
Using NLP tools in the Specification Phase

Àngels Hernández & Núria Castell
TALP Research Center

Universitat Politècnica de Catalunya

Abstract

The software quality control is one of the main topics
in the Software Engineering area. To put the effort in
the quality control during the specification phase
leads us to detect possible mistakes in an early steps
and, easily, to correct them before the design and
implementation steps start. In this framework the
goal of SAREL system, a knowledge-based system,
is twofold. On one hand, to help software engineers
in the creation of quality Software Requirements
Specifications. On the other hand, to analyze the
correspondence between two different conceptual
representations associated with two different
Software Requirements Specification documents.

For the first goal, a set of NLP and Knowledge
management tools is applied to obtain a conceptual
representation that can be validated and managed by
the software engineer.

For the second goal we have established some
correspondence measures in order to get a
comparison between two conceptual representations.
This information will be useful during the interaction
between the customer and the software engineer.

Keywords: Natural language processing,
Requirements Engineering, Knowledge-based
systems, Software Quality.

The specification phase is one of the most important
and least supported parts of the software development
process [1]. In this stage it is very important to
control the quality of the specifications in order to
detect possible mistakes as early as possible. In
general, the earlier in the life cycle those potential
errors are identified the easier it is to eliminate. This
is the reason why developers increasingly try to
identify possible mistakes in the early phases of
software development.

During the initial phase, the software specifications
are often written in natural language. Even after
being formalized, this original documentation may
also serve during later phases and during the
functioning and maintenance of the developed

computer system. The use of natural language has
associated problems as ambiguity, inaccuracy and
inconsistency [2]. Therefore it is important to control
the writing of these documents because many more
mistakes can be detected if the writing is clear and
concise.

Documentation writing is guided by the norms that
define the linguistic restrictions required to satisfy the
specifications. These norms are of two types: those
related to the use of natural language in general and
those based on terminological restrictions linked to a
particular domain (for example, the European Space
Agency norms). Both of them restrict the use of
natural language through a set of rules, which limit
much kind of irregularities that occur during the
interpretation of natural language.

In addition to linguistic restrictions, the norms also
include software engineering constraints related to
the software quality properties, among others:
completeness, traceability, consistency, verifiability
and modifiability.

Many projects have tackled the use of Natural
Language in the specification phase, CREWS project
is an important one. Among its publications we want
to remark [3] where the scenario based approach and
a linguistic based instrument have been proposed for
improving requirement engineering tools and
techniques. Within the framework of quality
documents the ATTEMPTO approach [4] should be
pointed out, whose main goal is to reduce ambiguity
and vagueness inherent in NL. Another important
work is QuARS [5] where a tool for the analysis of
natural language software requirements based on a
quality model is presented. Following these trends,
we have developed a system that applies Artificial
Intelligence tools to the Requirements Engineering.

SAREL System

SAREL (Sistema d’Ajut a la Redacció
d’Especificacions en Llenguatge Natural) an
Assistance System for Writing Software
Specification in Natural Language, has been designed
in order to obtain a high-quality Software

Requirements Specification (SRS). The aim is to
assist the engineers in the creation of preliminary
software specifications written in natural language.
This assistance system is based on Knowledge
Representation and Linguistic Tools and it leans on
two main elements: the Knowledge Base (KB) and
the Requirements Base (RB). The Knowledge Base
contains a conceptual representation of the relevant
concepts of the application domain, and the
Requirements Base contains a conceptual
representation of the Software Requirements
Specification.

Taking into account the IEEE Standard [6], there are
three essential sections in a SRS:
• Introduction, which provides an overview of the

entire SRS

• The Overall Description, which describes the
general factors that affect the product and its
requirements.

• The Specific Requirements section, which
contains all the software requirements,
deepening into enough detail so as to enable
engineers to design a system that satisfies those
requirements.

We distinguish the Introduction and the Overall
Description as sections that should be used in the
Knowledge Base construction. Up to a certain point,
these two sections contain all the background
information needed to understand the problem as a
whole. The Requirements Base represents the
information contained in the Specific Requirements
Section. In figure 1 we can see the Knowledge Base
and the Requirements Base Generation Processes.

