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In the human control of motor vehicles, there are situations regularly 

encountered wherein the vehicle operator becomes drowsy and fatigued due to the 

influence of long work days, long driving hours, or low amounts of sleep. Although 

various methods are currently proposed to detect drowsiness in the operator, they are 

either obtrusive, expensive, or otherwise impractical. The method of drowsy driving 

detection through the collection of Steering Wheel Movement (SWM) signals has 

become an important measure as it lends itself to accurate, effective, and cost-effective 

drowsiness detection. In this dissertation, novel technologies for drowsiness detection 

using Inertial Measurement Units (IMUs) are investigated and described. IMUs are an 

umbrella group of kinetic sensors (including accelerometers and gyroscopes) which 

transduce physical motions into data. Driving performances were recorded using 

IMUs as the primary sensors, and the resulting data were used by artificial intelligence 

algorithms, specifically Support Vector Machines (SVMs) to determine whether or not 



 

 

the individual was still fit to operate a motor vehicle. Results demonstrated high 

accuracy of the method in classifying drowsiness. It was also shown that the use of a 

smartphone-based approach to IMU monitoring of drowsiness will result in the 

initiation of feedback mechanisms upon a positive detection of drowsiness. These 

feedback mechanisms are intended to notify the driver of their drowsy state, and to 

dissuade further driving which could lead to crashes and/or fatalities. The novel 

methods not only demonstrated the ability to qualitatively determine a drivers drowsy 

state, but they were also low-cost, easy to implement, and unobtrusive to drivers. The 

efficacy, ease of use, and ease of access to these methods could potentially eliminate 

many barriers to the implementation of the technologies. Ultimately, it is hoped that 

these findings will help enhance traveler safety and prevent deaths and injuries to 

users.



 

1 

 

Chapter 1: Introduction 

1.1 Motivation 

The National Highway Traffic Safety Administration (NHTSA) estimates that 

drowsy and fatigued drivers are responsible for about 1,200 deaths and 76,000 

injuries each year in the United States (Rau, 1996). Each day in the United States, 

80,000 individuals fall asleep behind the steering wheel (American Academy of Sleep 

Medicine, 2005). Unfortunately, drowsy driving accounts for more than 250,000 

motor vehicle accidents each year with drowsiness behind the wheel contributing to 

1,550 deaths and 40,000 injuries per year (U.S. Department of Transportation, 2007). 

Sleep deprivation has been shown to result in drowsy driving when the vehicle 

operator decides to get behind the wheel unrested (Connor et al., 2002). Some 

drowsy drivers were initially alert but their awareness deteriorated with prolonged 

driving (Hamblin, 1987). As vehicle operators drive for longer periods of time, they 

demonstrate greater signs of drowsy driving, including unintentionally veering off 

their intended lane (Thiffault and Bergeron, 2003; Akerstedt and Gillberg, 1990; 

Otmani et al., 2005; Philip, 2005). Drowsy driving is not a minor or an uncommon 

problem, as it occurs more often than it might initially appear. In a sample of 750 

randomly polled participants in Ontario Canada, 14.5% reported having fallen asleep 

or nodded off while driving (Vanlaar et al., 2008). One in five adults in the United 

States reports getting insufficient sleep, with more than 50 million Americans 
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suffering from a chronic sleep disorder (American Academy of Sleep Medicine, 2005). 

The National Sleep Foundation (NSF) estimated that 54% of all adult drivers have 

driven while drowsy and 28% do so at least once per month (NSF, 2009).  

Prolonging wakefulness has been shown to be just as dangerous to driver 

safety as alcohol intoxication (MacLean et al., 2003). Drowsy driving costs hospital 

resources, emergency service resources and ultimately human life. Death due to 

accidents, especially automotive crashes are the single largest factor responsible for 

adolescent mortality (Dahl, 2008), large amounts of which are due to sleep 

deprivation.  

Due to this high number of fatalities, injuries, and risk caused by drowsy 

operators, it is important for progress to be made towards the early detection of 

drowsiness and the subsequent appropriate early warning to help make commutes 

safer for all.  

Many attempts have been made to improve transport safety by the Federal 

Aviation Administration (FAA), National Transportation Safety Board (NTSB), and 

National Highway Traffic Safety Administration (NHTSA), however, the only 

widespread and accepted means to improve the record on fatigued vehicle operation 

is by educating drivers on the importance of a good night’s sleep. In the long term, 

more needs to be done to reduce the high volume of annual fatalities. Educating 

drivers on the importance of sleep is important, however many Americans with 
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sleeping disorders wake up from 8 or 9 hours of sleep without realizing that they are 

still severely fatigued, and proceed to operate vehicles.  

The severity of the drowsy driving problem, including the resulting fatalities 

and severe, often permanent injuries, has spurred a race to develop solutions. To 

reduce the rate of accidents, it is important to alert the operator via early detection 

of their cognitive status, which they might not be independently aware of.  

A few non-technological methods such as getting a good night’s sleep and 

encouraging the consumption of energy drinks have been postulated as valid ways to 

maintain alertness during travel. These methods however do not qualitatively 

determine if the individual who has received sleep and/or energy drinks prior 

remains alert after a prolonged period of operation, suggesting that real time 

monitoring remains a valid option which will enable active observations of the 

transient state of cognitive awareness, and can detect when mental states cross the 

blurred boundaries between alertness and drowsiness.  

Many technology dependent methods have been proposed for use in the 

detection of drowsy or fatigued driving. Slow Eye Movement (SEM) is a physical 

change that has been investigated as an indicator of the onset of fatigue. Research 

suggests that an individual’s eye speed is usually fairly rapid in response to external 

visual stimuli (Shin et al., 2011). As fatigue sets in, electrooculography (EOG) can 

be used to observe a reduced speed in eye motions. EOG is the process of measuring 

eye movements by attaching electrodes to the skin surrounding the eye. Shin et al. 
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(2011) further determined the threshold parameters for sleep onset in vehicle drivers 

using EOG. The threshold parameters were determined by the degree of eye 

movement and the rate of degrees moved per second. A reduced speed in eye 

movement would therefore suggest that the individual would respond less rapidly to 

stimuli (Virkkala et al., 2007). During driving, this reduced alertness suggests the 

onset of sleep and an increased risk for accident. Both Shin et al. (2011) and 

Virkkala et al. (2007) used EOG as a measure of their physical parameters.  

Eyelid closure is also a physical change used as an indicator of the onset of 

drowsiness. Not only is eye closure seen as an important indicator of drowsiness, but 

the duration of the closure suggests the degree of fatigue. Closures lasting for more 

than half a second are especially strong indicators of sleepiness (Ogawa and 

Shitomani, 1997). The percent of eyelid closure (PERCLOS) over a time interval has 

also been used as a method to detect drowsiness (Wierwille, 1999). Eye closure 

monitoring methods can be ineffective if the driver is wearing eyeglasses (Bowman et 

al., 2012). If the driver looks down and around him, there might be false positive 

readings of eye closure activities (Wierwille et al., 2003).  

Lane tracking has been used to detect behavioral cues of drowsy driving 

because fatigued drivers are more likely to deviate from their lane as suggested by 

Yabuta et al. (1985). In experimental setups, it was demonstrated that drowsy 

drivers tend to run over experimental rumble strips which are placed alongside the 

lanes and down the center line (Anund et al., 2008). Because roads cannot 
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realistically be expected to always match researcher models, it will be difficult to 

measure drowsiness accurately. Roads can be irregular or marked differently than 

expected, rendering lane detection algorithms ineffective. Snow, rain and dust can 

also obstruct a clear view of lane markings.  The potential for a large amount of false 

positives can make drivers mistrust alarms based on lane position tracking (Bliss and 

Acton, 2003).   

Another indicator of drowsiness used by researchers is the 

Electroencephalogram (EEG).  This involves having signals recorded from the human 

scalp and translating them into states of cognition. Being able to detect signals 

directly from the brain is the most important physiological indicator of the central 

nervous system activation and alertness (Eskandarian et al., 2007). The human brain 

gives off a series of EEG frequencies including delta waves, theta waves, alpha waves 

and beta waves (Åkerstedt T and Gillberg, 1990). Beta waves range from 13 Hertz to 

20 Hertz and show rapid, alert mental activity. From a beta state down to a theta 

state, there are increasing amounts of drowsiness, with theta being slow sleep. Alpha 

wave activity actually increases during periods of drowsiness. Researchers such as 

Huang et al. have been using lower frequency EEG signals as an indicator of 

drowsiness (Huang et al., 1996). Physiological methods however are impractical for 

regular vehicle and remain within laboratory settings due to their intrusiveness, the 

level of expertise necessary to collect the data, the complexity of setup and typically 

the non-portability of equipment. 
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Clinicians have used several methods for detecting unintentional sleep onset 

and drowsiness such as the Maintenance of Wakefulness Test (MWT) (Virkkala et 

al., 2007). The MWT and other similar tests are valid predictors of unintentional 

sleep onset, however they cannot be ported onto the roads and highways where the 

fatalities are occurring. Consequently, it is necessary to have a cost-effective and 

unobtrusive method for monitoring drowsiness that is practical for daily commuter 

use. 

In terms of visual observation, Wierwille and Ellsworth (1994) determined 

that by physical inspection, a keen eye could actually look at video images of a 

drivers face and determine when they are drowsy and when they are alert. An 

impractical measure for the obvious reason that a driver would require another 

person to monitor his drowsiness throughout all driving sessions. 

Due to the high efficacy, non-intrusive nature, and promise of drowsiness 

detection via Steering Wheel Movement (SWM) monitoring, researchers have come 

up with several methods to monitor SWM. Sayed et al. (2001) measured SWM using 

equipment built into complex vehicle simulators. This approach is cost prohibitive to 

the average user and excessive for users requiring only SWM monitoring without 

extra options. Thiffault et al. (2003) placed potentiometers along the axis of the 

steering column to measure the turn angle. This would require users to have the 

technical knowledge and dexterity to install a potentiometer into the steering column 
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of their vehicle or vehicle simulator. It would also require the dismantling of the 

current setup to install the potentiometer.  

Given that these methods of monitoring SWM are prohibitive to the average 

vehicle operator, there is delay in the feasibility of personal drowsiness monitoring 

based on SWM monitoring despite the well documented applicability of SWM in 

drowsiness detection and the potential for decreased highway fatalities. 

 

1.2 Dissertation outline: 

Goal: 

The goal of this dissertation and its associated research projects was to 

contribute practical measures to reduce accidents on the highway which are 

drowsiness and fatigue induced. 

 

Specific Aims 

Specific Aim 1: 

The first specific aim was the technical development of novel, low-cost, and 

effective technologies to accurately monitor the behavioral characteristic of Steering 

Wheel Movements (SWM) for the purpose of detecting drowsy driving. The three 

directions primarily researched were the use of an accelerometer-based technologies 

for the real time monitoring of SWM, the use of gyroscope-based technologies, and 

finally, the simultaneous use of an algorithmically fused physical combination of an 
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accelerometer and a gyroscope on the same MicroElectroMechanical System (MEMS) 

die.  

 

Specific Aim 2: 

The second specific aim was to perform experimental validation of the 

proposed technologies for accurate fatigue detection. The proposed technologies were 

used to gather accurate SWM signals, which then underwent signal processing to 

selectively extract features which are known to be characteristic of drowsy driving. 

These features were then passed to artificial intelligence machines, including Support 

Vector Machines (SVMs) for real-time contextual classification of drowsy driving.  

 

Specific Aim 3: 

The third and final specific aim was to implement the proposed novel 

technology using ubiquitous technologies. An example of a ubiquitous device, due to 

its wide proliferation, is a smartphone (iPhone, Android, etc.). The ubiquity of the 

carrier technology satisfies the requirement that the method should be easy to 

implement and also makes the method accessible. Therefore, a smartphone-based 

method was developed for this purpose. 
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Approach: 

 The dissertation work began with a requirement to implement a practical, 

cost-effective, personal method for drowsy driving early warning that can be easily 

adopted by a wide range of drivers with few barriers. The literature was then 

reviewed to understand the current state of the field as well as the gaps that 

currently constitute barriers to entry for drowsy driving detection technologies. The 

primary gaps were found to be: (1) the obtrusive nature of current potential 

solutions; (2) the high cost of acquisition of the current technologies; (3) The 

complexity of the current technologies which make it inadequate for untrained end-

users, and (4) The requirement for extensive vehicle modifications in the case of 

vehicles that do not come with these technologies as a standard factory options. The 

use of Inertial Measurement Units (IMUs) were then explored initially through 

accelerometers and assessed for their ability to generate classifiable data. 

Assessments showed that the method performed with high accuracy on par with 

better known technologies. The accelerometer method however was found to be 

prone to linear acceleration noises in the absence a low pass filter implementation. A 

gyroscope-based method was subsequently employed, and found to be an accurate 

representation of the SWM signal. However, prolonged gyroscope use led to signal 

drift, requiring regular gyroscope re-calibration. A gyroscope-accelerometer fusion 

was then used to simultaneously remove the effects of linear acceleration noise and to 

null signal drift. This fusion method was assessed to be on par with better known 
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technologies while retaining high accuracy, low-cost, and non-obtrusive properties. 

Although the inertial fusion theory and practical results were positive, it remained 

necessary to make the technique practical and accessible to the average non-technical 

user. To help distribute this technology to as many drivers as possible, the 

algorithms, equations, and artificial intelligence/machine learning code were written 

and compiled into a smartphone app, while taking advantage of the fact that the 

relevant inertial motion sensors as well as  Global Positioning Systems chips (GPS) 

come pre-installed on many modern smartphone devices. Smartphone device SWM 

output were found to be equivalent to SWM readings obtained from discrete 

specialized laboratory IMU devices as well as linear potentiometer devices. The use 

of SVM classifications were found to be successful on board the smartphone, 

replicating the classification accuracy derived on more powerful offline laboratory 

computers, thus resulting in a cost-effective, ubiquitous, completely self-contained, 

real-time detection method for drowsy driving detection. 

 

Outline: 

Chapter 1 provides an introduction to the scope of the work and dissertation. 

Chapter 2 explores the current field of drowsy driving monitoring and detection and 

lays the foundational understanding of the problem background and why current 

solutions have been inadequate. It surveys the current technologies and 

methodologies that have been aimed at solving the problem of drowsy driving and 
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then postulates a solution to the problem. Chapter 3 introduces and summarizes the 

process for the technical development of IMU sensors for SWM signal processing, and 

provides an understanding of how accelerometers as IMU primary sensors can be an 

effective tool for drowsiness monitoring and detection. It also discusses the potential 

for sensor noise in the absence of low pass filtering. Further in the chapter the 

concept of using gyroscope-based technologies as a means for sensing drowsy driving 

is introduced. Also introduced are the processes and benefits derived from the fusion 

of a gyroscope and an accelerometer inertial sensors for drowsiness detection. 

Chapter 4 provides an objective assessment of the efficacy of using IMU technologies 

for drowsiness detection when benchmarked against other known measures including 

physiological data, EEG brain activity indicating drowsiness, PERCLOS80, among 

others, yielding positive results. Chapter 5 discusses a new, easy to obtain, and 

practical solution for monitoring an individual’s level of drowsiness in real time, and 

also to alert a drowsy individual about their current cognitive state in the event of 

detected drowsiness and to prompt them to take a break from critical operations. 

Chapter 6 summarizes and discusses the overall dissertation work, and also provides 

suggestions for further work. 
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Chapter 2: Literature Review 

2.1. Introduction 

To simplify this dissertation document, the literature review in this chapter is 

abridged. A more detailed version of the literature review performed is seen in 

Appendix 1. 

This chapter reviews selected peer-reviewed publications seeking to assess 

what role technology has played in the development and evolution of drowsy driving 

detection methods to the state of their present day applications. It was necessary to 

review the field in order to gain a complete understanding of what directions to take 

towards answering the questions relevant to this study. With broadened knowledge, 

adequate and appropriate solutions could be proposed, tested, and implemented.  

This review commenced with the collation of suitable articles. Searches were 

conducted on PubMed for the terms drowsy driving and drowsy driving detection. 

The inclusion criteria for primary articles were the most relevant search results of 

peer-reviewed articles which resulted from the given keywords (as sorted in order of 

relevance by PubMed). Not all primary articles were cited after reading depending 

on their depth of technological focus. The primary articles were read for 

understanding and review. Primary article references were searched for other articles 

to be read which would help to expand understanding of the topics explained in the 

primary articles. Any references used in this review that did not meet the above 
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listed criteria were used solely to increase understanding of the primary articles. 

Referenced sources were all read.  

2.2. Current drowsy driving detection technologies 

2.2.1. Physiological methods for drowsy driving detection 

Electrooculography (EOG): Electrooculography (EOG) involves utilizing electrodes 

attached to the skin surrounding the eye to record the potential difference between 

the cornea and the retina. This voltage changes as the eyeballs move enabling eye 

tracking (Barea et al., 2002; Young and Sheena, 1975).  

Electroencephalography (EEG): Electroencephalography (EEG) involves the 

monitoring of electrical signals from the brain via electrodes placed along the scalp. 

(Liu et al., 2013; Homan et al., 1987).  

Electromyography (EMG): Electromyography (EMG) is a method of monitoring 

electrical activities from muscles. Surface EMG from the deltoid and trapezius during 

monotonous driving were analyzed by Hostens and Ramon (2005) and the results 

showed that EMG amplitude decreased significantly after 1 hour of driving.  

Electrocardiography (ECG): Electrocardiography (ECG) is the monitoring of 

electrical activity related to the hearts circulatory activity. It has been demonstrated 

that heart rate variability (HRV) is applicable for the detection of drowsiness 

(Tsuchida et al., 2009).  

Respiration: Respiration rates have been proposed for drowsy driving detection. 

Ibáñez et al. (2011) proposed inductance plethysmograph bands to monitor 
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participant’s respiration to detect drowsiness. Some clinical tests have been used for 

drowsy driving detection including the Multiple Sleep Latency Test (MSLT), 

Maintenance of Wakefulness Test (MWT), and polysomnography (PSG). They are 

comprehensive tests that measure EEG, EOG, EMG, and ECG simultaneously.  

 

Figure 1. Laboratory test apparatus used by Ogawa and Shimotani (1997) 

demonstrated the obtrusiveness and impracticality for daily use of physiological based 

methods. 

 

Limitations of physiological methods for detecting drowsy driving  

Physiological methods for detecting drowsy driving (EEG, EOG, ECG, EMG, 

Respiration) are very limited by their intrusiveness outside of laboratory settings due 

to the requirement for electrodes, gel, wiring, and often a method to fasten on the 

electrodes such as a dedicated cap. The placement of electrodes necessary for 

physiological signal detection is too technical for the average daily commuter.  
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2.2.2. Behavioral methods for drowsy driving detection 

Face and eye tracking via video: Video tracking is an unobtrusive means to monitor 

driver drowsiness. The driver’s face and the eyes are monitored for signs of 

drowsiness.  

PERCLOS via Video tracking: PERCLOS is one such measure that has been used to 

determine drowsiness (Greneche et al., 2008; Sahayadhas et al., 2012). It represents 

the percentage of time the eyes are closed over a given period of time. 

 

Limitations of behavioral methods for drowsy driving detection 

Yang et al. (2007) identified four major problems with video monitoring of 

facial drowsy features: pose, presence, facial expression and image orientation. 

Presence or absence of structural components such as beards, mustaches, and glasses 

could create differences from the features expected and could confuse recognition 

algorithms. Other failures can occur due to face orientation, lighting conditions, and 

distance of eyelid from the camera (Brown et al., 2013).  

 

2.2.3. Vehicle-based methods for drowsy driving detection 

Lane tracking: Video is used for lane tracking because fatigued drivers are more 

likely to deviate from their lane (Papadelis et al., 2007). 
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Limitations of vehicle-based methods for drowsy driving detection 

Lane tracking has significant limitations because roads cannot always match 

researcher models and snow, rain, and dust can obstruct a clear view of lane 

markings.   

 

2.2.4. “Readiness to perform” measures for drowsy driving detection 

Readiness to perform measures are not real time monitors of drowsiness but 

rather, they require pre-commute driver participation. The Psychomotor vigilance 

test (PVT) involves a simple task in which a respondent is required to respond to 

stimuli. The participant’s speed of response to visual stimuli yields a quantifiable 

measure of their drowsiness (Loh et al., 2004; Wilkinson and Houghton, 1982). 

Subjective sleepiness scales such as the Karolinska Sleepiness Scale (KSS) are 

questionnaires for drivers to self-report their own feeling of drowsiness. 

Limitations of “Readiness to perform” measures for drowsy driving detection 

A fundamental limitation to the PVT test is that it cannot be used in real-

time during driving tasks. Subjective self-assessment is often wrong. Most drivers 

underreport their drowsiness (Moller et al., 2006; Sharwood et al., 2012).  
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2.3. Steering Wheel Movements (SWM) as a measure of drowsy driving:  

One of the more intuitive methods for monitoring a subject’s driving behavior 

is to directly monitor the inputs made to the vehicle’s steering wheel. Importantly, 

the relationship between steering wheel rotation and level of awareness of motor 

vehicle drivers has been well documented. It was noted as early as the 1960’s that 

diminished driver capabilities were associated with increased steering reversal rates 

(Platt, 1963; Safford and Rockwell, 1967). Since then, researchers have consistently 

seen a correlation between a driver’s intervals of steering adjustments and their level 

of drowsiness (Thiffault and Bergeron, 2003; Borghini et al., 2012; Fukuda et al., 

1995; Elling and Sherman, 1994). It has been demonstrated that the majority of 

sampled drivers tend to show an increasing trend towards faster and larger steering 

corrections as they become drowsy. Not only does the regularity of input decrease in 

drowsy drivers, but when they do occur they are large and sudden (Thiffault and 

Bergeron, 2003; Borghini, et al, 2012). Steering inputs in fatigued drivers are shown 

to have fewer micro corrections and more macro-corrections, with sleeping drivers 

making no corrections (Yabuta et al., 1985; Eskandarian and Mortazavi, 2007; 

Chaput et al., 1990). Fairclough and Graham (1999) found that sleep deprived 

drivers make fewer SWM reversals than normal drivers. Khardi and Vallet (1994) 

showed that there was a significant positive correlation between the number of 

steering wheel reversals and EEG activity in the theta and alpha bands. This is 

important as identical results were replicated in chapter 4 of this study. 
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Iizuka et al., (1986) determined that drowsiness can be detected in drivers 

through the monitoring of steering behaviors for the pattern of low activity, followed 

by a sudden, high amplitude input. Sherman et al. (1996) made use of SWM signals 

to extract such readings as the standard deviation of steering wheel position, the 

steering reversal rate, and the mean steering velocity.  Further benefits of SWM 

measurements are its noted ability to be a strong proxy for monitoring lane keeping 

abilities, especially large SWM inputs which are certain to affect lane position.  

2.4. Post review summary: Directions moving forward 

It was decided that a valid solution to the technology gaps would be an 

unobtrusive technology which demonstrated high efficacy, was cost-effective to 

vehicle manufacturers and end-users alike, and was able to lend itself to accurate 

classification of human drowsy driving. Despite being recognized as a highly effective 

tool for drowsy driving detection, SWM has not been implemented on any impactful 

scale due to the lack of cost-effective options. So far, SWM monitoring is offered 

solely as a premium feature by a few high-end manufacturers on select models such 

as the Mercedes Benz “Attention Assist” system which monitors SWM for sudden 

large inputs (Euroncap, 2011).  

Unlike other methods for monitoring drowsy driving, SWM is completely 

unobtrusive to the driver and much less complex to the daily commuter than any 

video or electrode based method. The practical implementation of SWM monitoring 

using inertial measurement sensors fulfils the requirement for a cost-effective, non-
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intrusive, and easy to implement method for drowsiness detection. The following 

chapters describes the progression of methodologies developed towards this end as 

well as their technical validations and outcomes.  



 

20 

 

Chapter 3: Specific Aim 1: Technical development of novel, low-cost, 

and effective technologies for monitoring Steering Wheel Movements 

(SWM) 

3.1. Introduction to the technical development process 

Monitoring Steering Wheel Movements (SWM) is a well-documented method 

of detecting driver fatigue and drowsiness. Current methods of SWM monitoring as 

described in Chapter 2 are prohibitive for daily use due to high costs of 

implementation and the necessity for complex modifications to be made to 

accommodate the new setup. These limitations have confined potentially lifesaving 

drowsiness detection methods based on SWM to laboratory and simulator settings. 

Three new methods are developed in this study for monitoring SWM signals. They 

are a tri-axial accelerometer-based method, a gyroscope-based method, and a 

gyroscope-accelerometer fusion-based method to provide a cost-effective, easy to use, 

and efficacious way to monitor SWM without requiring any modifications to the 

existing vehicle setup.  

In this study, an Inertial Measurement Unit (IMU) based approach for 

monitoring the SWM is proposed. IMU sensors include gyroscopes and 

accelerometers  

The theoretical base and the test procedures for each of these technologies 

that were effected towards the achievement of specific aim 1 are described in this 
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chapter. The development of hardware and algorithms necessary for accurate 

estimation of SWM signals is described. 

 

3.2. Methods 

This section describes the methodologies for the technical implementations of 

SWM monitoring using accelerometers, gyroscope, and a fusion of both. 

 

3.2.1 Theoretical bases and algorithms to generate SWM signal via 

accelerometer 

3.2.1.1. Accelerometer operation 

Figure 2. shows a single axis accelerometer under the effects of gravity. Vector 

𝑨 was parallel to the axis (x) of the accelerometer being measured in the single axis 

setup. The orthogonal projection of the gravity vector 𝒈 upon the x-axis is shown in 

Figure 2. The projection line was perpendicular to the vector 𝑨 and the x-axis.  



 

22 

 

 

 

Figure 2. Single axis sensing of acceleration 
 

The measured scale value or value of the acceleration 𝑨 was the component of 

the gravity vector, 𝒈, resolved along the vector 𝑨 or in the direction of the axis being 

measured. 𝜃 was the angle from the horizontal axis (which was perpendicular to the 

gravity vector) to the axis of measurement as shown in the Figure 2.   

Using this knowledge, it was possible to calculate the acceleration 𝑨: 

𝑨 =  −𝒈 × sin(𝜃)                                                  (3.1) 

 

A clockwise rotation of the measured x axis of the accelerometer from 𝜃 = 0° 

to 𝜃  = -90° (downward) resulted in a final acceleration reading of  𝑨 = 1𝒈. When 

the x axis was upright and parallel to gravity, i.e. 𝜃 = 90°, the acceleration 𝑨 = -1𝒈. 

All the angles of tilt measured by the accelerometer were relative to its 𝑉𝑜𝑢𝑡 

value at 0°, also known as the zero 𝒈 bias level. This bias voltage,𝑉𝑏𝑖𝑎𝑠, is a feature 

of the accelerometer. 
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The output voltage of the accelerometer for any measured angle is the bias 

level plus an additional voltage,𝑉𝑡𝑖𝑙𝑡, caused by the tilt, i.e.  

𝑉𝑜𝑢𝑡 =  𝑉𝑏𝑖𝑎𝑠 +  𝑉𝑡𝑖𝑙𝑡                              (3.2) 

The tilt voltage was proportional to the acceleration A as well as the 

sensitivity of the accelerometer. Here, the sensitivity of accelerometer was the tilt 

voltage, 𝑉𝑡𝑖𝑙𝑡, per the unit gravity 𝒈 at the tilt angle of 90°. The sensitivity, 𝑆, can 

be expressed as: 

𝑉𝑡𝑖𝑙𝑡 =  𝑨 ×  𝑆        (3.3) 

 

Applying Equation (A1): 

𝑉𝑡𝑖𝑙𝑡 = ( −𝒈 × 𝑠𝑖𝑛(𝜃)) × 𝑆       (3.4) 

 

Substituting (A4) into (A2): 

𝑉𝑜𝑢𝑡 =  𝑉𝑏𝑖𝑎𝑠 +  ( −𝒈 × 𝑠𝑖𝑛(𝜃)) × 𝑆     (3.5) 

 

From (A2) into (A3),  

𝑉𝑜𝑢𝑡 =  𝑉𝑏𝑖𝑎𝑠 +  𝑨 × 𝑆       (3.6) 

𝑨 =
𝑉𝑜𝑢𝑡 – 𝑉𝑏𝑖𝑎𝑠

𝑆
        (3.7) 

𝑨 =  
𝑉𝑡𝑖𝑙𝑡 

𝑆 
          (3.8) 

When using an accelerometer to estimate the tilt angle, the angle 

(measurement) sensitivity, which was the change of output voltage with respect to 
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the change of angle, decreased as the measured angle approached 90°. To improve 

the angle sensitivity it was necessary to use more than one axis. 

In addition, due to identical 𝒈 values at 0+180n degrees (0, 180 and 360 

degrees), angle readings were the same at these points. This was another reason it 

was necessary to use more than one axis. 

