferred in minutes. The advantage of this new 

approach is the potential extraction of additional phenotypic traits like the berry size.  

 

Coviello et al., (2020) developed a smartphone application named Grape Berries Counting Net 

(GBCNet) able to estimate yield. Images taken with a regular smartphone camera were processed 

by app obtaining a density map and after the application of deep learning algorithms; the number 

of berries was estimated. In this study, data are collected directly in field without the need of special 

cautions or contrast tools. The average error for the berry detecting was of 5%, however this value 

could drop through the analysis of over more three pictures from the same parcel.  

 

In Liu et al., (2020b) study, it was presented an algorithm able to count berries and to estimate the 

3D reconstruction in three main steps. Berry counting was based on a single image of red or green 

bunches. The original photo was cropped and segmented from the background. The berries on the 

edge are fitted following the curvature and then the remaining berries were placed inside of the 

outline (Fig. 5) 
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 a)                        b)                        c)                          d)                        e) 

 

Figure 5. Representation of a Chardonnay bunch. a) The original photo. b) it was segmented 

from the background. c)-d) From this segmentation, berries were fitted following the outline 

curvature. e) Remaining berries were placed inside the hull formed from the segmented outline 

(Liu et al., 2020b). 

 

Berries were counted through a robust calibration-free algorithm and final berry number was 

obtained through the estimated berries number and the sparsity factor. 3D model did not take into 

account the empty space inside the bunch, thus obtaining an overestimation of the berries. To 

solve this issue, the sparsity factor was introduced to process both red and green grapes based 

on the visible proportion of berries in the cluster area. 

The accuracy of the approach was 89% if directly compared with the berries number of the bunch. 

Instead, when more images were considered the accuracy was over 99%. Liu et al., (2020a) 

developed an application for smartphone named 3Dbunches based on the algorithm mentioned in 

the previous work (Liu et al., 2020b). This app recorded an accuracy of 91%. Moreover, the 

percentage of error for yield estimation was encouraging for the berry-counting algorithm. 

 

2.2.5.6. Image analysis to detect bunch traits   

Yield components, to estimate yield include not only shoots, flowers, bunch and berries 

(paragraphs), but also bunch traits such as bunch area, volume ecc.  (Font et al., 2015; Herrero-

Huerta et al., 2015). In Font et al., (2015) and in Hackings et al., (2019) bunch area was obtained 

as the number of pixels in the segmentation image and volume was estimated from it, while in 

Herrero-Huerta et al., (2015) used the reconstruction in 3D of bunches to detect volume. In these 

study bunch area/volume were converted in bunch weight obtained from their relationship (Lopes 
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et al., 2016). In fact, these bunch traits can be used as proxies to estimate bunch weight, 

subsequently used for yield forecast (Victorino et al., 2020). This is possible due to the fact that 

exists a high correlation between bunch area/volume and bunch weight, therefore (Font et al., 

2015; Hacking et al., 2019).  
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3. MATERIALS AND METHODS 

Due to the COVID-19 pandemic, it was not possible to carry out by myself the work in the vineyard 

and in laboratory. To solve this problem, Images and data collected during 2019 growing season 

by the ISA research team were used in this thesis. The images were sent to us and our main work 

consisted in counting the number of visible berries on each image. 

 

3.1. Site characterization 

The images and part of data, analyzed in this work, were obtained during the year 2019 at the 

educational vineyards of the Instituto Superior de Agronomia (ISA), in Lisbon with the coordinates 

38°70’92.86’’N, 9°18’72.42’’W and 62 m above sea level (Fig.6).  

 

Figure 6. Map from Google Earth of ISA Vineyard where cv Syrah is located. 

 

The grapevines of the variety Syrah, are trained to a vertical shoot positioning trellis with two pairs 

of movable wires and spur-pruned on a bilateral Royal Cordon system and are spaced 1.2 m within 

and 2.5 m between north-south oriented rows. The field has a slop of 11%. The soil is a clay loam 

with 1.6% organic matter and a pH of 7.6. Cv Syrah was planted on 1998 and grafted onto the 

rootstock 140 Ruggeri (Vitis berlandieri x Vitis rupestris) (Samà, 2019), it is a rootstock with high 

vigour and more resistant to dryness and at the presence of limestone (Cosmo et al., 1958). 
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3.2. Climatic characteristics 

The climate in Lisbon is characterized by moderate rainfall in winter and deficit in summer (Kottek 

et al., 2006). Average annual precipitation, from 1971 to 2000, was 725.8 mm, with minimum 

values recorded during summer months and maximum values obtained during winter months. 

