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Abstract: This paper presents a novel and automatic artificial-intelligence (AI) method for grape- 1

bunch detection from RGB images. It mainly consists of a cascade of support vector machine 2

(SVM)-based classifiers that rely on visual contrast-based features that, in turn, are defined according 3

to grape bunch color visual perception. Due to some principles of opponent color theory and proper 4

visual contrast measures, a precise estimate of grape bunches is achieved. Extensive experimental 5

results show that the proposed method is able to accurately segment grapes even in uncontrolled 6

acquisition conditions and with limited computational load. Finally, such an approach requires a 7

very small number of training samples, making it appropriate for onsite and real-time applications 8

that are implementable on smart devices, usable and even set up by winemakers. 9

Keywords: bunch detection; color image processing; opponent colors; human perception; support 10

vector machine (SVM) 11

1. Introduction 12

The problem of a precise yield estimation in vineyards is of great interest for wine 13

industry. Some data, such as a production of 6.04 million tons in 2020 only in the USA 14

or a savings of about one hundred million dollars with a correct yield prediction, help to 15

understand the importance of this topic [1,2]. As a result, increasing research work has 16

been done in recent years on this topic through adopting different strategies. However, a 17

precise yield prediction is as simple in theory as it is difficult in practice. Usually this task is 18

accomplished by winemakers with unavoidable errors due to different factors that can be: 19

• Objective: non vineyard uniformity, weather conditions, different pruning techniques, 20

etc. [3]. 21

• Subjective: human overestimation, lack of attention, errors, etc. [4]. 22

That is why an automatic image-based framework that replicates winemakers inspections 23

but it is robust to external conditions, is becoming of great interest for the entire research 24

field. 25

Objective factors make the task very difficult for any image-based framework ex- 26

ploiting deep-learning networks. In fact, the non uniformity of vineyards makes such an 27

estimate complicated and strongly case dependent. For example, different kinds of pruning 28

can amplify problems, such as object (i.e., grape) occlusions and so on. This difficulty is 29

proven by the quantity of different kinds of deep neural networks (DNNs) proposed in the 30

literature—see, for instance, [5,6] and the next section for a short review. Moreover, DNNs 31

have a discrete computational burden (even though some approaches dealing with this 32

problem have recently been proposed) [7–11] and need for a large and representative train- 33

ing set to guarantee an acceptable accuracy rate and to avoid overfitting [12]. Some recent 34

approaches [13,14] have attempted to exploit pretrained convolutional neural networks 35

(CNNs) to overcome their computational burden. 36
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However, limits in finding useful images for an effective training for ‘in-the-wild’ 37

cases along with the need for an RGB-d camera in place of a common RGB one prove that 38

the grape bunch segmentation problem is far from being solved. 39

The goal of the proposed approach is to start from the aforementioned problems to 40

produce a framework that: 41

• Is automatic, or at least, minimizes any human aid, while remaining effective for a 42

reliable yield assessment. 43

• Is not computationally expensive, i.e., it allows for a fast response for each image and 44

requires simple operations that facilitate its implementation on portable instrumenta- 45

tion. 46

• Requires a small training set, allowing its straightforward updating and adaptation to 47

different conditions and use cases. 48

The aforementioned requirements come from the analysis of two possible practical 49

scenarios. The first one accounts for unmanned aerial vehicle (UAV)-based applications 50

where no web connections are available—very frequent in many practical cases. In this case, 51

the software should run on the (small) computer that the UAV is equipped with. Hence, 52

a simple artificial-intelligence (AI) tool that needs a low computational effort is required. 53

The second scenario is the one where a winemaker uses their own smartphone for training 54

and testing in the simplest way. In this case, very few examples for training the adopted AI 55

tool are required, apart from a small computational effort. Both scenarios lead to a light 56

and case-dependent approach based on a light machine-learning method (see Figure 1) 57

[12]—with limited but good examples for the training set. 58

Figure 1. Number of data for training versus classification accuracy: comparison between machine-
learning (ML) and deep-learning (DL) methods [12].

In addition to the considerations above, the subjective component plays a fundamental 59

role. In fact, if on the one hand, the human approach has the drawback that winemakers 60

’tend to choose healthier and larger bunches when they are doing sampling in the field’ 61

[4], it is also true that humans have an undoubtable ability in recognizing objects in very 62

different and critical conditions: that is why DNNs attempt to simulate it. Only the good 63

part of human activity, its early visual perception, should be accounted for [15]. 64

The proposed approach attempts to embed all aforementioned requests. It is based 65

on the main peculiarities of human perception exploiting both the early vision processes 66

in terms of luminance and contrast and the opponent colors theory. The latter has been 67

formalized in the past years and is currently under investigation [15–19]. Specifically, the 68

proposed method consists of a supervised learning framework oriented to identify the 69

areas containing (yellow or blue) bunches of grapes in an ’in-the-wild’ RGB vineyard image. 70