Dual axis measurements eliminated the single axis problem of lowered angle 

sensitivity at 90 + 180n degrees. In the vertically aligned accelerometers, as the X 

axis approached its lowest region of angle sensitivity, the Y axis was just 

approaching its region of highest angle sensitivity. The combination of two known 

positions also helped us avoid confusion every 0 + 180n degrees.  

Figure 3a shows the application of the accelerometer in the x-y plane. The 

acceleration components of 𝑨𝒙 and  𝑨𝒚 was expressed as follows.   

𝑨𝒙= −𝒈 × sin 𝜃           (3.9) 

𝑨𝒚= −𝒈 × cos 𝜃        (3.10) 

 Then, the tilt angle can be determined by  

𝜃 = 𝑎𝑡𝑎𝑛 (
𝑨𝒙

𝑨𝒚
)         (3.11) 

where 𝜃 was the SWM being estimated from the accelerometer readings of  𝑨𝒙 

and 𝑨𝒚. The steering wheel had an inclination angle α with the horizontal plane as 

shown in Figure 3b. 
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Figure 3. Accelerometer SWM monitoring (a) Dual axis sensing of 

acceleration (b) Angle of Inclination 

 

When a fixed direction was assigned to the wheel as a reference for 0° rotation 

angle such as the vertical up direction shown in Figure 3a, the reading angle from 

the wheel was the same as the tilt angle indicated by the accelerometer (Figure 3b). 

  

Accelerometer axial vectors constitute a unit vector whereby |𝑨| 

=√(𝑨𝒙)2 + (𝑨𝒚)
2

+ (𝑨𝒛)2 =  1. When the Y axis is parallel to 𝒈 and in the same 

direction as   𝒈 (i.e. 𝛼 = 90°), (𝑨𝒙, 𝑨𝒚, 𝑨𝒛) = (0, 1, 0). For all other angles of 

inclination (𝛼), the values of 𝑨𝒙 and 𝑨𝒚 both approached in relative ratios, but never 

reached 1𝒈 during inclined testing. Taking the arctan of the ratio (
𝑨𝒙

𝑨𝒚
) effectively 

“normalized” readings into the x-y plane. Even though the acceleration readings were 

proportionally smaller compared to a vertically mounted accelerometer, the 

estimated 𝜃 were the same despite any tilt of the wheel. 
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Based on this analysis of accelerometer gravity angle sensing, an algorithm 

was developed to calculate the steering wheel rotation angle by using the 

trigonometric relationship between the accelerometer readings 𝑨𝒙 and 𝑨𝒚 for the X 

and Y axis as shown in Figure 3a in which the Y axis of the accelerometer was 

always 90° physically advanced of the X axis. The steering wheel rotation angle was 

calculated by Equation 3.11. 

The calculation of the steering wheel rotation angle 𝜃 using Equation 3.11 was 

ambiguous within the angle range from 0° to 360°. For example, at  𝜃 = 𝑎𝑡𝑎𝑛 (
𝟏

𝟎
), the 

results would be either 90° or -90°. A compensatory 180° was added to the calculated 

values when the steering wheel rotated between 90° to 270°, while 360° was added to 

all rotation angles between 270° to 360°. The compensations are shown in Table 1. 

 

Table 1. Compensations for accelerometer angle readings 

𝜃 A

dd 

When to compensate 

0°-90° +

0° 

While 0g < 𝑨𝒙<= -1g 

and   -1g < 𝑨𝒚<= -0g 
90°-180° +

180° 

While -1g < 𝑨𝒙<= -0g   and    -0g < 𝑨𝒚<= 1g 

180°-270° +

180° 

While -0g < 𝑨𝒙<= 1g    and    1g < 𝑨𝒚<= 0g 

270°-360° +

360° 

While 1g < 𝑨𝒙<= 0g       and  1 0g < 𝑨𝒚<= -1g 
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3.2.1.2. The system set-up and the mapping of accelerometer rotational 

angle to SWM 

The steering wheel was sectioned off into 4 quadrants with the wheel axes 

Yw and Xw respectively parallel and perpendicular to the gravity vector (Figure 4). 

The focus was primarily on the upper 2 quadrants of the steering wheel.   

   

  
Figure 4. The accelerometer was placed on the wheel such that the Y axis was 

parallel to the 𝑌𝑤  axis and the X axis was parallel to the 𝑋𝑤  axis. When wheel is 

centered,  𝜃= 𝜃𝑤 = 0°.  

 

The steering wheel used to gather data was the Top Drive GT (Logic3, 

Hertfordshire, England). Voltage readings, 𝑉𝑝  were taken directly from a 

potentiometer which was in series with the steering column and directly attached to 

it, providing a 1:1 capture of all rotation. These voltages constitute the 

potentiometer readings referenced throughout the rest of this dissertation. The 

steering wheel also included gas and brake pedals and an automatic transmission.  

Voltage levels 𝑉𝑝 were recorded from the linear potentiometer at steering 

wheel rotation angles of 𝜃𝑤 = 90°, 0° and -90°. These voltages were divided linearly 
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into 90 parts per quadrant, for a total of 181 data points. Each voltage data point 

was then assigned its corresponding degree between -90° and 90°. By this, the linear 

potentiometer was used to monitor the SWM (𝜃𝑤). 

In order to use a three-axis accelerometer to monitor SWM, the X and Y axes 

were affixed on the surface plane of the steering wheel such that the X axis was 

parallel with the Xw axis, while the Y axis was parallel to the Yw axis (Figure 4). In 

this configuration, 𝜃 was always = 𝜃𝑤 regardless of the actual location on the wheel 

surface the accelerometer was placed. A tri-axial accelerometer ADXL335 (Analog 

Devices, Norwood, MA.) was used in this study. The supply voltage 𝑉𝑆, to the 

ADXL335 was 3.234𝑉 and the bias voltage, 𝑉𝑏𝑖𝑎𝑠 , was 1.620𝑉; approximately half of 

𝑉𝑆. At this power supply setting, the sensitivity, 𝑆 of the accelerometer was 323.4𝑚𝑉/

𝒈. 

Simulator driving tasks were performed using the Euro Truck Simulator 2 

software (SCS Software, Prague, Czech Republic). For monitoring eye closure 

activities, an Emerson Go Action Camera (Funai, Osaka, Japan) was used.  

 

3.2.1.3. Data collection and analysis 

The measured accelerometer data was passed through a 5Hz, 6th order, low-

pass Butterworth filter to remove high frequency noise and vibrations in the sensitive 

accelerometer, thereby limiting its operations to a tilt sensor within feasible human 

motion ranges. The accelerometer data as well as the linear potentiometer data were 
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collected using a National Instruments digital to analog converter (DAC) (NI USB-

6008, National Instruments, Austin, TX).   

Data were analyzed using MATLAB. For statistical analysis, the linearity 

between the potentiometer and accelerometer outputs were determined through 

linear regression where the steering rotation 𝜃𝑤  (measured by potentiometer) was the 

explanatory variable. Linear curve fittings were applied to the data in order to 

record their slopes and y-intercepts. P-values were recorded at 𝛼 = 0.05 and the R2 

coefficients of the accelerometer/potentiometer linear fit were also recorded, as well 

as the Pearson’s Linear Correlation coefficients.  

The correlations between potentiometer measured SWM and accelerometer 

estimated SWM signals during simulation and steering tasks were determined using 

the cross correlation function of the MATLAB signal processing toolbox.   

 

3.2.1.4. Testing 

Calibration test: Characterizing the relationship between   𝜃𝑤  and 𝑉𝑝 

The assigned steering wheel angles 𝜃𝑤 and their potentiometer voltages 𝑉𝑝 

were calibrated. The relationship was fitted with a characterization equation to assist 

all further conversions between potentiometer voltage and angle of rotation and vice 

versa.   
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Test #1: Correlation between  𝜃𝑤 and 𝜃. 

Part A: Correlation between  𝜃𝑤 and 𝜃 at α = 45° 

The steering wheel with the accelerometer mounted was rotated very slowly 

clockwise from 𝜃𝑤= 90° to 𝜃𝑤= -90° while data was being recorded from the 3 axes 

of the accelerometer as well as from the linear potentiometer. The angle of 

inclination was 𝛼 = 45°. For each angle of steering wheel rotation (𝜃𝑤) recorded by 

the potentiometer, its corresponding voltage and accelerometer angle of rotation 

(𝜃) were recorded. This test was performed 10 times and the results were checked for 

consistency. Data was collected at 1200 samples per second. This test was intended 

to establish linearity between the SWM measured by the potentiometer 𝜃𝑤 and the 

SWM estimated by the accelerometer 𝜃. 

 

Part B: Correlation between  𝜃𝑤 and 𝜃 during imitation drive patterns 

After linearity had been established between potentiometer and accelerometer 

readings in Part A, SWM activities were performed which were intended to mimic 

driving patterns. These movements consisted of clockwise and anti-clockwise steering 

wheel rotations in no fixed pattern. The goal of this test was to compare 𝜃𝑤  and 𝜃 

during SWM patterns. 
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Test #2: Robustness of 𝜃 measurements at different angles of inclination (𝛼) 

The steering wheel was tilted to 𝛼 = 23° and then 𝛼 = 67° angles of 

inclination as depicted in Figure 3b. For each new angle of inclination, TEST #1 

was repeated. The SWM recorded by the linear potentiometer 𝜃𝑤 was compared to 

the SWM estimated by the accelerometer 𝜃 for each angle of inclination. This was a 

versatility test intended to establish that linearity remains between 𝜃𝑤 and 𝜃 at 

various angles of inclination (𝛼) found on steering wheels. 

 

Test #3: Effects of SWM speed on the readings of 𝜃 

In order to test the efficacy of this method in the event of sudden drowsiness 

induced SWM, sharp and sudden rotations were performed by manual input to the 

steering wheel.  𝜃𝑤   and  𝜃 were recorded. This was intended to be an endurance test 

to ensure the accelerometer was able to keep up with sharp and sudden changes in 

rotational angle, while still maintaining accuracy and efficacy. 

 

Test #4: Robustness in realistic simulation environment 

To test practicality and efficacy in real world situations, a participant was 

recruited to perform driving tasks in a simulator environment. The participant was 

asked to perform highway driving during the mid-afternoon drowsiness period 

described by Stutts et al. (Stutts et al., 1999). The participant’s eye was monitored 

for slow eye closure events. Slow eye closure events were defined as eye closures 
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which were slower than blinks and lasted longer than blinks.   𝜃𝑤   and  𝜃  data were 

recorded during this period. 

 

3.2.2 Theoretical bases and algorithms to generate SWM signal via 

gyroscope  

Gyroscopes detect angular velocity and they can be used to derive information 

about the angular orientation of the steering wheel. As the gyroscope internal 

structure begins to spin or vibrate, it becomes resistant to any movement that could 

lead to a change in the direction of spin or vibration.  When an external force exerts 

an angular rotation on the gyroscope, the Coriolis Effect is felt within the rotating or 

vibrating structure which exerts a force on the structure that induces a change in 

capacitance. This capacitance change causes a variance in the gyroscopes output 

voltage which is in proportion to the angular velocity experienced. As a result, the 

output voltage is a direct indication of the angular velocity of the gyroscope. The 

voltage can then be digitized as an angular velocity value. 

An equation for real time monitoring of the rotational position of a gyroscope 

is given by Sakaguchi et al., (1996): 

 

𝜃𝑔𝑦𝑟𝑜[n] = 𝜃𝑔𝑦𝑟𝑜[n-1] + Δn  [n]      (3.12) 
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where the gyroscope positional angle 𝜃𝑔𝑦𝑟𝑜[n] is based upon knowledge of the last 

positional sample 𝜃𝑔𝑦𝑟𝑜[n-1] as well as knowledge of the angular displacement since 

the last sample, which is the product of the rate of angular change [n], and the 

sample interval, Δn. The new position of gyroscope orientation can be determined as 

𝜃𝑔𝑦𝑟𝑜[n] with the above Equation 3.12. The equation was designed especially for 

capturing rotational movements originating from human motion (Sakaguchi et al., 

1996). SWM is a product of human motion, and will be served well by this method. 

For comparison against current potentiometer based SWM angle recordings, a 

linear potentiometer in series with the steering axis was used as a reference. Linear 

potentiometer output voltages vary in linear proportion to their angle of rotation and 

can be modelled as a standard linear equation: 

 

𝜃𝑤 =  𝑚 × 𝑉𝑝 +  𝑏       (3.13) 

 

where 𝜃𝑤   was the steering wheel angle of rotation in degrees (°) and 𝑉𝑝 was the 

potentiometer voltage in volts (𝑉).  𝑚 was the slope of the linear relationship and 𝑏 

was the y-intercept of the linear relationship.  

To customize our model, the parameters 𝑚 and 𝑉𝑝 were generated by 

sampling 90 data points per quadrant of the steering wheel, yielding approximately 1 

sample of 𝑉𝑝 per 1°. Using these data points to generate a linear relationship gave 
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values of 𝑚 =  −93.409 °/𝑉 and  𝑏 = 177.400°. All further potentiometer readings of 

SWM angle were calculated by using these parameters with Equation 3.13 for 

derivation of 𝜃𝑤.  

 

3.2.2.1. Testing 

3.2.2.1.1 Test for applicability of SWM monitoring with a gyroscope  

Equation 3.12 was used for generating the SWM signal 𝜃𝑔𝑦𝑟𝑜[n] using IMU 

data collected from the gyroscope during road tests. The resulting signal was 

compared against potentiometer readings during the same period to determine the 

usability of the signal and its correctness. 

 

3.2.2.1.2 Test for accuracy of SWM readings against linear potentiometer.  

After the setup from section 3.2.2 had been used to establish a relationship 

between 𝜃𝑔𝑦𝑟𝑜, and 𝜃, as well as a standard for 𝜃𝑤, a participant was recruited to 

perform driving simulator activities for 45 minutes. The correlation between 

 𝜃𝑔𝑦𝑟𝑜 and 𝜃𝑤 over this prolonged period was calculated.  

 

3.2.3 Theoretical bases and algorithms to generate SWM signal via an 

accelerometer-gyroscope fusion 

The method for SWM monitoring via gyroscope was described earlier in 

section 3.2.2. The equation for SWM monitoring via gyroscope was given as 

Equation 3.12. A drawback to using gyroscopes for detection of angular rotation is 
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the tendency for gyroscope positional values to drift (Luinge et al., 1999; Sakaguchi 

et al., 1996).  

 

The second part of the proposed IMU device fusion is the accelerometer. An 

equation for extracting SWM angle solely via an accelerometer is given as a sample 

derivation of Equation 3.11:  

𝜃[𝑛] = 𝑎𝑡𝑎𝑛 (
𝑨𝒙[𝒏]

𝑨𝒚[𝒏]
)      (3.14) 

where 𝜃 was the SWM angle being estimated from the accelerometer readings of 

 𝑨𝒙[𝒏] and 𝑨𝒚[𝒏], 𝜃 [𝑛] had a strong positive correlation with the steering wheels 

SWM angle 𝜃𝑤[n].  

 

The addition of an accelerometer to the gyroscope compensated for gyroscope 

drift via the accelerometers perpetual ability for gravitational alignment. This is 

predicated upon the fact that the operation of Equation 3.14 depends upon relative 

readings of gravity on the accelerometers separate axes. The accelerometers tendency 

to pick up linear vibrations was in turn countered by the gyroscope which has a 

sensitivity to angular velocity. The IMU fusion led to a highly effective combination. 

When the steering wheel was in a neutral position as shown in Figure 4, the main 

sensor was fastened to the steering wheel surface such the accelerometer gave a 
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neutral angular reading of 𝜃[n] = 0° and the gyroscope Z-axis (𝑔𝑧marked as “x”) was 

parallel to the steering column axis. 

 

 

Figure 5. The mapping of the IMU device to the steering wheel. 

 

Combining Equation 3.12 and 3.14., a complimentary filter was designed to 

maximize the strengths of both IMU sensors. An ideal relationship between 

𝜃𝑓𝑖𝑛𝑎𝑙   and 𝜃 which would be easy to update in real time was found to be the causal 

system: 

 

𝜃𝑓𝑖𝑛𝑎𝑙[n] =  (𝜃𝑓𝑖𝑛𝑎𝑙[n − 1] +  (
Δn  [n]+  Δn  [n−1]

2
)) ∗ βgyro + atan (

𝑨𝒙[𝒏]

𝑨𝒚[𝒏]
) ∗  βaccel (3.15) 

 

 

which is effectively a weighted combination of Equation 3.12 and Equation 3.14 with 

a few slight modifications. The first modification was that 𝜃𝑓𝑖𝑛𝑎𝑙[n] took over the role 
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of 𝜃𝑔𝑦𝑟𝑜[n]. This consequentially resulted in the causal system referencing 𝜃𝑓𝑖𝑛𝑎𝑙[n-1] 

rather than 𝜃𝑔𝑦𝑟𝑜[n-1], which is incidentally more correct for the newly formed 

system in terms of accurately calculating angle based in part upon the last known 

position. The second difference was that the angular velocity output of the gyroscope 

was averaged over current and last known reading. This was intended to provide a 

smoother reading and to improve overall accuracy rates of the newly fused system. 

At 250Hz of sampling frequency, which yields 250 samples each second, the 

averaging of only 2 samples will not adversely affect the overall signal even in the 

very short term.   

 Finally, βgyro and βaccel were chosen as the coefficients for determining the 

percentage contribution of each element in Equation 3.15 to the overall IMU fusion 

reading of SWM. The summation case therefore must always hold that: 

βgyro + βaccel  = 1      (3.16) 

 

The full process for determination of the coefficient weights for Equation 3.15 is 

described in section 3.2.3.5.  

  

3.2.3.1. Equipment 

The steering wheel used for simulator tasks was the Top Drive GT (Logic3, 

Hertfordshire, England). Simulator driving tasks were performed using the OpenDS 

driving simulation software. For monitoring eye closure activities, an Emerson Go 
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Action Camera (Funai, Osaka, Japan) was used supplementally along with AgCl 

electrodes which performed VEOG and HEOG signal collection. 

An MPU-6050 (InvenSense, San Jose, California) which is a 6-axis combined 

MEMS gyroscope + accelerometer was the main sensor. The sensitivity of the 

gyroscope was set at ±250 ºs-1 while the sensitivity of the accelerometer was set at 

±2𝒈. At 4mm x 4mm x 0.9mm and weighing less than a gram, the sensor lends itself 

to portability and non-intrusiveness in any SWM application  

The IMU data was collected using an amplifier based on the TI-ADS1299 

Analog Front-End (Texas Instruments, Dallas, TX).  All data were sampled at 

250Hz. 

Data were analyzed with MATLAB. For statistical analysis, linear 

correlations between data were determined through linear regression, Pearson’s 

Linear Correlation coefficients, and Spearman’s Rho. P-values were recorded at α = 

0.05 unless otherwise specified. The correlations between potentiometer measured 

SWM and SWM estimated via the gyroscope-accelerometer algorithm were 

determined using the cross correlation (xcorr) function of the MATLAB signal 

processing toolbox. 
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3.2.3.2. Test for applicability of SWM monitoring with an accelerometer as 

the sole IMU weight   

For this test, Equation 3.15 was used for generating the SWM signal 𝜃𝑓𝑖𝑛𝑎𝑙[n]. 

However, the signal here was generated using IMU data collected from the 

accelerometer only during road tests. For this purpose, βgyro was set to 0. The 

resulting signal was compared against potentiometer readings during the same period 

to determine the usability of the signal and its correctness. 

 

 

3.2.3.3. Test for applicability of SWM monitoring with a gyroscope as the 

sole IMU weight 

Equation 3.15 was used for generating the SWM signal 𝜃𝑓𝑖𝑛𝑎𝑙[n].  In order to 

limit the SWM signal to IMU data collected from the gyroscope during road tests, 

βaccel was set to 0. The resulting signal was compared against potentiometer readings 

during the same period to determine the usability of the signal and its correctness. 

 

 

3.2.3.4. Test for equal weighting of gyroscope: accelerometer coefficients 

βgyro: βaccel. 

This test was intended to implement true signal combinations as described by 

Equation 3.15.  Accelerometer and gyroscope input were initially combined at a ratio 

of 50:50 for βgyro: βaccel. 
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3.2.3.5. Test to determine optimal weights for gyroscope: accelerometer 

coefficients βgyro: βaccel  

Combining the two inertial measures of SWM measurements into a single 

efficient unit required the optimal weight distribution of each component. It was 

intended that the shock resistant gyroscope which was sensitive to angular rotations 

inherent to steering behavior and less sensitive to linear or translational noise would 

provide the bulk of SWM monitoring data. It was also intended that the drift 

resistant accelerometer would contribute just enough orientation data to ensure that 

the gyroscope measurement was perpetually calibrated against gravity so that the 

angle did not drift with time. 

Road tests on the highway were useful for making a determination of what 

ratio of βgyro:βaccel was most effective. The aim was to decide which weight ratio 

yielded the best data in relation to the potentiometer, since the method was to 

eventually be an efficient replacement of the potentiometer for steering behavior 

monitoring. 
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3.2.3.6. Test for accuracy of SWM readings against linear potentiometer 

using selected weights.  

After the setup from section 3.2.3 had been used to establish a relationship 

between 𝜃𝑔𝑦𝑟𝑜, 𝜃𝑓𝑖𝑛𝑎𝑙, and 𝜃, as well as a standard for 𝜃𝑤, a participant was recruited 

to perform driving simulator activities for 45 minutes. The correlation between 

𝜃𝑓𝑖𝑛𝑎𝑙  and 𝜃𝑤 over this prolonged period was calculated.  

Once strong correlation was seen in a simulator environment, an actual road 

test was performed which involved the physical mounting of the simulator’s steering 

wheel platform into the vehicle interior while driving tasks were performed by a 

passenger. This test involved about 20 minutes of driving tasks involving high speed 

highway driving and city driving in stop-and-go traffic.  

 

3.3. Results 

3.3.1 Accelerometer SWM monitoring results 

3.3.1.1. Calibration task: Calibration of potentiometer readings with wheel 

angles 

The potentiometer voltages were plotted versus their assigned steering wheel 

angles. The relationship was fitted with a characterization equation of 𝜃𝑤 =

 −93.409 ∗ 𝑉𝑝 +  177.400, where 𝜃𝑤  was the steering wheel angle of rotation in 

degrees (°) and 𝑉𝑝 was the potentiometer voltage in volts (𝑉). This characterization 
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equation was then used for all further conversions between potentiometer voltage 

and angle of rotation and vice versa.   

 

3.3.1.2 Test #1: Correlation between  𝜽𝒘 and �̂� at the inclination angle (α) of 

45° 

3.3.1.2.1 Correlation between  𝜽𝒘 and �̂�.  

This describes the results of the data collected from Part A of test #1. The 

measured tri-axial accelerometer readings 𝐀𝐱, 𝐀𝐲 and 𝐀𝐳 were plotted versus steering 

wheel angles 𝛉𝐰 in Figure 6a. 

 

 

 

Figure 6. (a) The accelerations measured on 3 axes during a 180° steering 

rotation. (b) The accelerometer angle 𝜃 calculated from Equation 3.11 has a linear 

relationship to the potentiometer turn angle 𝜃𝑤. (c) SWM readings of the 

potentiometer overlayed with accelerometer estimates. A small section of a steering 

test. 

 

The accelerometer SWM from the 10 slow turns calculated by 𝜃 = atan (
𝑨𝒙

𝑨𝒚
) 

was plotted against the potentiometer measured SWM, 𝜃𝑤 in Figure 6b. The results 

of Figure 6b showed a high linearity of R2=1 and slope=0.998. The high correlation 
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between the potentiometer and accelerometer SWM are seen in the 45° row of Table. 

2 with more detailed values. 

Table 2. Correlations between potentiometer-measured and accelerometer-

estimated SWM 

α 
R2 

{𝜃𝑤,𝑉𝑝} 

 

Slope 

{𝜃𝑤, 𝜃} 

R2 

{𝜃𝑤, 𝜃} 

Pearson 

Coefficient 

{𝜃𝑤,𝜃} 

p-value linear regression 

{𝜃𝑤, 𝜃} 

 
23° 0.999 0.996 1 0.999 <0.001 

45° 0.998 0.998 1 0.999 <0.001 

67° 0.996 0.996 1 1.000 <0.001 

 

3.3.1.2.2. Correlation between  𝜽𝒘 and �̂� during imitation drive patterns.  

This describes the results of the data collected from Part B of test #1. In this 

test, the continuous changes in steering wheel rotations with time during simulation 

yielded the highly correlated overlaid plot seen in Figure 6c. The cross correlation 

coefficient between potentiometer measured SWM 𝜃 and accelerometer estimated 𝜃𝑤  

in this case was 1.000. 

 

3.3.1.3 Test #2: Robustness of �̂� measurements at different angles of 

inclination (𝜶) 

The results obtained from the 3 different inclination angles yielded highly 

linear relationships between the potentiometer measured SWM and the accelerometer 

estimated SWM at the various tilt angles. As shown in Table 2, 𝜃 was always highly 

correlated to 𝜃𝑤 despite the different inclination angles.  
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By comparing the 181 data points from each of the three angles of inclination 

tested (23°, 45° and 67°), it was seen that although the values of  𝑨𝒙 and  𝑨𝒚 were 

proportionally reduced relative to their inclination to gravity, the values of 𝜃 

estimated were always approximately the same among all three values of 𝛼 for any 

given  𝜃𝑤. Figure 7 shows the values of 𝑨𝒙 and 𝑨𝒚 at several typical angles of wheel 

rotation (𝜃𝑤 ) with the three inclination angles (𝛼). By comparing the estimated 

angles 𝜃 to all measured angles 𝜃𝑤, it was proven that at all three angles of 

inclination (𝛼), 𝜃 remained very strongly correlated to 𝜃𝑤 regardless of the 

inclination. 

 

Figure 7. The accelerometer estimated SWM (𝜃) was always highly correlated 

with the potentiometer measured SWM (𝜃𝑤) regardless of the angle of inclination 

(𝛼), making this method universally adaptive. Horizontal lines indicate values of 𝜃𝑤 
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3.3.1.4 Test #3: Effects of SWM speed on the readings of �̂�  

TEST #4 involved sudden turns. The accelerometer was capable of keeping 

up with even the most sudden steering wheel movements that were tested. The 

complete battery of more than 20 sudden rotations yielded a signal cross correlation 

coefficient of 0.999 between 𝜃𝑤 and 𝜃. A small section of this test is shown in Figure 

8a.  

To plot Figure 8a as well as Figure 8b shown below, the potentiometer 

calibration equation calculated in section 3.3.1. was used to convert the 

potentiometer voltage recorded from its DAC channel directly into 𝜃𝑤. Over the 

same sample period, Equation 3.11 was used to convert readings collected from the 

accelerometers DAC channels directly into  𝜃. 𝜃𝑤   and  𝜃 were then overlayed in the 

resulting  plots.   

 

Figure 8. (a) On the left, a small section of high speed testing including 

sudden SWM (b) On the right a single high speed correction. 
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When the readings were focused in to analyze a single steep turn, as shown in 

Figure 8b, there was a change in 𝜃𝑤  of Δ𝜃𝑤 = 42.76° over a period Δs = 66.67 

milliseconds. Over the same time period, the DAC recorded a change of the 

accelerometer angle reading of Δ𝜃= 42.68°. This gave us a recorded turn rate of 

641.45°s-1 for 𝜃𝑤 and 640.18°s-1 for 𝜃. These are both very sharp turns, quite 

impossible for a human driver to make under normal safe driving circumstances.  

3.3.1.5 Test #4: Robustness of measurements in realistic simulation 

environment 

Test #4 involved simulated driving. The participant involved in simulator 

testing performed highway driving until slow eye closure events were observed. Three 

slow eye closure events were observed within 18 seconds. Two seconds after the last 

eye closure event, the participant deviated from the driving lane and made sudden 

corrective swerve motions upon this realization until lane keeping was eventually re-

established. 

The sudden corrective swerve motions are seen in Figure 9a. The analyzed 

motion shown in Figure 9b zooms in on one of these corrective SWM inputs. The 

observed input lasted less than 0.18 seconds. Over this period, Δ𝜃𝑤 = 59.92°, while 

Δ𝜃 = 59.09°. This gave a turn rate of 342.38°s-1 on the potentiometer and 337.65°s-1 

on the accelerometer. The Pearson’s correlation coefficient between 𝜃𝑤 and 𝜃  over 

this single corrective action was 0.995.   
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Figure 9. In simulated driving, the participant demonstrated fatigued SWM as 

characterized by an increase in sudden corrective actions. (a)On the left: Sudden 

corrective actions that occurred shortly after eye closure events and upon realization 

of unintended lane exit.(b)On the right: a single corrective action. 

 

3.3.2. Gyroscope SWM monitoring results 

Data were analyzed using MATLAB. Correlations between the gyroscopes 

SWM data and the potentiometers SWM data were determined via Pearson’s Linear 

Correlation coefficients, Spearman’s Rho, and Kendall’s tau. Signal cross correlation 

between the Inertial Measurement Units output signal and the potentiometers 

output signal were determined through the xcorr function of the MATLAB signal 

processing toolbox. P-values were recorded at α < 0.05.  

