133 research outputs found

    Physiological-based Driver Monitoring Systems: A Scoping Review

    Get PDF
    A physiological-based driver monitoring system (DMS) has attracted research interest and has great potential for providing more accurate and reliable monitoring of the driver’s state during a driving experience. Many driving monitoring systems are driver behavior-based or vehicle-based. When these non-physiological based DMS are coupled with physiological-based data analysis from electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and electromyography (EMG), the physical and emotional state of the driver may also be assessed. Drivers’ wellness can also be monitored, and hence, traffic collisions can be avoided. This paper highlights work that has been published in the past five years related to physiological-based DMS. Specifically, we focused on the physiological indicators applied in DMS design and development. Work utilizing key physiological indicators related to driver identification, driver alertness, driver drowsiness, driver fatigue, and drunk driver is identified and described based on the PRISMA Extension for Scoping Reviews (PRISMA-Sc) Framework. The relationship between selected papers is visualized using keyword co-occurrence. Findings were presented using a narrative review approach based on classifications of DMS. Finally, the challenges of physiological-based DMS are highlighted in the conclusion. Doi: 10.28991/CEJ-2022-08-12-020 Full Text: PD

    Physiological Approach To Characterize Drowsiness In Simulated Flight Operations During Window Of Circadian Low

    Get PDF
    Drowsiness is a psycho-physiological transition from awake towards falling sleep and its detection is crucial in aviation industries. It is a common cause for pilot’s error due to unpredictable work hours, longer flight periods, circadian disruption, and insufficient sleep. The pilots’ are prone towards higher level of drowsiness during window of circadian low (2:00 am- 6:00 am). Airplanes require complex operations and lack of alertness increases accidents. Aviation accidents are much disastrous and early drowsiness detection helps to reduce such accidents. This thesis studied physiological signals during drowsiness from 18 commercially-rated pilots in flight simulator. The major aim of the study was to observe the feasibility of physiological signals to predict drowsiness. In chapter 3, the spectral behavior of electroencephalogram (EEG) was studied via power spectral density and coherence. The delta power reduced and alpha power increased significantly (

    Detecting Soldiers' Fatigue Using Eye-Tracking Glasses: Practical Field Applications and Research Opportunities.

    Get PDF
    Objectively determining soldiers' fatigue levels could help prevent injuries or accidents resulting from inattention or decreased alertness. Eye-tracking technologies, such as optical eye tracking (OET) and electrooculography (EOG), are often used to monitor fatigue. Eyeblinks-especially blink frequency and blink duration-are known as easily observable and valid biomarkers of fatigue. Currently, various eye trackers (i.e., eye-tracking glasses) are available on the market using either OET or EOG technologies. These wearable eye trackers offer several advantages, including unobtrusive functionality, practicality, and low costs. However, several challenges and limitations must be considered when implementing these technologies in the field to monitor fatigue levels. This review investigates the feasibility of eye tracking in the field focusing on the practical applications in military operational environments.; This paper summarizes the existing literature about eyeblink dynamics and available wearable eye-tracking technologies, exposing challenges and limitations, as well as discussing practical recommendations on how to improve the feasibility of eye tracking in the field.; So far, no eye-tracking glasses can be recommended for use in a demanding work environment. First, eyeblink dynamics are influenced by multiple factors; therefore, environments, situations, and individual behavior must be taken into account. Second, the glasses' placement, sunlight, facial or body movements, vibrations, and sweat can drastically decrease measurement accuracy. The placement of the eye cameras for the OET and the placement of the electrodes for the EOG must be chosen consciously, the sampling rate must be minimal 200 Hz, and software and hardware must be robust to resist any factors influencing eye tracking.; Monitoring physiological and psychological readiness of soldiers, as well as other civil professionals that face higher risks when their attention is impaired or reduced, is necessary. However, improvements to eye-tracking devices' hardware, calibration method, sampling rate, and algorithm are needed in order to accurately monitor fatigue levels in the field