Average annual temperature values were 16.4°C, with an average minimum value of 11.8 °C 

obtained in winter and an average maximum of 21°C recorded in summer (IPMA, 2019). In the 

Figure 7 it is possible to note that the rainfall during the season 2019, were lower than the average 

of the last 30 years, except for the April month that it was the wettest one. 

 

 

Figure 7. Rainfall and average temperature during 2019 growing season (IPMA, 2019). 

 

 

 

3.3. Studied variety 

Syrah is one of the varieties called “international” because they have been exported from France 

and cultivated all over the world. In terms of yield, it shows a medium high productivity and a high 

vigor. The grape Syrah has a medium compact cluster, medium sized, cylindrical shape and with 

the number of wings ranging from zero to one (Fig.8). Regarding the berries, they have a medium 

size, ovoidal shape with a very pruinose skin and blue-black color (Quattrocalici, 2020). About 

diseases, cv. Syrah has a normal resistance to the common parasites of the vine. It seems to have 

an excellent resistance to black rot (Breviglieri and Casini, 1962). 
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Figure 8. Bunch of Syrah imaged at the lab. 

 

 

3.4. VINBOT 

Vinbot is an autonomous cloud-computing vineyard robot and it is part of an EU project. The main 

objective of this new platform is to optimize the yield forecasting by means of cloud computing 

applications that take in count the spatial variability of the vineyard plots. Vinbot can estimate the 

amount of leaves, grapes and other phyto-data, navigating through the vineyards capturing 

geolocated 2D and 3D images thanks to different kind of sensors. In addition it is able to climb 

slopes up to 45°. It is powered by an electric battery and can work 8hrs per day. This robot can 

generate online yield and vigor maps to help winegrowers optimize management strategies.  

The Vinbot consist of (Fig. 9): 

 A robotic platform: mobile, durable with open-source software. 

 Color camera: RGBD Kinect to take images of the vine. 

 3D range finders to obtain the shape of the canopy and to navigate the field. 

 A Normalized Difference Vegatation Index (NDVI) sensor to compute the vigor of the plants. 

 A small computer for basic computational functions and connected to a communication 

module. 

 A cloud-based web application to process images or create 3D maps. 
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 User friendly Human Machine Interface (HMI) to define navigation and data acquisition 

missions. 

(Reyes and Sastre, 2014; Lopes et al., 2017; VINBOT, 2020). 

 

Figure 9. Vinbot view (Guzmán et al. 2016). 

 

3.5. Experimental design 

In 2019, two rows (14-15) of 25 meters length were selected in the vineyard plot for data collection. 

Then, within these canopy segments named Smart Points (SPs); SP1 was at the beginning of the 

row number 14 and SP2 at the end of the row 15, in order to encompass as much as possible, the 

variability present in the vineyard. The red rectangles in the Figure 4 show the 10 meters segment 

which were photographed by the Vinbot at three important phonological stage: pea-size, veraison 

and maturation. These segments were labelled by a measuring tape attached to the base of each 

vine in order to obtain a better identification of the images as well as a static scale. Adjacent to 

these rows, other segments were selected at each of the analyzed phenological stage, in particular 

5 meters at pea size (yellow line), veraison (green line) and maturation (blue line) (Fig.10). These 

segments were photographed manually using a commercial RGB camera at different levels of 

defoliation: low, medium and full (Samà, 2019), as explained in the 3.5.2 chapter.  
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Figure 10. Representation of the SPs in the vineyard.  

 

3.6. Image analysis 

The image analysis performed in this work divided in three separate datasets:, and manual lab 

images (1), manual field images (2) and Vinbot field images (3). All images were collected during 

the 2019 season by the ISA research team (Samà, 2019). Each dataset was collected in different 

conditions and encompassed a total of 103, 90 and 120 images, respectively. In all three datasets, 

the number of visible berries on the images was counted using a program developed in MATLAB 

(R2010b, The Mathworks, Natick, MA, USA) to facilitate this laborious task. The program tracks 

the berries already counted and provides a sum of all counts in the end. The counting was 

performed manually without the aid of an automatic berry–segmentation algorithm (Aquino et al., 

2018a), simply by clicking each berry in the image, thus producing an estimate of visible berries 

with the highest accuracy possible. In the following sections, the methodologies regarding each 

data set will be explained with detail. 
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3.6.1. Manual lab dataset 