 

Table 3. Various IMU SWM correlations to a linear potentiometer 

Correlation to Potentiometer Results 

XCorr Spearman’s Pearson’

s 

Kendall’s 

0.63 0.85 0.85 0.69 
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Figure 10. Using only a gyroscope, the signal was initially accurate, but 

developed a drift in this example. 

 

3.3.3. Accelerometer-gyroscope fusion SWM monitoring results 

Data were analyzed using MATLAB. Correlations between the inertial unit’s 

SWM data and the potentiometers SWM data were determined via Pearson’s Linear 

Correlation coefficients, Spearman’s Rho, and Kendall’s tau. Signal cross correlation 

between the Inertial Measurement Units output signal and the potentiometers 

output signal were determined through the xcorr function of the MATLAB signal 

processing toolbox. P-values were recorded at α < 0.05.  
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3.3.3.1. SWM fusion monitoring with 100% accelerometer weighting  

For this test, Equation 3.15 was used to generate the SWM signal 𝜃𝑓𝑖𝑛𝑎𝑙[n] 

from IMU data collected from the accelerometer during road tests. In this case, βgyro 

was set to 0.  

The purely accelerometer signal demonstrated noticeable amounts of road 

noise during road tests (Figure 11a). Although a low pass filter conveniently removes 

the noise (Figure 11b), the use of a gyroscope fusion demonstrated better results 

when optimal weighting eliminated the need for hardware or software filtering. 

 

 

 

 

 

Table 4. Various IMU device ratios and their correlation to potentiometer 

 Ratio Correlation to Potentiometer Results 

 βaccel : βgyro  XCorr Spearman’s Pearson’s Kendall’s 

a 100 : 0 0.91 0.88 0.89 0.70 

b 100 : 0 (5Hz low-pass) 0.96 0.95 0.96 0.80 

c & d 0 : 100 (high gyro drift) 0.63 0.85 0.85 0.69 

e 50 : 50 0.93 0.90 0.91 0.73 
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Figure 11. (a) Accelerometer only SWM signal; (b) Accelerometer only SWM 

signal passed through a 4th order low pass Butterworth filter; (c) Gyroscope only 

signal demonstrating slow drift; (d) Gyroscope only signal from road test 

demonstrating how the gyroscope signal would wander into a slow drift in the longer 

term; (e) A 50:50 distribution of accelerometer: gyroscope signals. 

 

3.3.3.2. SWM fusion monitoring with 100% gyroscope weighting  

The SWM signal 𝜃𝑓𝑖𝑛𝑎𝑙[n] was generated from IMU data collected solely from 

the gyroscope during road tests. In this case, βaccel was set to 0. Figure 11c shows a 

24 second section of the gyroscope output waveform after about 10 minutes of road 

driving. While the gyroscope output was of the correct waveform to match the 

potentiometer output, the drifting caused the signal to eventually center around 150° 

(Figure 11c) whereas it would always be centered at 0° when calibrated by the 

accelerometer complement. 

 

4 8 12 16 20 24
-40

-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

 

 


w

[n]


final

[n]

(a)

4 8 12 16 20 24
-40

-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

 

 


w

[n]


final

[n]

(b)

4 8 12 16 20 24

0

50

100

150

Time (s)

S
W

M
 A

n
g

le
 (

°)

 

 


w

[n]


final

[n]

(c)

0 400 800 1200

0

500

1000

Time (s)

S
W

M
 A

n
g

le
 (

°)

 

 


final

[n]


w

[n]

(d)

4 8 12 16 20 24
-40

-20

0

20

40

60

Time (s)
S

W
M

 A
n

g
le

 (
°)

 

 


w

[n]


final

[n]

(e)



 

51 

 

3.3.3.3. SWM monitoring using equal weighting of gyroscope and 

accelerometer inputs   

This test was intended to implement true signal combinations as described by 

Equation 3.15.  Accelerometer and gyroscope input were initially combined at a ratio 

of 50:50 for βgyro: βaccel. The signal generated from this ratio yielded a fairly noisy 

signal (Figure 11d). However, the signal generated through this weighting was less 

noisy than the signal generated by the accelerometer only. 

 

3.3.3.4. Optimal weights discovery for gyroscope: accelerometer 

coefficients βgyro: βaccel.   

Data used to optimize the weight ratio were collected during actual road 

driving to ensure a robust selection. Various ratios were tried during this analysis 

and a few of the important ratios are shown in Table 5. 

 

Table 5. Various IMU device ratios and their correlation to potentiometer 

 Ratio  Correlation to Potentiometer Results 

 βgyro : βaccel XCor Spearman’s Pearson’s Kendall’s 

a 10 : 90 0.92  0.89 0.89 0.71 

b 90 : 10 0.97 0.96 0.95 0.81 

c 99 : 1 0.98  0.97  0.98  0.88 

d 99.5 : 0.5 0.94  0.90  0.90   0.73 
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The ratio which was finally chosen was 99:1 or βgyro=0.99, βaccel=0.01 (Figure 

12c) because it had a stronger correlation to potentiometer readings in all measures 

of correlation used, indicating signal correctness. Additionally, visual inspection 

revealed a good balance between noise reduction properties and better signal 

agreement with potentiometer readings. 

 

 

 

Figure 12. Various ratios of βgyro:βaccel plotted for (a) 10:90 (b) 90:10 (c) 99:1 

(d) 99.5:0.5 

 

SWM readings from cases in which the βgyro:βaccel ratio favored the 

accelerometer tended towards introducing linear vibrations. These are very easily 

removable using a low pass filter or an averaging filter. However, using the selected 
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weight ratio of 99:1 as in this case, the accelerometer and gyroscope fusion yielded 

data that was not significantly affected by linear noises or vibrations, even during 

highway driving, and city driving on rough roads. It was unnecessary to filter the 

data. The gyroscope’s design as a measure of angular velocity about clearly defined 

axes contributed greatly to the efficacy of this method for low-noise SWM 

monitoring. SWM readings from cases in which the βgyro:βaccel ratio heavily favored 

the gyroscope tended towards introducing slow signal drift, while SWM readings 

from cases in which the βgyro:βaccel ratio heavily favored the accelerometer tended 

towards introducing artefacts (Figure 12a). The selected ratio yielded optimal 

results. 

 

3.3.3.5. Accuracy of fusion SWM readings as compared to the 

potentiometer. 

When subjected to prolonged SWM inputs over a 45 minute driving task, a 

strong cross correlation between the two signals 𝜃𝑓𝑖𝑛𝑎𝑙  and  𝜃𝑤    was discovered (xcorr: 

0.99; R2: 0.96; p = 0; Pearson: 0.99; p <0.05).  

As an extension of this test, the SWM readings derived from s 𝜃𝑓𝑖𝑛𝑎𝑙 data 

were found to be capable of keeping up with even the most rapid steering wheel 

movements that were tested. The steering wheel was subjected to greater than 20 

sudden rotations at rates up to 150°s-1 and the results during high speed rotations 

yielded a high signal cross correlation between 𝜃𝑤 and 𝜃𝑓𝑖𝑛𝑎𝑙 (xcorr: 0.98; p<0.05; 
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Pearson: 0.97; p<0.05). A small section of this test is shown in Figure 13a. The 

MPU-6050 sensor has a range of up to ±2000 °s-1 and was configured in this test for 

use up to ±250 °s-1. 

 

To plot Figure 13. shown below, Equation 3.13 was used to convert the 

potentiometer voltages recorded from its amplifier channel directly into 𝜃𝑤. Over the 

same sample period, Equation 3.12 was used to fuse readings collected from the 

gyroscope and accelerometer channels directly into 𝜃𝑓𝑖𝑛𝑎𝑙. 𝜃𝑤  and  𝜃𝑓𝑖𝑛𝑎𝑙  were then 

overlaid in the resulting plots. 

 

Figure 13. (a) High Speed SWM outputs remained highly accurate 

representations of ground truth steering movements. (b) The final signal (right) 

matches the potentiometer signal 
 

The road test using the simulator steering wheel showed very positive results 

for the proposed method. The signal  𝜃𝑓𝑖𝑛𝑎𝑙  was highly correlated to the 

potentiometer output  𝜃𝑤  (xcorr: 0.992; Pearson: 0.988, p=0; R2: 0.976, p=0) and the 

signals overlapped each other for the majority of the recorded time (Figure 13b).  

 

  

16 16.50 17
15

20

25

30

35

Time (s)

S
W

M
 A

n
g

le
 (

°)

 

 


w

[n] 
final

[n]a.

0 4 8 12 16 20 24
-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

 

 


w

[n]


final

[n]

b.



 

55 

 

3.4. Discussion  

3.4.1 Discussion of the Accelerometer-based method 

This section demonstrated that a simple tri-axial accelerometer can be used to 

accurately monitor SWM for drowsy driving activities including sudden corrections 

and wide angle corrections. The methods efficacy was confirmed by comparing the 

accelerometers SWM estimates with the actual SWM readings taken from the 

steering wheel potentiometer. The method was tested for efficacy at various angles of 

inclination without a resulting loss of accuracy. The described method allows for 

inexpensive drowsiness detection without complex equipment or major modifications 

to the current steering system.  

The findings of this section demonstrate a novel approach to drowsy driving 

monitoring which offers an easy and practical way to deploy individual drowsy 

driving monitoring. This method does not require extensive modifications to existing 

vehicle setups. The high affordability of this accelerometer-based method also 

improves the feasibility of wide scale deployment. The results are especially 

important because many individual researchers as well as federal regulators have 

invested large amounts of time and manpower to stem the thousands of highway 

fatalities and injuries that occur worldwide each year as a result of drowsy driving. 

Although these efforts have yielded reliable methods such as SWM, which has been 

touted by researchers and government agencies as potential lifesavers, there has still 

been no widespread practical means to actually apply this method. As a result, the 
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vast majority of highway vehicles continue to operate without drowsy driving 

detection mechanisms, and thousands of fatalities and injuries continue to occur 

annually. With this method, the well documented SWM method of drowsy driving 

detection can be applied to curb highway accidents and deaths with minimal cost to 

drivers and car manufacturers. 

 

3.4.1.1. Accelerometer noise 

The use of an accelerometer to monitor SWM is a very effective, cheap and 

versatile method. However, as with other methods, there are limitations. Figure 7a 

shows “ears” on the signal gathered by the accelerometer, as compared to the 

smoother turn shown by the potentiometer. This resulted from a controlled sudden 

turn. During the turn, the accelerometer picked up motion-based accelerations and 

decelerations. These motion-based accelerations and decelerations are different from 

the static accelerations due to gravity that the tilt sensor is based upon and are 

considered noise within this application.  

A low pass filter was used to attenuate high frequency spikes that resulted 

from non-gravity related accelerations. The filter also helped to attenuate the 

recording of vibrations and shakes which can be found in vehicles, while keeping the 

tilt sensor functions active and preserve monitoring of SWM activities. In this study, 

a 5Hz low pass filter was chosen to monitor SWM activities because SWM activities 

were not realistically expected to exceed 5 rotation cycles per second. This value can 
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easily be adjusted up or down to fit more specific needs or driving conditions. The 

balance must be made between feasible SWM speeds and the present noises. 

As expected, the potentiometer did not measure any motion based 

accelerations, just angular rotations. Its signal is clear of the related spikes.  

Although most of the vibrations encountered by vehicles fall within frequency 

bands that can easily be filtered out by the low pass filter, certain vibrations such as 

those due to motion-based accelerations within a vehicle’s suspension system possess 

sufficiently low frequencies to encroach upon the filter’s low pass band. Vibrations 

due to engine shake, general vehicle body bending or torsion, and bending of the 

driveline will be sufficiently attenuated by a low pass filter since these vibrations 

contain frequency components within the range of 11-100Hz (Suciu et al., 2011). 

Vibrations from suspension systems and wheels however have a frequency range of 

0.5-2Hz (Xia et al., 2008). When these low frequency vibrations do occur, they can 

potentially intrude upon the frequency range of steering signals. The application of 

tri-axial accelerometers in the monitoring of SWM was tested in a vehicle simulator 

setting. Because low frequency motion-based accelerations of the suspension system 

could potentially encroach into the filter’s pass band, the use of a gyroscope in 

addition to an accelerometer is considered in chapter 5.  
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3.4.1.2. Slight variations between 𝜽𝒘 and �̂� 

Slight variations in recorded turn rate between the potentiometer and 

accelerometer were due to sampling noises or tiny linear acceleration spikes due to 

motion (as opposed to static acceleration used in tilt measurements) which had made 

it past the low-pass filter. Variations between 𝜃𝑤 and 𝜃 could also be partly due to 

inadequate sensitivity of the accelerometer. A higher sensitivity accelerometer will 

give finer and more specific readings over small rotations, rather than a more 

stepwise change in readings as seen in lower sensitivity accelerometers. Stepwise 

changes mean the values must reach a threshold before the next reading and might 

continue to read slightly lower or slightly higher than actual value until the next 

threshold point. Overall, the accelerometer readings maintained high accuracy, even 

during sudden movements.  

 

3.4.1.3. Accelerometer mount point 

While the accelerometer can be mounted on any surface of the wheel 

perpendicular to the steering column axis, the location should be chosen carefully to 

reduce noise, vibration and excessive g’s and/or motion based accelerations due to 

wide rotational arcs. For example, an accelerometer placed at the extremities of the 

steering wheel will experience wider rotational arc’s which might make it more 

susceptible to picking up linear, motion based accelerations. An accelerometer placed 

in the center of the wheel would experience few artefacts, but might be 
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inconveniently placed if it interferes with the safety mechanisms of the vehicle. A 

balance has to always be made by the operator to determine the best mount point.  

 

3.4.1.4. Rotations beyond 360° 

Most steering wheels rotate through more than 360°. This effect can be 

compensated for through the use of predictive readings. Whatever device reads the 

accelerometers output can integrate a tiny microcontroller to adjust for this. If 361° 

to 720° is the base case, any measurements beyond a full counter-clockwise rotation 

should adaptively read between 0° to 360° and any measurements beyond a full 

clockwise rotation should adaptively read between 721° to 1080°. 

 

3.4.1.5. Road angles 

If a vehicle in the course of accelerometer based SWM monitoring encounters 

an undulating road with ascending and descending gradients, no adjustments are 

necessary. As depicted in Figure 7, the calculated 𝜃 was always approximately the 

same for every given 𝜃𝑤  regardless of the angle of inclination (𝛼).  

The magnitude of accelerations measured in the x-y plane = 1 when the 

steering wheel is vertical (𝑖. 𝑒.  √(𝑨𝒙
𝟐 +  𝑨𝒚

𝟐) = 𝟏). For all other angles of inclination 

above or below 𝛼 = 90°, the x-y plane magnitude is proportionally lower than 1, but 
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always yielding the same angle 𝜃 relative to the steering wheel angle of rotation 𝜃𝑤. 

The rest of the magnitude is lost to 𝑨𝒛, which in turn reflects the angle of inclination. 

If the steering wheel being monitored for SWM has a very low angle of 

inclination, the values of 𝑨𝒙, 𝑨𝒚 would become very close to 0. At this point, reading 

rotational angles might become unreliable. Fortunately most steering wheels do not 

have this problem. 

In the event that this method of SWM monitoring is used on banked roads, 

the bank angle of the road will read into the tilt angle of the accelerometer and give 

small errors in angle estimation. This error due to bank angle may not be significant 

when monitoring SWM for drowsy driving detection. Furthermore, this can be easily 

compensated for through the use of a reference accelerometer. A reference 

accelerometer in this case is a static calibrated accelerometer which has its Y axis 

vertical and aligned with the gravity vector 𝒈. Any turn angle measured across the 

reference accelerometer is subtracted from the steering wheel accelerometer to 

compensate for the bank angle, thus restoring accuracy to the readings. 

  

3.4.2. Discussion of the gyroscope-accelerometer fusion method 

The gyroscope-accelerometer fusion method was tested for efficacy during real 

road driving. The described method allows for an inexpensive, non-intrusive, and 

very easy to implement drowsiness detection system without the requirement for 

complex equipment or major modifications to the current steering system. Although 
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some minor vibrations were seen during the mounting of the device in road tests, 

these vibrations affected angular signal at less than 0.1° angular displacement when 

unfiltered. However it is important to know that SWM assessment of driver 

drowsiness is a vehicle based behavioral measure which relies upon detection of 

trends slowly increasing towards drowsiness and not necessarily upon precision 

within 0.1°. Further assessments of the method through the creation of a mobile 

phone application were able to utilize the mobile device’s internal gyroscope and 

accelerometer for accurate SWM monitoring for drowsiness detection.  

βgyro was eventually chosen to be 0.99 and βaccel was chosen as 0.01. The 

output 𝜃𝑓𝑖𝑛𝑎𝑙 was the positional angle result of the combined IMU setup in degrees. 

This output indicated the current wheel orientation in units of degrees (°). The shock 

resistant gyroscope provided most of the SWM monitoring while the drift resistant 

accelerometer contributed only the minimum amount of orientation data to ensure 

that the gyroscope measurement was perpetually calibrated against gravity and did 

not drift with time.   

These findings are important because the method does not require extensive 

modifications to existing vehicle setups. The high affordability of this primarily 

gyroscope-based method also improves the feasibility of wide scale deployment. Many 

individual researchers and federal regulators have invested large amounts of time and 

manpower to stem the thousands of highway fatalities and injuries that occur 

worldwide each year as a result of drowsy driving. Although these efforts have 
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yielded reliable methods such as SWM, which has been touted by researchers and 

government agencies as a potential lifesaver, there has still been no widespread 

practical means to apply this method. As a result, the vast majority of highway 

vehicles continue to operate without drowsy driving detection mechanisms, and 

thousands of fatalities and injuries continue to occur annually. With this method, the 

well documented SWM method of drowsy driving detection can be applied to curb 

highway accidents and deaths with minimal cost to drivers and car manufacturers. 

The proposed method yielded an average accuracy of 83% and an average true 

positive rate of 83.75%. An earlier study performed by Johns (2003) proposed the 

detection of drowsiness with the amplitude-velocity ratio of eye-blinks and was able 

to achieve 75% true positive rate. A later study by Picot (2010) also utilizing eye 

activity including PERCLOS yielded an 81.7% true positive rate. PERCLOS alone 

was only able to achieve 82.8% true positive rate (Picot, 2010). True positive rate 

was calculated as the ratio between the number of “drowsy” samples correctly 

classified by our system and the number of actual drowsy labelled samples. 

 

3.4.2.1. Slight variations between 𝜽𝒘 and 𝜽𝒇𝒊𝒏𝒂𝒍 

Slight variations existed between 𝜃𝑤 and 𝜃𝑓𝑖𝑛𝑎𝑙 which could be observed in the 

high velocity rotation testing performed in 3.3.10. The 𝜃𝑓𝑖𝑛𝑎𝑙 signal which comprised 

mostly of gyroscope data exhibited “ears” at the beginning and end of very sudden 
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turns during periods of high and rapidly changing angular velocities (Figure 12a). 

Overall, the  𝜃𝑓𝑖𝑛𝑎𝑙 readings maintained high accuracy, even during sudden 

movements. Although such unusually high velocity steering activities are not 

expected to occur except during the most extreme driving cases, possibly involving 

road accidents. Despite this, the readings of  𝜃𝑓𝑖𝑛𝑎𝑙 maintained high accuracy. 

 

3.4.2.2. Comparison of the accelerometer-gyroscope method with the 

accelerometer-based method  

 The proposed method yielded a more noise resistant method of SWM 

monitoring when compared to the accelerometer-based method described in chapter 

3. The use of a low pass filter is effective against vehicle and road noises using the 

previous method, however, if a practical application of SWM monitoring calls for no 

phase shifting margin, then the current fusion method might be better suited. Phase 

shifted signals retain their accurate waveforms, however time delay could occur if 

filtered improperly. The currently proposed method did not demonstrate any need 

for filtering, even during real road trials. 

 The unfiltered accelerometer-based method, while more prone to linear 

vibration noise than the current method, is very effective in drowsy driving 

simulation tasks especially as it is dangerous to place sleep deprived subjects on the 

highway.  
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The benefit of the currently proposed system is the enhancement of the 

strengths and weaknesses of two completely different sensors in a method whereby 

they both work more effectively. The use of a gyroscope for the majority of the SWM 

data eliminates the problem of linear vibrations due to the gyroscopes insensitivity to 

such data. It is seen that both methods are effective and accurate for their 

individually specific tasks. The current method was not prone to road noise, engine 

noises, and other vehicle noises. 

 

3.4.3. SWM recording methods and road characteristics 

No unexpected effects were yielded when the final gyroscope-accelerometer 

fusion was road-tested in these experiments, however, as relevant discussion which 

may be applicable in unique road conditions, the role of road characteristics is 

discussed here.  

Road curvature contributes a slow, low frequency component to SWM signals. 

At the highway speeds applicable to the proposed algorithm’s speed cutoff, the low 

frequency component appears as a low amplitude slow variation which hovers at 0°. 

It is insignificant in comparison to higher frequency, significant amplitude inputs 

characteristic of lane keeping SWM. If it is desired to completely eliminate this 

component however, Mortazavi et al. (2009) prescribed subtracting the mean SWM 

component from the data. Fletcher et al. (2005) ascertained that subtracting the 

running mean will eliminate this component. 
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Lane changes provide a similar signal component to that seen in road 

curvature. As an alternative to removing the mean component, Otmani et al. (2005) 

found that this component can easily be completely eliminated through the exclusive 

use of SWM turns between 0.5° and 5°. Ting et al. (2008) suggested that regardless 

of low frequency components, the use of any SWM signals might be irrelevant for 

drowsy driving detection if they are below 6–10°, because a fatigued driver uses large 

SWM (6–10°) or extremely large SWM (> 10°), which are unmistakable when 

compared against any low frequency, low amplitude components. Östlund et al. 

(2004) mentioned that the spectral power of useful SWM lies within the 0.3‐0.6 Hz 

band, outside the range of road characteristic components. Sherman et al. (1996) ran 

spectral analyses and found that these low frequency components lie within the 0-

0.03Hz range, while useful SWM is from 0.1-2.0Hz, which agrees with other 

researcher findings.  
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Figure 14. Sherman et al. (1996) used a high pass filter to eliminate baseline 

variations due to road characteristics. At highway speeds, these variations are much 

less significant, but are still easily eliminated. 

 

 

Because lane change, road curvature, and tilt can contribute a slow, low 

frequency, low amplitude component to SWM data, there could be a resulting 

baseline component in the signal. This component may vary as the road does, but 

does not drift. A high-pass filter will eliminate this component.  

 

3.5. Summary and conclusion 

Simulation and experimental results showed that accelerometer (R2 ≈ 1; p < 

0.001) and fusion (R2 ≈ 0.96; p < 0.05) measured wheel rotation angles were linearly 

correlated with the actual wheel rotation angles registered by the potentiometer, and 
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that SWM recorded were also strongly correlated with actual wheel rotation. The 

excellent agreement between the proposed methods estimated wheel rotation and the 

actual wheel rotation suggests that inertial measurement technologies can be a useful 

tool to monitor the SWM for the detection of drowsy driving. Because of their cost-

effective nature, the proposed methods could help proliferate the practical 

deployment of individual drowsy detection without the need for complex equipment 

or major modifications to the current steering system.  

This study demonstrated that the IMU technologies can be used to accurately 

monitor SWM for drowsy driving activities including sudden corrections and wide 

angle corrections. The efficacy of the method was confirmed by comparing the SWM 

estimates generated by the method with actual SWM readings collected from the 

steering wheel potentiometer, yielding high correlations. The high correlations 

suggest that IMU methods could be used as a direct replacement of other SWM 

measures for the implementation of SWM based drowsy detection algorithms.  
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Chapter 4. Specific Aim 2: Experimental validation of the proposed 

approaches for accurate fatigue detection. 

4.1. Introduction to the evaluation process for inertial sensor based drowsiness 

detection 

As discussed earlier in chapter 2, researchers have proposed many methods for 

the detection of drowsy and fatigued driving including detection by monitoring 

Steering Wheel Movements (SWM). Research has determined that SWM is both an 

effective and unobtrusive method for the detection of driver drowsiness (Sayed and 

Eskandarian, 2001; Thiffault and Bergeron, 2003). Researchers have consistently 

reported a correlation between a driver’s frequency of steering adjustments and their 

level of drowsiness (Vanlaar et al., 2008; Dahl, 2008). Not only does the regularity of 

SWM input decrease in drowsy drivers, but when SWM inputs do occur they are 

large and sudden (Thiffault and Bergeron, 2003; Borghini et al., 2012). Researchers 

also observed that SWM inputs in fatigued drivers have fewer micro-corrections and 

more macro-corrections, with sleeping drivers making no corrections (Yabuta et al., 

1985; Chaput et al, 1990; Eskandarian et al., 2007). It has been demonstrated that 

the majority of sampled drivers show an increasing trend towards faster and larger 

steering corrections as they become drowsy (Eskandarian et al., 2007).  

The ability for an inertial sensors to accurately estimate SWM angle was 

introduced earlier in chapter 3. Angular data alone does not give drowsiness 

detection. The unanswered question left from the prior study was the most 
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important question: how effective would the method be when it is actively used for 

drowsiness detection. This current chapter addresses the question by extracting 

relevant features from the angular data and investigating the accuracy of drowsiness 

classifications based solely on accelerometer data. Results were compared to the 

classification results yielded from other well-known methods. 

The implementation of the accelerometer for SWM monitoring requires a 

minimal setup that is easy to install and uninstall. The only requirement is that the 

accelerometer be affixed to any surface of the steering wheel that will allow the 

accelerometer to be perpendicular to the axis of the steering column. 

Hu and Zheng (2009) explored the use of Support Vector Machines (SVMs) to 

create training models for the detection of drowsy driving. In that study, the alert 

and drowsy states were labeled using the Karolinska Sleepiness Scale, the Karolinska 

Drowsiness Score, as well as data ranked by the duration of time to accident.  In 

that study, the SVM model was then trained using 11 EOG parameters including 

blink duration, blink amplitude, lid opening and closure speed and duration above 

80% of rise amplitude among other measures. The highest predictive value had a 

cross-validated accuracy of 80.74%. 

This study was conducted by collecting driving data from participants, 

labelling their data, and then using machine learning algorithms to generate 

predictive models which could independently classify drowsy-states using provided 

data rows.   
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Support Vector Machines (SVM) were used to classify drowsy states. The 

machine learning algorithms initially classified drowsiness based solely upon non-

intrusive accelerometer based SWM. Finally, the algorithms were used to classify 

drowsy states based upon physiological and behavioral predictive values for 

comparison. 

This study demonstrates the implementation of an inertial sensor-based 

method for drowsy driving detection. It shows how the method will be effective and 

yield high accuracy classifications of a driver’s drowsy state. This demonstrates the 

potential of the method to save lives. 

 

4.2. Methods 

4.2.1. Drowsiness detection using accelerometer based SWM monitoring 

4.2.1.1. Experimental Subjects 

Eight subjects consented to participate in this study. The mean number of 

years of licensed driving was 8.63 years while the median was 5 years.  The mean 

participant age was 27.5 years while the median was 25 years. The group consisted of 

7 males and 1 female. All participants were required to have at least a year’s worth 

of licensed driving experience. All participants were monetarily compensated for their 

participation. A sample of the participant data collected is shown in Appendix 4. 
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4.2.1.2. Equipment 

Physiological and SWM data were collected via an amplifier based on the 

ADS1299 Low-Noise, 8-Channel, 24-Bit Analog Front-End for Biopotential 

Measurements (Texas Instruments, Dallas, TX). EEG data were collected with the 

use of an electrode cap fitted with AgCl electrodes. EOG data was collected from 

vertical and horizontal channels using AgCl cup electrodes. OpenDS open source 

vehicle simulation software was used to provide driving scenarios. 

 

4.2.1.3. Driving tasks 

The participants were recruited to perform driving tasks in a vehicle simulator 

setting. The simulator was equipped with a steering wheel and automatic 

transmission. The driving tasks were specifically designed to augment the aims of 

this dissertation. As much drowsy information was to be collected from the 

participants to improve labelling and training of the machine learning models.  

Previous studies have shown that visual stimuli including message signs 

markedly diminish the onset of drowsiness symptoms (Merat and Jamson, 2013). 

Further, it was seen that applying simple road markings such as chevrons diminished 

the measures of drowsiness (Merat and Jamson, 2013). Results gathered from 33 

driving simulator participants showed that road markings, message signs warning 

against drowsiness, and even the well deployed rumble strips all gave similar 

reductions in drowsiness with no marked difference between the three treatments 
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(Merat and Jamson, 2013). As a result, it was necessary to eliminate as much visual 

stimuli as possible as they could be as effective as rumble strips in delaying the 

intended effects of drowsiness.  