    Modern drowsiness detection techniques: a review

    Get PDF
    According to recent statistics, drowsiness, rather than alcohol, is now responsible for one-quarter of all automobile accidents. As a result, many monitoring systems have been created to reduce and prevent such accidents. However, despite the huge amount of state-of-the-art drowsiness detection systems, it is not clear which one is the most appropriate. The following points will be discussed in this paper: Initial consideration should be given to the many sorts of existing supervised detecting techniques that are now in use and grouped into four types of categories (behavioral, physiological, automobile and hybrid), Second, the supervised machine learning classifiers that are used for drowsiness detection will be described, followed by a discussion of the advantages and disadvantages of each technique that has been evaluated, and lastly the recommendation of a new strategy for detecting drowsiness

    Novel technologies for the detection and mitigation of drowsy driving

    Get PDF
    In the human control of motor vehicles, there are situations regularly encountered wherein the vehicle operator becomes drowsy and fatigued due to the influence of long work days, long driving hours, or low amounts of sleep. Although various methods are currently proposed to detect drowsiness in the operator, they are either obtrusive, expensive, or otherwise impractical. The method of drowsy driving detection through the collection of Steering Wheel Movement (SWM) signals has become an important measure as it lends itself to accurate, effective, and cost-effective drowsiness detection. In this dissertation, novel technologies for drowsiness detection using Inertial Measurement Units (IMUs) are investigated and described. IMUs are an umbrella group of kinetic sensors (including accelerometers and gyroscopes) which transduce physical motions into data. Driving performances were recorded using IMUs as the primary sensors, and the resulting data were used by artificial intelligence algorithms, specifically Support Vector Machines (SVMs) to determine whether or not the individual was still fit to operate a motor vehicle. Results demonstrated high accuracy of the method in classifying drowsiness. It was also shown that the use of a smartphone-based approach to IMU monitoring of drowsiness will result in the initiation of feedback mechanisms upon a positive detection of drowsiness. These feedback mechanisms are intended to notify the driver of their drowsy state, and to dissuade further driving which could lead to crashes and/or fatalities. The novel methods not only demonstrated the ability to qualitatively determine a drivers drowsy state, but they were also low-cost, easy to implement, and unobtrusive to drivers. The efficacy, ease of use, and ease of access to these methods could potentially eliminate many barriers to the implementation of the technologies. Ultimately, it is hoped that these findings will help enhance traveler safety and prevent deaths and injuries to users

    An eeg based study of unintentional sleep onset

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Applications of brain imaging methods in driving behaviour research

    Get PDF
    Applications of neuroimaging methods have substantially contributed to the scientific understanding of human factors during driving by providing a deeper insight into the neuro-cognitive aspects of driver brain. This has been achieved by conducting simulated (and occasionally, field) driving experiments while collecting driver brain signals of certain types. Here, this sector of studies is comprehensively reviewed at both macro and micro scales. Different themes of neuroimaging driving behaviour research are identified and the findings within each theme are synthesised. The surveyed literature has reported on applications of four major brain imaging methods. These include Functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), Functional Near-Infrared Spectroscopy (fNIRS) and Magnetoencephalography (MEG), with the first two being the most common methods in this domain. While collecting driver fMRI signal has been particularly instrumental in studying neural correlates of intoxicated driving (e.g. alcohol or cannabis) or distracted driving, the EEG method has been predominantly utilised in relation to the efforts aiming at development of automatic fatigue/drowsiness detection systems, a topic to which the literature on neuro-ergonomics of driving particularly has shown a spike of interest within the last few years. The survey also reveals that topics such as driver brain activity in semi-automated settings or the brain activity of drivers with brain injuries or chronic neurological conditions have by contrast been investigated to a very limited extent. Further, potential topics in relation to driving behaviour are identified that could benefit from the adoption of neuroimaging methods in future studies
    corecore