Figure 1. Knowledge Base and Requirements Base Generation

Knowledge Base Generation

We have implemented an automatic construction
process that generates the Conceptual Representation
of the Introduction and Overall Description. This
process is split into three steps showed on the left
side in Figure 2:
• The Lexicon Generator extracts from the original

text the required lexicon and the extended
lexicon using the Spanish semantic network
Wordnet [7].

• The Lexical Refinement generates a new
Introduction and a new Overall Description
where all the words belong to the required
lexicon (without synonyms).

• The KB Conceptual Generator generates a
hierarchy of concepts grouped into two main
classes: Objects and Activities.

The difference between the extended lexicon and the
required lexicon is that the first lexicon contains all
the words related to the application domain while the
second is a subset of the extended. Each word
included in the required lexicon is the representative
that has been chosen from the synonyms set.

Lexicon Generator

To create the two lexica, we take profit of our general
NLP tools (http://www.lsi.upc.es/∼nlp). Firstly, the

Introduction
Overall Description

K.B. Generation
 Process

Knowledge
Base

Specific
Requirements

R.B. Incremental
Generation

Process

Requirements
Base

Software

Requirements
Modeling

Required lexicon
Extended lexicon

Morphological Analyzer Maco+ [8] and the POS
tagger Relax [9] process the sentences contained in
the Introduction and the Overall Description of the
document. The output of this process is a list of
words with its corresponding PAROLE tag (www.tei-
c.org/Applications).

Secondly, the system split the list into three different
sublists corresponding with names, verbs and
adjectives. The Synonym Analyzer (using Spanish
Wordnet) processes each of them, in order to obtain
the required and extended names, the required and
extended verbs and the required and extended
adjectives. In a first step, the Analyzer finds all the
synsets and its corresponding label for each word in
the text. For all synsets the system will find all the

synonyms associated. Third, the system finds the
possible coincidences between the first word that
belongs to the original text and the rest. To decide
which word will be the representative of the synonym
set the analyzer will consider the frequency of each
word in the original text.

Lastly, grouping appropriately all the outputs
supplied by the Synonyms Analyzer, we obtain the
required lexicon and the extended lexicon. The
existence of both lexica offers to the engineer some
kink of writing flexibility, without to disobey the
norms. The system will finally provided a document
in accordance with these norms.

Figure 2. Modules of SAREL

Lexical Refinement

The following step is to refine the Introduction and
the Overall Description in order to get a text without

synonyms. The output is a text where all the names,
verbs and adjectives belong to the required lexicon.
To get that, for each word we apply the following
criteria: if the word belongs to the required lexicon, it

is added to the text refined; if the word belongs to the
extended lexicon the Lexical Refinement processor
substitutes this word by the representative of its
synonym set. For a soundness replacement, the
Morphological Analyzer (Maco+) is used in order to
obtain the right conjugation.
We want to emphasize that the obtained output is a
refined text without synonyms, containing the same
information of the original text. The Lexical
Refinement is an essential process taking into
account that the refined text is the starting point to
the creation of the Knowledge Base Conceptual
Representation.

KB Conceptual Generator

From the refined text, the KB Conceptual Generator
builds a hierarchy of concepts grouped into two main
classes: Objects and Activities. This process is split

into two steps: first, Object nodes generation, and
second, Activity nodes generation.
For the creation of Object nodes we have establish
the following rules that will be applied in a sequential
way:
(a) Nodes corresponding to simple names tagged as:
NC (Common Nouns)
(b) Nodes corresponding to noun phrases tagged as:
{NC followed by NC} or {NC followed by AQ
(Qualifying)} or {NC followed by VMP (Participle)}
(c) Nodes corresponding to the following schema: {A
+ de + B (A + of + B)}, where A and B are object
nodes previously generated.

The rules established for the Activity nodes
generation are:
(a) Nodes corresponding to simple verbs tagged as
VMI (intransitive verbs) or {VMN (infinitive).
(b) Nodes corresponding to verbal groups tagged as:
{VMI followed by VMN}.