Of the 5 meters of carry length referred in the section 3.5. at each phenological stages, one 

representative segment was selected and all bunches from that segment were individually picked, 

packed and labelled to be analyzed in laboratory conditions. A total of 35 bunches were analyzed 

at each phenological stage. In the lab, bunches were photographed using the same manual RGB 

camera. To maintain the same distance from the bunch, the camera was mounted on a tripod in 

marked positions on the floor and moved to take two pictures in two different perspectives, front 

(side A) and side (side B). The bunches were hung on a bar with the use of a metal spring paper 

clip. A blue background was used to facilitate image analysis and remove background noise. Of 

the resulting images, the number of berries was estimated as explained above (section 3.5.). All 

methods related to estimating bunch area are described in Samà (2019). By ISA research team 

during 2019, bunches and berries were weighted in the laboratory using a KERN scale (KERN 

FCB Version 1.4) and the bunch volume was calculated by using the water displacement method 

(Samà, 2019).  

In addition, in order to analyze individual berry weight and size and to estimate the berry growth 

factor during the vine growing cycle of grapes 2019, bunches were destemmed. The berries of 

each bunch were placed on a table and photographed. Afterwards, images were analyzed using 

the software ImageJ to automatically count the total number of berries for each bunch. (Bonaria, 

2019; Samà, 2019).  

In this study, images taken from the two perspectives (side A and B) of each bunch were analyzed 

using the MATLAB program described in section 3.5, to count the number of visible berries 

measured at bunch level (Vb_B) (Fig. 11). For each phenological stage, the average Vb_B was 

calculated as the mean of visible berries from side A and side B, for each bunch. Using the actual 

berry number, we also obtained the percentage of Vb_B, in order to analyze the berry-by-berry 

occlusion measured at bunch level (AbO_B), obtained with the equation 7:  

AbO_B (%) = 100 - average Vb_B (%)                                                                            Equation 7  

In addition, it was calculated the berry weight (bW) through the ratio between the bunch weight 

(BW) and the number of total berry measured in laboratory (Tb_L) of every single bunch (equation 

8). 

bW (g) = BW (g) / Tb_L                                                                                                  Equation 8 
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Figure 11.  Counting the number of Syrah berries from side a (A) and side b (B) at the harvest 

phenological stage using MATLAB. 

 

 

3.6.2. Manual field dataset 

Images were collected in the vineyard with a commercial Nikon D5200 RGB camera during three 

phenological stages: pea size, veraison and maturation in the four smartpoints. As explained 

above, for each smartpoint, it was considered 5 meters of the canopy, these were analyzed at 

three different cluster zone defoliation levels (Fig. 12):  

 Non-defoliated canopy 

 Canopy partially defoliated  

 Canopy completely defoliated.  
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Figure 12. Representation of the same vines, at three different levels of fruit zone 

defoliation at the stage of maturation (without any defoliation (A), partial defoliation (B), 

full defoliation (C) (Samà, 2019). 

 

The photos were taken before and after the defoliation using a blue background. On each RGB 

image the number of visible berries was evaluated at different levels of defoliation and added to 

the data base which already included canopy porosity, occlusion and bunch area (Bonaria, 2019; 

Samà, 2019). The percentage of visible berries at vine level (Vb_v) was then calculated using the 

equation 9: 

Vb_v (%) = (#Visible berries at each defoliation levels / #Visible berries at total defoliation) * 100 

Equation 9 

The main intention of this methodology is to simulate different canopy porosity or canopy gaps 

realities, that increase fruit exposure (Diago et al., 2016). In addition, relate that trait with the 

percentage of Vb_v. Vb_v is expected to increase with lesser amount of leaves (Aquino et al., 

2018a).  
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3.6.3. Vinbot field dataset 

RGB images were obtained by the Vinbot in field conditions only in one side of the row, controlling 

the robot position at a distance around 70 cm from the canopy and aligning it with the measuring 

tape located under the vines. A blue background was place on the opposite side of the row to aid 

future image analysis and prevent background noise from adjacent rows. The robot was piloted 

using a wireless joystick system, since its self-navigation system is still under development. In 

addition, a smartphone was used to communicate with Vinbot through Wi-Fi and to manage images 

collections. At the end of maturation, all grape bunches were harvested from the analyzed vine 

segments and the final yield was obtained for each segment. On each images captured, several 

canopy and bunch attributes were estimated using image analysis, such as bunch projected area 

in the images and canopy porosity (Samà, 2019) and were used in this work for further evaluation. 

