The Synonym Management Processin SAREL

Angels Hernandez & Nuria Castell
TALP Research Center
Universitat Politecnica de Catalunya
Barcelona, Spain 08034
e-mail: (ahernandez, castell)@talp.upc.es

Abstract

The specification phase is one of the most important
and least supported parts of the software development
process. The SAREL system has been conceived as a
knowledge-based tool to improve the specification phase.
The purpose of SAREL (Assistance System for Wkiting
Software Specifications in Natural Language) is to assist
engineers in the creation of software specifications
written in Natural Language (NL). These documents are
divided into several parts. We can distinguish the
Introduction and the Overall Description as parts that
should be used in the Knowledge Base construction. The
information contained in the Specific Requirements
Section corresponds to the information represented in the
Requirements Base. In order to obtain high-quality
software requirements specification the writing norms
that define the linguistic restrictions required and the
software engineering constraints related to the quality
factors have been taken into account. One of the controls
performed is the lexical analysis that verifies the words
belong to the application domain lexicon which consists
of the Required and the Extended lexicon. In this sense a
synonym management process is needed in order to get a
quality software specification. The aim of this paper is to
present the synonym management process performed
during the Knowledge Base construction. Such process
makes use of the Spanish Wordnet developed inside the
Eurowordnet project. This process generates both the
Required lexicon and the Extended lexicon that will be
used during the Requirements Base construction.

1. Introduction

The preliminary Software Specifications in complex
systems are often written in Natural Language. The
documentation writing is guided by the norms that define
the linguistic restrictions required and also by the software
engineering constraints related to the quality factors of the
software specifications. However, in general, these norms
are not strictly followed. It is very important to control the
writing of these Software Requirements Specifications
(SRS) in order to detect conceptual mistakes in this first
step of the software development process. The correction

of errorsin the design and implementation phases implies
spending more time and effort than in the specification
phase. The ambiguity of the documents and the fact of not
following the norms can produce an incorrect formal
specification. A complete study of the problems arising
from NL specifications can be found in [12].

Many projects have tackled the use of Natural
Language in the specification phase. Among the CREWS
project publications we want to remark [2] where the
scenario based approach and linguistic based instrument
have been proposed for improving requirement
engineering tools and techniques. Within the framework
of quality documents the ATTEMPTO approach [9]
should be pointed out, whose main goal is to reduce
ambiguity and vagueness inherent in NL. The REVERE
project [14] should also be mentioned because it
integrates a number of techniques to provide a set of tools
to help requirements engineer to explore the
documentation. The goal in our case is different because
we want to help engineer during the writing process.
Another important work is QUARS [8] where a tool for
the analysis of natural language software requirements
based on a quality model is presented. From the lexical
point of view [3] is an interesting work where a lexical
analysis can be used to identify individual objects which
will trandlate directly into the final implementation.

Within the software specification written in NL area
we have designed the SAREL help-system in order to
obtain high-quality software requirements specifications.
This is a knowledge-based system, where some linguistic
engineering tools are applied. In this paper we will focus
in some lexical tasks related with the ambiguity reduction
and the Knowledge Base construction.

The paper is organized as follows. in section 2, a
description of the SAREL system is given. Section 3
explains the lexicon generation process in detail to obtain
the Required Lexicon and the Extended Lexicon used in
later phases. In section 4 we show how these lexicons are
used in order to rewrite the Introduction and the Overall
Description without synonyms. The different rules used in
Knowledge Base generation process are explained in
section 5. Then the Modules used during the
Requirements Base construction are described in section
6. Finally, in section 7, the conclusions are presented.

2. Description of the SAREL System.

The main goal of SAREL is to assist a software
engineer in the creation of quality preliminary software
specifications written in NL. The assistance process
validates the SRS introduced by the engineer taking into
account the writing norms (for instance [11]) and the
quality properties [5]: consistency, completeness,
traceability, modifiability, and verifiability (among others
stated by IEEE Standards). As a result, a Conceptual
Representation which consists of the Knowledge Base
(KB) and the Requirements Base (RB) of the software
requirement specification is obtained. It should be
emphasized that the KB creation process is the first step.
This process is shown on the left side on the Figure 1.
After that the system will be ready to check the software
requirements set. Figure 1 shows that on the right side.

Taking into account [11], there are three essential parts
in a SRS: (1) Introduction provides an overview of the
entire SRS; (2) the Overall Description section describes
the general factors that affect the product and its
requirements, (3) the Specific Requirements section
contains all the software requirements, going into enough
detail so as to enable engineers to design a system that
satisfies those requirements.