Figure 3. Knowledge Base Visualization

When the KB construction process has ended, the
software engineer can visualize the Conceptual
Representation obtained. In Figure 3 we present the
hierarchy associated to the servicio (service) concept
obtained from a Telecommunications Company
document.

Requirements Base Generation

In relation to the Requirements Base, we have
implemented a semi-automatic construction process
that generates the Conceptual Representation of the
RB. The requirements, grouped in the Specific
Requirements section, can be classified in some
general classes [6]. The only ones considered by
SAREL at present are:
• Functional Requirements
• Performance Requirements
• External Interface Requirements

In order to control the set of software requirements
contained in the Software Requirements Specification
document, we have considered necessary to establish
the different semantic roles (required and optional)
associated to each kind of requirement [10].

• For Functional Requirements the semantic roles

required are: Agent, Action and Patient. The
conceptual representation associated with the
functional requirement: “The transfer system
shall transfer the clock-in to the communications
server” is:

(Define-node requirement-x
(Agent transfer-system)
(Action transfer)
(Patient clock-in)
(To-loc communications-server))

Here To-loc is an optional semantic role.

• For Performance Requirements, the required

semantic roles are: {Patient, Measurement,
At-value, and Unit} or {Patient, Measurement,
From-value, To-value, and Unit}. An example of
performance requirement and its conceptual
representation is: “An identifying card shall be
made-up in less than 1 minute”.

(define-node requirement-y
(Patient identifying-card)
(Measurement making-up-time)
(At-value 1)

(Unit minutes))

• The required semantic roles for the External

Interface Requirements are: {Patient and
Qualitative-feature} or {Patient,
Quantitative-feature, and Units-feature). An
example of external interface requirement and its
conceptual representation is: “The monitor of the
personal computer will be colour and 15 inches”

(define-node requirement-z
(Patient monitor)
(Qualitative-feature colour))

(define-node requirement-t
(Patient monitor)
(Quantitative-feature 15)
(Units-feature inches))

At present, we are reviewing and adding new
semantic roles for each requirement class. The
Conceptual Refinement Module will use this
information in order to get the right conceptual
representation associated to a given requirement.

The information represented in the Requirements
Base corresponds to the information contained in the
Specific Requirements section. The assistance
process validates every requirement introduced by
the engineer taking into account the writing norms
and the quality properties. The controls are grouped
into three modules presented, on the right, in Figure
2: the Style Refinement Module, the Conceptual
Refinement Module and the Software Quality
Control Module.

Style Refinement Module

The Style Refinement Module controls the
requirement according to the writing norms and it is
broken down into four steps: lexical analysis,
syntactic-semantic analysis, ambiguity control and
simplicity control.

The lexical analysis carries out the control of the
lexicon used in the requirement. It verifies whether
the words belong to the application domain lexicon
or not. To do so, the system uses three different
lexicons: the extended and required lexica, previously
described, and a general lexicon containing general
words as prepositions, conjunctions, etc.
The analyzer ensures all words contained in the
requirements belong to one of the three lexicons.
After that, all words only belonging to the extended

lexicon are substituted by synonyms from the
required lexicon. The lexical validation process is
independent of the application domain. Following we
can see an example. The requirement is presented in
Spanish with its corresponding translation in English.

Spanish: El sistema AEROS manipulará el ordenador
de a bordo y el estado del vehículo espacial.

English: The AEROS system shall manipulate the
computer on board and the status of the space-
vehicle.

The lexical analysis classifies the blue words as
general, the green words as required and the red
words as extended. After the lexical analysis the
extended words have been replaced by required
words.

Spanish: El sistema AEROS controlará el ordenador
de a bordo y el estado del vehículo espacial.

English: The AEROS system shall control the
computer on board and the status of the space-
vehicle.