In the same images, berries were counted manually as described in section 3.5. Yield was 

estimated on images of non-defoliated vines, collected by the Vinbot platform (Fig.13).  

 

Figure 13. An example of Vinbot field image. 

 

Yield estimation was performed using a combination of two models developed with both field data 

(manual field images) and laboratory data (manual lab images). The first model estimates the 

percentage of Vb_v that are being occluded by vegetation (equations 9-10-11): 
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Vb_v (%) (pea-size) = - 0,017 * (P %) 2 + 2,633 * (P %)                                                Equation 10 

Vb_v (%) (veraison) = - 0,017 * (P %) 2 + 2,601 * (P %)                                                Equation 11 

Vb_v (%) (maturation) = 26,304 * ln(P %) - 11,844                                                       Equation 12 

They were obtained from linear regression between the porosity (%) and the Vb_v (%), for each 

phenological stage. The final result of these models represents the estimated total number of 

berries (Vbtot) that would be visible if all leaves were removed with the following equation: 

Vbtot = (Vb_v / Vb_v %) * 100                                                                                       Equation 13 

Where VB_v are the visible berries counted through MATLAB software. Therefore, this result does 

not yet include the total number of berries as many are still being occluded by neighboring berries. 

In order to estimate those fruits, a second model (2) was used to estimate the total number of 

berries (btot)  based on Vbtot from a 2D perspective: 

btot (pea-size)  = 1,073 * Vbtot + 1,973                                                                           Equation 14  

btot (veraison) = 1,325 * Vbtot - 7,984                                                                             Equation 15 

btot (maturation) = 1,749 * Vbtot - 15,590                                                                       Equation 16  

After applying both models BTLB is then multiplied by the average bW (also estimated with a sample 

from laboratory data), in order to obtain the estimated yield: 

Yest (kg) = (btot * bW (g)) / 1000                                                                                     Equation 17 

Yest was then compared with actual yield (Y), with the aim of achieving the percentage of error 

(E%). 

E% = (Yest - Y)(kg) / Y (kg)) * 100                                                                                   Equation 18 

 

3.7. Data analysis  

In each dataset and for all the phenological stages (pea-size, veraison and maturation), data was 

analyzed using different statistical test in Microsoft Excel. One-way ANOVA was employed in lab 

dataset to compare the effect of the different bunch image perspectives of Vb_B side A and Vb_B 

side B. Correlation and regression analysis were used to assess the relationships between 

variables. 
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4.  RESULTS AND DISCUSSION 

4.1. Laboratory results 

The table 1 shows some average values between SP1 and SP2, obtained from the data collected 

in laboratory during pea-size, veraison and harvest. Regarding BW, bW and AbW, cv. Syrah 

presents the highest values at maturation. According with Victorino et al., (2020) this was caused 

from an increase of the size of bunches and consequently of berries during the growing cycle of 

the bunch. In fact, as table shows, ABV is higher in maturation than in the other phenological 

stages. On the other hand, Vb_B side A, Vb_B side B and average Vb_B values decreased, due 

to the increase of ABV and AbO_b. These later values influence the berries visibility due to the 

occlusion berry-by-berry. Instead, regarding Tb_L (estimated using ImgageJ software by ISA 2019 

team) no statistical differences were identified among phenological stages. In fact, althought the 

averages are different, the standard deviation shows that it was casually; therefore the number of 

berries is the same.  
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Table 1. Minimum value (Min), average ± standard deviation (Avg) and maximum value (Max.), of 

bunch and berry attributes, at pea size (n=35), veraison (n=33) and maturation (n=35), for each 

bunch of the cv Syrah. The variables are: bunch weight (BW), berry weight (bW), average berry 

weight (AbW), total berry number counted in laboratory condition (Tb_L), visible berries side A 

(Vb_B side A), visible berries side B (Vb_B side B), average number of visible berries (Vb_B), % 

of visible berries in laboratory condition (Vb_L ), percentage of the average berry-by-berry 

occlusion (AbO_b) and actual bunch volume (ABV).  