We can digtinguish the Introduction and the Overall
Description as parts that should be used in the Knowledge
Base construction. Up to a certain point, these two parts
contain al the background information needed to
understand the problem as a whole. The information
contained in the specific Reguirements Section
corresponds to the information represented in the
Requirements Base.

The KB construction process is split into three steps:
(1) the Lexicon Generator extracts from the original text
the Required Lexicon and the Extended Lexicon using
Wordnet [W]; (2) the Lexical Refinement will generate a
new Introduction and a new Overall Description where all
the words belong to the Required Lexicon; (3) the KB
Generator will generate a hierarchy of concepts grouped
into two main classes: Objects and Activities.

At this point we can see that the lexicon generation
process is important because we can control which words
must be used (Required) which words can be substituted
by others (Extended) and which words can not be used.

The RB construction process is split into three
Modules: (1) the Style Refinement Module controls the
requirement introduced according to the writing norms,
the lexical analysis will use the Required and the
Extended Lexicon to verify that the words belong to the
application domain; (2) the Conceptual Refinement
Module validates the conceptua requirement in relation to
the KB and the RB; (3) the Software Quality Control

Module carries out a set of optional analyses to validate
the global RB increased with the new requirement.

Finaly if the Requirement Conceptual Representation
iscorrect it will be added to the RB.

3. The Lexicon Generator.

In this section we present the process which generates
the Required lexicon and the Extended lexicon. The
Extended lexicon contains al the words of the application
domain and the Required is a subset of the Extended.
Each word present in the Required is the representative
that has been chosen from the synonyms set.

Firstly, the morphological analyzer Maco+ [1] and the
POS tagger Relax [13] will process the sentences
contained in the Introduction and the Overall Description
of the document. The output of this process is a list of
words with its corresponding PAROLE tag.

Secondly from the list of words obtained the system
will split the list into three different sub lists
corresponding with the names, verbs and adjectives. Each
of them will be processed by the Synonym Analysis in
order to obtain the Required and Extended names, the
Required and Extended verbs and the Required and
Extended adjectives. Finally all these three results will be
put it all together into the Required Lexicon and Extended
Lexicon.

3.1. Synonym Analysis

For each word in the text analyzed the system will find
al the synsets using Wordnet and its corresponding label.
The synsets associated to a word are the different
meanings that has that word in different contexts. For
example the word light has different meaning depending
on the context: “light up” or “light drink”. The result of
this search is asfollows:

label; ; word; synset;
label; , word; synset,

label; y word, synsety
After that for all synsets the system will find all the
synonyms associated and its corresponding synset:
label; ; (word, synset; synonym, | synset; ¢

Synonymy y1 Synset; v1)
label; » (word; synset, synonym, ; synset, |

Synonymy mn Synsety win)

Introduction

WORDNET

™\ Lexicon Generator

Overall Description

Required Lexicon

Allowed Lexicon

Introduction
Overall Description
Refined

@ nerator

Specific Requirements

Style Refinement
Module

Conceptual Refinement
Module

Requirement Conceptual Representation

Software Quality Control
Module

Knowledge

Base (KB)

Requirements

Base (RB)

Figure 1: Knowledge Base and Requirements Base Construction

Following the system will find the possible
coincidences between the first word that belongs to the
origina text and the rest of the sets. A coincidence
appears when exists the following situation:

labely ; (wordy synset; synonym;y synsety)

labelyq (wordy synsetq..... synonymgg synsetgrg-.....)

wordy = synonymgg

wordy synonym;

labely ; = labely o
There are five possible situations:

- (1) The wordy does not appear in any of the others sets,
and it has many synsets associated. In this case we do not
know the right label, neither the right synset. The
information to save is only the wordy, so that the output
will be:

label? wordy synset? []

- (2) The same situation as before but in this case the
wordy has only one synset, then we will keep this
information:

labely ; wordy synset; [synonymy ; synset; 4

Synonymy y; Synset;]

- (3) The wordy appears only once in the rest of the sets.

That means the coincidence has selected the right synset.
[abely 5 (wordy synset; synonymy synsetyi)
labelyq (wordy synsetq..... synonymgg synsetgrg.....)

wordy = synonymgg
wordy = synonym;g
Iabelx] = |abely Q

At this point it is necessary to decide which word will
be the representative of the synonym set. To do that the
analyzer will consider the frequency of each word in the
origina text. If the wordy has a higher frequency than the
wordy the information to hold is:

labelyq wordy synsetg|[.....synonymg g synsetorg.....|

- (4) The wordy comesinto the rest of the sets many times,
but all the coincidences correspond with the same word in
different synsets. That means, there are little differences
between the synsets. The system will save all these synsets
because all of them are correct.
labelyq wordy synsetg|[.....synonymg g synsetorg.....]
labelyp wordy synsetp|.....synonyme g synsetpr]

(5) The last possible situation is the same as the previous
one, but now the coincidences correspond with different
words. In this situation the Synonym Analysis will select
the word with more coincidences with the wordy leading
us to the same situation 4 .