With ’in the wild’, we mean an image containing grape bunches as well as foliage, ground, 71

and sky and in uncontrolled light conditions. The proposed method takes advantage of 72

the use of limited but distinctive features that are close to the ones that are encoded in the 73

onsite visual inspection process. 74
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Exploiting both multiscale analysis and opponent colors theory, a new feature space 75

is defined where each transformed image is analyzed by a suitably trained support vec- 76

tor machine (SVM). The rationale is to exploit the fact that human perception works 77

as an optimized encoder for processing and storing visual information [15,20–22]. This 78

property contributes to determining the right features for very effective bunch detection. 79

The achieved results show that the proposed method is able to outperform competing 80

approaches in terms of accuracy, size of the training set and computing time. 81

2. Materials and Methods 82

This section is organized as follows. First, a short review on available approaches in 83

the literature is presented. This helps the reader to better understand the main guidelines 84

followed in the literature. Successively, a technical background useful to understand the 85

proposed approach is offered. It contains a sketch of both multiscale analysis and opponent 86

colors theory. Finally, the proposed approach is described, outlining the peculiarities of 87

blue and yellow grape cases. 88

2.1. A Short Review on Automatic Yield Estimation 89

The increasing interest on this topic makes it difficult for any review to be exhaustive. 90

In the following, only the approaches that are related (or involve topics close) to the 91

proposed approach will be presented. 92

The approach in [23] is a good example to understand the difficulty of making any 93

automatic yield estimation feasible: it is as effective as it is computationally demanding. 94

If on the one hand, the use of a radial symmetry transform allows effective two-stage 95

and large-scale wine images processing, on the other hand, the complexity is of about 96

O(KN), with K being the pixel number of the whole image while N is the size of the 97

neighborhood [24]. The computational burden is not the only problem for automatic yield 98

estimation. In fact, under the hypothesis of using an UAV (or any automatic vehicle) 99

with a suitable camera, various problems, such as the view angle and size of the scene 100

(in order to take grape bunches), calibration [25], image resolution, light conditions, and 101

acquisition conditions (to avoid grape occlusion) are crucial for a successive but effective 102

color image processing. All these problems make classical image processing infeasible on 103

high-resolution images [1]. 104

Once the acquisition phase has been made, the successive processing is, again, not 105

simple, and different approaches have been proposed. Most of them are clearly oriented to 106

feature extraction and classification, where a high accuracy (very often in ideal conditions) 107

is combined with a high computational effort. An example is in [26], where different 108

Fuzzy C-Means (FCM) clustering methods are compared: Robust Fuzzy Possibilistic C- 109

Means, FCM and FCM-GK (FCM with Gustafson–Kessel)—with accuracy ranging from 110

85% to 88%. Other interesting approaches are in: [27], which employs a 3D grapevines 111

formation based on Structure-From-Motion followed by a saliency map analysis and SVM 112

for classification; [26,28], where a combination of SVM, K-means and the scale-invariant 113

feature transform (SIFT) for various vineyard components clustering is used; and [29,30], 114

which classifies different vineyard objects by means of Mahalanobis measures. 115

As correctly outlined in [1], most of the computational effort is spent on processing 116

unuseful scene components—estimated in at least 50% of the total information. 117

Some interesting approaches dealing with color images are found in [25,31,32]. The 118

first two papers use RGB thresholding along with some morphological operations that 119

speed up the processing phase even under controlled light conditions (artificial light in 120

the night) and ideal acquisition conditions (controlled grape pose) with a manual RGB 121

key value selection for successive SVM classification. It is straightforward that such an 122

approach cannot be used in practice where large scale acquisitions are needed. From this 123

point of view, an effort was made in [25] where a preliminary selection of bunch areas was 124

made via color thresholding and morphological operations. This allows for successive 125

feature selection and classification achieved via ReliefF [33], a sequential feature selection 126
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method [34] and SVM [35]. The preliminary selection of potential bunch areas allows for at 127

least 70% of (useless) scene information to be discarded. 128

It is also worth mentioning the great effort in exploiting deep-learning techniques, very 129

often in combination with computer vision technologies [12,36], to automate agricultural 130

processes. In particular, many techniques have been inherited by a well-known field of 131

computer vision: object detection. In this case, the very critical conditions (very different 132

outdoor light conditions, different scale of the target, occlusions, and so on) in agriculture 133

make this task very difficult. That is why various deep-learning approaches, mainly 134

based on convolutional neural networks (CNN), have been proposed [5,6]. Specifically, 135

deep-learning approaches for object detection can be split into: 136

• One-stage detectors: In this case, object classification and bounding-box regression are 137

done directly without using pre-generated region proposals (candidate object bounding- 138

boxes). Approaches belonging to this class are, for example, Single Shot multibox 139

Detector (SSD) [37], RetinaNet [38], Fully Convolutional One-Stage (FCOS) [39], DEtec- 140

tion TRansformer (DETR) [40], EfficientDet [41], and the You Only Look Once (YOLO) 141

family [42–46]. 142

• Two-stage detectors: First, a generation of region proposals, e.g., by selective search as in 143

R-CNN and Fast R-CNN or by a Region Proposal Network (RPN) as in Faster R-CNN, 144

is made. Then, a second step oriented to object classification in each region proposal 145

is applied. Sometimes, some additional phases, such as bounding-box regression for 146

refining the region proposals, and binary-mask prediction, are performed. Examples of 147

approaches belonging to this class are: region-based CNN (R-CNN) [47], Fast/Faster 148