Bunch and 

berry 

attributes 

PEA-SIZE VERAISON MATURATION 

Min Avg Max Min Avg Max Min Avg Max 

BW (g) 2.7 13.8 ± 8.2 35.6 8.7 
33.9 ± 

17.5 
83.3 

4.9 57.6 ± 

29.5 

145 

bW (g) 2.5 11.5 ± 7.1 31.3 6.7 
30.4 ± 

16.1 
73.1 

3.7 54.1 ± 

27.7 

135.7 

AbW (g) 0.1 0.2 ± 0.05 0.3 0.2 0.5 ± 0.1 0.2 
0.2 0.8 ± 

0.2 

1.2 

Tb_L 22 67 ± 31.5 148 22 
63.7 ± 

23.4 
123 20 67.9 ± 

38 

212 

Vb_B side A 21 
59.7 ± 

27.4 
139 21 

52.4 ± 

16.6 
81 20 48.5 ± 

23.4 

136 

Vb_B side B 22 
60.9 ± 

26.2 
120 22 

55.7 ± 

18.9 
108 19 46.3 ± 

18.7 

100 

Average 

Vb_B 
21.5 

60.3 ± 

26.5 
129.5 21.5 

53.7 ± 

17.5 
92.5 19.5 47.8 ± 

20.9 

118 

Vb_L (%) 32.4 94.3 ± 26 228.1 70 
85.8 ± 

7.2 
97.7 

50.5 74.9 ± 

11.4 

97.5 

AbO_b (%) - 5.7 ± 74 - - 
14.2 ± 

92.8 
- 

- 25.1 ± 

88.6 

- 

ABV (ml) 2.5 11.9 ± 8.5 35 5 
31.8 ± 

17 
80 

5 51.9 ± 

27.8 

135 
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4.1.1. Effect of bunch side on visible berry number 

The one-way ANOVA Test analysis was carried out to compare visible berries between side A and 

side B in pea-size, veraison and maturation. In all of phenological stages F test was greater than 

5% consequently the null hypothesis can be accepted. Therefore, there are no significant 

differences between visible berries on side A as compared to side B. For this reason, in data 

analysis have not been taken in consideration Vb_B side A and Vb_B side B but their average 

(average Vb_B). 

 

4.1.2. Laboratory correlation analysis 

Table 2 shows correlation coefficients (r) between bunch data of the cultivar Syrah, measured at 

pea-size, veraison and maturation. All the relationships present a high and positive r, therefore an 

increase in the independent variable corresponds to an increase in the dependent variable. 

Correlation coefficient between Tb_L and BW is high and constant in the three phenological stages. 

Instead, the correlation between average Vb_B and BW is highest in veraison as well as the 

relationship between average Vb_B and Tb_L. The good correlations suggest that these variables 

can be used as explanatory variables to estimate grapevine yield. In fact, in according with 

Clingeleffer (2001), Nuske et al., (2011a) and Nuske et al., (2014b) Tb_L and Vb_B are good 

explanatory of bunch weight. For this reason, many authors to estimate yield used these variables 

(Diago et al., 2014; Herrero-Huerta et al., 2015; Lopes et al., 2017; Aquino et al., 2018a; Zabawa 

et al., 2019; Santos et al., 2020; Coviello et al., 2020; Liu et al., 2020b).  

Table 2. Correlation coefficient between variables of cultivar Syrah. Values are: bunch weight (BW), 

total berry number (Tb_L) and average number of visible berries (Average Vb_B). The *** indicates 

the significance at P≤0.001 

Bunch 

and berry 

attributes 

PEA-SIZE VERAISON MATURATION 

BW (g) Tb_L 
Average 

Vb_B 
BW (g) Tb_L 

Average 

Vb_B 

BW (g) 
Tb_L 

Average 

Vb_B 

BW (g) 1 - - 1 - - 1 - - 

Tb_L 0.91*** 1 - 0.91*** 1 - 0.89*** 1 - 

Average 

Vb_B 
0.82*** 0.90*** 1 0.87*** 0.98*** 1 0.85*** 0.96*** 1 



 

38 

 

 

 

4.1.3. Relationship between average number of visible berry and bunch weight  

It was calculated the relationship between the average Vb_B (independent variable) and the BW 

(dependent variable) of bunches, obtaining respectively the following determination coefficient for 

each phenological stage: R2=0.68 at pea-size (Fig. 14A), R2=0.78 at veraison (Fig. 14B) and 

R2=0.71 at maturation (Fig. 14C). These regression analyses, showed a high and significant 

coefficient of determination, indicating that the average Vb_B is a good estimator of BW especially 

at veraison.  
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Figure 14. Linear regression analysis between average number of visible berries (average Vb_B) 

(independent variable) and bunch weight (BW) (dependent variable) at pea-size (A) (n=35), 

veraison (B) (n=33) and maturation (C) (n= 35). The *** indicates the significant R2 at p≤0.001. 