4. The Lexical Refinement.

Once the Required Lexicon and the Extended Lexicon
have been built the following step is to refine the
Introduction and the Overall Description in order to get a
text without synonyms. The output is a text where al the
names, verbs and adjectives belong to the Required
Lexicon. To get that each word will be analyzed:

- if the word belongs to the Required Lexicon it will be
added to the text refined.
- if the word belongs to the Extended Lexicon the Lexical
Refinement process will substitute this word by the
representative of the synonym set. The Morphologica
Analyzer (maco+) is used in order to obtain the right
conjugation. For example if we have to substitute the verb
“get” by the verb “obtain” in the following sentence:
“ The system A is getting the data”

the result will be:

“ The system A is obtaining the data”

Firstly the process transform getting to get. Secondly
the system will substitute get by obtain. And finaly the
word obtain will be transformed into obtaining using the
PAROLE tag.

At this point we want to emphasize the input resulted
in a refined text (Introduction and Overall Description)
without synonyms. The Lexical Refinement is an essential
process taking into account this text will be the starting
point to the creation of the Knowledge Base.

5. The KB Generator.

The KB Generator starts from a list of words with its
corresponding PAROLE tag generated in the previous
steps and the goa here is to generate a hierarchy of
concepts grouped into two main classes: Objects and
Activities. As a consequence of the Lexical Refinement
the KB Generator will not produce two synonyms
concepts. This processis split into three steps:

1. Creation of the main nodes: Object and Activity.

2. Object nodes generation:

2.1. Creation of nodes corresponding to simple names
tagged as NC (Common Nouns)

2.2. Creation of nodes corresponding to noun phrases
tagged as: { NC followed by NC} or {NC followed by AQ
(Qualifying)} or {NC followed by VMP (Participle)}.

2.3. Creation of nodes corresponding to the following
schema. A + De (Of) + B, where A and B are object
nodes generated before.

3. Activity nodes generation:

3.1 Creation of nodes corresponding to simple verbs
tagged as VM (intransitive verb) or VMN (infinitive).

3.2 Creation of nodes corresponding to verbal groups
tagged as VM followed by VMN.

After the KB construction process the software
engineer can visualize the Conceptual Representation
obtained.

6. The RB Construction.

As set out above, the information represented in the
RB corresponds to the information contained in the
specific requirements section. In order to control the set of
software requirements contained in the SRS document, we
have considered necessary to establish the different roles
associated to each kind of requirement. At this point we
should mention the KARAT system [16] where the
classification of the software requirements is the same as
the one used in our system. Below we present three
different kinds of requirements (among others stated by
|IEEE Standards [11]) and the required semantic roles set
for each class. It should be pointed out that these required
semantic roles could appear with other optional ones [6]:
(1) Functional Requirements define the fundamental
actions that must take place in the software when
accepting and processing the inputs and when processing
and generating the outputs. The required semantic roles
are:

{Agent, Action and Patient} .

(2) Performance Requirements specify both the static
and the dynamic numerical regquirements established for
the software or on human interaction with the software as
awhole. This class needs the following required semantic
role sets:

{Patient, Measurement, At-value and Unit} or

{Patient, Measurement, From-Vaue, To-Value and
Unit}.

(3) Interface Requirements correspond to a detailed
description of al inputs into, and outputs from, the
software system. The required semantic role sets are:
{Patient and Qualitative-Feature} or

{Patient, Quantitative-Feature and Units-Feature} .

The creation of the RB is undertaken requirement by
requirement. Once the user has introduced the sentence
corresponding to the requirement, the controls contained
in the Style Refinement Module and the Conceptua
Refinement Module are applied.

The Style Refinement Module controls the
requirement according to the writing norms. This control
is split into four steps: (1) the lexical analysis verifies that
the words belong to the application domain lexicon, that
means to the Reguired Lexicon. If not the software
engineer will be consulted if new words have to be added
to the Required Lexicon or not; (2) the syntactic-semantic
analysis produces a tree-like semantic representation; (3)
the ambiguity control helps the engineer to identify the
correct representation between the possible

interpretations; (4) the simplicity control detects whether
the structure is simple or compound.