R-CNN [48,49], Spatial Pyramid Pooling Networks (SPPNet) [33], Feature Pyramid 149

Network (FPN) [50], and CenterNet2 [51]. 150

Usually, two-stage detectors perform better than one-stage ones in terms of the pre- 151

cision of localizing target in different conditions (see, for instance, [52,53]). However, 152

two-stage detectors pay the price of ’slow inference speed and high requirement of com- 153

putational resources’ for this specific field [2]. This is the reason why many approaches 154

oriented their effort toward one-stage detectors: specifically, YOLO networks (see, for 155

instance, [7–11] and [54–56] for specific applications to different kinds of fruit). Apart from 156

the specific adopted strategies, it is worth noting that all these approaches, even though 157

fast, show a high sensitivity to occlusion and should be combined with further computer 158

vision tricks [57]. 159

In particular, a trend of a certain success is represented by Swin-Transformer (hier- 160

archical vision transformer network)-based approaches [57–62]. Despite the interesting 161

philosophy on which they are based (self-attention mechanism for learning [63–65]), again, 162

the computational effort is still high. Interesting approaches based on this strategy and con- 163

cerning the agricultural field can be found in [66–68]. Finally, it should not be overlooked 164

that the intensive use of deep-learning networks leads to the need for a great quantity of 165

images for suitable training. That is why the need for populated and labeled databases is 166

becoming very impelling—two very recent databases on grape bunches are described in 167

[69,70]. 168

2.2. Technical Background 169

This section focuses on two main topics that the proposed model is based on: mul- 170

tiscale analysis and the opponent colors theory. These will be the focus of the next two 171

sections, respectively. 172

2.2.1. Multiresolution Analysis 173

The change of scale of the input image can be seen as simple application of the 174

multiresolution analysis theory. The latter involves the formal definition of producing 175

different scales of a given function that are correlated to each other by some mathematical 176

properties [71]. This representation is oriented to highlight specific details of a given 177
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signal in agreement with the pioneering studies on multiresolution pyramids by Burt and 178

Adelson [72] first and the formal construction of orthogonal wavelets later [73]. 179

Coarsely speaking, a given function f at a resolution 2−j can be seen as a (discrete) 180

grid of samples where local function averages are considered—the size of the average 181

domain is proportional to 2j. A multiresolution approximation of f is composed of different 182

and embedded grids. Very often, this operation becomes more intuitive by considering 183

each one of these grids (say, at resolution 2−j) as the orthogonal projection on the space 184

Vj ⊂ L2(R) (This functional space contains functions with finite energy.). Vj includes all 185

possible approximations at the resolution 2−j. Hence, starting from a given function f , its 186

approximation f j at resolution 2−j is the projection on the space Vj constrained to minimize 187

the following quantity: || f − f j||2. 188

More details concerning this theory and its applications can be found in [71,73,74]. 189

However, it is possible to say that the aforementioned theory paves the way to orthonormal 190

wavelets, i.e., orthonormal bases. More specifically, the approximation of a given function f 191

at the resolution 2−i can be defined as the orthogonal projection PV j f on Vj. In order to find 192

such a projection, an orthonormal basis of Vj has to be looked for. Usually, this operation 193

can be achieved by convolving f with a dilated and translated version of a scaling function 194

Φ. It is possible to prove that, under suitable conditions, the family {Φj,n}n∈Z, with j and 195

n, respectively, the dilation and shifting parameters, is an orthonormal basis of Vj for all 196

j ∈ Z. 197

In the sequel, only one smoothed version of f will be used for each of the two phases 198

of the model, and the Haar basis was selected as Φ [71]. The latter can be simply seen 199

as an operator that computes local averages of f with a fixed window that depends 200

on the resolution level j. It is worth stressing that this smoothing is consistent with 201

human vision mechanisms in the pre-attentive phase where redundant and not perceived 202

frequencies are discarded [75,76]. Smoothing irregular areas has also the advantage of 203

making regions more homogeneous and, thus, enhancing them and actually increasing 204

their visual saliency [77,78]. The selection of a proper level of resolution quantifies the 205

amount of information that can be lost in the visual coding process as formally studied in 206

[76,78]. 207

2.2.2. Opponent Colors Theory 208

It is well-known that the trichromatic theory of color vision explains how human beings 209

(their cells) detect blue, red, and green wavelengths. The combination of these three 210

main colors allows perception of the whole visible spectrum [15]. However, the current 211

understanding of color perception is more complicated. In particular, a key role is played 212

by the opponent colors theory. This theory was developed by Ewald Hering, who based it 213

on the observation that specific color combinations cannot be seen [79]. The latter is based 214

on the human ability to perceive color that is mainly based on three receptor complexes: 215

the red–green complex, the blue–yellow complex, and the black–white complex [17]—see 216

Figure 2. As matter of fact, recently, the pairings above have been refined as blue–yellow, 217

red–cyan, and green–magenta. 218
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Figure 2. Opponent process theory. The three receptor complexes: black–white, red–green, and
blue–yellow for (Left) an achromatic and (Right) chromatic case.