 

 

4.1.4. Relationship between average number of visible berries and total number of 

berries  

The relationship between the average Vb_v (independent variable) and the Tb_L (dependent 

variable) shows the coefficient of determinations different for each phenological stage. These 

values of R2 was 0.80 at pea-size (Fig. 15A), 0.96 at veraison (Fig. 15B) and 0.93 at maturation 

(Fig. 15C). The linear regression analysis showed highly significant results for the three 

phenological stages, therefore the average Vb_B is a good explanatory of the Tb_L variability. 

These results are in according with values obtained in other studied such as Grossetete et al., 

(2012); Herrero-Huerta et al., (2015) and Aquino et al., (2017). 
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Figure 15. Linear regression analysis between average number of visible berries (average Vb_B) 

(independent variable) and total number of berries (Tb_L) (dependent variable), at pea-size (A) 

(n=35), veraison (B) (n=33) and maturation (C) n= 35. The *** indicates the significant R2 at 

p≤0.001. 
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4.2. Field manual images 

Table 3 presents the percentage of canopy porosity, the Visble Bunch Area (VBA) (estimated using 

ImageJ software) and the percentage of Vb_v, for each phenological stages at different level of 

defoliation.  

The results show that as defoliation level increases, the percentage of porosity and the percentage 

of Vb_v increase. In this way, there were more gaps, which expected and explained the higher 

visibility of the berries (Diago et al., 2016). Regarding the percentage of Vb_v identified through 

MATLAB were higher than in the other phenological stages in each defoliation degree. This is due 

to the increase of the bunch size and consequently of the VBA during the phenological stages. In 

addition, the Table 3 shows, in non-defoliation condition, the increasing of Vb_v during the growing 

cycle of the bunch due to VBA increased. Yet, this can be also caused by the water stress, since 

the plot variety was not irrigated that led to an increase of leaf senescence and the canopy porosity 

% (Victorino et al., 2020). 

 

Table 3. Average values ± standard deviation of the canopy porosity (%), visible bunch area (VBA) 

and the % of the visible berries at vine level (Vb_v) at different level of defoliation, during pea-size 

(n=30), veraison (n=30) and maturation (n=30). 

Defoliation 

degree 

PEA-SIZE VERAISON MATURATION 

P (%) 
VBA 

(cm2) 

Vb_v 

(%) 
P (%) 

VBA 

(cm2) 

Vb_v 

(%) 
P (%) 

VBA 

(cm2) 

Vb_v 

(%) 

No 7.9 ± 

3.3 

68.9 ± 

37.6  

18.9 ± 

8.3 

8.1 ± 

4.1 

100 ± 

70.1 

19.4 ± 

9 

13.7 ± 

3.4 

242.9 ± 

130.2 

56 ± 

18.1 

Partial 15.1 ± 

6.1 

132.7 ± 

56.8 

40.7 ± 

14.1 

15.7 ± 

5 

190 ± 

107.8 

38.4 ± 

10.5 

21 ± 

5.8 

341.7 ± 

165.8 

66.9 

± 19 

Total 74.4 ± 

3.2 

282 ± 

79.7 
100 

69.7 ± 

5.3 

477 ± 

199.2 
100 

67.8 ± 

5.5 

538.5 ± 

122.5 

100 
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4.2.1. Correlation analysis 

Table 4 shows correlation coefficients (r) between variables obtained from manual field images at 

pea-size, veraison and maturation.   

The correlation between porosity % and Vb_v is very high in all the phenological stages but the 

lowest value was recorded at maturation as well as in the relationship between the percentage of 

Vb_v and porosity %. Regarding the correlation between the VBA and the porosity, the coefficient 

r is positive but decreases during the phenological stages and highest value was recorded at pea-

size.  

The actual yield (Y) presents a positive correlation coefficient with Vb_v at pea-size, veraison and 

maturation. This means that, with or without defoliation, the visible berries explain, to some extent, 

the final yield on manual field images. However, the r values are not very high, therefore to perform 

a yield estimation, it is necessary considering other variables. 
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Table 4. Correlation coefficient between bunch and berry attributes of cultivar Syrah, at pea-size 

(n=30), veraison (n=30) and maturation (n=30)  in field conditions. The variables are: average 

number of visible berries at vine level (Vb_v), percentage of canopy porosity (P %), visible bunch 

area (VBA) and actual yield (Y). The * indicates the significance at P≤0.1 The ** indicates the 

significance at P≤0.01 and *** indicates the significance at P≤0.001 and n.s. not significant. 