At that point a syntactic-semantic representation is
produced. Below we present the output corresponding to
the sentence :

“La ludoteca suministrara servicios de directorio”

(“ The play-center will supply directory services’)

((La_tdfs0

ludotecal _ncfsD00)_sn(suministrardl_vmif3s0)_grup-
verbal (servicios_ncmp000)_sn(de\ _spsO0
directorio_ncms000)_grup-sp._Fp)\ _

We want to remark the substitution of the original verb
in the sentence. The verb provide was the original one and
it has been substituted by the verb supply during the
lexical analysis.

The Conceptual Refinement Module validates the
requirement in relation to the Requirements Base. At first,
it obtains a conceptua representation using the KB and
after that, it detects duplicated information. Taking into
account that the requirement presented above corresponds
to the Functiona class, the Conceptual Refinement
Module will identify "ludoteca' as the Agent,
"suministrar" as the Activity and "servicios de directorio”
as Patient. These entities must be present in the KB or
else the system will request the software engineer to ask if
new concepts have to be added or not. At this point the
Conceptual Refinement Module detects duplicated
information if the RB contains another representation
with the same semantic roles and values. Once the
requirement has been checked and is correct, its
Conceptual Representation is added to the RB. This
process incrementally generates a Conceptual
Representation of the specific requirements section.

As in the case of the KB construction section, the
Conceptual Representation associated to the requirement
introduced can be visualized. In Figure 2 we present an
example of Knowledge Base and Requirements Base
visualization. This figure is composed of two parts: at the
top, we can see the Conceptual Representation of concepts
contained in the KB, and, at the bottom, the Conceptual
Representation of the requirement presented above. The
objects and the activities contained in the requirement
correspond with nodes presents in the KB. It is aso
possible to visualize the representations in a global way
(for example, the requirements sets containing “ludoteca”
as Agent).

The Software Quality Control Module carries out a
set of optiona analyses to validate the global RB
increased with the new requirement. The goal is to offer
information about the software quality properties:
consistency, completeness, traceability, modifiability, and
verifiability.

ko Afegir Regueriment - funcional

Object | servicio

Base de Coneixements: Representacio Conceptual

| &

Artivity |

Afagle | Tipus Representar

Frasa/Raguedment

y y . ‘ s
fla ludoteca sumeustrars servicios de directono
|

| I
| Indoteca servicin_de _directorio | suministrar
.................. e —— =
Ease de requeriments: Representacio Conceptual =
requeriment 2
1
! arenl
E
| ludoteca
|
|
| t
iEIC"Gil iox
I——ﬁ' suministrar
i
| patient T . .
s S servicio de_directorio |
3

Figure 2: KB and RB Visualization

6.1. Thetwo functionalities of SAREL

The SAREL system has two different functionalities,
depending on the user's goa: Vertical Processing and
Horizontal Processing.

Vertical Processing basicaly corresponds to the
sequential application of the controls. The input is a
software specification written in NL and the output is its
associated Conceptual Representation. The Requirements
Section is processed, requirement after requirement, by
both the Style Refinement Module and the Conceptual
Refinement Module in order to obtain the Conceptual
Representation that can be optionally validated by the
engineer using the Software Quality Control Module.
Once a requirement has been checked, its conceptual
representation is added to the RB. Using this functionality,
it is possible to obtain the Conceptual Representation
associated with the preliminary software specification.
This means that the information represented can be
consulted in a collective or individua way by the
engineers in a more reliable format. A more precise
description of this functionality can be found in [4].

In Horizontal Processing the input is of two different
conceptual representations, and the goal hereisto offer

information about the correspondence between them.
Documentl corresponds to the User Company that needs
to develop a computer system and, therefore, document2
corresponds to the Software Company that will carry this
out. The system will give a correspondence measure based
on similarity analysis [15] applied to the components of
the requirements. Depending on the value of this measure,
the correspondence will be tagged as: Correct, Excess or
Excess-Insufficient. See [7] for a more precise
description.

7. Conclusions

The main goals of the SAREL system are:

- To obtan a high-quality software requirements
specifications. To reach that the writing norms that define
the linguistic restrictions required and the software
engineering constraints related to the quality factors have
been taken into account in the Style Refinement Module,
the Conceptual Refinement Module and the Software
Quality Control Module.

- To get the Conceptual Representation associated to the
software requirements specification. In this sense the SRS

can be manipulated and consulted in a more reliable way
using the KB and RB visualization.

- To compare different conceptual representations
corresponding with different documents SRS belonging to
the same application domain.