According to the opponent colors theory, human brain can only register the presence 219

of one color of a pair at a time. Specifically, for each receptor complex, the involved colors 220

oppose one another. For example, the cell that activates for red will deactivate for green 221

light and vice versa. Two opponent colors cannot survive in vision. This mechanism can be 222

seen as a perceptive (and very effective) coding of visual information. 223

The whole theory is then based on the presence of two kinds of (opposite) cells for 224

each receptor complex, which activate for a color while having an inhibitory response to 225

the opposite one [17]. 226

Though not used in this paper, it is worth outlining how this theory can explain the 227

perceptual phenomena of negative afterimages—see [15,17,80] and the references therein. 228

It is possible to say that, while the classical trichromatic theory helps to explain how 229

different types of cones detect different light wavelengths, the opponent colors theory says 230

how the cones connect to the ganglion cells and then how opposing cells are excited or 231

inhibited by certain wavelengths of light. In addition to these two theories, there is the 232

complementary color theory that accounts for how and which wavelengths translate to 233

which colors and then how the brain processes these colors. 234

2.3. The Proposed Method 235

The proposed model is based on human perception as it attempts to exploit the ability 236

of human beings in recognizing objects in a small amount of time. Specifically, the ability 237

of human early vision will be exploited for our study case. 238

It is well-known that early vision refers to those stages of vision that involve capturing, 239

preprocessing, and coding visual information but do not involve the interpretation or other 240

cognitive processing of visual information that requires further brain processing [15]. The 241

proposed model follows some recent results proving that the early vision phase accounts 242

for visual information that is mainly based on the luminance and contrast of the scene 243

under study [75]. In fact, luminance gain control (known as light adaptation) is managed in 244

the retina and is oriented to adjust the sensitivity to match the locally prevalent luminance 245

(light intensity). 246

Coarsely speaking, the retina divides luminance by the local mean luminance [81–83]. 247

On the contrary, contrast gain control starts in the retina and is strengthened at some 248

successive stages of the visual system [81,84–89]. Apart from specific details (that can 249

be found in [90]), the input signal is divided by a measure that grows with the locally 250

prevalent root-mean-square (r.m.s.) contrast. In this way, a contrast invariance is produced 251

for a better processing of the eye response: a contrast increase when the contrast is low and 252

vice versa. 253

In addition to the aforementioned ’visual normalization’, it is worth highlighting 254

another important aspect of visibility: the human eye works as a low pass filter at first 255

glance [15,75]. This is due to the necessity of quickly understanding the content of the 256
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scene—for survival needs. That is why both luminance and contrast are considered at a 257

given resolution in the proposed approach. This strategy has a double purpose: on the one 258

hand, it replicates what happens in the early vision (the first 200 milliseconds) phase; on 259

the other, it allows discarding a great deal of information that is not useful for the analysis 260

of the scene content. 261

These two aspects are clearly linked each other and are implemented in a cascaded 262

binary classification method in this paper. It is worth highlighting that the combination 263

of more than one SVM classifier is not new in the literature, and it has been employed to 264

improve classification accuracy. However, the optimization of a combination of more than 265

one classifier is still matter of study for a wide part of the research community interested in 266

effective classification tools—see, for instance, [91,92]. Figure 3 provides a graphical sketch 267

of the proposed procedure that is described in the following. 268

Figure 3. Block scheme of the proposed processing pipelines.

First classification. From an algorithmic point of view, an RGB image I depicting 269

a sketch of a vineyard will be transformed into another color space that emphasizes the 270

contrast between object (grape) and background (leaves, grass, sky, etc.). The selected color 271

space is CMY (cyan, magenta, and yellow) as this allows us to emphasize the features of 272

blue and yellow grapes as it will become clearer in the following. 273

The achieved projected image J in the new color space will be then convolved with a 274

suitable kernel Φ j̄ to simulate the low-pass filtering applied by the human visual system, 275

thus, obtaining the image J̃. A multiscale analysis is then adopted where only one properly 276

selected scale (2 j̄) is considered. Hence, at each pixel location x̄, ȳ in the image spatial do- 277

main Ω, the luminance L(x̄, ȳ) and the contrast Con(x̄, ȳ) can be considered as components 278

of the following vector of features 279

v1(x̄, ȳ) = [L(x̄, ȳ), Con(x̄, ȳ)] ∀(x̄, ȳ) ∈ Ω. (1)

By denoting with ΩG ⊂ Ω the grape image region and using the feature vector v1, 280

it is then possible to classify the input image by means of an SVM binary classifier that 281

produces the first binary map M1, defined as follows: 282

M1(x̄, ȳ) =
{

1 if (x̄, ȳ) ∈ ΩG
0 otherwise

(2)

The first phase accounts for the early vision mechanism on a (vineyard) color image. 283

However, the role of the colors themselves is crucial in our problem as discriminant for 284

grape recognition. That is why a second phase that refines the map M1 is required. It 285

accounts for the pure color information in order to discard non-grape pixels in M1. 286

Second classification. For the second classification, the hue, saturation, and brightness 287

components of the HSB space were used as features. HSB space (hue, saturation, and 288

brightness) is also known as HSV (hue, saturation, and value). This space was introduced 289

in the 1970s in order to better fit the way human vision perceives color-making attributes. 290