Additionally, to increase the subject’s likelihood of giving useful drowsy data, 

the roadways had to be as monotonous as possible (Thiffault and Bergeron, 2003; 

Merat and Jamson, 2013; Oron-Gilad and Ronen, 2007). Thiffault and Bergeron 

(2003) designed research to create a drowsiness inducing road which was optimized 

to be as geometrically monotonous as possible. Specifically for simulator monitoring 

of driving behavior, Rosey et al., (2008) noted that for adequate steering control on 

roadways, the driver must preview the road ahead and then make minute SWM 

inputs necessary to stay in the lane. The same was also noted by previous 

researchers (Donges, 1978; Land and Horwood, 1995; Land and Lee, 1994).  

Because monotonous roads are where drowsy related accidents are likely to 

occur (Merat and Jameson, 2013), and Gray and Regan (2000) also found that 

delayed reaction times which lead to accidents occur on monotonous roads, it was 

necessary therefore to prioritize such roads in the current study to gain maximum 

physiological, physical and behavioral drowsiness data. As a result, the participants 

of the current study were tasked with maintaining a course of travel without making 

road exit events. Road exit events occurred whenever the indicated white lane 

markings on either side of the road were encroached upon. Due to slow drifts, it was 

impossible for participants to maintain course on the road without experiencing road 
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exit events unless constant routine SWM inputs were made to maintain the course. 

A drowsy driver therefore who had become sufficiently inattentive or hypovigilant 

would eventually exit the road. In addition, all roadside distractions were removed. 

The driver was faced with a road with lane markings on both sides. All road signs 

and unnecesary road markings were removed 

All participants performed 4 driving tasks with each task lasting 45 minutes. 

This brought the total driving period to 180 minutes per individual. During this 

time, the driver’s physiological signals of EOG and EEG were collected.  

 

Figure 15. Illustration of a participant performing driving tasks 

 

4.2.1.4. Data collection 

Driving data from the participants were recorded from both physiological and 

SWM readings. Physiological data included EEG and EOG. Video of the driver’s 

eyes was also recorded during this period using a high definition camera. 
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During the driving tasks, the participants EEG signals were recorded from the 

Oz and the Fz channels of the International 10-20 EEG mapping, where Oz and Fz 

are commonly used for drowsiness and fatigue studies (Hu and Zheng, 2009). 

Electrodes were referenced to linked earlobes. The participants Horizontal EOG 

(HEOG) were recorded to track their eye speed and movements as they scanned the 

centerline and the solid lane markings which they were required to remain within. 

The participants ECG were also recorded. The biosensors used for ECG, EEG, and 

EOG monitoring were AgCl electrodes. The EEG electrodes were used with an 

electrode cap. A high definition camera was used to monitor the driver’s eyes for eye 

closure events which were used as a supplement to validate EOG data for PERCLOS 

analysis.  

PERCLOS80 analysis were performed using the same EOG method used by 

Picot (2010). For confirming the PERCLOS and eye-blink data, video data was 

sectioned into 1 minute periods, and then each minute of video was exhaustively 

inspected several times by at least 2 researchers to validate the physiological 

measurements.  

 

4.2.1.4.1. Data recording of physiological and behavioral predictive features.  

The physiological and behavioral data recorded as predictors of drowsiness per 

minute were: 
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1. Theta power at Fz: The theta power collected at location Fz of the 

International 10-20 system was used as a predictor of drowsiness. Periods 

of increased theta power suggests that the driver was approaching a sleepy 

or drowsy episode. 

 

 

Figure 16. Participant’s electrodes were affixed in positions according to the 

International 10/20 system (Sharbrough, F. et al., 1991) 

 

2. Alpha power at Oz: Alpha power was collected from the occipital region at 

location Oz of the International 10-20 system. Periods of increased alpha 

power indicated that the driver was in the initial periods of reduced alertness. 

Increased alpha activities have been shown by researchers to indicate 

increased sleepiness (Merat and Jameson, 2013). Alpha rhythms are increased 
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during the transition from alertness to drowsiness and are attenuated during 

alert periods (Torsvall and Åakerstedt, 1987). Increased alpha activities 

indicate that mental relaxation has begun to settle in, and hypovigillance 

could occur at this stage. Continuing in this relaxed stage could eventually 

lead to full drowsiness. 

 

Figure 17. Bursts of theta wave activity: theta wave activity were used as a 

predictive feature. 

 

3. The number of eye blinks per minute : Another predictor of drowsiness 

used was the number of eye blinks observed per minute. Eye blinks increase as 

drivers become more drowsy which underlines the positive relationship 

between drowsiness and eye blinks. (Picot et al., 2009; Papadelis et al., 2007). 

Eye blink frequency has been found to be especially high right before driving 

accidents occur (Papadelis et al., 2007). Apart from being a physiological 
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measure, eye blinking could also be considered as a behavioral predictor of 

drowsiness. 

4. The average horizontal eye speed via HEOG : As drivers become more 

drowsy, it is expected that their eye speed of scanning the road will change 

with time (Shin et al., 2011; Virkkala et al., 2007). The average eye speed per 

minute was collected using the method described by Chieh et al. (2005). 

5. PERCLOS 80: PERCLOS indicates the number of times per period of time 

that the eyes are closed. PERCLOS values are especially high right before 

accidents (Papadelis et al., 2007). In this case, the period of time measured 

was one minute. P80 was used which indicates that the eyes had to be closed 

at least 80% to be included in the analysis.  

 

4.2.1.4.2 Accelerometer-based SWM features.  

During the driving tasks, the angle of rotation of the steering wheel was 

measured using accelerometer-based SWM monitoring. An MPU-6050 digital 

accelerometer component (InvenSense, San Jose, California) was employed.  

The hardware method for accelerometer-based SWM signal collection was 

introduced previously in chapter 3. The most important equation of the method 

related the static acceleration due to gravity measured across the accelerometer’s x-

axis (𝑨𝒙) with that measured across the y-axis (𝑨𝒚) according to Equation 3.11. 
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A neutral steering wheel position gave a 0° reading. Right turns from the 

neutral steering position yielded positive angle values while left turns from neutral 

gave negative steering angle values. 

 

Figure 18. Drowsy SWM (above) are more sudden and of higher amplitudes 

than alert SWM (below) 

 

4.2.1.4.3 Predictive features extracted from the SWM signal.  

The accelerometer-based SWM predictive features of drowsiness per minute were: 

1. The number of sudden SWM  turns exceeding 8.3°s -1: During 

driving tasks, drowsy participants make large and sudden rotations of the 

steering wheel with increasing frequency. The threshold used to qualify 

large and sudden turns were those above 8.3°s-1.The number of turns 

which were found in excess of 8.3°s-1 were recorded each minute.  

2. The number of SW M  zero crossings: As drivers become more drowsy, 

their driving patterns become more erratic and they meander within their 
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lane. Drowsy drivers also become more prone to exiting their lane. The 

number of SWM zero crossings is a measure of how much corrective 

steering is being required by the drowsy driver as they attempt to remain 

in their driving lane. This is distinct from normal and less drastic lane 

maintainance SWM inputs characteristic of alert drivers. More frequent 

crossings of the 0° mark indicate reactive inputs. 

3. The standard deviation of steering wheel movements : As drivers 

become drowsy, their driving patterns eventually show signs of meandering 

from the lane center. This can be observed in the increased standard 

deviation of the SWM recordings.  

4. The average amplitude of SWM  turns : Although the total number of 

SWM turn inputs decrease during periods of drowsiness, the average 

amplitude of turns that do occur increase as the SWM inputs become less 

frequent, but larger in amplitude.  

 

4.2.1.5. Labelling the data rows with drowsy classes 

Similar to the labelling criteria used by Arun et al. (2012), alert blocks were 

labelled as the first 10 minutes of the initial 2 drives when the drivers were still 

expected to be alert while drowsy/fatigue blocks were labelled as the last 10 minutes 

of the final 2 drives when drivers had been subjected to hours of monotonous driving, 

and were expected to be experiencing fatigue. Arun et al. (2012) determined that 
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drowsiness would set in after 1.5 hours or 90 minutes of driving. Our earliest drowsy 

label began at 125 minutes of prolonged, monotonous, non-interactive, drowsiness 

inducing driving. 

 

Figure 19. The criteria for drowsy state labelling 

 

4.2.1.6. Training and validation of machine learning algorithms.  

Physiological and behavioral predictors were used independently for training 

and validation: Theta power at Fz, Alpha power at Oz, the number of eye blinks per 

minute, the average horizontal eye speed via HEOG, and PERCLOS 80. The 

proposed SWM values were used together as predictors to train a single model. The 

SWM measures used where all derived from the accelerometer-based method: (1) the 

number of sudden SWM turns exceeding 8.3°s-1, (2) the number of SWM zero 

crossings, (3) the standard deviation of steering wheel movements, and (4) the SWM 

average amplitude of turns. 
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4.2.2. Test for Accuracy of the gyroscope based Method for Detecting 

Drowsiness.  

Due to the tendency for gyroscopic drift, gyroscopes were not independently 

used for drowsiness classification. Instead, a progression was made towards the fused 

method involving accelerometers and gyroscopes as explained below in Section 4.2.3. 

 

4.2.3. Test for Accuracy of the fusion Method for Detecting Drowsiness.  

For determining the methods accuracy in detecting drowsiness, drowsy data 

collected from 24 hours of driving tasks involving 8 participants. Every 180 minute 

period contributed by each driver was sectioned into 180 blocks of 1 minute each.  

 

4.2.3.1. Physiological predictive features.  

The physiological predictive features used for this validation experiment were: 

1. Theta power at Fz. 

2. Alpha power at Oz.  

3. The number of eye blinks per minute. 

 

4.2.3.2. Behavioral predictive features.  

The behavioral predictive features used for this validation experiment were: 

1. The average horizontal eye speed via HEOG. 

2. PERCLOS 80.  
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4.2.3.3. Inertial sensor based predictive features.  

The inertial sensor predictive features used for this validation experiment per minute 

were: 

1. The number of sudden SWM turns exceeding 8.3°s-1 

2. The number of SWM zero crossings. 

3. The standard deviation of steering wheel movements  

4. The average amplitude of SWM turns  

 

4.2.3.3. Data block labelling.  

The first 5 blocks of the first 2 driving tasks were labelled as alert. The last 5 

minutes of the last 2 drives when drivers had been subjected to hours of monotonous 

driving, were labelled as drowsy. Similar labeling of drowsy driving via lengthy time 

durations have been used by Arun et al. (2012). 

 

4.3. Results 

4.3.1. Assessment of the Accelerometer-based measure of SWM for drowsy 

driving detection 

After data blocks had previously labelled as described in 4.2, validation was 

performed and the results are described here.  
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Physiological data were used to train the SVM and tested with 10-fold cross 

validation. The Physiological data were: Average Theta power at Fz, and Average 

Alpha power at Oz. Behavioral data used were: Average Eye movement speed, and 

PERCLOS 80 score.  

Finally accelerometer generated data were together used for training the SVM 

with a combination of the following predictor values: The number of steering wheel 

zero crossings, the standard deviation of steering wheel movements, and the average 

amplitude of SWM turns. 

Trained Support Vector Machines using the labelled data yielded Table 6. 

Table 6. Accelerometer SWM measures and their accuracy levels during 

machine learning classification 

 Drowsiness Measure Sensitivity 

(%) 

Specificity 

(%) 

Mean 

Accuracy (%) 

Accuracy 

Paired - t 

 M easure Ref.     

Proposed 

Vehicle Measure 

Accelerometer  

predictors 

current 76.88±12.79 80.00±10.69 78.44±10.17  

Physiological  

Measures 

Theta Fz (Åkerstedt and 

Gillberg, 1990) 

70.00±18.71 73.75±14.08 71.88±14.38 t: 1.59 

p: 0.07 

 Alpha Oz (Sayed and 

Eskandarian, 

2001; Thiffault 

and Bergeron, 

2003) 

68.13±17.72 68.125±14.62 68.13±13.55 t: 2.10 

p: <0.04 

Behavioral  

Measures 

HEOG  

speed 

(Eskandarian et 

al., 2007; 

Åkerstedt and 

Gillberg, 1990) 

66.25±24.61 76.25±9.16 71.25±9.16 t: 1.74 

p: 0.06 

 PERCLOS80 (Borghini et al., 

2012; Picot et 

al., 2009) 

78.13±15.80 60.63±18.98 69.38±12.16 t: 2.24 

p: <0.03 
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At 78.44% and 80.00% respectively, the average accuracy and specificity of 

drowsiness classification using the proposed accelerometer method outpaced 

drowsiness classifications from other well-known methods including EEG, 

PERCLOS, and EOG.  

 

Figure 20. The described accelerometer-based approach demonstrated higher 

accuracy than any of the other predictors it was compared against. 

 

In summary, the average accuracy of drowsiness state classification using only 

accelerometer-based predictors was 78.44%±10.17 which gave better accuracy 

compared to other tested measures.  
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4.3.2. Assessment of the gyroscope-based measure of SWM for drowsy 

driving detection  

Due to gyroscope drift which led to an eventual offset from the actual SWM 

signal, the gyroscope-based method was not assessed for its efficacy for drowsiness 

detection.  

 

4.3.3. Assessment of the Accelerometer-gyroscope fusion based measure of 

SWM for drowsy driving detection  

Training Support Vector Machines using the labelled data yielded Table 7. 

Physiological data were used to train the SVM and tested with 10-fold cross 

validation. The Physiological data were: Average Theta power at Fz, Average Alpha 

power at Oz. Behavioral data used were: Average Eye movement speed, and 

PERCLOS 80 score.  

. Finally IMU generated data were together used for training the SVM with a 

combination of the following predictor values: The number of steering wheel zero 

crossings, the standard deviation of steering wheel movements, and the average 

amplitude of SWM turns. 
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Table 7. Accelerometer-gyroscope fusion SWM measures and their accuracy 

levels during machine learning classification 

 Drowsiness M easure Sensitivity 

(%) 

Specificity 

(%) 

M ean 

Accuracy(%) 

Accuracy 

Paired - t 

 M easure Ref.     

Proposed 

Vehicle  

M easure 

Fusion 

predictors 

current 83.75±21.34 83.00±15.58 81.25±16.43  

Physiological  

M easures 

Theta Fz (Virkalla et al., 2007), 

(Suciu et al., 2011) 

66.25±28.25 78.00±13.89 88.75±13.56 t: 1.59 

p: 0.07  

 

 Alpha Oz (Akerstedt and 

Gillberg,1990),  

(Huang et al., 1996) 

52.50±32.40 68.00±15.79 83.75±5.17 t: 2.04 

p: <0.05 

Behavioral  

M easures 

HEOG  

speed 

(Shin et al., 2011), 

(Virkalla et al., 2007) 

60.00±26.18 69.00±18.12 72.50±15.81 t: 3.55 

p: <0.01 

 PERCLOS

80 

(Wierwille et al., 

2003), (Picot et al., 

2010) 

70.00±19.27 69.00±21.50 68.75±12.46 t: 2.40 

p: <0.03 

 
 

 

Figure 21. The proposed accelerometer-gyroscope fusion method was 

equivalent to or significantly better than other compared methods at accurately 

predicting driver drowsiness. 
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For further analysis, a participant’s data was sectioned into 5 minute periods 

for a total of 36 data points per 180 minutes. During each 5 minute period, the 

average EEG theta power in the frontal region Fz showed positive correlation to the 

number of SWM sudden turns recorded by 𝜃𝑓𝑖𝑛𝑎𝑙 (Spearman: 0.71, p<0.05; Pearson: 

0.68, p<0.05; R2: 0.46, p<0.05) (Figure 22). Sudden SWM inputs were considered to 

be any steering rotations in excess of 8.33°s-1. The number of eye blinks recorded by 

EOG were also positively correlated with the number of sudden SWM activities 

(Spearman: 0.75, p<0.05; Pearson: 0.72, p<0.05; R2: 0.51, p<0.05).  

 

 
 

 

Figure 22. Significant positive correlations exist between the SWM signal and 

drowsy measures 
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Table 8. SWM measures correlated positively with drowsy measures even in 

simple statistical analysis 

Drowsiness 

M easure 

Correlation 0-1 (all p<0.05 ) 

Known M easure Spearman Pearson R 2 

Increased Theta (Fz) 0.71 0.68 0.46 

Increased Blinks 

(VEOG) 

0.75 0.72 0.51 

 

Artificial Intelligence, namely Support Vector Machines gave more powerful 

results than simple statistical correlations could, effectively classifying a driver as 

either alert or drowsy. 

 

 

Figure 23. Participant’s EEG theta wave power at Fz as well as SWM 

measure of sudden turns demonstrated significant increases during drowsy periods. 
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4.4 Discussion 

The proposed methods of accelerometer and gyroscope-accelerometer fusion 

demonstrated a high level of accuracy when classifying participants as either drowsy 

or alert. Accuracy was defined as the proportion of the total number of class 

predictions that were correct predictions. Importantly, it was shown to be a valid 

predictor of drowsiness as it outpaced the other compared measures. 

With the implementation of this method, the well documented SWM method 

of drowsy driving detection can be applied to curb highway accidents and deaths 

with minimal cost to drivers and car manufacturers. Inertial-based SWM systems 

can be installed in vehicles where they can be used to detect driver’s drowsy 

behaviors without the need for intrusive, complex and expensive physiological 

methods. The method is a cost-effective, efficacious, and accurate way to implement 

wide-scale drowsy driving detection.  

 

4.5. Chapter conclusion  

This chapter demonstrated that a simple inertial motion sensor can be used to 

accurately monitor drowsiness and make accurate classifications of the driver’s 

current state using only SWM predictors. The efficacy of the method was confirmed 

through the use of machine learning algorithms with 10 fold cross-validation to assess 

the accuracy of the method. The method was able to accurately predict when the 

drivers were alert and when the drivers were drowsy. 
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The findings of this study demonstrate that the method of inertial sensor-

based drowsiness detection via SWM is an easy to implement and practical way to 

deploy individual drowsy driving monitoring. The method does not require extensive 

modifications to existing vehicle setups. And the high affordability of the 

accelerometer-based method improves the feasibility of wide scale deployment. Most 

importantly, the method shows a high degree of accuracy even when deployed 

independently using machine learning.  
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Chapter 5:  Specific Aim 3: Practical Implementation of the novel 

approach - A smartphone-based method for real-time IMU drowsy 

driving detection. 

5.1. Introduction to the smartphone-based method for drowsy driving detection 

In the aim of delivering the newly developed method to a widely available 

carrier, smartphone implementations of the technology and algorithm were 

undertaken. This study was conducted by applying the theoretical algorithms 

derived in earlier chapters, especially chapter 3. Apps were written to effectively 

convert smartphones into a drowsy driving mobile computer. The apps gained access 

to internal sensors including a gyroscope, accelerometer, and GPS chip, and the 

retrieved data were used to assess driver drowsiness in line with the developed 

algorithms. A linear potentiometer was used in the steering column to measure SWM 

and turn angles for comparison against the smartphone readings. The combined 

setup was used to monitor SWM over an extended period of time and the results 

were recorded.  

After initial successful trials in comparing the steering output of the 

smartphone based method to a linear potentiometer reading, the limitations of the 

potentiometer based method were easily observed. The potentiometer was practical 

only in simulator environments, and would require extensive modification to install 

in a standard motor vehicle. Additionally, such a setup would require additional 
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hardware and software to further process the input data into drowsiness data, tasks 

a smartphone can perform all at once. 

The method described in this chapter provides not only for the 

implementation of drowsy driving monitoring on newly manufactured vehicles, but 

due to its non-intrusive nature it also allows for retrofitting on older vehicles and 

current model vehicles which on average continue to be manufactured with no 

drowsy driving detection mechanisms. 

In order to ascertain that a smartphone-based IMU was is more cost effective 

than the potentiometer method that has been proposed in literature, it was necessary 

to have a side-by-side comparison of costs. The potentiometer used by Thiffault and 

Bergeron (2003) is unspecified, however in the search for a suitable potentiometer, 

the following parameters were requested from Digi key: 

Low Error Tolerance – Tolerances at or below ± 3% of resistance is necessary 

for accurate SWM readings in a linear rotary potentiometer. 

Low Temperature Coefficients – Because vehicles travel in both summer and 

winter times, it is essential for learned data to not drift too much over time. Small 

changes in potentiometer angular readings could lead to miss-classification of 

drowsiness state. Coefficients at or below ±20ppm/°C fell into the criteria 

Ample Rotational Ability – There are a multitude of cheap small 

potentiometers that can be easily obtained, however, they are unsuitable for SWM 

monitoring because they are mostly limited to only 270° of rotation as a maximum. 
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For installation in a motor vehicle, the rotation range must be equal to, or exceed 

the rotational range of the vehicle steering wheel. The criteria in this case was that 

the potentiometer must be able to rotate at least 1080°, which is 3 full 360° rotations. 

Going by these minimum requirements, the cheapest 

potentiometer fitting this bill was the AR1KL.25 manufactured 

by TT Electronics which is cataloged on 

Digi-Key as 987-1179-ND. It produces 

1kohm of resistance and the unit cost is $58.21USD. For an 

increase to 500kohms, the most expensive potentiometer meeting 

this requirement was the 3400S-1-504L manufactured by Bourns Inc. under Digi-Key 

parts number 3400S-1-504L-ND and the unit cost is $203.25USD, which is more than 

double the cost of a new $99.99 iPhone 5c smartphone from AT&T. In addition, the 

smartphone method is widely available to everyone and remains on their person at 

all times. In addition, it does not require installation and has no initial cost of 

acquisition since it is already owned by most.  

In this mass production of vehicles, potentiometer costs could grow very large 

given these numbers, further adding to manufacturer reluctance 

to adopt such means except when mandated by Federal 

regulations. It is thus reasonable to say that an IMU based 

method is very cost-effective.  
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In technologically advanced countries, smartphone proliferation is very 

widespread. For example, the current penetration of smartphone use in the US 

comprises 61% of the entire population (Nielsen, 2013) and 73% of the Korean 

population (Noh, 2013). In England 94 % of adults and 90.3% of teenagers owned a 

mobile phone in 2012.  It is estimated that smartphone penetration as a percentage 

of mobile phone users among teenagers will reach 81% this year and will rise to 96% 

in 2017 (Beland and Murphy, 2014). At this rate, smartphones availability is largely 

expected to continue to grow.  

Table 9. Device Comparison 

 Smartphone Custom Built 

Hardware using the 

proposed fusion 

technology 

Potentiometer 

Initial cost of 

acquisition 

$0.00 (Already 

owned) 

$50.00 USD total for 

complete hardware 

(sensor, 

microcontroller, 

circuitboard etc.). Cost 

further minimized in 

mass production. 

$58.21USD to $203.25USD (For 

sensor only) 

Further 

Costs 

Steering wheel 

mount 

Installation if 

integrated install 

requested. 

 

PCB fabrication, 

microcontroller, and overhead 

costs for implementation in 

order to install into vehicles. 

Installation  M inimal, affix to 

steering wheel 

Minimal, affix to 

steering wheel or  

Integrated install into 

steering wheel 

Complete removal and re-

installation of vehicle steering 

column to attach 

potentiometer. 
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5.2 Material and Methods. 

5.2.1 Equipment 

Potentiometer data as a gold standard, as well as IMU-6050 data were 

collected via an amplifier based on the ADS1299 Low-Noise, 8-Channel, 24-Bit 

Analog Front-End for Bio-potential Measurements (Texas Instruments, Dallas, TX). 

iPhone IMU data was collected internally to the iPhone 4s (Apple, Cupertino, CA) 

exploiting it’s on board IMU sensors including its accelerometer and gyroscope. 

Accelerometer and Gyroscope data was calculated according to the equation: 

𝜃 = 𝑎𝑡𝑎𝑛 (
𝑨𝒚

𝑨𝒙
)         (5.1) 

This equation is similar to Equation 3.11, the difference shows up in its output: the 

angular results of 𝜃 are rotated 90° counter-clockwise for convenient use of the 

iPhone in the landscape orientation.  

Gyroscope and accelerometer data were then fused according to Equation 

3.15. GPS data were also recovered from the onboard chip and used for determining 

the drivers speed, position, location, and direction of travel for contextual 

understanding of the SWM data and for differentiating highway driving from 

motionless and low-speed SWM signals. Code was written in Objective C, C, and 

C++ for the real-time collation, processing, and classification of data extracted from 

built-in IMU and GPS sensors. The code can be seen in the Appendix of this 

document. LibSVM open source was ported into the machine learning algorithms. 
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MATLAB was used for the processing and analysis of the data, and for statistical 

comparisons of the methods to each other.  OpenDS open source vehicle simulation 

software was used to provide driving scenarios.  

 

Figure 24. Systems design of the classification system 
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Figure 25. Operational flowchart of the device operation 

 

 

5.2.2 Gyroscope drift assessment 

The iPhone was affixed to their steering wheel using a vehicle steering wheel 

fastener as shown in Figure 26.  Driving tasks were performed using OpenDS driving 

simulator to simulate long-distance highway driving for an hour. Based solely upon 
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gyroscope data, SWM data was recorded from the iPhone and the discrete MPU-

6050 MEMS IMU device. For reference, SWM data was also recorded from the 

steering wheel potentiometer. 

 

 

 

 

Figure 26. Recording SWM data using an iPhone, an IMU-6050, and a 

potentiometer. 

 

5.2.3 Correlation driving tasks 

Once the drift had been compensated for using a fusion filter for combining 

gyroscope and accelerometer data, the iPhone was once again affixed to their steering 

wheel using a vehicle steering wheel fastener as shown in Figure 26. Driving tasks 

were performed on the simulator for an hour and the correlations between the data 
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collected by the IMU-6050, the linear potentiometer, and the iPhone internal IMU 

devices were compared for accuracy and correlations. 

 

5.2.4 iPhone classification of drowsy driving via Support Vector Machines 

(SVM) 

Once it was accertained that iPhone SWM data was highly correlated to 

better known measures such as the potentiometer, it was assesed for its abilities to 

classify driver drowsiness using trained models with machine learning algorithms. For 

this LibSVM (Chang and Lin, 2011) was ported into the objective-C code and 

programmed into the iPhone. The code can be seen in the appendix section of this 

document.  

After Inertial sensor control, SWM measurement, machne learning SVMs, and 

other algorithm codes were ported into IMU project code, the iPhone was 

programmed and tested for its classification abilities. 

The iPhone was then fed with the trained model as well as SWM data to 

characterize as drowsy or non-drowsy, and the results were assesed for accuracy and 

agreement against offline methods such as more-powerful standalone PC’s. 

The radial basis function was used for Support Vector Classification in this 

smartphone implementation.  

𝐾(𝑥𝑖, 𝑥𝑗) =   𝑒−γ||𝑥𝑖 − 𝑥𝑗||
2

     (5.1) 
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The Radial Basis kernel function, K, mapped the inputs (xi,xj) to the feature space. 

(xi,xj) is example data, and γ represents the gausian function 𝛾 = (
1

2 𝜎2) . For the 

iPhone model training in this case γ =0.25.  

 

Figure 27. Radial Basis Function Classification 

 

Sixty (60) drowsy data points, each containing 4 drowsiness predictors (The 

number of sudden SWM turns exceeding 8.3°s-1, the number of SWM zero crossings, 

the standard deviation of steering wheel movements, and the average amplitude of 

SWM turns) were passed to the iPhone to classify using the ported LibSVM 

libraries. Also passed to the iPhone was a model trained offline on more powerful 

PC’s.  
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5.2.5 Context specific classification of drowsy driving via smartphone  

Context specific cues for drowsy driving detection using a smartphone include 

such factors as the speed of travel when characteristic drowsy SWM signals are 

observed. An alert driver attempting to find a parking space at low speeds might 

make characteristic drowsy SWM inputs. A broader knowledge of driving conditions 

will reduce false positives.  

 

5.3 Results  

5.3.1 Gyroscope drift assessment 

With the iPhone affixed to their steering wheel, driving tasks were performed 

using the OpenDS driving simulator to simulate long-distance highway driving 

revealed noticeable drift after about 15 minutes. The drift was high enough to 

change the gyroscope reading. Figure 28. shows a difference between accelerometer 

measured angle and gyroscope measured angle. This difference was minimal at the 

start of recording, but increased as the gyroscope drifted with time. All further 

iPhone SWM readings implemented an optimized Acceleromter/Gyroscope fusion 

which eliminated drift.  
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Figure 28. Recording SWM data using an iPhone, an IMU-6050, and a 

potentiometer. Unfused gyroscope data revealed drift over time 

 

5.3.3 Correlation driving tasks 

Once the gyroscope drift had been compensated for through the use of a 

fusion filter combining gyroscope and accelerometer data, the iPhone was once again 

affixed to their steering wheel. Driving tasks performed using OpenDS driving 

simulator to simulate long-distance highway driving for an hour revealed high 

correlations between the iPhone IMU data, the MPU-6050 MEMS IMU device, and 

the steering wheel potentiometer. 
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Figure 29. The iPhone accelerometer SWM data was highly correlated to the 

iPhone fusion data, except the fusion data was free of characteristic accelerometer 

vibration noise. The correlations were as shown below 

 

Table 10. Correlating accelerometer data with fusion data 

Correlation Measures (all p-values <0.05) 

R2 xcorr Pearson’s Spearman Kendall 

0.99 0.9953 0.9947 0.9922 0.9563 

 

 

Figure 30. iPhone IMU data, MPU-6050 IMU data and potentiometer data 

were in strong agreement. 
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Table 11. Correlating iPhone fusion signal to linear potentiometer signal 

Correlation Measures (all p-values <0.05) 

R2 xcorr Pearson’s Spearman Kendall 

0.9970 0.9987 0.9987 0.9986 0.9719 

 

 

 

Figure 31. A section showing only Potentiometer and iPhone data 

 

 

Figure 32.  An Early Training Version of the App 
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Figure 33. The IMU App, as Viewed from the iPhone Home Screen 

 

5.3.4 iPhone classification of drowsy driving via Support Vector Machines 

(SVM) 

After LibSVM code was ported into IMU project code, the iPhone was 

programmed and tested for its classification abilities. 