The syntactic-semantic analysis applies a set of tools,
developed in our group, in order to get a syntactic
representation associated to the introduced
requirement:
- The Morphological analyzer Maco+ [8], tokenizes
the text and produces as output all morphological
interpretations possible for each token.
- The POS tagger Relax [9] selects the right POS and
lemma for each word in the given context.
- The syntactic chart-based Parser Tacat takes as
input the output of the POS tagger Relax, and
produces a syntactic-semantic representation.

One possible representation corresponding with the
requirement presented before is:

{ El_TDMS0
{{ sistema_ncms000 AEROS_np00000}_grup-
nom-ms }_sn
{ controlará_vmif3s0 }_grup-verb
el_TDMS0
{{ ordenador_ncms000 }_grup-nom-ms}_sn
{ de_sps00 }_prep
a_bordo_RG000 y_CC00 el_TDMS0
{{ estado_ncms000
{ del_spcms { vehículo_ncms000 }_grup-nom-
ms }_sp-de }_grup-nom-ms }_sn
espacial_AQ0CS00 ._Fp }_S

It is possible to obtain more than one syntactic-
semantic representation from a requirement. This
situation appears when the requirement contains
some kind of ambiguity. For example, from our
example, we can get two possible interpretations:

(1) Spanish: El sistema AEROS controlará el
ordenador de a bordo del vehículo espacial y el
sistema AEROS controlará el estado del vehículo
espacial.
English: The AEROS system shall control the
computer on board of the space-vehicle and the
AEROS system shall control the status of the space-
vehicle.
(2) Spanish: El sistema AEROS controlará el
ordenador de a bordo y el sistema AEROS controlará
el estado del vehículo espacial.
English: The AEROS system shall control the
computer on board and the AEROS system shall
control the status of the space-vehicle.

The ambiguity controller must identify the
representation, which corresponds to the engineer’s
idea. It applies a series of rules to the set of semantic
representations in order to qualify them. An example
of a possible rule is the one, which asserts that the
preposition of is always related only with the last
nominal group (second interpretation). This
controller can cooperate with the engineer to select
the correct semantic representation.

From the syntactic-semantic representation the
simplicity controller detects whether the structure of
the sentence is simple or compound. If the
requirement is composed, for instance, of two simple
requirements, the validation process can continue
dealing with these two in a sequential way.

Conceptual Refinement Module

The Conceptual Refinement Module receives the
syntactic-semantic representation of a simple
requirement and validates it in relation to the
Requirements Base. The validation process is broken
down into two steps: conceptual analysis and
duplication control.

The conceptual analysis identifies, in the Knowledge
Base, those entities involved in the syntactic-
semantic representation, taking into account which
kind of requirement has been introduced and its
corresponding roles. The information contained in the
Software Requirements Modeling component helps
to identify the semantics roles required in each case.
If all the objects and all the activities are present in

the Knowledge Base, the conceptual analysis
constructs the requirement conceptual representation.
If not, the system shows to the software engineer the
entities (Objects or Activities) that should be added
to the KB. From the following syntactic-semantic
representation

{ El_TDMS0
{ { servicio_ncms000 }_grup-nom-ms }_sn
directorio_AQ0MS00
{ deberá_vmif3s0 { facilitar_vmn0000
}_infinitiu }_grup-verb
la_TDFS0
{ { conexión_ncfs000 }_grup-nom-fs }_sn
directa_AQ0FS00 ._Fp }_S

corresponding to the functional requirement:

Spanish: El servicio directorio deberá facilitar la
conexión directa.

English: The directory service should facilitate the
direct connection.

the conceptual analysis identifies servicio_directorio
as the agent, deber_facilitar as the action and
conexión_directa as the Patient.

After that, the duplication controller will verify that
the requirement introduced by the software engineer
contains new information. To do so, it matches the
present requirement conceptual representation with
the Requirements Base, taking into account which
kind of requirement has been introduced, in order to
discover possible duplications. If the present
requirement conveys new information its conceptual
representation could be added to the Requirements
Base depending on the Software Quality Control
Module.

In Figure 4 we can see two Requirement Conceptual
Representations corresponding with two functional
requirements:

Spanish: (req 8) El servicio directorio deberá facilitar
la conexión directa.
Spanish: (req 9) El servicio directorio deberá facilitar
el almacenamiento de referencia.