Moreover, its definition is intuitive and, though debated, its cylindrical geometry (along 291
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with the HSL space) makes color perception more natural from a human point of view—see 292

[15,93] for its formal and geometrical derivation. 293

Let K be the RGB image I projected in this color space; again, all color components 294

are blurred in order to simulate the low-pass filtering performed by the naked eye. By 295

denoting with K̃ the blurred image, for each (x̄, ȳ) ∈ ΩG, the feature vector v2 is defined as 296

v2(x̄, ȳ) = [K̃(x̄, ȳ, 1), K̃(x̄, ȳ, 2), K̃(x̄, ȳ, 3)] ∀(x̄, ȳ) ∈ ΩG, (3)

where the indices 1, 2, 3, respectively, refer to the hue, saturation, and value components of 297

K̃ and are used as input for a second SVM binary classifier. The SVM-based classification 298

restricted to the non-zero entries of M1 provides the binary map M2 defined as follows, 299

M2(x̄, ȳ) =
{

1 if M1(x̄, ȳ) = 1 and (x̄, ȳ) ∈ ΩG
0 otherwise,

(4)

which represents the output of the proposed procedure. 300

To properly assess if an image pixel depicts part of a grape, the scheme described 301

above has to be adapted to blue and yellow grapes through proper definitions of luminance 302

and contrast as discussed in the following subsections. 303

2.3.1. Blue Grapes 304

Blue grape detection inherits the mechanism that characterizes the opponent color 305

theory. In particular, the color of a ripe bunch is usually blue, and the intensity depends 306

on the kind of vineyard and on the lighting conditions. On the other hand, the grape 307

background is composed of leaves that have a certain shade of yellow—a reddish-yellowish. 308

This is the reason why the selected color space is CMY: it contains both a shade of blue 309

(cyan) and yellow. Keeping in mind the opponent color mechanism and its inhibitory 310

action, we propose to code the above mechanism in terms of classical Weber contrast [15]. 311

As a result, the contrast for the blurred image J̃ in the CMY color space is defined as 312

Conb(x̄, ȳ) =
C(x̄, ȳ)−Y(x̄, ȳ)

Y(x̄, ȳ)
, ∀ (x̄, ȳ) ∈ Ω. (5)

In addition, bearing in mind that the human eye is designed to see luminance and contrast, 313

the Y component is selected as luminance: 314

Lb(x̄, ȳ) = Y(x̄, ȳ), ∀ (x̄, ȳ) ∈ Ω. (6)

The rationale behind this choice is that the prevalent color detected by the human eye 315

(while checking the yield) is the yellow color of the leaves—more than the blue grapes. It is 316

worth outlining that the classical and more simple Weber contrast was selected in place of 317

the Michelson one [15]. The motivation of such a choice is two-fold. It is simpler to use 318

and characterize the relative opponent action of the two involved colors; color bands are 319

smoothed with the aim of producing a uniform object on a uniform background as is the 320

case in early vision. 321

That is why the role of contrast, as in the Michelson one, vanishes. In addition, even 322

though there exist several studies concerning contrast in color images containing text, to the 323

best of the authors’ knowledge, there is not an explicit formula for color contrast, and the 324

matter is still debated (In this case, the minimum contrast ratio should be 4.5:1 for normal 325

text and 3:1 for large text. Various software tools to check this [94] are also available.). 326

Using Equations (5) and (6), for blue grapes, Equation (1) becomes

v1(x̄, ȳ) = [Lb(x̄, ȳ), Conb(x̄, ȳ)], ∀ (x̄, ȳ) ∈ Ω.

It represents the input feature vector for the first binary SVM classifier producing the first 327

map M1. 328
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Regarding the second classification step, as already mentioned in the previous section, 329

it is necessary to also account for the peculiar grape color that changes in agreement with 330

both the stage of grape ripening and the kind of vineyard. Hence, the feature vector 331

v2 is defined as in Equation (3) and feeds the SVM-based classifiers producing the final 332

classification map M2. 333

2.3.2. Yellow Grapes 334

Though a slight modification, yellow grape detection follows the same strategy 335

adopted for blue grapes. Before showing it, two considerations have to be made. The first 336

is that yellow grape detection is more difficult. As shown in Figure 4 (Right), grapes have 337

a color that is a mixture of red and yellow, while leaves are characterized by a mixture 338

of green and yellow. The contrast in this case is more light. The second consideration is 339

relative to the selected CMY space, where the subtractive primaries of cyan, magenta, and 340

yellow are the opposing colors to red, green, and blue. Specifically: 341

• Cyan is opposite to red. 342

• Magenta is opposite to green. 343

• Yellow is opposite to blue. 344

Figure 4. Two examples (3264× 2448× 3 RGB images) of grapes in the considered vineyard: (Left)
blue grapes and (Right) yellow grapes.

