2,520 research outputs found

    Using NLP tools in the specification phase

    Get PDF
    The software quality control is one of the main topics in the Software Engineering area. To put the effort in the quality control during the specification phase leads us to detect possible mistakes in an early steps and, easily, to correct them before the design and implementation steps start. In this framework the goal of SAREL system, a knowledge-based system, is twofold. On one hand, to help software engineers in the creation of quality Software Requirements Specifications. On the other hand, to analyze the correspondence between two different conceptual representations associated with two different Software Requirements Specification documents. For the first goal, a set of NLP and Knowledge management tools is applied to obtain a conceptual representation that can be validated and managed by the software engineer. For the second goal we have established some correspondence measures in order to get a comparison between two conceptual representations. This information will be useful during the interaction.Postprint (published version

    The Synonym management process in SAREL

    Get PDF
    The specification phase is one of the most important and least supported parts of the software development process. The SAREL system has been conceived as a knowledge-based tool to improve the specification phase. The purpose of SAREL (Assistance System for Writing Software Specifications in Natural Language) is to assist engineers in the creation of software specifications written in Natural Language (NL). These documents are divided into several parts. We can distinguish the Introduction and the Overall Description as parts that should be used in the Knowledge Base construction. The information contained in the Specific Requirements Section corresponds to the information represented in the Requirements Base. In order to obtain high-quality software requirements specification the writing norms that define the linguistic restrictions required and the software engineering constraints related to the quality factors have been taken into account. One of the controls performed is the lexical analysis that verifies the words belong to the application domain lexicon which consists of the Required and the Extended lexicon. In this sense a synonym management process is needed in order to get a quality software specification. The aim of this paper is to present the synonym management process performed during the Knowledge Base construction. Such process makes use of the Spanish Wordnet developed inside the Eurowordnet project. This process generates both the Required lexicon and the Extended lexicon that will be used during the Requirements Base construction.Postprint (published version

    Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology

    Get PDF
    One of the most essential processes within the software project life cycle is the REP (Requirements Engineering Process) because it allows specifying the software product requirements. This specification should be as consistent as possible because it allows estimating in a suitable manner the effort required to obtain the final product. REP is complex in itself, but this complexity is greatly increased in big, distributed and heterogeneous projects with multiple analyst teams and high integration between functional modules. This paper presents an approach for the systematic conciliation of functional requirements in big projects dealing with a web model-based approach and how this approach may be implemented in the context of the NDT (Navigational Development Techniques): a web methodology. This paper also describes the empirical evaluation in the CALIPSOneo project by analyzing the improvements obtained with our approach.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Experiences with the use of MERODE in the development of a web based application.

    Get PDF
    This article presents an experience report on using MERODE as the business modeling method for the development of a web application. MERODE has several advantages as improving the flexibility and maintainability of applications and the possibility of doing automated verification and validation on the internal consistency of the model. The application's main functionalities were managing the organisation of events and managing the general information of a research group. The developed application was monitored in order to check its flexibility and maintainability and also to verify the feasibility of using the method. The results show that in fact the flexibility and maintainability of the application were satisfactory.

    Algorithms Comparison for Non-Requirements Classification using the Semantic Feature of Software Requirement Statements

    Get PDF
    Noise in a Software Requirements Specification (SRS) is an irrelevant requirements statement or a non-requirements statement. This can be confusing to the reader and can have negative repercussions in later stages of software development. This study proposes a classification model to detect the second type of noise, the non-requirements statement. The classification model that is built is based on the semantic features of the non-requirements statement. This research also compares the five best-supervised machine learning methods to date, which are support vector machine (SVM), naïve Bayes (NB), random forest (RF), k-nearest neighbor (kNN), and Decision Tree. This comparison aimed to determine which method can produce the best non-requirements classification, model. The comparison shows that the best model is produced by the SVM method with an average accuracy of 0.96. The most significant features in this non-requirement classification model are the requirements statement or non-requirements, id statement, normalized mean value, standard deviation value, similarity variant value, standard deviation normalization value, maximum normalized value, similarity variant normalization value, value Bad NN, mean value, number of sentences, bad VB score, and project id

    REMM-Studio: an Integrated Model-Driven Environment for Requirements Specification, Validation and Formatting

    Get PDF
    In order to integrate requirements into the current Model-Driven Engineering (MDE) approach, the traditional document-based requirements specification process should be changed into a requirements modelling process. To achieve this we propose a requirements metamodel called REMM Requirements Engineering MetaModel) which includes the elements that should appear in a requirements model (requirements, stakeholders, test cases, etc.) together with the relationships that may appear between them. This metamodel is the basis of the REMM-Studio environment which enables: (1) to build graphical requirements models, (2) to validate them against the metamodel and against a set of additional OCL constraints, and (3) to automatically generate a navigable Software Requirements Specification (SRS) document as the main deliverable of the Requirements Engineering process. REMM-Studio is expected to ease the integration of requirements with other development models (e.g. component models) and to facilitate the validation of the SRS thanks to its navigability.MEDWSA (TIN2006-15175-C05-02), DEDALO (TIN2006-15175-C05-03), DESERT (PBC-05-012-3)Escuela Técnica superior de Ingeniería Agronómic
    corecore