Phenological stage Bunch and 

berry 

attributes 

Vb_v P (%) VBA Vb_v (%) Y 

Pea-size Vb_v 1 - - - - 

 P (%) 0.86*** 1 - - - 

 VBA 0.98*** 0.81*** 1 - - 

 Vb_v (%) 0.90*** 0.95*** 0.88*** 1 - 

 Y 0.31 n.s. 0.02 n.s. 0.38 * 0.03 n.s. 1 

Veraison Vb_v 1 - - - - 

 P (%) 0.76 *** 1 - - - 

 VBA 0.89 *** 0.70 *** 1 - - 

 Vb_v (%) 0.82 *** 0.93 *** 0.78 *** 1 - 

 Y 0.42 * -0.10 n.s. 0.49 ** 0.04 n.s. 1 

Maturation Vb_v 1 - - - - 

 P (%) 0.67 *** 1 - - - 

 VBA 0.96 *** 0.66 *** 1 - - 

 Vb_v (%) 0.71 *** 0.79 *** 0.78 *** 1 - 

 Y 0.61 *** 0.03 n.s. 0.66 *** 0.28 n.s. 1 

 

4.2.2. Relationship between canopy porosity and the percentage of visible berries 

For each phenological stages, the regression analysis between porosity % (independent variable) 

and the % Vb_v (dependent variable) was evaluated at different level of defoliation. These 

relationships show a R2 of 0.88 at pea-size (Fig. 16A), 0.84 at veraison (Fig. 16B) and 0.63 at 

maturation (Fig. 16C). The polynomial (pea-size and veraison) and log (maturation) regressions 

show a high and significant determination coefficient indicating that the model can be used to 
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explain the % Vb_v variability covered by leaves. Nevertheless, a decrease in the R2 was observed 

throughout the phenological phases, in particular a lower value was found at maturation, showing 

that, at this phenological stage, the visibility of the berries depends less on the porosity.  

 

   

 

Figure 16. Relationship between the percentage of canopy porosity (P %) (Independent variable) 

and the percentage of visible berries (% Vb_v) (dependent variable), polynomial and log 

regression equations and coefficient R2, at pea-size (A) (n=30), at veraison (B) (n=30) and at 

maturation (C) (n=30). The *** indicates the significant R2 at p≤0.001. 
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4.2.3.  Relationship between number of visible berries and actual yield 

For each phenological stages it was studied the relationship between the Vb_v (independent 

variable) and Y (dependent variable) explained in the linear regressions. Graphs show high and 

significant determination coefficients, respectively 0.60 at pea-size (Fig. 17A), 0.68 at veraison (Fig. 

17B) and 0.61 at maturation (Fig.17C).  

Determination coefficients were constant in all of the phenological stages, probably because the 

relationship was analyzed taking in consideration the variables in total defoliation condition. In this 

way there was not the occlusion by leaves, but only the berry-by-berry occlusion. Therefore the 

Vb_v are a good explanatory of the Y variability. 
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Figure 17. Relationship between visible number of berries (Vb_v) (independent variable) and 

actual yield (Y) (dependent variable), linear regression equations and coefficient R2, at pea-size 

(A) (n=30), veraison (B) (n=30) and maturation (C) (n=30). The ** indicates the significant R2 at 

p≤0.01 and *** indicates the significant R2 at p≤0.001. 

 

 

4.3. Vinbot results 

Table 5 presents average values of bunch and berry attributes obtained from images taken with 

the VINBOT platform, during pea-size, veraison and maturation in field condition. 

Vb_v and % Vb_v were more detected in maturation than in other phenological stage. This is due 

to an increase of the canopy porosity % during the phenological stages that makes bunches more 

visible. According with Victorino et al., (2020) study, VBA increased during the growing cycle of the 

vine and this is another variable increasing bunches visibility. Regarding Vbtot the lowest value 

was recorded at maturation stage, this means that without the occlusion by leaves, the decrease 

of berries visibility was due to the occlusion by other berries. In fact, btot without leaves and berry-

by-berry occlusion was higher during veraison and maturation than in pea-size. Instead Yest 

retained a constant value during the three phenological stages. 
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Table 5. Minimum value (Min), average ± standard deviation (Avg) and maximum value (Max.), of 

bunch and berry attributes, at pea size (n=40 vine segments), veraison (n=40 vine segments) and 

maturation (n=40 vine segment). The variables are: number of visible berries at vine level (Vb_v), 

% of canopy porosity (P%), visible bunch area (VBA), % of visible berries (%Vb_v), total number 

of visible berries without leaves occlusion (Vbtot), total number of visible berries without berries 

and leaves occlusion (btot) and yield estimate (Yest). 