The following strategy was adopted to exploit the opposite components. In particular, 345

magenta was selected as opposite to green (i.e., an approximation of leaves color), while 346

cyan was selected as opposite to red (i.e., an approximation of grapes color). In this case, 347

the common shade of yellow that characterizes both object (grape) and background (leaves) 348

was considered to be self-vanishing. 349

The corresponding contrast and luminance, computed over the blurred color compo- 350

nents, is: 351

Cony(x̄, ȳ) =
M(x̄, ȳ)− C(x̄, ȳ)

C(x̄, ȳ)
, ∀ (x̄, ȳ) ∈ Ω (7)

and 352

Ly(x̄, ȳ) = C(x̄, ȳ), ∀ (x̄, ȳ) ∈ Ω, (8)

and then the feature vector v1(x̄, ȳ) = [Cony(x̄, ȳ), Ly(x̄, ȳ)] is used as input for the first 353

classifier. On the contrary, the second classifier works as for blue grapes. 354
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3. Results 355

Experimental results and tests were performed in a vineyard located in Rome (San 356

Cesareo), Italy in 2021. About 200 images were taken under natural light conditions. The 357

adopted camera was a Kodak EasyShare V803. The image resolution was 3264× 2448× 3. 358

The vineyard was composed of different varieties of grape. In particular, Merlot, Cesanese, 359

and Malvasia regarding blue grapes (oriented to wine production) and Uva Italia for yellow 360

(table) grapes. The distance between the camera and grapes was about 2–3 m but was not 361

expressly controlled. The same goes for the light conditions. 362

It is well-known in the literature that many available approaches have been tested in 363

ideal conditions in terms of light, pose, without occlusions, and so on. This makes it very 364

difficult to test a specific approach in real conditions [1]. Hence, in this paper, the choice of 365

natural light conditions, no particular care to camera/grape distance as well as a vineyard 366

with a type of pruning with many leaves was made in order to consider an ’in-the-wild’ 367

test. The proposed approach was tested on several images; the algorithm was run on a 368

laptop (1.8 GHz Intel Core i5 dual-core, RAM 8 GB) in the MATLAB environment. Only 369

some examples will be shown here, and they are the blue and yellow grape cases shown in 370

Figure 4. 371

3.1. Blue Grapes 372

Following the steps in Figure 3, the input image in Figure 4 (Left) was converted into 373

the complementary CMY color space. 374

Each component was then filtered by means of 2-D Haar filter Φ j̄ with size 15× 15. This 375

choice is the simplest among wavelet filters to obtain a specific scale from a multiresolution 376

analysis [71,78]. From these color components, both the luminance in Equation (6) and 377

contrast in Equation (5), depicted in Figure 5, were considered as elements of the feature 378

vector. The output of the first classification is the map M1 shown in Figure 6. It is worth 379

outlining that, in this case, the adopted training set was composed of only 50 (suitably 380

selected) pixels, where the first 25 refer to ’grape’ while the remaining 25 refer to ’other’— 381

e.g., sky, soil, and foliage. 382

The second step of the proposed methodology requires the transformation of the RGB 383

original image into the HSV color space. Each component has then been filtered by a Haar 384

kernel of size 20× 20. The size of the two adopted blurring kernels was tuned accounting 385

for the maximum visual attention scale (usually the third or fourth for Haar kernels) in 386

a wavelet decomposition [15,77,95]. Hence, for each pixel classified as ‘grape’ in M1, the 387

feature vector was built according to Equation (3). 388

The second SVM-based classification led to the M2 map shown in Figure 7 (Left). The 389

post-processing step consisted of a morphological opening [96] on the resulting binary map 390

M2, where the radius of the disk was set equal to 10. This step eliminates some spurious 391

and isolated points due to a bad classification, thus, leading to the final map in Figure 7 392

(Right). This step has not been inserted in the scheme in Figure 3 as it simply refines the 393

achieved result without greatly increasing the framework performance. 394

In particular, this step simply avoids some annoying and spurious points in the final 395

map. The final classification is in Figure 8. As far it concerns the training set of the second 396

classification, it was built by randomly selecting points among the ‘good’ ones in the first 397

classification. Specifically, only points classified as grapes in the first classification were 398

considered. Among them, the true grape points were used as ‘grape’, while the remaining 399

ones represent the ‘background’. 400
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Figure 5. Blue grapes: (Left) luminance Lb as defined in Equation (6) and (Right) contrast Conb as
defined in Equation (5).

Figure 6. Blue grapes: M1 map after the first classification superposed on the original RGB image—
pixels classified as blue grapes are in magenta.
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Figure 7. Blue grapes: (Left) M2 map and (Right) its post-processed version.

The most interesting result of this paper is possibly contained in Table 1, where 401

the classification accuracy is shown for both classifiers of the adopted cascade (first and 402

second classification). The results are ordered in terms of increasing number of adopted 403

points in the training set. As can be observed, only a few points are required for a correct 404

classification. To further stress this point, Table 2 shows that having only 10 points in the 405

training set can guarantee a classification accuracy greater than 95%. 406

This represents one of the main contributions of this work since it allows for a manual 407

selection of points even by winemakers through a very fast procedure, making the proposed 408

method easily and on-site adaptable to the different use cases and scenarios. Figure 9 shows 409

the final map achieved using only 10 points, along with the corresponding classification 410

accuracy, while Table 1 also contains the computing time. The latter refers to the main 411

steps of the two cascaded classifications—the time required by the whole procedure is also 412

provided. As can be observed, the whole process reaches high accuracy rates, especially 413

after the second classification step, and is fast even on a moderately performing laptop, 414

paving the way for a future real-time process. 415
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Figure 8. Blue grapes: Final classification map superposed on the original RGB image in
Figure 4 (Left)—pixels classified as blue grapes are in magenta.