The 60 drowsy data points which were input, each containing 4 drowsiness 

predictors (The number of sudden SWM turns exceeding 8.3°s-1, the number of SWM 

zero crossings, the standard deviation of steering wheel movements, and the average 

amplitude of SWM turns) yielded results which showed 100% classification 

agreement between classification performed by the PC and the classifications 

performed independently by the iPhone code. This result demonstrated the succesful 
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independent operation of the algorithm, and assured that the device can be improved 

at anytime through the simple uploading of a newer trained model. Of further 

benefit, it was not neccesary for training to be performed on the iPhone for the 

accuracy to be as high as on a standard PC. 

 

Figure 34. Support Vector Machines were used to accurately classify drivers 

as drowsy or alert. In final implementation, this classification process was automated 

and streamlined 

 

 

Figure 35. End User App View 
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The model files were loaded into the iOS operating systems folders were it 

could be accessed by the IMU classifier program. For each one minute of SWM data, 

a file “fileToClassify” was generated based on the 4 parameter data observed over the 

past minute. The “fileToClassify” was then passed through the classifier algorithms 

along with “model.txt” were each line was labelled as drowsy and non-drowsy. By 

providing a PC and the iPhone with identical “fileToClassify,” classification 

agreements were recorded at 100%. Each line of data is assigned a discrete result 

“classifiedOutput” which pertains to their drowsy status over the last 1 minute block. 

 

5.3.5 Contextual categorization of drowsiness 

The use of contextual determination of drowsiness helped ensure a reduction 

in false positives. A sample of participant data is shown below in Figure 36. This 

participant exhibited large amounts of SWM data that could be classified by the 

machine as drowsy due to the high standard deviation and large number of sudden 

turns of the SWM signal. However knowledge of the vehicle speed enables a better 

interpretation of the data.  
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Figure 36. Contextual SWM readings: the effects of low speeds 

 

Highlighted in red boxes are driving periods which could be prone to a higher 

number of false positives due to unusually high number of high amplitude turns and 

increased standard deviation. However a contextual analysis of the vehicle speed 

data reveals speeds close to 0 mph, coinciding with the low speed activities typically 

seen in city traffic, parking maneuvers, and small road navigation. Outside of these 

red boxes, the machine learning algorithms are much more effective during the more 

typical highway drive. It is not expected that any highway going vehicle would in 

any event encounter a 90 turn except in the event of a significant accident. 
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Figure 37. Contextual understanding of motion and location can enhance 

SWM assessment of drowsiness. (a) An iPhones view of a driver being monitored for 

drowsiness; (b) The actual route driven. 

 

5.3.4 Final iPhone app  

The final app combined the Graphical User Interface (GUI) app with the 

SVM machine learning app to create a real-time method for practical drowsy driving 

detection.  

Drowsiness data from the iPhone was collected at intervals of 1 minute similar 

to the earlier trials. Each minute was processed to generate an SWM signal, and 

then the signal was further processed to extract the 4 predictor values: the number of 

SWM zero crossings, the standard deviation of steering wheel movements 

(STDSWM), the average amplitude of SWM turns, and the number of sudden SWM 

turns exceeding 8.3°s-1. These values were used for drowsiness classification via the 

offline trained models. These predictor values were then fed into the machine and the 

provided training model for classification. Each minute yielded a definitive real-time 
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result: drowsy or not drowsy. A drowsy classification will then display a visual 

notification on the screen.  

 

Figure 38 Practical deployment of a smartphone application 
 

 

5.4 Discussion and conclusions about the evaluation  

This chapter describes how a smartphone which is equipped with internal 

IMU abilities can be repurposed through code to be a highly accurate means for the 

measurement of SWM, and additionally a means for collecting and classifying driver 

drowsiness data.  

A simple tri-axial accelerometer and gyroscope on board the smart phone can 

be used to generate SWM signals which can then be used to actively monitor 

drowsiness and make accurate classifications of the driver’s current state.  
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The findings within this chapter demonstrate that the method of smartphone-

based drowsiness detection via SWM is an easy to implement and practical way to 

deploy individual drowsy driving monitoring. The method does not require extensive 

modifications to existing vehicle setups. The high affordability and proliferation of 

suitable smartphones improves the feasibility of wide scale deployment.  

With the implementation of this method, the well documented SWM method 

of drowsy driving detection can be applied to curb highway accidents and deaths 

with minimal cost to drivers and car manufacturers.  

 

 

5.4.1 Classification accuracy when compared against PC results 

The classification accuracy of the smartphone method was demonstrably very 

high when classifying predictor variables side-by-side against a PC, agreeing 100% 

with offline classifications. This was expected as they both classified using the same 

trained models.  
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Chapter 6: Summary, discussion, and suggestions for further studies 

6.1 Summary 

This study described the theoretical basis and algorithms necessary for the 

development of effective, low-cost, non-obtrusive technologies for the accurate 

monitoring of SWM signals and detection of drowsiness via inertial sensors. Results 

indicated that SWM monitoring using accelerometer (R2 ≈ 1; p < 0.001) and 

accelerometer-gyroscope fusion (R2 ≈ 0.96; p < 0.05) were highly correlated to SWM 

signals recorded using a linear potentiometer. When Support Vector Machines were 

used to train machine models for 10-fold cross validation of drowsiness classification, 

a mean accuracy level of 81.25% was achieved using the accelerometer-gyroscope 

fusion technique.  

The described technologies provide a simple means to deploy a well-

documented method of drowsy driving detection by SWM which hitherto has 

remained within the positive results of numerous successful driving trials, but has yet 

never proliferated widely into the automobile industry where it has potential to save 

lives. The proposed method provides not only for the implementation of drowsy 

driving monitoring on newly manufactured vehicles, but due to its non-intrusive 

nature it also allows for retrofitting on older vehicles and current model vehicles 

which on average continue to be manufactured with no drowsy driving detection 

mechanisms. 
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The classifiers used in this study were intended to demonstrate the efficacy of 

inertial sensors method. The selection of machine learning parameters or kernels were 

not optimized. Although a high overall accuracy of 81.25% was achieved using only 

data derived from the fusion of inertial devices. It is expected that future work will 

include method optimization of the SWM predictors selected, fine tuning of labelling 

criteria, tweaking of machine learning parameters and types, as well as the use of 

larger and more robust datasets to bring overall accuracy closer to 100%. 

 

6.2 Discussion 

6.2.1. Applications of the Novel Method for the Detection of Drowsy Driving 

It is predicted that unobtrusive methods for the early detection of drowsy 

driving will become vehicle standards and multiple unobtrusive methods will 

eventually be used in combination for improved accuracy and reduction in false 

positives. 

Not only is the NHTSA revamping its safety rating program, but it is also 

currently actively recommending that consumers purchase vehicles with drowsiness 

detection systems. For the 2012 model year, the NHSTA identified 68 models with 

either lane position tracking technologies or collisions warnings technologies or both. 

Only 45 models were identified by the same criteria in 2011 (NHTSA, 2011).  It is 

expected that vehicle manufacturers will rapidly adopt drowsiness detection systems 
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in their vehicles provided that they are unobtrusive, cheap to implement, closed loop 

from detection to intervention, and have high accuracy with low incidences of false 

positives. Any system that provides this has the potential to be widely adopted and 

proliferated within the next 10 years. This provides an important advantage to the 

IMU technologies studied in this dissertation.  

An advantage of portable devices deployment of drowsy driving mechanisms is 

that older cars can be retrofitted or equipped with smartphone or PDA based 

systems such as the systems proposed by Li and Chung (2013) or Chieh et al. (2005). 

In 1997, Brown (1997) estimated that reliable and affordable technological 

countermeasures against driver fatigue would be commercially available within 5- 10 

years. This prediction was partly true in that the technology of drowsy driving 

detection was becoming reliable. Unfortunately there are no truly widespread closed 

loop solutions, with all such solutionse sold exclusively in more expensive upper-end 

vehicles.  

Because safety ratings and consumer awards are very important to car 

manufacturers, early adoption of inevitable safety mechanisms will be imperative on 

their part. Due to the large numbers of deaths and injuries due to drowsy driving, 

drowsiness detection technologies will almost certainly become standard safety 

features such as seatbelts and airbags once the technology is matured, effective and 

affordable enough.   
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6.2.2. Criteria for selection of inertial methods: Comparison of technologies, 

and when to use which technology?  

Accelerometers: In low noise road or simulator based environments, the 

accelerometer-based method might be adequate or preferable to a gyroscope-

accelerometer fusion method if an experimenter has access to cheaper accelerometers. 

The use of band filters would benefit an accelerometer-based application in the 

presence of noise. 

For monitoring SWM in the accelerometer-based method, an accelerometer 

was essentially used as an angular position sensor. Because the accelerometer is 

always subjected to acceleration due to gravity,𝒈, even when it appears to be at 

“rest,” the effects of gravity can always be detected on each of the three 

accelerometer sensing axes. Accordingly, any accelerometer with a range of at least 

±1𝒈 can theoretically be used as a rotation sensor relative to the horizontal plane in 

the presence of the earth’s gravitational field.  

Similar to gyroscopes, accelerometers can also be used to measure the rate of 

angular change by dividing the angular change in tilt by the change in time or more 

generally, by taking the derivative of the accelerometers angular readings. At the 

same time, the accelerometer is always calibrated towards the gravity vector 𝒈. For 

the accelerometer-based method for SWM monitoring, 𝑨𝒛 does not represent rotation 

in the x-y plane. However, 𝑨𝒛 is still very useful for the detection of the angle of 

inclination, 𝛼 and the gradient of climb or descent. 
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Gyroscopes: Gyroscopes can also be used to derive information about the 

orientation of the steering wheel. Once a gyroscope is spinning, it tends to maintain 

its axis of rotation. This can be used to determine its relative orientation. A tri-axial 

gyroscope outputs 3 values, which indicate the rate of change of angle for each axis, 

usually in °s-1. These values can then be used to determine the motion of the steering 

wheel relative to its original position where the rotor first started spinning. By 

knowing the prior tri-axial position and then adding the subsequent rotation derived 

from rate of change data, the new axial positions can be estimated. This method 

however may need calibration before each use to reset to a relative gyroscope reading 

of 0° before adding on the relative changes. The gyroscope itself cannot measure 

position, however, it can detect angular changes and then help to derive the new 

position by integrating the angular velocity signal received from the gyroscope. This 

introduces drift, however into the estimate (Luinge et a., 1999). The positions 

derived from the gyroscope remain relative not to the steering wheel for instance, but 

to the location where the rotor first started spinning. Knowledge of the gyroscopes 

original orientation, which an accelerometer can provide, is necessary to gain any 

benefit from knowing the rate of change relative to that original position. The 

tendency for reasonably-priced gyroscopes to drift does not make them agood choice 

for real-time SWM monitoring. 



 

117 

 

Fusion: Although analog accelerometers are coming into widespread use, there 

has since come about the availability of 6-axis digital MEMS sensors which 

incorporate both a gyroscope and an accelerometer in a tiny footprint (4x4x0.9mm) 

such as the one used in this study. The benefit of this newer sensor type is that the 

combined setup helps to simultaneously improve the accuracy of both the 

accelerometer and the gyroscope. Because accelerometers are prone to linear 

vibration noise and gyroscopes are prone to slow drifts, the combination of the two 

sensors has provided new opportunities for SWM monitoring that were originally not 

available in discrete analog inertial sensors. Further, these opportunities are provided 

in a very tiny, unobtrusive, and inexpensive package.  

 

6.3. Suggestions for further study 

Future work on the gyroscope-accelerometer method described in chapter 3 

will involve embedding this technology into vehicle steering wheels which can be 

implemented independently of smartphones. Vehicle manufacturers will benefit from 

such an implementation. Other future work will include the investigation of alternate 

inertial components by manufacturers to further optimize cost/performance output 

for the end user. 

Further work on the smartphone-based method described in chapter 5 will 

include increased contextual determinations of drowsiness. Modern smartphones are 
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able to receive data on the time of day, times of sunrise/sunset, weather conditions 

including rain/fog/mist, and other potential contributors to drowsy symptoms. 

Additionally, an individual’s cellphone can store individual characteristic data. 

The current method as it is would require drivers to undergo a training period 

to collecting their unique drowsy driving parameters for proper labelling of their data 

in order to generate the most appropriate model suitable for their driving habits. 

Future work will explore the possibility and feasibility of more generalized features 

which can be seen across all drivers. This could potentially eliminate the training 

period for individual drivers. Alternatively, an appropriate form of unsupervised 

machine learning could be explored. 
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Appendices 

Appendix 1: Detailed literature review 

A1.1 Limitations in Current Detection Technologies - Ground Truth 

Ground truth when it comes to drowsiness is very difficult to determine. 

Fragoso et al. (2013) used baseline measures for driving behaviors which included 

medical history, daily driving mileage, Insomnia Severity Index (ISI), Epworth 

Sleepiness Scale (ESS), and Sleep Apnea Clinical Score (SACS).  

Daza et al. (2014) proposed a method termed “Supervised KSS” for generating 

ground truth by using binary classification of KSS scores. The scores were divided 

into alert (1-6) or drowsy (8-9) with responses of 7 discarded. A 3 expert panel voted 

on ground truth based upon KSS scores, visual observation, and vehicle sensor data.  

Many researchers have used EEG as ground truth for drowsiness, since the 

alpha bands and theta bands yield direct brain indicators of sleep and drowsiness. 

It was important, during the literature review portion of this dissertation, to 

stress the relevance of ground truth when interpreting the results cited in this 

review. Each result was understood to be relative to the participant datasets used for 

analysis and well as the data processing methods used. An 82% drowsiness detection 

accuracy in one experimental setting was not considered necessarily better than an 

80% drowsiness detection accuracy in another; the results were all read contextually. 

Additionally, the same data sets obtained from different technologies (EEG, Eye-

Closures, SWM, SDLP) were shown to yield different classification accuracies 
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depending partly on the efficacy of the technology, but also partly upon the method 

subsequently used for data processing, classification, the machine learning algorithms 

used, or the optimizations performed. The reported classification accuracies in and of 

themselves did not immediately suggest that one data collection technology was 

superior to the other. In general, accuracy was the ratio of the number correct 

classifications to the total number of classifications.  False positive rates were 

generally the rate of positive drowsiness classifications in an individual known to not 

be drowsy.  
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A1.2: Referenced Literature Reviews on drowsy driving detection  

 

Table A1.2. Drowsy Driving Method Reviews 

Ref. Review focus 
Dissimilarity to independent 

review 

Sahayadha

s et al. 

(2012). 

The prior review is focused on sensor 

technologies 

The prior review is limited to 

sensors. The current independent 

review seeks to cover a general 

overview of technologies. 

Brown, 

(1997) 

The prior review contributes 

predictions on future drowsy driving 

technologies 

The current review describes how 

the predictions may have 

materialized. 

Kang 

(2013) 

The prior review was focused on the 

driver and his/her driving behaviors 

including driver distractions and 

other unsafe practices. 

The current review does not 

emphasize driver distraction, rather 

the focus is on driver drowsiness 

detection technologies. 

Powell et 

al. (2010) 

This prior review is based on a 

discussion about sleepiness behind 

the wheel and its risks. The review 

describes the history of the drowsy 

driving problem, as well as causes of 

drowsy driving.  Legal case studies 

were discussed and the comparative 

effects of alcohol were discussed. 

A historical discussion on drowsy 

driving. The current review 

provides a focus on the development 

and evolution of technologies which 

formed around the problem of 

drowsy driving. 



 

142 

 

Liu et al. 

(2009)  

Liu et al. (2009) reviewed the current 

state of knowledge to determine if 

vehicle based measures such as SDLP 

are a reliable predictor of drowsiness 

in real time. It described the methods 

of drowsiness manipulation that have 

been used in peer-reviewed studies, 

and then gave information such as 

the vehicle-based measures used to 

quantify drowsiness, the driving tasks 

involved, and the outcome of the 

vehicle based measure.  

Liu et al. (2009) covered the current 

state of drowsy driving detection, 

however, the technologies behind 

them were not mentioned except 

when pertinent for basic 

understanding of the review. The 

current review is focused primarily 

on technologies. 

MacLean 

et al. 

(2003) 

MacLean et al. (2003) wrote a review 

on the current state of drowsy 

driving prevention. It discussed the 

long term solutions to drowsy driving 

through educating drivers about sleep 

deprivation, and how to help drivers 

identify drowsy driving. It also 

discussed legislation aimed to curb 

drowsy driving. 

The current review does not focus 

on preventative measures of 

engaging drivers such as education 

but rather aims instead to describe 

the interplay between technological 

innovations and drowsy driving. 

Dinges et 

al. (2005)  

The prior study reviewed 

technologies to assess the effects of 

feedback from a  

group of fatigue management 

technologies (FMT) on alertness  

 

The current review does not test 

any technologies, it is only intended 

as a review of technologies. 

Williamson 

et al., 

(2011)  

The review aimed to examine 

evidence for the link between fatigue 

and safety, especially in transport 

and occupational settings.  

The current review examines 

fatigue, and safety, based around 

the technologies that detect 

drowsiness. 
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Smolensky 

et al., 

(2011) 

Smolensky et al. (2011) compiled a 

review on the effects of sleep 

disorders and medical conditions on 

excessive daytime fatigue, which lead 

to an increased accident risk. 

The current review benefits from 

analyses of sleep disorders because 

an understanding of them leads to a 

better insight of how to apply 

technologies to detect sleep 

deprived drowsiness. 

Balkin et 

al., (2011) 

This review discussed the challenges 

and opportunities of technological 

approaches to fatigue management 

including pre-work tests for fitness-

for-duty assessments. It focused on 

the practical applications of the 

technology 

The current review also has a 

technological focus. However, rather 

than overviewing chiefly primary 

technologies, a wider view of the 

evolution of all related technologies 

is provided. 
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A1.3: Existing physiological signal receivers 

Researchers have made use of a wide variety of physiological signal receivers 

to collect and amplify EEG signals. Portable EEG devices have been employed to 

reduce the intrusiveness of EEG readings. Liu et al. (Liu et al., 2013) adopted the 

portable brainwave sensor by NeuroSky (San Jose, CA, USA) to collect data from 

scalp location FP1. This device was wireless, portable and used dry electrode 

transducers. It was also independently capable of processing raw brainwave data, and 

is based upon an open platform with an interface that allows for the development of 

compatible Android and iPhone applications. Other portable equipment such as the 

B-Alert (Biopac, Goleta, CA) has provided portable EEG monitoring (Davis et al., 

2009; Stevens et al., 2007a; Stevens et al 2007b). The B-Alert is wireless and allows 

researchers to monitor participants for EEG and heart rate (Brown et al., 2013; 

Johnson et al., 2011). The B-Alert system has fixed sensor locations for three head 

sizes (small, medium and large). The B-Alert X10 system included positions: Fz, F3, 

F4, Cz, C3, C4, P3, P4, POz (positions depicted in Figure 16), as well as ECG 

monitoring. Brown et al. (Brown et al., 2013) noted that the B-Alert X10 system 

integrated the amplification, digitization and transmission of signals while being 

worn on a single compact unit on the head. The same study noted that combining 

the amplification and digitization of EEG close to the sensors and wireless 

transmitter keeps signal quality high even in areas of high EMI interference. 
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Lin et al. (2013) used EEG to monitor the changes that occurred in the brain 

after a drowsy driver received arousing feedback. Campagne et al. (2004) established 

correlations between lower-frequency EEG changes and driving errors. Khushaba et 

al. (2011) found that EEG channels were capable of achieving low error rates 

(<10%) in drowsiness classification without any assistance from other methods. By 

adding either EOG or ECG channels, the results showed further improvements in 

reduction of error rates. Using EEG signals, Murugappan et al. (2013) extracted 

wavelet based features which were then used to determine the drowsy states of 

participants. Researchers observed via EEG that drivers had sleep bursts 

accompanied by theta waves and K-complexes while they still had their eyes open, 

something EOG and video monitoring might have missed. Furthermore, the drowsy 

drivers were oblivious to the fact that they had been driving while asleep (O’Hanlon 

and Kelley, 1977). 
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A1.4: Other researchers approaches  

Table A1.4. Drowsiness detection technologies and their outcomes 

Ref. 
Approa

ch 
Classification 

# 

subject

s 

Sensor 

Positive 

outcome 

measurement 

Negative 

outcome 

measurement 

Self-reported 

limitations 

Drowsiness 

Validated 

by 

(Oslund et 

al., 2004) 
EEG Bilateral test 

Not 

reported 
Electrode 

True positive: 

84.16% 

False Positive: 

19.59% 

Eye blinks and 

yawns would 

improve 

reliability 

Not reported 

(Kaur and 

Kaur, 

2013) 

EEG 
Neural 

Network  

Not 

reported 
Electrodes 

True positive: 

81.80% 

False Positive: 

18.20% 

Only 25 

channel EEG 

limits accuracy 

Not reported 

(Chieh et 

al., 2005) 
EOG 

Comparison to 

threshold 
10 Electrode 

Detection rate 

89.56% 
Not reported Not reported webcam 

(Hu and 

Zheng, 

2009) 

EOG SVM classifier 37 Electrodes 

accurately 

detect sleepy: 

86.67% very 

sleepy: 100% 

Wrong 

detection: 

16.67% 

Only sleep-

deprived 

subjects 

included. 

No data from 

alert condition 

KSS 

EEG 

(Arun et 

al, 2012) 

ECG 

 

Quadratic 

discriminant 

analysis(QDA) 

& KNN 

Classifiers 

15 

Electrodes 

IR 

Camera 

Drowsiness 

classification: 

100% 

None specified 

Normal state 

classification 

only 97.9% 

1.5hr drive 

(Li and 

Chung, 

2013) 

HRV 

(PPG) 
SVM classifier 4 

PPG 

sensor 

node 

95% accuracy 

95% sensitivity 

95% selectivity 

None reported None reported PERCLOS 

(Liu et al., 

2013) 
EEG 

Integrated 

ANN, SVM, 

and kNN 

40 Electrodes 
Correctness: 

81.3% 

False positives: 

23.9% 

Classifiers need 

3000 

generations to 

stabilize 

Pre-trained 

neural 

network 

(Sahayadh

as et al., 

2013) 

HRV(E

CG) 

EMG 

Std dev, mean, 

median, max, 

min, energy 

and LF/HF 

ratio of HRV 

15 Electrodes 

ECG drowsy 

detection: 

(p<0.01). 

EMG: 

(p<0.001) 

 

None reported 

Facial 

expressions 

didn’t correlate 

with KSS 

Video 

recording, 

KSS 

(Mardi et 

al., 2011) 
EEG ANN 10 Electrodes 

classification 

accuracy: 

83.3% 

None reported None reported 

ESS, 

Video 

Monitor 

(Rodrigue

z- Ibáñez, 

2011) 

Inductiv

e 

thoracic 

band 

Thoracic Effort 

Derived 

Drowsiness 

index (TEDD) 

36 
Electrodes 

Webcam 

Drowsy 

sensitivity: 

83.1% 

Selectivity: 

95.3% 

None reported 

Need further 

work to avoid 

band use 

EEG 

PERCLOS 

External 

Observer 

(Picot et 

al., 2010) 
EOG 

Fuzzy fusion of 

EOG data 
20 Electrodes 

True positive: 

81.70% 

False positive: 

13.40% 
None reported 

OSS 

PERCLOS 

(Damousis 

et al., 

2009) 

EOG 
Fuzzy expert 

system 
44 Electrodes 

92% accuracy 

in accident 

prediction 

30% false 

alarms 

Include EEG 

data in future 

to improve 

accuracy 

Correct 

Accident 

prediction 
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(Khushab

a et al., 

2011) 

EOG 

ECG 

EEG 

Kernel based 

LDA 
31 Electrodes 

97% accurate 

drowsy 

classification. 

5.58% 

Kernel spectral 

regression 

computationall

y expensive 

Expert 

observers rate 

video 

(Patel et 

al., 2011) 

HRV 

(ECG) 

Neural 

Network 
12 Electrodes 

90% drowsy 

classification 
Not reported 

limited data 

set means 

accuracy of 

neural network 

cannot be 

entirely 

validated 

Not reported 

(Krajewski 

et al., 

2009) 

SWM 

Average of 

linear kernel 

SVM, radial 

kernel SVM, 5- 

nearest 

neighbor, 

decision tree & 

logistic 

regression 

12 

Simulator

-based 

SWM 

monitor 

recognition 

rate 86.1% 

sensitivity 

:77.4%; 

specificity 

93.3% 

None reported 

Need more 

feature sets for 

comparison in 

future tests 

KSS 

(Dasgupta 

et 

al.,2013) 

PERCL

OS 

Haar – like 

classifier (face) 

SVM classifier 

(eyes) 

20 Camera 

Eye state 

classification: 

97% 

False 

Positive:5.5% 

Poor results for 

drivers wearing 

glasses 

EEG 

(Abtahi et 

al., 2011) 

Yawnin

g 

Kalman Filter 

 

LDA classifier 

Not 

reported 
Camera Not reported Not reported 

Lighting, 

glasses, beard 

affect readings 

Not reported 

(Flores et 

al., 2011) 

Eye 

state 
SVM 

Not 

reported 
Camera 

As high as 

97.78% correct 

eye closure 

classification  

Some face and 

eye tracking 

failures 

Need stereo 

vision to 

improve future 

outcomes 

Videos of 

driver eye 

closures 

Tsuchida 

et al. 

(2009) 

Eyeblin

k 

interval, 

HRV 

(ECG) 

Loss-based 

decoding 

ECOC 

5 
Camera 

Electrode 

Accuracy: 

88.78% 
None reported 

LDA & KNN 

give poor 

classification 

NEDO Facial 

expression 

Bergasa et 

al. (2006) 

PERCL

OS, 

eye 

closure 

duration

, blink 

frequenc

y, nod 

frequenc

y, face 

position, 

fixed 

gaze 

Fuzzy classifier 
Not 

reported 
Camera Accuracy 100% None reported 

Glasses and 

sunlight 

decrease 

accuracy 

Hybrid 

measures 

 
Limitations on the studies listed in Table A1.4 include parameters tested by Arun et al. (2012). In this experiment, the 

researchers assumed drowsiness. In the absence of a proven benchmark however, it cannot be ascertained that the 

participants indeed became drowsy, therefore the reported 100% classification of drowsiness might not necessarily be 

adequate. Chieh et al. (2005) used a webcam to provide reference to EOG data during recordings, but it is not used as a 

benchmark, not even with the well-known PERCLOS method. A threshold of Rapid Eye Movements (REM) was then used 
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to classify EOG signals as either drowsy or not. Without side-by-side comparison with an established method, it is hard to 

ascertain reliability. 
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A1.5: Intrusiveness of Physiological methods: Electrodes  

Bio-potential electrodes conduct physiological signals from the measured skin 

tissue to the amplifier. Because of this very specific function, one of the most 

important characteristics of bio-potential electrodes is low skin-electrode impedance 

(Huigen, 2002). High impedances create noise and attenuate physiological signals 

(Miller & Harrison, 1974). Skin abrasion along with electrode gels are the usual 

method of reducing skin-electrode impedance. Abrasion irritates skin and can cause 

bleeding while skin gel hardens and loses conductivity over prolonged periods of use.  

In order to avoid the problems associated with wet electrodes, researchers 

have suggested the use of dry electrodes. Gondran (1995) demonstrated the use of Na 

super ionic conductors (NAISCON) to record bioelectric signals based on sodium ion 

exchange between the skin and electrode. The NAISCON electrode did not need any 

gel and the impedance decreased as a function of time as perspiration came in 

contact with the electrode, a process which began immediately upon application. 