English: (req 8) The directory service should
facilitate the direct connection.
English: (req 9) The directory service should
facilitate the reference storage.

The original requirement was a compound
requirement “The directory service should facilitate
the direct connection and the reference storage.” that
has been decomposed in two simple requirements by
the simplicity controller.

Software Quality Control Module

This module carries out a series of optional analyses,
which validate the global Requirements Base
incremented with the new requirement. The goal is to
offer information about the software quality
properties (completeness, traceability, consistency,
verifiability and modifiability). Once a requirement
has been validated and the information about
software quality has been presented to the engineer,
he decides if the requirement conceptual
representation must be added to the Requirements
Base.

Taking into account that these analyses are optional,
the engineer could decide not to use them (it is a
normal decision when adding the first requirements).
In this case, these modules can be further used to
control the global quality software specification. The
analyses related to the quality properties already
studied are described in the following paragraphs.

Figure 4. Requirements Conceptual Representation

Analysis of Completeness

To detect incomplete specifications, the system will
activate reasoning mechanisms, taking into account
several aspects of completeness. In order to control
completeness, it is necessary to have available a
general hierarchy of actions-subactions that can be
associated to any set of specifications. An example of
this hierarchy is the activity monitor, which
comprises three subactivities: receive, analyze and
display. Given the requirement:

“The ALPHA system will analyze and display the
status of the space vehicle”

and taking into account the hierarchy described
above, the system analyses the relationships among
requirements in the Requirements Base. If there is no
requirement containing the monitor activity, it will
inform the engineer. In the same way, if the system
notices that there is a requirement that contains the
monitor activity but there is no requirement
containing its subactivities, it will inform the
engineer that the current specification could be
incomplete.

Analysis of Traceability
The goal, for this quality property, is to provide the
engineer with information about the traceability links
of the requirement. The system will activate a set of
existing algorithms, which control the traceability in
order to show the relationships between the
introduced requirement and a subset of requirements
of the RB (either more specific or more general).
From this information the engineer can see the
relationships between requirements introduced up to
this point. From the requirement:

“The ALPHA system will receive the data of the
space vehicle”

the system will display, among others, the following
more general requirement:

“The ALPHA system will monitor the data of the
space vehicle”

The second requirement is more general than the first
because receive is part-of monitor.

A lack of links shows that the requirement is isolated
in relation to the rest of requirements.

Analysis of Modifiability

The complexity and consistency of future
modifications of software specifications depend on
the level of propagation of a given modification in all
requirements affected by that modification. The
concept of modifiability was formalized using
software metrics, in particular we use the level of
interconnection between the requirements. The range
of possible values is [0..1], but the range of
acceptable values is a subinterval of this. In case the
obtained measure does not fall within this second

range, the engineer must study a possible problem of
excessive or insufficient interconnection.

Vertical and Horizontal Processing

The original goal of SAREL system, to assist
engineers in the creation of SRS document, has been
extended to analyze the correspondence between two
SRS documents. Therefore, two operational modes
must be distinguished. Figure 5 shows the modules
used in Vertical and Horizontal Processing.

Figure 5. Vertical and Horizontal Processing

Knowledge Base
Requirements Base-

sc

Knowledge Base
Requirements Base-

cc
Correspondence

Analysis

Style
Refinement

Module

Conceptual
Refinement

Module

Software
Quality
Control
Module

Software
Quality
Control
Module

Conceptual
Refinement

Module

Style
Refinement

Module

Software
Specification

Customer Company

Software
Specification

Software Company

In the Vertical Processing, the input is a software
specification written in natural language and the
output is the Conceptual Representation associated
that optionally can be manipulated by the engineer
using the Software Quality Control Module. This
process validates every requirement introduced by
the engineer using the Style Refinement Module and
the Conceptual Refinement Module. At the end the
issue is the Conceptual Representation corresponding
to all the information contained in the software
specification. Using the SAREL system, the
engineers can share, in a more reliable format, the
information contained in the Knowledge Base and in
the Requirements Base. Once the conceptual
representation has been obtained, it can be globally
validated using the optional analysis contained in the
Software Quality Control Module.