Bunch 

and berry 

attributes 

PEA-SIZE VERAISON MATURATION 

Min Avg Max Min Avg Max Min Avg Max 

Vb_v 10 
94.3 ± 

43.4 
191 21 

117.2 ± 

66.6 
299 

25 196 ± 

105 

491 

P (%) 3 
9.6 ± 

4.5 
22 3.6 

12.1 ± 

5.9 
27.4 

5.4 16 ± 

5.8 

30.4 

VBA (cm2) 5 
80.6 ± 

51.7 
216.9 7.9 

130.4 ± 

77.5 
342.9 

44.7 222.1 

± 

189.7 

497.5 

% Vb_v 7.7 
23.3 ± 

10.2 
49.6 9.2 

28.4 ± 

12.5 
58.7 

32.4 59.4 ± 

9.9 

77.9 

Vbtot 31.

9 

457 ± 

264.8 

1374.

5 
67.5 

507.3 ± 

400 
1824.7 

73.6 364.3 

± 

148.8 

705 

btot 36.

7 

489.9 ± 

282.3 

1468.

2 
81.5 

664.4 ± 

530 
2410.5 

113.1 619.8 

± 

259.4 

1213.5 

Yest 

(kg/m) 
0 

0.4 ± 

0.23 
1.2 0.1 

0.5 ± 

0.43 
2 0.1 0.5 ± 

0.2 

1 

 

In table 6, for each phenological stages, it was compared the Yest and the Y of all the bunches 

identified with MATLAB. Regarding the estimated total yield the lowest value was recorded in pea-

size, while between veraison and maturation the value retained constant. In all of the phenological 

stages errors was negative, this means that Yest was underestimated during the growing cycle of 

bunches. High errors can be attributed to the failure of cultural operations such as cluster thinning 

and defoliation, leading to the cover of bunches by other bunches or by leaves. The minimum value 

of %E occurs at veraison stage, this was predictable since the highest btot value (table 5) was 

obtained in this phenological stage. 
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Table 6. Estimated yield (Yest), actual yield (Y) and the error (E %) between them at pea-size 

(n=40 vine segments), veraison (n=40 vine segments) and maturation (n=40 vine segments). 

Phenological 

stage 

Yest (kg/40m) Y (kg/40m) E (%)  

Pea-size 16.03 32.6 -51 

Veraison 21.7 32.6 -33.3 

Maturation 20.3 32.6 -37.8 

In the Figure 18, actual and estimated yield are compared for each meter at maturation stage. In 

general the estimated yield presents a similar trend to actual yield. However, in several vine 

segments, yield was underestimated. According with Lopes et al., (2016), this can be due to 

bunches occluded by other bunches that might be influenced of the number and size of bunches. 

In Nuske et al., (2011b) were proposed two methods to overcome the bunch occlusion problem 

through the calibration of bunch occlusion ratio. However, Yest was overestimated in segments 

12, 21 and 26. A possible explanation is that, because the model estimates the total berries 

considering the porosity, peak overestimation of yield happen in cases of low porosity and high 

berry visibility. 

 

Figure 18. Actual and estimated results of yield per meter, at maturation (n=40 vine segment). 
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5. CONCLUSIONS 

The main objective of this work was to estimate vineyard yield by counting the number of visible berries 

in images obtained in the frame of Vinbot project, at three phenological stages during the 2019 season. 

Data obtained in laboratory showed a high correlation between average number of visible berries and 

bunch weight, indicating a higher association between the two variables especially at veraison stage. 

The linear regression between the average number of visible berries and total berry number presented 

the highest determination coefficient at veraison, indicating that the average number of visible berries 

is a strong explanatory variable of total berry number. The relationship between canopy porosity and 

number of visible berries showed also high determination coefficient, with the lowest value recorded 

at maturation, indicating that the berries visibility is less influenced by porosity at maturation than at 

the other phenological stages. The linear regression between actual yield and number of visible berries 

presented a high and significant determination coefficient at all the three phenological stages. The 

berry-by-berry occlusion presented the highest value at maturation and the lowest one at pea-size. 

Finally, yield was estimated, using a regression model that estimate non-visible berries using canopy 

porosity as explanatory variable, combined with the average berry weight determined at harvest. The 

comparison of estimated yield with actual yield, showed an underestimation at all the three 

phenological stages. This low accuracy of the developed models show that the use of algorithms 

based on visible berry number on the images to estimate yield still needs further research. 
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