All these aims need a previous control over the
lexicon used in all these documents. To decrease the
ambiguity level the system uses the Required Lexicon and
a Extended Lexicon generated at first. In this paper we
have presented the synonym management during this
generation process using Wordnet.

We are planing to use many different documents
(technical documentation, user manuals) asainput in the
Knowledge Base generation in order to get a more
complete conceptual representation. Another area to
exploit in the future is in relation with the lightweight
forma methods for the partia validation of natura
language requirements documents presented in [10].

8. References

[1] J. Atserias, J. Carmona, |. Castellon, S. Cervell, M. Civit, L.
Marquez, M.A. Marti, L. Padré, R. Placer, H. Rodriguez, M.
Taulé, and J. Turmo, “Morphosyntactic Analysis and Parsing of
Unrestricted Spanish Text”, First International Conference on
Language Resources and Evaluation (LREC'98) Granada, Spain,
1998.

[2] C. Ben Achour, “Linguistic Instruments for the Integration of
Scenarios in Requirements Engineering”, Proceedings of the
Third International Workshop on Requirements Engineering:
Foundations of Software Quality (REFSQ'97)", Barcelona,
Catalonia, Spain, June, 1997, pp. 93-106.

[3] P. Bowden, M. Hargreaves, and C.S. Langensiepen,
“Estimation support by lexical analysis of requirements
documents’, The Journal of Systems and Software, 51 (2000),
pp. 87-98.

[4] N. Castell, and A. Hernandez, “Filtering Software
Specifications Written in Natural Language’, Proceedings of the
7th Portuguese Conference on Artificial Intelligence (EPIA'95),
LNAI 990, Funchal, Madeira Island, Portugal, 1995, pp. 447-
455,

[5] N. Castel, O. Slavkova, Y. Toussaint, and A. Tudls,
“Quality Control of Software Specifications written in Natural
Language’, Proceedings of the 7th International Conference on
Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems (IEA/AIE'94), Austin, Texas, USA, 1994,
pp. 37-44.

[6] N. Castell, and A. Hernandez, “The Software Requirements
Modeling in SAREL”, Proceedings of the 4th Internationa

Workshop on Requirements Engineering: Foundations of
Software Quality (REFSQ'98), Pisa, Italy, 1998, pp. 49-56.

[7] N. Castell, and A. Hernadndez, “ The use of SAREL to control
the correspondence between Specification Documents’,
Proceedings of VIl Conferencia de la Asociacion Espafiola para
laInteligencia Artificial (CAEPIA'97), Mélaga, Spain, 1997, pp.
529-539.

[8] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An
Automatic Quality Evauation for Natura Language
Requirements’, Proceedings of the Seventh International
Workshop on Requirements Engineering: Foundations of
Software Quality (REFSQ'01), June 4-5, 2001, Interlaken,
Switzerland 2001.

[9] E. Fuchs, and R. Schwitter, “Attempto Controlled English
(ACE)”", First International Workshop On Controlled Language
Applications. Katholieke Universiteit Leuven, Belgium 1996.

[10] V. Gervas and B. Nuseibeh, “Lightweight Validation of
natural language Requirements. a case study”, Proceedings of
the Fourth International Conference on Requirements
Engineering (ICRE’2000), June 19-23, Schaumburg, lllinois,
2000, pp.140-148.

[11] IEEE Std 830-1998: |IEEE Recommended Practice for
Software Requirements Specifications, 1998.

[12] R. Melchisedech, “Investigation of Requirements
Documents Written in Natural Language’, Requirements
Engineering (1998) 3:2, pp. 91-97.

[13] L. Padr6, “A Hybrid Environment for Syntax-Semantic
Tagging”, PhD Thesis, Departament de Llenguatges i Sistemes
Informatics. Universitat Politécnica de Catalunya. Barcelona,
1998.

[14] P. Rayson, R. Garside, and P. Sawyer, “Recovery Legacy
Requirements”, Proceedings of the Fifth International workshop
on Requirements Engineering: Foundations of Software Quality
(REFSQ'99), June 14-15, Heidelberg, Germany 1999, pp. 49-
54.

[15] H.C. Romesburg, “Cluster analysis for researchers’,
Belmont, Calif.: Lifetime Learning Publications, 1984.

[16] B. Tschaitschian, C. Wenzel, and |. John, “Tunning the
quality of informa software requirements with KARAT".
Proceedings of the Third Internationa workshop on
Requirements Engineering: Foundations of Software Quality
(REFSQ’'97) Barcelona, Catalonia, Spain, 1997, pp. 81-92.