Fonseca (2007) introduced a dry electrode with in-situ active pre-amplification to 

mitigate the effects of high skin impedance. Sellers (2009) demonstrated that hybrid 

dry electrode sensor arrays (HESA) work as effectively as wet electrodes. Taheri et 

al. (1994) proposed a prototype dry electrode for EEG recording which required no 

skin preparation or conductive paste but had the added potential for reduced 

sensitivity to motion artifacts and a better signal-to-noise ratio. The electrode was a 
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3 mm stainless steel disk with a 200 nm nitride coating. The dry electrode was found 

to perform on par with commercially available wet electrodes. 

More recently, Chang et al. (2010) fabricated silicon dry electrodes based on 

Micro-Electro-Mechanical Systems (MEMS) which pierce the upper layer (stratum 

corneum) of the epidermis, connecting directly to the electrically conducting layer 

(stratum germinativum) of the epidermis. The results showed that the dry electrodes 

on average had 4.4kohms lower impedances compared to wet Au and AgCl electrodes 

regardless of prior skin preparation.  

Silver based electrodes were the most popular electrodes found in literature for 

drowsy detection.  AgCl electrodes were used by researchers such as Chang et al. 

(2010).  Liang et al. (2005), made use of sintered Ag/AgCl electrodes. Ag electrodes 

were used by Otmani et al. (2005). Liang et al. (2005) suggested that drivers use as 

few electrodes as possible to make practical routine use possible. They also suggest 

the use of only 2 channels of EEG signals. 
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A1.6: Vehicle Simulation Technologies:  

Vehicle simulators provide a safe way to perform the human trials which are 

necessary to test the efficacy of driver drowsiness detection technologies. They avoid 

the risks and ethical dilemmas associated with placing heavily sleep deprived 

participants on busy public roads. Peters et al. (1999) explained that it would be 

unsafe to perform driving experiments with highly sleep deprived participants under 

real driving conditions, a high-fidelity highway driving simulator was used instead.  

Chang et al. (2010) among others made use of Virtual Reality (VR) based 

driving environments projected upon screens. It included a driving simulator cabin, 

and a Stewart motion platform with six degrees of freedom (lateral, longitudinal, 

vertical, pitch, roll, and yaw).  

Anund et al. (2008) conducted drowsy driving studies in an “advanced 

moving-base driving simulator” at the Swedish National Road and Transport 

Research Institute (VTI). The simulator had a cabin from the front part of a Volvo 

850 with a manual 5-shift gearbox. Car cabin noise and vibration levels were 

simulated. The participant had three channels of forward view totaling 120 × 30 

degrees from the participant’s view. The simulator model had been validated earlier 

(Chang et al., 2010; Aurell et al., 2000). The participants drove on a 2-lane 

motorway with a speed limit of 68mph. Ambient lighting corresponded to daylight 

and no other traffic existed. Anund et al. (2008) obtained speed (mean and 

variability) and lateral position (mean and variability) from the simulator. Lane 
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departure was defined as two wheels touching the lane boundaries (center line or the 

right edge line). 

Otmani et al. (2005) made use of a driving simulator PAVCAS (Poste 

d’Analyse de la Vigilance en Conduite Automobile Simule´e). It consisted of a front 

car cabin and a mobile base with four degrees of freedom. The simulator was located 

in a climatic chamber and the humidity, temperature, noise, and light were kept 

constant for all participants 

Brown et al. (2013) used The National Advanced Driving Simulator (NADS), 

which they claimed to be the highest fidelity simulator in the United States. It 

included a full size vehicle cab, and video provided by 360 degree visuals. The 

simulator built in functions were used to record drivers control input. The NADS has 

11 degrees of freedom and high frequency actuators which simulated road feel. 

Simulated sounds were provided by a 3D audio system. Brown et al. (2013) asked 

participants to complete surveys about how they felt about the realism of the 

simulator before study eligibility was determined. 

Lin et al. (2013) also tested participants in virtual-reality (VR) based 

highway-driving experiments. Liu et al. (2013) used vehicle simulations to test 

nighttime driving performance. Sasada et al. (2013) used a driving simulator (Toyota 

Central R&D Labs, Nagakute, Japan) to test the effects of drugs on driver 

performance.  The simulator software was run on a Windows XP Personal computer 

(PC) which had a connected steering wheel, accelerator and brake. Images were 
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projected onto a screen by LCD projector (TH-LB30NT; Panasonic, Osaka, Japan) 

(Iwamoto et al., 2008). 

Weiler et al. (2000) tested the effects of alcohol and drugs on drowsy driving 

made use of The “Iowa Driving Simulator” which collected data using built in 

functions.  It consisted of a domed enclosure mounted on a hexapod motion 

platform. The inner walls of the dome were the screen upon which images were 

projected. Simulated roads were a two-lane rural highway 12 feet wide with a posted 

speed limit of 55 miles/h with low-density traffic. 

Diego et al. (2013) demonstrated a method to properly define ground truth of 

the driving risk in a simulation task, to properly benchmark subsequent driving 

performance. The ground truth was generated through the evaluations of experts 

through a simulation reproduction tool called Virtual Co driver (Diego et al., 2011; 

Siordia et al., 2011). 

 

Limitations 

It is important to note that simulator drowsiness behaviors could be 

influenced by the subject’s knowledge that the consequences of driver errors in a 

simulator would not result in injury or death. Thus, from a psychological point of 

view, most simulator studies might require further studies (Papadelis et al., 2007). 

Studies which base algorithm results on simulator data are limited. Hallvig et al. 
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(2013) confirmed that significant differences existed between simulated and real 

driving outcomes on drowsy driving. Using a high fidelity, moving base driving 

simulator to monitor driving performance via EEG, EOG and subjective KSS, the 

simulator resulted in higher levels of subjective and physiological sleepiness than real 

driving. Furthermore, Lateral variability was more responsive to simulator night 

driving than in real driving. Real driving participants at night demonstrated a 

movement further left in the lane with an accompanying reduction of speed. These 

behaviors were not replicated in the simulator. In general, caution must be taken 

when drawing generalities from simulation data. 
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A1.7: Signal Processing and Analysis:  

Raw signals are rarely used directly for analysis of drowsy driving. For the 

purposes of analyzing and sorting through collected SWM signals as well as 

validation signals collected through other known methods, appropriate signal 

processing methods were researched for applicability and suitability of intended 

purpose. 

Usually processes are applied to the signals during and after data collection to 

convert them into more easily interpretable forms for the identification of drowsiness. 

Signal processing improves drowsiness detection because it aids in the extraction of 

pertinent data useful for drowsiness classifications. Signal processing also eliminates 

noise and other artefacts from signals. Signal processing techniques are relevant to 

certain primary technologies, for instance, PERCLOS as a measure of the percentage 

of eye closures during a given time does not immediately lend itself to Fast Fourier 

Transformations. The following methods have been used be researchers to process 

signals: 

 

Channel Separation: Lin et al. (2013) performed independent component 

analysis (ICA) on 30 channel EEG to separate the channels into independent 

components (IC) using EEGLAB. Papadelis et al. (2007) used the Infomax ICA 

algorithm to remove artifacts from their eight EEG channels data also using 

EEGLAB. After ICA separated out the independent components, EOG and EMG 
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data were then eliminated. Delorme and Makeig (2004) had earlier explained how to 

use EEGLAB for processing of EEG data. 

 

Fast Fourier Transforms: Fast Fourier Transforms (FFT) have been used 

to convert signals from the time domain into the frequency domain where it is 

decomposed into its frequency components. Lin et al. (2013) used FFT to convert 

data from the time domain to the frequency domain to enable further analyses of 

frequency bands. Brown et al. (2013) used a FFT to extract power spectral densities 

from EEG signals, especially alpha and theta power waves which were used to 

predict wakefulness. Researchers have used power spectrum analysis to detect the 

level of driver drowsiness (Chang et al., 2010; Liang et al., 2005). The frequency 

band where the power spectrum covers is then interpreted into the driver’s state of 

drowsiness.  

Li and Chung (2013) used FFT based methods on HRV data and found out 

that wavelet based methods performed better when analyzed as non-stationary 

signals.  

 

Differentiating Similar Data: Lin et al. (2013) used The Wilcoxon rank 

sum test (Matlab statistical toolbox, Mathworks) to identify significant differences 
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among combinations of feature extractions and classifiers for assessing the efficacy of 

the drowsy intervention feedback. 

 

Artefact Rejection: Jung et al. (2000). Proposed a method of removing a 

wide variety of artefacts from EEG data based on blind source separation by 

Independent Component Analysis (ICA). Papadelis et al. (2007) then used the 

Infomax ICA algorithm to remove artifacts from their EEG data.  

 

Filters: Filters are commonly used to remove line noise, baseline drift, and 

unwanted noisy artefacts. Using EEGLAB, Papadelis et al. (2007) passed EEG 

recordings through a band-pass filter by combining a 40 Hz 2nd order Butterworth 

low-pass filter with a 0.5 Hz high-pass filter. Papadelis et al. (2007) also band-passed 

filtered EOG data with a 13 Hz 2nd order low-pass Butterworth filter and a 1 Hz 

high-pass filter.  ECG data were filtered similarly with a 40 Hz 2nd order low-pass 

Butterworth filter and a 1 Hz high-pass filter. In the same manner, EMG data were 

filtered between a 100 Hz 2nd order low-pass Butterworth filter and a 20 Hz high-

pass filter. Papadelis et al. (2007) applied a 50-Hz hardware notch filter to all 

measurements to remove power line noise. 

Lin et al. (2013) pre-processed EEG data using a low-pass filter of 50 Hz and 

a high-pass filter of 0.5 Hz to remove both the line noise and baseline drift. Artefacts 
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such as muscle activity, blinks, eyes movement and environmental noise were 

manually removed.   

 

A1.8: Signal Classification methods considered:  

Although SWM signals and other signals used for drowsiness assessments can 

by themselves be used for drowsiness detection, they do not perform at the same 

level of accuracy, or at the same power when free of feature selection and 

classification. Even signals that have been adequately pre-processed then need to be 

passed to a classifier which intelligently sorts the incoming data as being 

characteristic of a drowsy individual or an alert one. 

Classifiers are simply methods to categorize inputs and for pattern 

recognition. It can be used to categorize SWM input signals into drowsy states and 

non-drowsy states. It can also be used to facilitate pattern recognition necessary for 

facial monitoring. Some of the signal classifiers that have been used for drowsy 

driving detection are: 

 

Support Vector M achines (SVM ): Vapnik and Cortes introduced Support 

Vector Machines (SVM) in 1995 (Alexander et al., 2011). SVM aims to split datasets 

into two parts: member objects of a specified class and non-member objects. It has 

emerged as a powerful technique for pattern recognition using wavelet based methods 

(Li and Chung, 2013). Li and Chung (2013) used SVM for feature classification of 
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HRV. SVM has also been used to classify data during EEG collection from drowsy 

drivers (Lin et al., 2013). The primary advantage of SVM is its ability to minimize 

structural and empirical risk (Khandoker et al., 2009).  

 

Gaussian M aximum Likelihood Classifier (M L): One of the earliest 

known users of the Gaussian maximum likelihood classifier (ML) method of 

classification were Hoffbeck and Landgrebe (1996). The decision rule in a Gaussian 

ML classifier is to label the vector x as class j if the likelihood of class j is the 

greatest among the classes. It was used by Lin et al. (2013) to classify data during 

EEG collection from drowsy drivers.  

 

K-Nearest Neighbor Classifier (kNN): K-nearest neighbor classifier 

(kNN) predicts the class of unknown instances by relating it to what is known 

according to a distance function (Lin et al., 2013). The key idea behind kNN 

classification is that “similar observations belong to similar classes” (Murugappan et 

al., 2013). Early work on kNN was done by Bay (1999) who wanted an algorithm to 

combine classification methods but designed to improve upon the accuracy of the 

already existing nearest neighbor (NN) classifier. kNN was used by Lin et al. (2013) 

to classify data during EEG collection from drowsy drivers. A further improved 

Dempster-Shafter theory (DS)-based kNN classifier was applied to EEG data 
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collected in five different psychological events (Yazdani et al., 2009). Experimental 

data showed that the improved DS-based method produced considerably better 

accuracy compared to traditional kNN method (Liu et al., 2013b). Larger feature 

vectors yield poor classification rates for kNN (Murugappan et al., 2013b).  

 

Linear discriminant analysis (LDA): The LDA classifier is another 

classifier that has been used to classify human physiological signals.  Murugappan et 

al., (2013b) used it for ECG classification and found it simple to use, partly because 

it has fewer computational requirements, and because it provided good results for 

several classification applications. The study reported that LDA does not require any 

external parameters for classification besides training and testing samples. It was also 

discovered that LDA was not optimal for nonlinear EEG data due to its linear 

nature. Chien and Wu (2002) used LDA to enhance class discriminability for facial 

detection while designing a hybrid method which would combine feature extraction, 

discriminant analysis and classification into one process. The greatest limitation of 

LDA found was that it only allows linear or quadratic relationships between the 

input and output (Murugappan et al., 2013).  

 

Artificial N eural Network (ANN): Artificial neural networks ANN work 

by learning both types of patterns (drowsy and non-drowsy). After the two types 
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have been learned, the EEG signals are then input into the system where they are 

then categorized into drowsy or non-drowsy (Liu et al.,2013). In research work 

performed by Subasi, (2005, 2007), a Discrete Wavelet Transform was used to 

analyze the EEG and the Daubechies 4 Wavelet Filter (DB4) was employed to 

categorize the signals into five levels. The features for these five levels were then fed 

into an ANN classifier. Another study used relative wavelet energy of the brainwaves 

as the input to an ANN classifier (Guo et al., 2008) while Sivasankari and 

Thanushkodi (2009) used Fast Independent Component Analysis (FastICA) to 

analyze the EEG before applying ANN classification. 

 

Laplacian Classifiers: The Laplacian Classifier was designed to solve the 

problem of classification in signal processing, the goal was to appropriately classify a 

test data set (Jenssen et al., 2007). Laplacian Classifiers have been used to simplify 

brain image analysis in combination with SVM classifiers (Cuingnet et al., 2010). 

 

Naïve Bayes: Naïve Bayes are simple Bayes networks which are widely used 

due to their efficiency and accuracy (Li et al., 2012). Li et al. (2012) used Naïve 

Bayes classifiers to identify the characteristics of EEG signals produced by humans. 
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Bayesian Networks:   A Bayesian network is a probabilistic system that 

integrates evidences from multiple sources into one representative format Ji et al., 

(2004). Fatigue was modelled by Ji et al. (2004) using Bayesian networks 

parameterized by nodes including: light, heat, humidity, anxiety, time zone, and 

sleep disorder. Arcs connect parent and child nodes representing probabilistic 

dependency. Bayesian networks can be trained by associating statistical probabilities 

to each of these nodes either through objective training data, or subjective surveys.  

 

Dynamic Bayesian Networks (DBN): A Dynamic Bayesian Network, is 

similar to a regular or static Bayesian Network, however it accounts for the dynamic 

nature of fatigue, wherein the interplay and relationship between nodes can be 

dynamically altered over time. Dynamic Bayesian Networks therefore account for the 

temporal aspect of driver drowsiness. (Ji et al., 2006) found that the utility of DBN’s 

lie in their ability to explicitly model events that are not detected on a particular 

point of time, but they can be described through multiple states of observation that 

produce a judgment of one complete final event. Yang et al. (2010) used DBN’s to 

recognize driver fatigue through fusion of multiple contextual and physiological 

features (EEG, ECG). First order Hidden Markov Models were used to compute the 

dynamic interplay of the DBN nodes at the different time periods.  
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Random Forests: A Random Forest (RF) is a machine learning ensemble 

classifier. As the name implies, an RF is a collection of many decision trees. Each of 

the trees makes a decision when fed with an input, and the mode decision that is 

output from the trees within the forest becomes the forests output. McDonalds et al. 

(2013) made use of RF’s to classify SWM data for detecting drowsiness related lane 

departures. They concluded that the method had a higher drowsiness classification 

accuracy than PERCLOS using 72 participant data. 

 

Overall, Liu et al. (2013) found in their particular study that the SVM 

classifier produced the best classification results of driver drowsiness using EEG 

when compared against ANN, kNN, and an Integrated Classification Method which 

used a weighted average of the other 3 methods.  The kNN classifier had the lowest 

accuracy in that particular case, however, the kNN classifier produced the best false 

negative outcomes. Lin et al. (2013) found that using feature extraction with 

principal component analysis (PCA) and ML classifiers achieved the best 

performance (mean: 77.8%±5.4). However, they also found that SVM yielded a more 

robust performance, regardless of whether feature extraction was used.  
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A1.9: Hybrid methods of drowsy driving detection  

SWM combined with other signal collection methods, such as physiological 

methods is often counter-intuitive as it undermines the SWM benefit of being non-

intrusive, simple, and non-obstructive. Typically, the use of multiple measures of 

drowsiness improves accuracy and reduces false positives. PSG is a comprehensive 

test that measures EEG, EOG, EMG, and ECG simultaneously and can be used to 

monitor daytime drowsiness (Li and Chung, 2013).  

A hybrid algorithm using EEG, EOG, ECG and wavelet-packet-based feature 

extraction had an accuracy of 97% in detecting driver drowsiness (Khushaba et al., 

2011). 

Khushaba et al. (2011) noticed that by using EEG with ECG signal only, they 

were able to achieve lower error rates than using EEG with EOG only. Using ECG 

or EOG alone however was unable to provide very powerful results. 

Liu et al. (2013a) simulated nighttime driving while monitoring both EEG 

signals and facial images to collect measurements which could be used for drowsy 

driving detection.  

Peters et al. (1999) collected data through a variety of measures during 

simulated driving including EEG recording, videotaping, driving performance data 

such as speed and lateral placement variance, and questionnaire data. 

Li and Chung (2013) correlated PERCLOS successfully to the KSS reports of 

subjects to indicate drowsiness. 
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Horne and Baulk (2004) established correlations between the EEG power 

(alpha and theta) and lateral lane position in simulated driving. 
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A1.10: Factors that influence drowsiness symptoms and outcomes 

A background introduction to the causes and influences of drowsy driving is 

necessary in advance of going any further into an assesment of drowsy driving 

technologies. To fully appreciate the mode of operation of the technologies, it is 

important to understand the underlying mechanisms that bring about the symptoms 

which technology can ultimately detect to provide an assessment of the driver. 

A major contributing factor to drowsy driving is sleep deprivation. Some 

drivers suffer sleep deprivation as a result of inadequate rest, sleep disorders, sleep 

disturbances, or other factors. It has been shown that sleep deprivation is just as 

dangerous to driver safety as alcohol intoxication (Tack, 1990; Malik and Kaplan, 

2005; Dahl, 2008; Williamson and Feyer, 2000) which could explain the resulting 

injuries, fatalities and declines in driver performance. It is known that drowsy 

driving is just as dangerous as drunk driving (Li et al., 2013; Haraldsson and 

Milavetz, 2013). Sleep deprivation has been shown to have adverse effects on 

attention, vigilance, decision-making ability, communication skills, and memory 

(Killgore, 2010; Raidy and Scharff, 2005; Harrison and Horne, 2000). The 

impairment caused by prolonged wakefulness can be adverse to cognition, judgment, 

or motor skills. Fatigue, monotony, or deprived sleep may induce drowsiness or 

sleepiness (Brandt et al., 2004). 

Time on task is also a major factor contributing to driver drowsiness. With 

prolonged driving, even those drivers who do receive sufficient sleep will eventually 
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suffer a decline in performance as time on task is extended. As vehicle operators 

drive for longer periods of time, they demonstrate increasingly worsening symptoms 

of drowsy driving, including unintentionally veering off their intended lane (Thiffault 

and Bergeron, 2003; Åkerstedt and Gillberg, 1990; Otmani et al., 2005; Phillip, 

2005).This is a form of task-based fatigue and the resulting drowsiness leads to a 

deterioration of awareness (Hamblin, 1987).  

It has been mentioned that drowsy driving mimics the negative effects of 

intoxication, however alcohol in itself can directly influence drowsy symptoms. Often, 

alcohol intoxication might cause a driver to demonstrate the positive signs of 

drowsiness. It is important to understand the effects of alcohol and controlled 

substances on drowsiness symptoms as they can significantly affect research 

outcomes despite best technologies. Researchers (Li, 2013) found that in general, 

alcohol and drug use impaired driving performance proportionate to the amount of 

alcohol or drugs that the driver had consumed. It was also seen that the resulting 

impairment contributed significantly to motor vehicle crashes. Because of results 

similar to this, Brown et al. (2013) and Weiler et al. (2000) tested all participants for 

Blood Alcohol Content (BAC) prior to experimentation to ensure they were not 

being influenced by alcohol.  

Drugs can either induce or alleviate symptoms of drowsiness. Weiler et al. 

(2000) found that driving simulator participants who took diphenhydramine were 

more coherent than when they took alcohol. It was also found in the same study that 
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lane keeping and steering ability were impaired by diphenhydramine and alcohol. 

Sasada et al. (2013) found that the drug Mirtazapine significantly increased SDLP as 

compared to the drug trazodone. Mirtazapine also increased participants subjective 

scoring of drowsiness on the Stanford Sleepiness Scale (SSS) compared to trazodone 

and placebo. After continuous use however, the effect was lost. The same study by 

Sasada et al. (2013) found that among sedative antidepressants, Tri-Cyclic 

Antidepressants (TCAs) showed anticholinergic (inhibiting the binding of the 

acetylcholine neurotransmitter leading to sedation) properties as well as other 

sedative properties. TCAs have been shown by several researchers to impair 

cognitive and psychomotor performance (Serretti et al., 2010) including driving 

performance (Ramaekers, 2003; Iwamoto et al., 2008). Drugs such as Zopiclone have 

been found to impair highway driving performance in both insomnia patients and 

healthy controls (Leufkens et al., 2014). Lin et al. (2013) ensured that all simulator 

participants were free of neurological and psychological disorders and that none 

abused drugs or alcohol. To avoid further influences, no subject reported sleep 

deprivation on the day before the experiments, and none must have worked night 

shifts during the preceding year or travelled through more than one time zone in the 

preceding two months. 

Caffeine is a stimulant that is used widely to improve driver alertness. As a 

result, Brown et al. (2013) asked participants not to ingest any caffeine or other 

stimulant drug prior to drowsy driving experimentation. Those who did were 
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removed from the study or rescheduled. Drinking coffee and napping both have 

statistically significant effects in reducing driving impairment and restoring alertness 

(Phillip, 2006). Cummings et al. (2001) found that drowsy driving crashes may be 

reduced by consuming coffee. 

Music can be used as a stimulant to relieve drowsiness in drivers. This is 

important as most vehicles are equipped with equipment to play music. Yokoyama et 

al. (2008) concluded that loud music suppressed and delayed the onset of drowsiness.  

Liu et al. (2013) found that music refreshed drivers. Cummings et al. (2001) found 

that drowsiness related crashes can be reduced if the driver plays the radio. 
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A1.11: Legal policies and regulations regarding drowsy driving  

In order to combat fatalities and loses due to drowsy driving, the U.S. 

Department of Transportation (USDOT) has implemented several “Hours of Service” 

regulations to help combat drowsy driving and reduce crashes and fatalities. For 

example, U.S. Federal regulations prohibit property-carrying commercial drivers 

from operating a motor vehicle without first getting 10 hours of rest. Importantly, 

private drivers are not held to the same regulations as commercial drivers, which 

potentially places them at risk for crashes, albeit given that private drivers have less 

incentives to drive long hours for profit. Property-carrying commercial drivers are 

also prohibited by federal regulations from operating their vehicles for more than 14 

hours since their last rest period. Passenger-carrying commercial drivers are required 

to get 8 hours of rest, and must not drive for more than 10 hours following rest 

(USDOT, 2013). There are at least seven states in the United States where laws exist 

pertaining to drowsy driving (NCSL, 2014). In New Jersey, driving with 24 hours of 

sleep deprivation is considered reckless driving, punishable by fines and jail-time, and 

in Utah road signs are being installed to warn against drowsy driving and to provide 

rest stop information to drivers based on findings by the Utah Department of 

Transportation on drowsy driving (NCSL, 2012). The California Department of 

Transportation does not permit any driver to operate a vehicle after having been on 

duty for 80 hours on any consecutive 8 days (CADMV, 2014). MacLean et al. (2003) 

discussed long term solutions to drowsy driving through education and legislation. 



 

171 

 

Although education could play an important role in stemming drowsy driving, the 

potential for human errors despite education and the possibility for drivers to 

subjectively underestimate their own drowsiness leaves a gap for technology. 
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A1.12: Administrative Measures in place to Prevent Drowsy Driving:  

Independent commercial vehicle operators tend to have policies in place which 

are expected to fall in line with federal and state regulations. Sometimes, due to an 

interest in increased profits, the operators either do not fully comply, or chose to 

turn a blind eye to state and federal regulations. As a result, several commercial 

operators have been fined for violating these regulations (TransReview, 2010) or for 

not enforcing policies intended to limit their driver’s service hours (TransReview, 

2010). Internal policies are intended to prevent employees from violating legal 

regulations. Unfortunately, administrative measures do not apply to the individual 

highway commuters who are at risk for drowsy accidents. 
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A1.13: Technological methods to detect and mitigate drowsy driving:  

Brown (1997) wrote prospects and predictions on driver drowsiness detection 

technologies of the future in 1997. Technology is able to definitively inform a driver 

of their drowsy state, rather than rely on prior education which many might 

unfortunately forget or ignore. The rate of technological advancement calls for 

sufficiently frequent reviews. 

Researchers have categorized the technologies for drowsy driving detection 

based upon the methods employed. Liu et al. (2009) categorized drowsiness measures 

into subjective, physiological, and vehicle based measures. Physiological and vehicle-

based measures of drowsy driving detection are almost exclusively technology driven. 

Subjective measures involve participant response questionnaires such as the 

Karolinska Sleepiness Scale (KSS). Subjective measures can be technology driven if 

participant responses are recorded via electronic devices, handheld computers, and 

tablet computers. Physiological measures include objective measures of human 

electrical signals, especially from the brain, eyes, muscles, and heart. Brain, eye, 

muscle and heart signals can be analyzed through electroencephalography (EEG), 

electrooculography (EOG), electromyography (EMG), and electrocardiography 

(ECG) respectively. Vehicle based methods of drowsiness detection include 

monitoring the speed of driving (Arnedt et al., 2001; Fairclough and Graham, 1999), 

the standard deviation of lane position (SDLP) (Ingre et al., 2006; Peng et al., 2012), 

and Steering Wheel Movements (SWM) (Fairclough and Graham, 1999; Fukuda et 
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al., 1995; Elling and Sherman, 1994; Thiffault and Bergeron, 2003; Borghini et al., 

2012; Eskandarian and Mortazavi, 2007; Chaput et al., 1990; Yabuta et al., 1985; 

Sayed and Eskandarian, 2001). Behavioral measures of drowsy driving involve facial 

monitoring for eye blinking (Papadelis et al., 2007), slow eye movements (SEM) 

(Shin et al., 2010), head nodding (Brandt et al., 2004), and eye closure activities 

including PERcentage of eyelid CLOSure (PERCLOS) (Xia et al., 2008; Wang et al., 

2006). Objective scales such as the Objective Sleepiness Scale (OSS) combine 

features of physiological and behavioral signs of drowsiness to score driver 

drowsiness. OSS algorithms score drowsiness based upon agreements between EEG 

data and physical eye closures. Finally, apart from the primary technology or 

methods behind drowsiness detection, including the aforementioned behavioral, 

physiological and subjective methods, there are secondary technologies that aid, 

support, and enhance the primary technologies. For example, while EEG is a 

primary technology for drowsiness detection, high conductance electrodes, low 

impedance electrode gels, and high quality bio-signal amplifiers are secondary 

technologies which support the primary measure. Secondary technologies are 

responsible for data acquisition from the primary technology, real time monitoring 

and interpretation of the same data, automatic determination of drowsy states based 

upon earlier interpretation of the data, and finally the feedback system which alerts 

the driver about their state of drowsiness. Owing to the fact that a lot of drivers, 

especially those with conditions such as sleep apnea tend to underestimate their 
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levels of sleep deprivation (Grenèche et al., 2008), combined with the large losses in 

human life due to drowsy driving, it is important that the technologies for drowsy 

detection are improved, affordable, and accessible.  
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A1.14: EEG Waves used in Drowsiness Detection:  

 

Table A1.14 EEG Waves used in Drowsiness Detection 

Wave Frequency Amplitude Occurrence 

associated with 

Alpha 8 – 13 Hz 30 - 50 μV Quiet rest 

Beta 14 - 30 Hz 5 - 20 μV Thinking 

Theta 4 – 7 Hz < 30 μV Drowsiness 

Delta 0.5 – 3 Hz 100 - 200 μV Asleep 
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A1.15: The Objective Sleepiness scale:  

The Objective sleepiness scale (OSS) was developed by Muzet et al. (2003) 

and is a hybrid of physiological and behavioral signs of drowsiness (Table A1.15). It 

involves the use of EEG to monitor alpha and theta waves as well as the monitoring 

of eye blinking data. A score of 0 indicates the driver is awake while a scale of 4 

indicates the driver is very drowsy.  