Figure 9. Blue grapes: Final classification of the image in Figure 4 (Left) and using training sets
composed of 10 examples. The classification accuracy is 95.3%—pixels classified as blue grapes are in
magenta.
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Table 1. Blue grapes: Classification accuracy (%) for a decreasing size of the training sets used in both
phases of the proposed method. The training time and computing time, measured in seconds (s) and
required for building the classification maps, have also been provided for each step of the proposed
method. The last column refers to the processing time of the whole procedure.

N° POINTS ACCURACY TIME (s)

training map total

First classification 100 93.6 1.296 39.602
Second classification 100 96.5 3.064 23.93 67.89

First classification 90 93.0 1.037 33.742
Second classification 90 96.6 2.523 17.588 54.89

First classification 80 93.5 1.088 30.720
Second classification 80 96.6 2.065 23.758 57.63

First classification 70 93.4 1.105 30.824
Second classification 70 96.3 2.052 15.705 49.67

First classification 60 93.4 1.050 31.264
Second classification 60 96.3 2.057 17.725 52.09

First classification 50 93.5 1.056 31.078
Second classification 50 96.2 2.158 15.872 50.16

First classification 40 93.7 1.031 30.749
Second classification 40 96.2 2.061 14.055 47.89

First classification 30 90.8 1.060 30.626
Second classification 30 95.9 2.301 17.464 51.45

First classification 20 94.3 1.099 30.617
Second classification 20 95.2 2.089 13.708 47.51

3.2. Yellow Grapes 416

With regard to the yellow grapes, again, the steps in Figure 3 were performed. In 417

particular, the input image was converted into the complementary CMY and filtered with 418

the same filter. The feature vector, whose components are defined in Equations (8) and (7) 419

and shown in Figure 10, was employed in the first classification whose result is depicted in 420

Figure 11. The second classification in the filtered HSV space led to the M2 map in Figure 421

12 (Left), while Figure 12 (Right) shows its post processed version. The final result is shown 422

in Figure 13. 423

Table 2. Blue grapes: Classification accuracy (%) for training sets composed of only 10 samples in
both classifications—the result of six different runs is presented; each run requires about 51 s.

N° POINTS ACCURACY (%)

First classification 10 91.6
Second classification 10 96.0

First classification 10 92.5
Second classification 10 95.7

First classification 10 85.8
Second classification 10 95.7

First classification 10 95.2
Second classification 10 95.3

First classification 10 93.8
Second classification 10 95.6

First classification 10 92.1
Second classification 10 96.5
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Figure 10. Yellow grapes: (Left) luminance Ly as defined in Equation (8) and (Right) contrast Cony

as defined in Equation (7).

Figure 11. Yellow grapes: M1 map relative to the first classification superposed on the original RGB
image—pixels classified as yellow grapes are in pink.
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Figure 12. Yellow grapes: (Left) M2 map and (Right) its post-processed version.

Figure 13. Yellow grapes: Final classification map superposed on the original RGB image in Figure 4
(Right)—pixels classified as yellow grapes are in pink.

As for blue grapes, many classifications were made, and only a subset of them are 424

shown in this section. In Table 3, the classification accuracy for a decreasing size of the 425

training set is reported. The need for a small training set is confirmed even in this case. 426

However, Table 4 shows that having only 10 points in the training set is not always suffi- 427

cient to guarantee a classification accuracy greater than 95%. This can be easily explained 428

with the intuitive observation that a fast recognition of yellow grapes on a general yellow- 429

ish/greenish background makes the problem more difficult than for blue grapes. 430

A larger training set is required in this case. Table 5 refers to some trials where 20 431

points were used for training. As can be observed, 20 points in the training set guarantees a 432

final classification rate greater than 95% in this case. Finally, Figure 14 gives evidence of the 433

better quality of the classification provided by the proposed method using 20 points in the 434

training set when compared to the one achieved using only 10 points. As far it concerns 435

the computing time, this is comparable to that required for processing blue grapes. 436
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Table 3. Yellow grapes: Classification accuracy (%) for a decreasing size of the training set in both
phases. The training time and computing time, measured in seconds (s), required for building the
classification maps were also provided for each step of the proposed method. The last column refers
to the processing time of the whole procedure.

N° POINTS ACCURACY TIME (s)

training map total

First classification 100 92.2 1.20 31.44
Second classification 100 95.8 2.04 16.07 50.74

First classification 90 92.2 1.037 32.07
Second classification 90 95.8 2.271 15.413 50.79

First classification 80 91.7 1.053 31.930
Second classification 80 95.8 2.510 17.748 53.24

First classification 70 91.8 1.017 31.459
Second classification 70 95.8 2.170 17.117 51.76

First classification 60 91.8 1.107 30.480
Second classification 60 95.7 2.070 16.440 50.09

First classification 50 91.6 1.084 31.217
Second classification 50 95.6 2.240 16.308 50.85

First classification 40 92.3 1.111 30.643
Second classification 40 95.5 2.030 15.244 49.03

First classification 30 92.6 2.275 35.295
Second classification 30 95.2 3,058 21,588 62.22

First classification 20 92.3 1.418 36.640
Second classification 20 95.0 2.459 17.149 57.67

Table 4. Yellow grapes: Classification accuracy (%) for only 10 points in the training set—the results
for six different runs are presented.