In the Horizontal Processing, the input consists of
two different conceptual representations, and the goal
here is to offer information about the correspondence
between them. As a first attempt, the correspondence
analysis searches for every requirement1 in
document1 its corresponding requirement2 in
document2. Where document1 corresponds with the
User Company that needs to develop a computer
system and therefore, document2 corresponds with
the Software Company that will carry this out.

During the correspondence search it is useful to take
into account information about what kind of
requirement requirement1 is (Functional,
Performance or External Interface). In this case the
system will give a correspondence measure, based on

similarity analyses applied over the components of
the requirements. Depending on the value of this
measure, the correspondence will be tagged as
Correct, Excess or Excess-Insufficient. This
corresponding analysis will be improved giving
consideration to all the concepts contained in both
Requirements Bases instead of individually looking
at the requirements.

As natural language is the best way of human
communication, the existence of systems that are able
to deal with are truly appreciate. When developing
complex systems, software engineers can take a lot of
profit of a tool like SAREL. They can write the
specifications using natural language and the system
will analyze and represent the contents. Instead of
managing a huge amount of document, the access to
the knowledge representation of the specifications
offers a new way of interaction between engineers,
the possibility of explore the conceptual meaning of
the specifications, and the development of tools to
control some aspects that are very tedious or even
impossible to carry out in the original documents. On
the other hand, the misunderstandings between
customers and developers can be avoided with
conceptual tools like SAREL. The matching between
the representation of two documents can be more
objective and useful than the matching between two
texts in natural language. Therefore the advances in
the linguistic engineering and knowledge engineering
areas can be fruitfully applied to the software
engineering area.

Acknowledgements
This work has been partially supported by the
Catalan Government (grant 2001 SGR 00254).
References

[1] Karl E. Wiegers R. “Software Requirements” Microsoft
Pres 1999.

[2] R. Melchisedech, “Investigation of Requirements
Documents Written in Natural Language”, Requirements
Engineering (1998) 3:2, pp. 91-97.

[3] C. Ben Achour, “Linguistic Instruments for the
Integration of Scenarios in Requirements Engineering”,
Proceedings of the Third International Workshop on
Requirements Engineering: Foundations of Software
Quality (REFSQ’97)”, Barcelona, Catalonia, Spain, June,
1997, pp. 93-106.

[4] E. Fuchs, and R. Schwitter, “Attempto Controlled
English (ACE)”, First International Workshop On
Controlled Language Applications. Katholieke Universiteit
Leuven, Belgium 1996.

[5] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An
Automatic Quality Evaluation for Natural Language
Requirements", Proceedings of the Seventh International
Workshop on Requirements Engineering: Foundations of
Software Quality (REFSQ’01), June 4-5, 2001, Interlaken,
Switzerland 2001.

[6] IEEE Std 830-1998: IEEE Recommended Practice for
Software Requirements Specifications, 1998.

[7]] J. Atserias, S. Climent, X. Farreres, G. Rigau, and H.
Rodríguez. Combining Multiple Methods for the Automatic
Construction of Multilingual WordNets. In Procceeding of
RANLP'97 Bulgaria. 1997.

[8] J. Atserias, J. Carmona, I. Castellón, S. Cervell, M.
Civit, L. Màrquez, M.A. Martí, L. Padró, R. Placer, H.
Rodríguez, M. Taulé &; J. Turmo. Morphosyntactic
Analysis and Parsing of Unrestricted Spanish Text. First
International Conference on Language Resources and
Evaluation (LREC'98). Granada, Spain, 1998.

[9] L. Padró, POS Tagging Using Relaxation Labelling
Proceeding of COLING 96, Copenhagen Denmark, 1996.

[10] Castell, N. & Hernández, A., The Software
Requirements Modeling in SAREL. Proceedings of the 4th
International Workshop on Requirements Engineering:
Foundations of Software Quality (REFSQ'98), pp 49-56,
Pisa, Italy, 1998.