Table A1.15 Objective Sleepiness Scale (OSS) 

Score Cumulative EEG duration Blinks and eye movements 

0 No α or θ Normal 

1 α and/or θ < 5s Normal 

2 α and/or θ < 5s 

or 

α and/or θ > 5s 

Slow 

 

Normal 

3 α and/or θ < 10s 

or 

α and/or θ > 10s 

Slow 

 

Normal 

4 Continuous α and/or θ Slow 
 

 

Limitations of OSS for drowsy driving detection:  

OSS as a measure of driver drowsiness suffers from the same limitations as 

physiological measures of drowsy driving. EEG is obtrusive and unsuitable for daily 

use. EOG as a measure of eye movements and blinks is also intrusive. 
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A1.16: Subjective Sleepiness Scales:  

Subjective sleepiness scales such as the Karolinska Sleepiness Scale (KSS) are 

questionnaires for drivers to self-report their own feeling of drowsiness. There are 

several subjective sleepiness scales including the Karolinska Sleepiness Scale (KSS), 

the Stanford Sleepiness Scale (SSS), the Epsworth Sleepiness Scale (ESS) and the 

Retrospective Sleepiness Scale (RSS). The RSS uses the same scale as SSS, and is 

administered via survey, but it is an estimate from a continuous time measurement 

over the course of the drive. The mentioned subjective scales all feature a score based 

on subjective feelings of sleepiness as exemplified in Table A1.16. 

 

Table A1.16 Karolinska Sleepiness Scale (KSS) 

1 Extremely alert 

2 Very alert 

3 Alert 

4 Fairly alert 

5 Neither alert nor sleepy 

6 Some signs of sleepiness 

7 Sleepy, but no effort to keep alert 

8 Sleepy, some effort to keep alert 

9 Very sleepy, great effort to keep alert, fighting sleep 
 

 

Limitations of Subjective Sleepiness Scales for drowsy driving detection:  

Subjective self-reporting of drowsiness is often wrong. Most drivers 

underreport their drowsiness level (Moller et al., 2006; Sharwood et al., 2012). Weiler 

et al. (2000) found that participants self-reported drowsiness were not a good 

predictor of impairment and were weakly associated with steering instability and left 
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lane excursions. It should therefore be with caution that researchers draw conclusions 

about the efficacy of their new drowsiness detection techniques when benchmarked 

against subjective measures. Further, it was noted that KSS scores become unreliable 

after 3 hours of testing (Daza et al., 2014).  
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A1.17: The Psychomotor Vigilance Test (PVT):  

The Psychomotor vigilance test (PVT) is an objective measure of drowsiness. 

It involves a simple task in which a respondent is required to respond to stimuli. The 

test measures the speed of a participant’s response to visual stimuli and gives a 

quantifiable measure of their drowsiness based on their demonstrated response speed 

(Loh et al., 2004; Wilkinson and Houghton, 1982). PVT tests usually cannot be 

performed during driving, and are more adequate for use before, after, and in-

between driving tasks for assessing readiness-to-perform and fitness-for-duty. 

Researchers have found significant fatigue-related impairment during the first 

5 minutes of a 10 minute PVT test (Loh et al., 2004). As a result, it was suggested 

that an entire 10 minute test is not necessary. Brown et al. (2013) made use of a 

version of the PVT test (Cognitive Media, Iowa City, IA) to assist with identifying 

periods of drowsy driving to help successfully demonstrate the efficacy and utility of 

EEG in the detection of drowsy driving.  

 

Limitations of Psychomotor Vigilance Test (PVT) as a measure of drowsy 

driving 

A fundamental limitation to the PVT test is that it cannot be used in real-

time during driving tasks. It may however be used prior to driving to assess 

“readiness for task.” 
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A1.18: Head Nodding and Yawning as a measure of drowsy driving 

Apart from eye and face monitoring, drowsy drivers can also be detected by 

teaching machines to recognize patterns of head nodding (Wang et al., 2006; Bergasa 

et al., 2006) and yawning (Abtahi et al., 2011; Wang and Shi, 2005). Facial detection 

methods include appearance based (learning) methods, feature invariant methods, 

knowledge based methods, and template matching methods (Campagne et al., 2004).  

In the feature invariant methods, algorithms are used to find structural features that 

will exist even when there are variations in subject’s position, camera viewpoint or 

lighting conditions. Knowledge based methods involve prior knowledge in the form of 

rules of what constitutes a human face (Campagne, 2004). In template matching 

methods, face patterns are fed to the algorithm, which then make correlations 

between the loaded template and the current camera image being monitored. Facial 

detection can then be made.  Appearance based (learning) methods are similar to 

template methods in that templates are involved in both methods. This difference is 

that the facial templates used in appearance based methods are themselves learned 

from a series of training images. 

Limitations of Head Nodding and Yawning as a measure of drowsy 

driving 

Head nodding and yawning monitoring comes with the same disadvantages 

found in video monitoring for face and eye tracking (2.5.3.1.). Video occlusion 

completely defeats the algorithms for face recognition and facial feature tracking.  
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A1.19: Face and Eye Tracking of Drowsiness Symptoms 

Video tracking is a way to unobtrusively monitor driver drowsiness. The 

driver’s face and the eyes are monitored for signs of drowsiness such as frequent eye 

blinking, long eye blinks, slow eye movements and other signs of drowsiness. 

PERCLOS is one such measure of video monitored eye closure activities that has 

been used to determine drowsiness (Greneche et al., 2008; Sahayadhas et al., 2012). 

It is a measure of the percentage of eyelid closures over a set time period (Yang and 

Huang, 2005) and has also been used as a method to detect drowsiness (Wierwille, 

1999). Not only is eye closure seen as an important indicator of drowsiness, but the 

duration of the closure suggests the degree of fatigue. Closures lasting for more than 

half a second are especially strong indicators of sleepiness (Ogawa and Shimotani, 

1997). Dasgupta et al. (2013) benchmarked PERCLOS as a measure of drowsiness 

against EEG and found an eye classification rate of 97%.  

Researchers have noted that a keen human eye can monitor video of a drivers 

face and accurately determine when they are drowsy (Wierswille and Ellsworth, 

1994; Liang et al., 2006). Technology has made video monitoring more practical by 

automating this task. PERCLOS benefits greatly from image processing techniques 

which require highly controlled environmental settings (Liu et al., 2013). PERCLOS 

measurements can be assisted by beaming infrared (IR) light into the drivers eye and 

then monitoring the pupil for the reflected IR beams. Under IR light, the eye 

appears as a bright spot compared to the rest of the face which makes eye detection 
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straightforward (Ji and Yang, 2002; Grace et al., 1998; Bergasa et al., 2006; Flores et 

al., 2011). Papadelis et al. (2007) used an Eye Leads Sensor (ELS) system (Siemens, 

Germany) to detect the eye blink duration for use in PERCLOS calculations. The 

ELS consisted of a camera with two near infrared lighting units that enable night 

measurements. A Personal computer (PC) was used to analyze PERCLOS data. Li 

and Chung (2013) used PERCLOS of 30-40% to indicate drowsiness and correlated it 

successfully to the KSS reports of subjects. 

 

Limitations of Drowsy Driving Detection Technologies Based Upon Face 

and Eye Tracking 

Yang et al. (2007) identified four major problems with video monitoring of 

facial drowsy features: pose, presence, facial expression and image orientation. Pose 

referred to the variation of the image relative to the camera and how the pose can 

render facial features occluded, including the eyes.  Fortunately, feature invariant 

methods of facial detection are able to note facial features even when there are 

variations in the subjects pose, environmental lighting, and image orientation (Sigari 

et al., 2013). Occluded features especially eyes may still remain a problem in 

methods such as PERCLOS. Presence or absence of structural components such as 

beards, mustaches, and glasses could create differences from the features expected 

and could confuse recognition algorithms. Eye closure methods can be ineffective if 
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the driver is wearing eyeglasses (Bowman et al., 2012) or if the driver looks down 

and around him (Wierwille et al., 2003). Other failures can occur due to face 

orientation, lighting conditions, and distance of eyelid from the camera (Brown et al., 

2013).  

Although the use of eye tracking is physically unobtrusive, one of its 

drawbacks is that it only detects the outward symptoms of drowsiness resulting from 

an already existing state of drowsiness rather than monitoring a developing internal 

state of drowsiness. Highway safety would benefit from the ability to detect the 

drowsy driver’s state as soon as possible before any further deterioration occurs that 

could result in further externally observable symptoms. O’Hanlon and Kelley (1977) 

observed that observed sleep bursts in drivers EEG while they still had their eyes 

open, something eye tracking by either EOG and video monitoring might have 

missed. It is still unclear at what point physiological changes due to fatigue become 

dangerous, however the goal of technology should be the earliest possible detection 

before any danger to the driver is posed. 

In general, for video based monitoring, it is necessary to prevent occlusions, to 

use high quality cameras for proper capture of texture and patterns, and to keep 

environmental lighting as constant and adequate as possible.  
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A1.20: Physiological Measurement of Drowsy Driving 

Electrooculography (EOG) is a physiological method that has been used for 

detection of drowsy driving. Electrodes attached to the skin surrounding the eye 

record the potential difference between the cornea and the retina. This voltage 

changes as the eyeballs move enabling eye tracking (Barea et al., 2002; Young and 

Sheena, 1975). Besides eye movements, researchers have also monitored the eyelid by 

extractions from EOG signals (Damousis et al., 2009). Khushaba et al. (2011) 

monitored blink rate through vertical EOG from the left eye as an indicator for 

drowsy driving. The same study found that EOG alone cannot provide very powerful 

results compared to those provided by EEG alone. Hu and Zheng (2009) found that 

Support Vector Machine (SVM) classifiers trained with EOG data accurately 

detected when the subject was sleepy in up to 86.67% of the trials. Chieh et al. 

(2005) found that (EOG) was an alternative to video-based monitoring of eye 

activities to determine driver drowsiness. The same study achieved a drowsy driver 

detection rate of more than 80% and further proposed a method that utilized a 

Personal Digital Assistant (PDA) to monitor driver drowsiness via EOG. 

Electroencephalography (EEG) involves the monitoring of electrical signals 

from the brain via electrodes placed along the scalp. The most comprehensive and 

standard method of monitoring of brainwaves is the International 10–20 Electrode 

Placement System (10–20 System) which arranges 37 electrodes on the scalp (Liu et 

al., 2013; Homan et al., 1987). This system was also used for validation of the IMU 
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based SWM monitoring methods described in this dissertation. The EEG scalp 

positions mentioned in the rest of this article are in reference to this standard. EEG 

waves can be categorized into classes by their frequency ranges.   

Alpha waves are generated from the parietal and the occipital regions of the 

brain when a conscious person is quietly at rest, while theta waves are released from 

the parietal and the temporal regions of the brain when a person is in a state of deep 

relaxation (Liu et al., 2013).  Alpha-waves and theta-waves especially are signs of 

sleep and relaxation, and can be indicative of drowsy driving. As a result, dissipating 

these waves might indicate that drowsy driving intervention has been successful. For 

example, an alpha block occurs when a drowsy driver receives stimulating input 

which restores mental alertness and dissipates alpha -waves. 

Researchers observed via EEG that drivers had sleep bursts accompanied by 

theta waves and K-complexes while they still had their eyes open, something EOG 

and video monitoring might have missed. Furthermore, the drowsy drivers were 

oblivious to the fact that they had been driving while asleep (O’Hanlon and Kelley, 

1977). 

Electromyography (EMG) is a method of monitoring electrical activities from 

muscles. Surface EMG from the deltoid and trapezius during monotonous driving 

were analyzed by Hostens and Ramon (2005) and the results showed that EMG 

amplitude decreased significantly after 1 hour of driving. Balasubramanian and 

Adalarasu (2007) found that statistically significant changes in muscle activity 
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developed within only 15 min of simulated driving. Anund et al. (2008) collected 

EMG data from under the chin as supplementary data to detect artifacts in the EEG 

signal caused by facial muscle activity such as yawning.  

Electrocardiography (ECG) is the monitoring of electrical activity related to 

the hearts circulatory activity. The ECG waveform can be used to determine the 

heart rate. It has been demonstrated that heart rate variability (HRV) can be 

applicable for the detection of drowsiness and fatigue using the ECG power spectrum 

(Tsuchida et al., 2009). ECG signals have been found to vary significantly between 

alert and drowsy states (Arun et al., 2012) and can thus be used to quantify 

drowsiness. Patel et al. (2011) also used the Pan-Tompkins algorithm to extract the 

time series of beat to beat intervals (called the R–R intervals) out of ECG signals in 

order to extract the HRV data.  

Heart Rate Variability (HRV) analysis is a more recent entry into the 

detection of drowsy driving (Xia et al., 2008; Patel et al., 2011; Jiao et al., 2004; 

Yang et al., 2010; Mahachandra et al., 2012). Studies have shown that heart rate 

(HR) varies significantly between an alert state and a drowsy state (Zhang et al., 

2014; Liang et al., 2009; Miyaji et al., 2009). Being able to monitor the heart rate 

therefore can be a useful tool for drowsy driving detection. So far however, HRV has 

not been proven to be as reliable a detector of driver drowsiness as earlier expected 

because researchers have been regarding driver HRV signals as stationary signals 

whose frequencies do not vary over time (Li and Chung, 2013). Li and Chung (2013) 
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used wavelet transformation of HRV signals to analyze them as non-stationary 

signals and found out that wavelet based methods did in-fact perform better than 

FFT based methods. Apart from ECG being the most obvious method of HRV 

monitoring, another method of HRV monitoring involves Photoplethysmography 

(PPG). PPG senses cardiovascular blood volume pulse through variations in 

transmitted or reflected light (Poh, 2011). Papadelis et al. (2007) did not observe a 

statistically significant alteration in HRV with driving time, nor any significant 

difference in HRV between the first and the last quarters of the driving experiment. 

Respiration rates have been proposed for drowsy driving detection. Ibáñez et 

al. (2011) proposed inductance plethysmograph bands to monitor participant’s 

respiratory index as a method of detecting drowsiness. The researchers reported a 

Drowsy driving sensitivity of 83.1%. 

Some of the clinical tests for drowsiness that have been used for drowsy 

driving detection are the Multiple Sleep Latency Test (MSLT) (Carskadon et al., 

1986), Maintenance of Wakefulness Test (MWT) (Littner et al., 2005), and 

polysomnography (PSG) (Li and Chung, 2013).  Both MSLT and WMT are used to 

assess the subject’s degree of daytime sleepiness. MSLT, MWT, and PSG 

(Baranchuk et al., 2009) are comprehensive tests that measure EEG, EOG, EMG, 

and ECG simultaneously. The combination of MWT and PSG has been studied for 

drowsy driving detection (Li and Chung, 2013).  
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Limitations of Drowsy Driving Detection Technologies Based Upon 

Physiological Signals 

The placement of electrodes necessary for physiological signal detection is too 

technical for the average daily commuter. This limitation applies to EEG, EOG, 

ECG, EMG, and other related technologies. The use of EEG electrodes for drowsy 

driving detection requires knowledge and location training in the International 10/20 

system. EOG, ECG, and EMG devices are also obtrusive due to the requirement for 

electrodes, gel, wiring, and often a method to fasten on the electrodes such as a 

dedicated cap. Scalp placement of EEG electrodes requires training and effort, and 

the average commuter would be required to make a suitable connection between the 

scalp and electrodes with conducting gel. Although dry electrodes eliminate the need 

for conducting gel, their placement still require time and effort, and might be more 

involved than the average commuter would be interested in. When compared to 

methods such as video-based PERCLOS and vehicle based measures including SWM, 

the obtrusiveness of electrode-based methods becomes a concern. Dinges et al. (1998) 

found that PERCLOS outperformed EEG approaches. This however requires further 

validation in operational environments. 
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A1.21: State-of-the-Art Anti-Drowsiness Intervention Technologies 

Drowsy Driving Notifications 

For the development of an adequate IMU based drowsy driving detection 

method as studied in this dissertation, it is important to have adequate early 

warning alerts. Several researchers have proposed the use of warning signals to alert 

drowsy drivers (Dingus et al., 1997, Spence and Driver, 1998). Lin et al. (2013) used 

a 1750Hz tone burst at 68.5 dB to half of the subjects who had lane departure 

events. Although subjects made quick compensatory responses after the alert, they 

did not respond to the next deviation event any faster. Lin et al. (2009) and Spence 

and Driver (1998) proposed auditory feedback to drowsy drivers. Liu (2001) proposed 

visual feedback. Ho et al. (2005) suggested tactile alerts, and Liu (2001) proposed a 

hybrid method. These various methods of feedback all showed that arousing feedback 

considerably improved task performance (Lin et al., 2013). It was however found 

that auditory feedback could sometimes failed to arouse drowsy subjects (Lin et al., 

2010). Furthermore, the EEG of the drowsy subjects sometimes showed no neural 

response to auditory feedback (Lin et al 2010, Jung et al 2010). A pilot study by 

Jung et al. (2010) applied machine-learning algorithms to assess the efficacy of the 

arousing feedback on drowsy subjects and showed that the post-stimulus EEG 

spectra could be used to estimate the effectiveness of the arousing signals with a 

moderate accuracy of 61%. Zhang et al. (2014) found that drowsiness significantly 
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affected driver’s heart rate (HR), reaction time to light (RTL), systolic blood 

pressure (SBP), and reaction time to sound (RTS). 

Innovations in Real-Time Closed Loop Drowsy Driving Intervention  

In order to make any developed method easily accessible to those who wish to 

utlize it, the ability to “piggyback” the method onto a ubiquitous technology would 

be of great benefit. Researchers have previously developed new technologies for 

drowsy driving detection and then ported thse technologies onto portable devices 

such as smartphones and Personal Digitial Assistants (PDAs).  

Utilizing the inertial motion sensors which are already on board modern 

portable electronics for monitoring SWM can reduce usage barriers for the novel 

method. A few examples of transferring known working methods onto widely 

available devices are listed below. 

Smartphone Based Interventions:  

Li and Chung (2013) made use of an integrated system to monitor drowsy 

drivers based on HRV and to actively try to correct the situation. Included in the 

integrated solution were a wireless PPG sensor which integrated a microprocessor 

unit (MCU) and a Bluetooth module, a wireless transmitter, a smartphone, and a 

server PC that connected to the internet. PPG sensor readings were transmitted 

wirelessly via Bluetooth to the smartphone which extracted HRV data. The 

smartphone in turn transmitted the HRV signals to the server PC via internet for 

classification. The results were returned to the smartphone where drowsy driving 
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detection would trigger the alarm and then advice the driver of the closest coffee 

shop to restore alertness. The PPG sensor was placed on the steering wheel where it 

read directly from a finger resting upon the wheel using the Laxtha RP520 PPG 

sensor (Laxtha, Daejeon, Korea) interfacing with the open-source LilyPad Arduino 

hardware platform (SparkFun Electronics, Boulder, CO, USA).The smartphone used 

for testing was the Samsung Galaxy SIII (Android 4.1.2) smartphone. It was chosen 

because it was a “reliable and user-friendly Bluetooth-to-Internet gateway.” The 

smartphone was also used to display the raw PPG signals and to extract 1-min HRV 

time series. Results showed that arousing feedback immediately reversed the 

deterioration of driving performance and also suppressed alpha and theta power EEG 

in bilateral occipital areas. Classification accuracy for determining the need for 

feedback was 77.8%.  

Personal Digital Assistant (PDA) based method:  

Chieh et al. (2005) proposed a fatigue monitoring system based around a 

Personal Digital Assistant (PDA). It used digital signal differentiation and simple 

information fusion techniques to detect signs of drowsiness in the EOG signal. The 

authors suggested that this technology would have a detection rate of more than 

80%. Theoretically, a PDA could easily then be programmed to give drowsy driver 

intervention feedback. 



 

193 

 

Automatic speed control intervention:  

Zhang and Zhang, (2006) developed an integrated approach which detects 

drowsy driving and attempts to compensate for it. The algorithm involved three 

steps. First, the face is located with the Haar algorithm and the eye is located with 

projection. Once the eye template has been created, the eye is tracked with an 

unscented Kalman filter. Finally, if the eye remains closed over 5 consecutive frames, 

driver fatigue is confirmed and the vehicle’s cruise control is activated and set to 

maintain a safe slow speed.  

Automatic music adaptation intervention:  

Liu et al. (2013b) proposed spontaneously playing refreshing music upon 

detecting drowsiness in the driver’s brainwaves. The driver’s brainwaves were 

analyzed for its responses to various types of music, and learned to select the 

appropriate music to play based on this data. The researchers were able to classify 

music as refreshers or non-refreshers based on the driver’s brainwaves at the time the 

music is being played and the disappearance of drowsy brainwaves. The classification 

of brainwaves and music selection using this method was experimentally proven. 

This technology would be very practical for built in car use.  

Yokoyama et al. (2008) demonstrated the effects of louder music on a drowsy 

driver’s EEG, ECG, and video images of the drivers face as a drowsiness intervention 

method. It was ascertained that louder music indeed mitigated drowsiness and 

helped set back initiation time of drowsiness. 
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It needs to be further validated whether music works for both sleep 

deprivation based drowsiness, as well as time-on-task based drowsiness which could 

also result from monotony rather than an outright sleep deprivation. 
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A1.22: Measurement Categories of Drowsy Driving 

Table A1.22 Measures of Driver Drowsiness 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Category Measured Advantage Disadvantage 

Subjective 
KSS, SSS, 

ESS 

Unobtrusive, 

No 

equipment 

needed 

Propensity to 

underestimate, 

Not real time 

Physiological 
EEG, EOG, 

PPG 

High 

accuracy 

Inconvenient, 

Intrusive 

Behavioral 

PERCLOS, 

Blinking, 

Yawn, 

nodding 

Unobtrusive 

Camera 

occlusions can 

disrupt,  

Dependent upon  

lighting 

Vehicle Based 
SWM,  

SDLP 
Unobtrusive 

Bad driving 

habits can trigger 

false positives 
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A1.23: Other researcher’s implementations of SWM 

Otmani et al. (2005) made use of the built in functions of their driving 

simulator to measure the mean amplitude of Steering Wheel Movements (SWM) as 

well as the frequency per minute of SWM. Zhao et al. (2009) Extracted wavelet 

based features from SWM which were then used to detect driver drowsiness. Steering 

entropy is a form of SWM monitoring that was developed to quantify the increase in 

high frequency steering corrections that occurred after periods of reduced attention 

as drivers made efforts to maintain their lateral safety margins (Boer et al., 2005). 

Steering entropy was used by Nakayama et al. (1999) to quantify discontinuities in 

driving behaviors. Östlund et al. (2004) monitored driver performance in relation to 

high frequency component of steering wheel angle.  Kircher and Ahlstrom (2010) 

used steering wheel reversal rate (SWRR) which measures the number of steering 

wheel reversals per minute to categorize driver behaviors. Krajewski (2009) yielded 

an 86.1% recognition rate in classifying driver fatigue by monitoring SWM.  
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Figure 39. Sherman et al. (1996) found that SWM was an indicator of lane 

keeping activities, since SWM leads to lane shifts. 

 

SWM can be used to predict tendency for lane exit events. The final report of 

the Midwest Transportation Center’s study on SWM monitoring of driver drowsiness 

found that SWM was representative of lane position, with signal peaks and valleys 

coinciding in both waveforms (Sherman et al., 1996). The signals remained 

synchronized until camera limitations broke the lane tracking process, a limitation of 

video-based monitoring.  

Although Sayed et al. (2001) were able to use an Artificial Neural Network 

(ANN) to classify drowsy states with high accuracy using only SWM signals from the 

vehicle steering wheel. 
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Appendix 2: iPhone Code in C, Objective C and C++ 

A2.1 IMU Monitor Graphical User Interface (GUI) Code 

A2.1.1 imuAppDelegate.h  

// 

//  imuAppDelegate.h 

//  IMUf 

// 

//  Created by Samuel on 7/19/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import <UIKit/UIKit.h> 

 

@interface imuAppDelegate : UIResponder 

<UIApplicationDelegate> 

 

@property (strong, nonatomic) UIWindow *window; 

 

@end 
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A2.1.2 imuAppDelegate.m  

// 

//  imuAppDelegate.m 

//  IMUf 

// 

//  Created by Samuel Lawoyin on 7/19/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import "imuAppDelegate.h" 

 

@implementation imuAppDelegate 

 

- (BOOL)application:(UIApplication *)application 

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions 

{ 

    // Override point for customization after application 

launch. 

    return YES; 

} 

        

- (void)applicationWillResignActive:(UIApplication 

*)application 

{ 

    // Sent when the application is about to move from active 

to inactive state. This can occur for certain types of 

temporary interruptions (such as an incoming phone call or SMS 

message) or when the user quits the application and it begins 

the transition to the background state. 

    // Use this method to pause ongoing tasks, disable timers, 

and throttle down OpenGL ES frame rates. Games should use this 

method to pause the game. 

} 

 

- (void)applicationDidEnterBackground:(UIApplication 

*)application 

{ 

    // Use this method to release shared resources, save user 

data, invalidate timers, and store enough application state 

information to restore your application to its current state 

in case it is terminated later.  

    // If your application supports background execution, this 

method is called instead of applicationWillTerminate: when the 

user quits. 

} 

 

- (void)applicationWillEnterForeground:(UIApplication 

*)application 

{ 
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    // Called as part of the transition from the background to 

the inactive state; here you can undo many of the changes made 

on entering the background. 

} 

 

- (void)applicationDidBecomeActive:(UIApplication 

*)application 

{ 

    // Restart any tasks that were paused (or not yet started) 

while the application was inactive. If the application was 

previously in the background, optionally refresh the user 

interface. 

} 

 

- (void)applicationWillTerminate:(UIApplication *)application 

{ 

    // Called when the application is about to terminate. Save 

data if appropriate. See also applicationDidEnterBackground:. 

} 

 

@end 
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A2.1.3 imuViewController.h  

// 

//  imuViewController.h 

//  IMUa 

// 

//  Created by Samuel Lawoyin on 7/9/14. 

//  Copyright (c) 2014 Samuel Lawoyin All rights reserved. 

// 

 

#import <UIKit/UIKit.h> 

#import <CoreMotion/CoreMotion.h> 

#import <coreText/CoreText.h> 

#import <Foundation/Foundation.h> 

#import <CoreLocation/CoreLocation.h> 

#import <MobileCoreServices/MobileCoreServices.h> 

#import <MapKit/MapKit.h> 

 

//double attitudeYaw; 

//double attitudeRoll; 

 

//double currentFusion; 

//double lastFusion; 

//double currentYaw; 

//double lastYaw; 

 

 

//double lastVelocityZ; 

//double currentVelocityZ; 

 

//double length; 

#define kRequiredAccuracy 500.0 //in meters 

#define kMaxAge 10.0            //in seconds 

 

 

 

 

 

@interface imuViewController : 

UIViewController<CLLocationManagerDelegate> 

 

 

//@property (nonatomic) NSMutableArray *driftArray; 

 

@property (strong, nonatomic)IBOutlet UILabel *length; 

 

@property (strong, nonatomic) IBOutlet UILabel *filename; 

 

@property (strong, nonatomic)IBOutlet UILabel *accx; 

@property (strong, nonatomic)IBOutlet UILabel *accy; 
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@property (strong, nonatomic)IBOutlet UILabel *accz; 

@property (strong, nonatomic)IBOutlet UILabel *accAngle; 

 

 

@property (strong, nonatomic)IBOutlet UILabel *currentYaw; 

@property (strong, nonatomic)IBOutlet UILabel *gyroPosition; 

@property (strong, nonatomic)IBOutlet UILabel *swmFusion; 

@property (strong, nonatomic)IBOutlet UILabel *dataBlockSaved; 

 

 

@property (strong, nonatomic)IBOutlet UILabel *recordProgress; 

//Is recording ongoing or not? 