N° POINTS ACCURACY (%)

First classification 10 93.0
Second classification 10 94.8

First classification 10 91.1
Second classification 10 94.3

First classification 10 89.9
Second classification 10 94.5

First classification 10 88.0
Second classification 10 93.7

First classification 10 92.2
Second classification 10 95.1

First classification 10 94.5
Second classification 10 94.8
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Table 5. Yellow grapes: Classification accuracy (%) for 20 points in the training set.

N° POINTS ACCURACY (%)

First classification 20 93.5
Second classification 20 95.3

First classification 20 92.5
Second classification 20 95.5

First classification 20 92.9
Second classification 20 95.8

First classification 20 91.3
Second classification 20 95.2

First classification 20 92.3
Second classification 20 95.0

First classification 20 92.0
Second classification 20 95.1

Figure 14. Yellow grapes: Final classification result for the image with 10−points (Left) and 20−points
(Right) training set—pixels classified as yellow grapes are in pink.

3.3. Comparative Studies and Discussions 437

The proposed approach is compared with the one presented in [1] since it is the 438

most similar in spirit to the proposed one. This approach is based on three main phases: 439

pre-processing, dataset training, and classification through an SVM classifier. Its main 440

ingredients are the HSV space (as in the proposed approach) and Otsu’s threshold along 441

with some morphological operations on the resulting binary maps. Successively, regions of 442

interest (ROIs) are found and a classification on vectors involving various (i.e., 14) features, 443

both geometrical and statistical, is performed. 444

Specifically, the adopted features are: closeness, extent, compactness, texture, H mean, 445

H and S average contrast, H S and V smoothness, S third moment, H and V uniformity and 446

H and S entropy. It is worth outlining that these features were selected among a larger set 447

via two well-known techniques: ReliefF algorithm [97] and sequential feature selection [34]. 448

The selected features are used for the SVM classification. The accuracy rates achieved on 449

the ’in-the-wild’ images in Figure 15 by the method in [1] were, respectively, 52% and 50%. 450

As can be observed, even with the use of a more populated training set (120 for the first 451

classification and 179 for the second one), the method in [1] achieved a lower classification 452

accuracy compared with the proposed approach, reaching accuracy rates of about 95% 453

for the two images in Figure 15 using 20-point training sets in both classification steps. 454
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This is the consequence of the use of the optimized visual-perception-based features in the 455

proposed approach. 456

In fact, color perception and visual contrast play a significant role in the determination 457

of the visual saliency of the objects under study, which represents one of the main ingredi- 458

ents in the naked eye yield analysis performed by a winemaker. As Figures 5 (Right) and 459

10 (Right) show, the proposed visual contrast allows greatly emphasizing the grapes with 460

respect to the remaining image components. The role of SVM-based classification is then to 461

automatically define the separation threshold in a data-driven fashion. On the other hand, 462

the ML-based approach benefits from the definition of specific and relevant features for the 463

object under study, so the use of small training sets is allowed. 464

In addition to the benefits discussed in the previous subsections, the selection of 465

points in the training set must be accurate in order to prevent misclassifications—this 466

recommendation becomes fundamental whenever the proposed procedure is embedded 467

in a smart application that enables the winemaker to retrain the classifier. On the other 468

hand, this can be less troublesome than acquiring a large number of images as required in 469

DNN-based approaches. 470

Finally, with regard to the computing time, although the proposed procedure shows 471

some merits with respect to competing methods due to the very simple operations em- 472

ployed, some further work is required to optimized some of its steps, especially the testing 473

phase. Region-based instead of the proposed pixelwise strategies could be employed for 474

promoting real-time processing. 475
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Figure 15. Blue grapes: (Top) Two test images. (Bottom) Grape classification for the method in [1].

4. Conclusions 476

In this paper, we proposed a cascaded classification method of grape bunches. Its 477

main peculiarity is the use of the human perception mechanism of early vision in order to 478

define proper feature vectors to use as input for the two classifiers. This property enables 479

replicating the almost straightforward grape-bunch detection process that is performed by 480

a winemaker. As a consequence, a very small training set (a small number of image pixels) 481

can be used in the learning phase of the classification procedures. In addition, the method 482

is robust to “in-the-wild” videos that are acquired in uncontrolled acquisition conditions. 483

These two ingredients make the proposed method implementable on smart devices in 484

a user-friendly fashion, making it directly usable and updatable even by the winemaker. 485

When compared with similar methods, the proposed approach showed that the selection 486

of a smaller number of features and the adoption of a small training set are possible 487

by adopting visual-perception-based features that have been ’naturally’ optimized over 488

hundreds of thousands of years. Future research will be devoted to refining the proposed 489

computational procedure to increase its accuracy as well as to defining a unified method 490

for both blue and yellow grapes. 491
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