 

@property (strong, nonatomic)IBOutlet UILabel *todaysDate; 

 

@property (strong, nonatomic)IBOutlet UILabel *speed1label; 

@property (strong, nonatomic)IBOutlet UILabel *speed2label; 

 

 

/* 

 @property (strong, nonatomic)IBOutlet UILabel *rotx; 

 @property (strong, nonatomic)IBOutlet UILabel *roty; 

 @property (strong, nonatomic)IBOutlet UILabel *rotz; 

 */ 

 

@property (strong, nonatomic)IBOutlet UILabel  *revolveCase; 

 

- (IBAction)stopButton:(id)sender; 

 

- (IBAction)startButton:(id)sender; 

 

- (IBAction)drowsyButton:(id)sender; 

 

 

 

@property (strong, nonatomic) CMMotionManager *motionManager; 

 

@property(nonatomic, retain) CLLocationManager* 

locationManager; 

 

 

 

@end 

 

@interface MapViewController:UIViewController 

<MKMapViewDelegate, CLLocationManagerDelegate> 

{ 

    MKMapView *mapView; 

    CLLocationManager *locationManager; 

    CLLocationSpeed speed; 
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    NSTimer *timer; 

} 

 

@property(nonatomic, retain) NSTimer*timer; 

 

 

@end 

 

@interface DataClass : NSObject 

{ 

    NSString *accArrayFilename; 

    NSString *gyroArrayFilename; 

    NSString *speedArrayFilename; 

    NSString *locationArrayFilename; 

    NSString *drowsyArrayFilename; 

    NSString *angVelArrayFilename; 

 

    NSMutableArray *accArray; 

    NSMutableArray *gyroArray; 

    NSMutableArray *speedArray; 

    NSMutableArray *locationArray; 

    NSMutableArray *drowsyArray; 

    NSMutableArray *angVelArray; 

} 

//global variable 

@property (nonatomic, retain) NSString *accArrayFilename; 

@property (nonatomic, retain) NSString *gyroArrayFilename; 

@property (nonatomic, retain) NSString *drowsyArrayFilename; 

@property (nonatomic, retain) NSString *speedArrayFilename; 

@property (nonatomic, retain) NSString *locationArrayFilename; 

@property (nonatomic, retain) NSString *angVelArrayFilename; 

 

@property (nonatomic, retain) NSString *startTime; 

+(DataClass*)getInstance; 

@property (nonatomic, retain) NSMutableArray *accArray; 

@property (nonatomic, retain) NSMutableArray *gyroArray; 

@property (nonatomic, retain) NSMutableArray *speedArray; 

@property (nonatomic, retain) NSMutableArray *locationArray; 

@property (nonatomic, retain) NSMutableArray *drowsyArray; 

@property (nonatomic, retain) NSMutableArray *angVelArray; 

 

 

@property (nonatomic, assign) double gyroPosition; 

@property (nonatomic, assign) double accAngle; 

@property (nonatomic, assign) double lastGyroPosition; 

@property (nonatomic, assign) double swmFusion; 

@property (nonatomic, assign) double lastSwmFusion; 

//@property (nonatomic, assign) double lastGyroPositionNum; 

@property (nonatomic, assign) double lastX; 

@property (nonatomic, assign) double lastY; 
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@property (nonatomic, assign) double lastZ;@property 

(nonatomic, assign) double accelerationX; 

@property (nonatomic, assign) double accelerationY; 

@property (nonatomic, assign) double accelerationZ; 

@property (nonatomic, assign) int revolveCase; 

@property (nonatomic, assign) int recordBoolean; 

@property (nonatomic, assign) int recordCount;//how many times 

the stop button has been pressed for labelling data 

@property (nonatomic, assign) double speed1; 

@property (nonatomic, assign) double speed2; 

@property (nonatomic, assign) double latitude; 

@property (nonatomic, assign) double longitude; 

 

 

@end 
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A2.1.4 imuViewController.m  

// 

//  imuViewController.m 

//  IMUa 

// 

//  Created by Samuel Lawoyin on 7/9/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import "imuViewController.h" 

 

@interface imuViewController () 

@end 

 

 

@implementation DataClass 

@synthesize accArrayFilename; 

@synthesize gyroArrayFilename; 

static DataClass *instance = nil; 

+(DataClass *)getInstance 

{ 

    @synchronized(self) 

    { 

        if (instance==nil) 

        { 

            instance = [DataClass new]; 

        } 

    } 

    return instance; 

} 

 

@end 

 

@implementation MapViewController 

//@synthesize locationManager; 

 

 

 

- (void)didReceiveMemoryWarning 

{ 

    [super didReceiveMemoryWarning]; 

    // Dispose of any resources that can be recreated. 

} 

@end 

 

 

 

@implementation imuViewController 
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CLLocationManager *locationManager; 

 

- (void)viewDidLoad 

{ 

    [super viewDidLoad]; // Do any additional setup after 

loading the view, typically from a nib. 

     

    //  attitudeYaw= 0; 

    //  attitudeRoll=0; 

     

    //  currentFusion = 0; 

    //lastFusion = 0; 

    // currentYaw = 0; 

    // lastYaw = 0; 

     

    // lastVelocityZ = 0; 

    // currentVelocityZ = 0; 

    // revolveCase = 0; 

     

    DataClass *obj=[DataClass getInstance]; 

     

    locationManager = [[CLLocationManager alloc] init]; 

    locationManager.delegate=self; 

    locationManager.desiredAccuracy=kCLLocationAccuracyBest; 

    [locationManager startUpdatingLocation]; 

     

     

     

    //Create a new file path for recording the drift 

data///////// 

    //First query for the app documents directory 

    NSArray *paths = 

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 

NSUserDomainMask, YES); 

    NSString *documentsDirectory = [paths objectAtIndex:0]; 

     

     

     

    NSString *gyroRecordCount = [NSString 

stringWithFormat:@"gyro%i.dat",obj.recordCount];//What 

iteration of gyroscope recording 

    NSString *accRecordCount = [NSString 

stringWithFormat:@"acc%i.dat",obj.recordCount];//What 

iteration of accelerometer recording 

    NSString *drowsyRecordCount = [NSString 

stringWithFormat:@"drowsy%i.dat",obj.recordCount];//What 

iteration of drowsy recording 

    NSString *speedRecordCount = [NSString 

stringWithFormat:@"speed%i.dat",obj.recordCount];//What 

iteration of drowsy recording 
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    NSString *angVelRecordCount = [NSString 

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What 

iteration of drowsy recording 

     NSString *locationRecordCount = [NSString 

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What 

iteration of drowsy recording 

    //To avoid overwriting useful data, first check that the 

date name does not exist. 

 

     

 

     

     

    //Second, create the file using the queried path 

    //NSString *arrayFilename = [documentsDirectory 

stringByAppendingPathComponent:@"drift.dat"]; 

     

     

    obj.accArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:accRecordCount]; 

    obj.gyroArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:gyroRecordCount]; 

    obj.drowsyArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:drowsyRecordCount]; 

    obj.speedArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:speedRecordCount]; 

    obj.locationArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:locationRecordCount]; 

    obj.angVelArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:angVelRecordCount]; 

 

     

    self.filename.text= obj.drowsyArrayFilename; // display 

save location array name 

     

     

    //   self.filename.text= arrayFilename; // display save 

location array name 

     

     

    //Make the array you reserved in .h properties file 

    //self.driftArray = [[NSMutableArray alloc] init]; 

    obj.accArray = [[NSMutableArray alloc] init]; 

    obj.gyroArray = [[NSMutableArray alloc] init]; 

    obj.drowsyArray = [[NSMutableArray alloc] init]; 

    obj.speedArray = [[NSMutableArray alloc] init]; 

    obj.locationArray = [[NSMutableArray alloc] init]; 

    obj.angVelArray = [[NSMutableArray alloc] init]; 
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    self.length.text= [NSString stringWithFormat:@"%@ lines of 

data currently stored to:", @([obj.accArray count])]; // 

display array length, gyro and acc should have same count due 

to same number of iterations 

     

     

    //  [self.driftArray writeToFile:arrayFilename atomically: 

YES]; 

     

     

    //DONE 

     

     

    NSDate *currentTime = [NSDate date]; 

    NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] 

init]; 

    [dateFormatter setDateFormat:@"dd/M/yy     hh:mm:ss"]; 

    NSString *resultString = [dateFormatter 

stringFromDate:currentTime]; 

     

     

    self.todaysDate.text = [NSString stringWithFormat: @"%@ 

\ntimestamp>%f", resultString,[NSDate 

timeIntervalSinceReferenceDate] ]; 

     

     

     

     

    [UIApplication sharedApplication].idleTimerDisabled = YES; 

//KEEP ALIVE 

     

    self.motionManager = [[CMMotionManager alloc]init]; 

    self.motionManager.accelerometerUpdateInterval=0.01; //max 

100/sec or 100Hz 

    self.motionManager.gyroUpdateInterval=0.01; 

    [self.motionManager 

startAccelerometerUpdatesToQueue:[NSOperationQueue 

currentQueue] 

                                             

withHandler:^(CMAccelerometerData  *accelerometerData, NSError 

*error) 

     {[self 

outputAccelerationData:accelerometerData.acceleration]; 

         if(error){ 

             NSLog(@"%@", error); 

         } 

     }]; 
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    [self.motionManager 

startGyroUpdatesToQueue:[NSOperationQueue currentQueue] 

                                    withHandler:^(CMGyroData 

*gyroData, NSError *error) 

      

     {[self outputRotationData:gyroData.rotationRate]; 

     }]; 

     

    [self.motionManager 

startDeviceMotionUpdatesToQueue:[NSOperationQueue 

currentQueue] 

                                            

withHandler:^(CMDeviceMotion *motion, NSError *error) 

     {[self processMotion:motion]; 

     }]; 

     

    {[self.locationManager startUpdatingLocation];}; 

 //   {[self.startReadingLocation:;]}; 

     

     

} 

- (void)startReadingLocation 

{ 

    self.locationManager = [[CLLocationManager alloc] init]; 

    self.locationManager.delegate=self; 

    self.locationManager.desiredAccuracy=20;    

//kCLLocationAccuracyBest; 

    [self.locationManager startUpdatingLocation]; 

     

     

} 

-(void)locationManager:(CLLocationManager *)manager 

didUpdateToLocation:(CLLocation *)newLocation 

fromLocation:(CLLocation *)oldLocation 

{ 

    DataClass *obj=[DataClass getInstance]; 

     

    obj.speed1=newLocation.speed*2.23693629; 

    obj.latitude = newLocation.coordinate.latitude; 

    obj.longitude = newLocation.coordinate.longitude; 

 

     

     //   self.speed1label.text =[NSString 

stringWithFormat:@"%f",obj.speed1 ]; 

     

    //Manual calculation (optional for comparison) 

    if(oldLocation!=nil) 

    { 
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        CLLocationDistance distanceChange=[newLocation 

getDistanceFrom:oldLocation];//getDistanceFrom alternate to 

distanceFromLocation 

        NSTimeInterval sinceLastUpdate=[newLocation.timestamp 

timeIntervalSinceDate:oldLocation.timestamp]; 

        

obj.speed2=(distanceChange/sinceLastUpdate)*2.23693629; 

     //   self.speed2label.text =[NSString 

stringWithFormat:@"%f",obj.speed2 ]; 

 

         

    } 

     

} 

 

 

-(void)outputAccelerationData:(CMAcceleration)acceleration 

//ACCELEROMETER Ax Ay Az 

{ 

    DataClass *obj=[DataClass getInstance]; 

     

    self.accx.text = [NSString stringWithFormat:@" 

%.2fg",acceleration.x]; 

    self.accy.text = [NSString stringWithFormat:@" 

%.2fg",acceleration.y]; 

    self.accz.text = [NSString stringWithFormat:@" 

%.2fg",acceleration.z]; 

     

    obj.lastX   =obj.accelerationX;// Last X polarity 

    obj.lastY   =obj.accelerationY;// Last Y polarity 

    obj.lastZ   =obj.accelerationZ;// Last Z polarity 

    obj.accelerationX = acceleration.x; //NEW are sent out to 

global 

    obj.accelerationY = acceleration.y; //to determine >360 

turns 

    obj.accelerationZ = acceleration.z; //to determine >360 

turns 

     

     

     

     

    //Center 

    obj.accAngle = 

atan2(acceleration.y,acceleration.x)*(180/M_PI); 

     

   /* if(acceleration.x < 0) //-X VALUES ON LEFT SIDE ONLY -0 

TO -180 

    { 
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        obj.accAngle = -

((atan2(acceleration.x,acceleration.y)*(180/M_PI))+180); 

//STANDARDIZE THE VALUES TO GYROSCOPE STANDARDS 

    } 

    if(acceleration.x > 0) // +X VALUES FALL ON RIGHT SIDE 

ONLY +0 TO +180 

    { 

        obj.accAngle = 180-

(atan2(acceleration.x,acceleration.y)*(180/M_PI));//STANDARDIZ

E THE VALUES TO GYROSCOPE STANDARDS 

    }*/ 

 

     

     

     

    //The Following code is uncommented if it is required that 

rotation adjusts automatically up to 1080 degrees 

    /* 

    switch (obj.revolveCase) 

    { 

        case -2: 

        { 

            //Final Left 180 

            obj.accAngle = -

(540+(atan2(acceleration.x,acceleration.y)*(180/M_PI))); 

        } 

            break; 

        case -1: 

        { 

            //Left 360 

            if(acceleration.x < 0) //-X VALUES ON LEFT SIDE 

ONLY -0 TO -180 

            { 

                obj.accAngle = -

(540+(atan2(acceleration.x,acceleration.y)*(180/M_PI))); 

//STANDARDIZE THE VALUES TO GYROSCOPE STANDARDS 

            } 

            if(acceleration.x > 0) // +X VALUES FALL ON RIGHT 

SIDE ONLY +0 TO +180 

            { 

                obj.accAngle = -

(atan2(acceleration.x,acceleration.y)*(180/M_PI)+180);//STANDA

RDIZE THE VALUES TO GYROSCOPE STANDARDS 

            } 

             

        } 

            break; 

        case 0: 

        { 

            //Center 
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            if(acceleration.x < 0) //-X VALUES ON LEFT SIDE 

ONLY -0 TO -180 

            { 

                obj.accAngle = -

((atan2(acceleration.x,acceleration.y)*(180/M_PI))+180); 

//STANDARDIZE THE VALUES TO GYROSCOPE STANDARDS 

            } 

            if(acceleration.x > 0) // +X VALUES FALL ON RIGHT 

SIDE ONLY +0 TO +180 

            { 

                obj.accAngle = 180-

(atan2(acceleration.x,acceleration.y)*(180/M_PI));//STANDARDIZ

E THE VALUES TO GYROSCOPE STANDARDS 

            } 

        } 

            break; 

        case 1: 

        { 

            //Right 360 

            if(acceleration.x < 0) //-X VALUES ON LEFT SIDE 

ONLY -0 TO -180 

            { 

                obj.accAngle = -

((atan2(acceleration.x,acceleration.y)*(180/M_PI))-180); 

//STANDARDIZE THE VALUES TO GYROSCOPE STANDARDS 

            } 

            if(acceleration.x > 0) // +X VALUES FALL ON RIGHT 

SIDE ONLY +0 TO +180 

            { 

                obj.accAngle = 540-

(atan2(acceleration.x,acceleration.y)*(180/M_PI));//STANDARDIZ

E THE VALUES TO GYROSCOPE STANDARDS 

            } 

             

        } 

            break; 

        case 2: 

        { 

            //Final right 180 

            obj.accAngle = -(540-

atan2(acceleration.x,acceleration.y)*(180/M_PI)); 

        } 

            break; 

             

        default: 

            break; 

    } 
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    self.accAngle.text = [NSString stringWithFormat:@" 

%.2f°",obj.accAngle]; 

     

     

    if (obj.lastX<0 && obj.lastY>0.6 && obj.lastZ < 0 && 

obj.accelerationX>0 && obj.accelerationY>0.6 && 

obj.accelerationZ<0)//LEFT TURN ACROSS DECISION POINT 

    { 

        obj.revolveCase--; 

    } 

    else if(obj.lastX>0 && obj.lastY>0.6 && obj.lastZ<0 && 

obj.accelerationX<0 && obj.accelerationY>0.6 && 

obj.accelerationZ<0)//RIGHT TURN ACROSS DECISION POINT 

    { 

        obj.revolveCase++; 

    } 

     

    self.revolveCase.text=[NSString stringWithFormat:@" 

%.2i",obj.revolveCase]; 

    */ 

     

} 

 

-(void)outputRotationData:(CMRotationRate)rotation  //GYRO 

ANGULAR CHANGE RATE 

{ 

    DataClass *obj=[DataClass getInstance]; 

     

    obj.lastGyroPosition = obj.gyroPosition; //LAST GYRO 

POSITION 

    obj.lastSwmFusion = obj.swmFusion;  //LAST SWM READING 

     

     

    //  gyroPosition = 

(lastGyroPosition+(rotation.z*(180/M_PI)*0.01)*0.01)+(accAngle

*0.99); 

    //    gyroPosition = 

(lastGyroPosition+(rotation.z*0.01)*(180/M_PI)); 

     

    obj.gyroPosition = - 

    ((rotation.z-0.0082764553)*(180/M_PI))*0.01; 

 

     

    self.gyroPosition.text = [NSString stringWithFormat:@" 

%1.2f°/s",obj.gyroPosition];//PRINT TO SCREEN 

     

     

    obj.swmFusion = 

(obj.lastSwmFusion+((obj.lastGyroPosition+obj.gyroPosition)/2)

)*0.9 + (obj.accAngle*0.1); 
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    self.swmFusion.text= [NSString stringWithFormat:@" 

%.2f°",obj.swmFusion]; //PRINT IT 

     

    if (obj.recordBoolean==1) //If start button pressed, 

record 

    { 

        [obj.accArray addObject:[NSString stringWithFormat:@" 

%f",obj.accAngle]];//SAVE ACCELEROMETER ANGLE TO ARRAY 

        [obj.gyroArray addObject:[NSString stringWithFormat:@" 

%f",obj.swmFusion]];//SAVE FUSION ANGLE TO ARRAY 

        [obj.speedArray addObject:[NSString 

stringWithFormat:@" %f",obj.speed1]];//SAVE FUSION ANGLE TO 

ARRAY 

        [obj.locationArray addObject:[NSString 

stringWithFormat:@" %f, %f",obj.latitude, 

obj.longitude]];//SAVE LOCATION TO ARRAY 

        [obj.angVelArray addObject:[NSString 

stringWithFormat:@" %f",obj.gyroPosition]];//SAVE ANGULAR 

VELOCITY TO ARRAY 

    } 

     

    /* 

     self.rotx.text = [NSString stringWithFormat:@" 

%1.2f°/s",rotation.x*(180/M_PI)]; 

      

     self.roty.text = [NSString stringWithFormat:@" 

%1.2f°/s",rotation.y*(180/M_PI)]; 

      

     self.rotz.text = [NSString stringWithFormat:@" 

%1.2f°/s",rotation.z*(180/M_PI)]; 

     */ 

     

    self.speed1label.text = [NSString stringWithFormat:@"%f 

mph", obj.speed1]; 

    self.speed2label.text = [NSString stringWithFormat:@"%f 

mph", obj.speed2]; 

     

} 

-(void)processMotion:(CMDeviceMotion*)motion 

 

{ 

    CMQuaternion quatYaw = 

self.motionManager.deviceMotion.attitude.quaternion; 

    self.currentYaw.text = [NSString stringWithFormat:@" 

%0.2f°",asin(2*(quatYaw.x*quatYaw.z - 

quatYaw.w*quatYaw.y))*(180/M_PI)];//quaternion yaw 

} 
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- (IBAction)startButton:(id)sender 

{ 

    DataClass *obj=[DataClass getInstance]; 

    if (obj.recordBoolean == 0)//start button only works if 

stopped 

    { 

        obj.recordBoolean=1; 

        self.recordProgress.text=@"Recording in Progress"; 

         

        NSDate *currentTime = [NSDate date]; 

        NSDateFormatter *dateFormatter = [[NSDateFormatter 

alloc] init]; 

        [dateFormatter setDateFormat:@"dd/M/yy     hh:mm:ss"]; 

        NSString *resultString = [dateFormatter 

stringFromDate:currentTime]; 

         

         

         

        obj.startTime=[NSString stringWithFormat: @"%@ %f", 

resultString,[NSDate timeIntervalSinceReferenceDate] ]; 

         

         

        //write accelerometer and gyroscope array to file 

        /*[obj.accArray writeToFile:obj.accArrayFilename 

atomically: YES]; 

         [obj.gyroArray writeToFile:obj.gyroArrayFilename 

atomically: YES];*/ 

    } 

} 

 

- (IBAction)stopButton:(id)sender 

{ 

    DataClass *obj=[DataClass getInstance]; 

    if (obj.recordBoolean == 1) //stop button only works if 

start is on, else skip it all 

    { 

        //  accAngle= 0; 

        //   attitudeYaw= 0; 

        //   attitudeRoll=0; 

         

        //   currentFusion = 0; 

        //  lastFusion = 0; 

        //  currentYaw = 0; 

        //  lastYaw = 0; 

         

        //self.recordProgress.text=obj.startTime 

        ; 

         

        //close off array with final timestamp 

        /*    NSDate *currentTime = [NSDate date]; 
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         NSDateFormatter *dateFormatter = [[NSDateFormatter 

alloc] init]; 

         [dateFormatter setDateFormat:@"hh-mm"]; 

         NSString *resultString = [dateFormatter 

stringFromDate:currentTime]; 

         */ 

         

        obj.recordBoolean=0;    //non-recording state 

         

         

        NSDate *currentTime = [NSDate date]; 

        NSDateFormatter *dateFormatter = [[NSDateFormatter 

alloc] init]; 

        [dateFormatter setDateFormat:@"dd/M/yy     hh:mm:ss"]; 

        NSString *resultString = [dateFormatter 

stringFromDate:currentTime]; 

         

         

        self.todaysDate.text = [NSString stringWithFormat: 

@"%@ \ntimestamp>%f", resultString,[NSDate 

timeIntervalSinceReferenceDate] ]; 

         

         

         

         

        [obj.accArray addObject:[NSString stringWithFormat: 

@"started at: %@ ended at: %@ 

%f",obj.startTime,resultString,[NSDate 

timeIntervalSinceReferenceDate]]]; 

         

         

        [obj.gyroArray addObject: [NSString stringWithFormat: 

@"started at: %@ ended at: %@ %f", obj.startTime, 

resultString,[NSDate timeIntervalSinceReferenceDate]]]; 

         

        [obj.speedArray addObject: [NSString stringWithFormat: 

@"started at: %f ended at: %@ %f", obj.speed1, 

resultString,[NSDate timeIntervalSinceReferenceDate]]]; 

        [obj.angVelArray addObject: [NSString 

stringWithFormat: @"started at: %f ended at: %@ %f", 

obj.gyroPosition, resultString,[NSDate 

timeIntervalSinceReferenceDate]]]; 

         

         

         

        self.recordProgress.text=@"Recording Halted!, Press 

Start for New"; 

         

         

        obj.recordCount++; //advance the count of files stored 
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        //wont start index at 0 since it preceeds the first 

write 

         

         

        //*******//******RECORD PATH UPDATE HERE//*****//***** 

        NSArray *paths = 

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 

NSUserDomainMask, YES); 

        NSString *documentsDirectory = [paths 

objectAtIndex:0]; 

        NSString *gyroRecordCount = [NSString 

stringWithFormat:@"gyro%i.dat",obj.recordCount];//What 

iteration of gyroscope recording 

        NSString *accRecordCount = [NSString 

stringWithFormat:@"acc%i.dat",obj.recordCount];//What 

iteration of accelerometer recording 

        NSString *drowsyRecordCount = [NSString 

stringWithFormat:@"drowsy%i.dat",obj.recordCount];//What 

iteration of accelerometer recording 

        NSString *speedRecordCount = [NSString 

stringWithFormat:@"speed%i.dat",obj.recordCount];//What 

iteration of accelerometer recording 

        NSString *angVelRecordCount = [NSString 

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What 

iteration of angular velocity recording 

        NSString *locationRecordCount = [NSString 

stringWithFormat:@"location%i.dat",obj.recordCount];//What 

iteration of angular velocity recording 

         

         

         

         

        //Second, create the fileName using the queried path 

        //NSString *arrayFilename = [documentsDirectory 

stringByAppendingPathComponent:@"drift.dat"]; 

         

         

        obj.accArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:accRecordCount]; 

        obj.gyroArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:gyroRecordCount]; 

        obj.drowsyArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:drowsyRecordCount]; 

        obj.speedArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:speedRecordCount]; 

        obj.angVelArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:angVelRecordCount]; 

        obj.locationArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:locationRecordCount]; 
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        //*******//******END RECORD PATH UPDATE//*****//***** 

         

         

        bool fileExists;//=[[NSFileManager defaultManager] 

fileExistsAtPath:gyroRecordCount]; 

         

        while (fileExists=[[NSFileManager defaultManager] 

fileExistsAtPath:obj.accArrayFilename]) //do this while file 

already exists 

        { 

            obj.recordCount++; //try the next index value at 

next loop go-around 

             

        //Now re-assign everything for new go around 

            gyroRecordCount = [NSString 

stringWithFormat:@"gyro%i.dat",obj.recordCount];//What 

iteration of gyroscope recording 

            accRecordCount = [NSString 

stringWithFormat:@"acc%i.dat",obj.recordCount];//What 

iteration of accelerometer recording 

            drowsyRecordCount = [NSString 

stringWithFormat:@"drowsy%i.dat",obj.recordCount];//What 

iteration of drowsy recording 

            speedRecordCount = [NSString 

stringWithFormat:@"speed%i.dat",obj.recordCount];//What 

iteration of drowsy recording 

            locationRecordCount = [NSString 

stringWithFormat:@"location%i.dat",obj.recordCount];//What 

iteration of location recording 

            angVelRecordCount = [NSString 

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What 

iteration of angular velocity recording 

 

             

            obj.accArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:accRecordCount]; 

            obj.gyroArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:gyroRecordCount]; 

            obj.drowsyArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:drowsyRecordCount]; 

            obj.speedArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:speedRecordCount]; 

            obj.angVelArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:angVelRecordCount]; 

            obj.locationArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:locationRecordCount]; 

             

 

            //restart loop here 
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        } 

         

         

         

         

        /* 

         //zero all values for calibration 

         

obj.lastSwmFusion=obj.swmFusion=obj.gyroPosition=obj.accAngle=

0; 

         obj.recordCount++; 

         */ 

         

        //write accelerometer and gyroscope array to file 

        [obj.accArray writeToFile:obj.accArrayFilename 

atomically: YES]; 

        [obj.gyroArray writeToFile:obj.gyroArrayFilename 

atomically: YES]; 

        [obj.drowsyArray writeToFile:obj.drowsyArrayFilename 

atomically: YES]; 

        [obj.speedArray writeToFile:obj.speedArrayFilename 

atomically: YES]; 

        [obj.angVelArray writeToFile:obj.angVelArrayFilename 

atomically: YES]; 

        [obj.locationArray 

writeToFile:obj.locationArrayFilename atomically: YES]; 

 

         

         

        self.dataBlockSaved.text = [NSString 

stringWithFormat:@"data block %i saved!", obj.recordCount]; 

 

         

        if ([obj.accArray count])// empty the arrays 

        { 

            [obj.accArray removeAllObjects]; 

            [obj.gyroArray removeAllObjects]; 

            [obj.speedArray removeAllObjects]; 

            [obj.locationArray removeAllObjects]; 

            [obj.angVelArray removeAllObjects]; 

        } 

        if ([obj.drowsyArray count])// empty the drowsy arrays 

        { 

            [obj.drowsyArray removeAllObjects]; 

        } 

    } 

} 

 

- (IBAction)drowsyButton:(id)sender 
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{ 

    DataClass *obj=[DataClass getInstance]; 

     

    if (obj.recordBoolean == 1)//drowsy button only works when 

recording 

    { 

        DataClass *obj=[DataClass getInstance]; 

         

        NSDate *currentTime = [NSDate date]; 

        NSDateFormatter *dateFormatter = [[NSDateFormatter 

alloc] init]; 

        [dateFormatter setDateFormat:@"dd/M/yy     hh:mm:ss"]; 

        NSString *resultString = [dateFormatter 

stringFromDate:currentTime]; 

         

         

        [obj.drowsyArray addObject:[NSString stringWithFormat: 

@"%@ %f", resultString,[NSDate timeIntervalSinceReferenceDate] 

]];//SAVE drowsy data 

    } 

    else self.recordProgress.text = @"Recording not started 

yet!"; 

} 

 

 

 

- (void)didReceiveMemoryWarning 

{ 

    [super didReceiveMemoryWarning]; 

    // Dispose of any resources that can be recreated. 

} 

 

@end 
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A2.1.5 main.m  

// 

//  main.m 

//  IM Uf 

// 

//  Created by Samuel Lawoyin on 7/19/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved.  

// 

 

#import <UIKit/UIKit.h> 

 

#import "imuAppDelegate.h" 

 

int main(int argc, char * argv[]) 

{ 

    @autoreleasepool { 

        return UIApplicationMain(argc, argv, nil, NSStringFromClass([imuAppDelegate 

class])); 

    } 

} 
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A2.1.6 SVM for IMU-Prefix.pch  

// 

//  Prefix header 

// 

//  The contents of this file are implicitly included at the 

beginning of every source file. 

// 

 

#import <Availability.h> 

 

#ifndef __IPHONE_5_0 

#warning "This project uses features only available in iOS SDK 5.0 

and later." 

#endif 

 

#ifdef __OBJC__ 

    #import <UIKit/UIKit.h> 

    #import <Foundation/Foundation.h> 

#endif 
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A2.1.7 SVMfor IMU-Info.plist  

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 

"http://www.apple.com/DTDs/PropertyList-1.0.dtd"> 

<plist version="1.0"> 

<dict> 

 <key>CFBundleDevelopmentRegion</key> 

 <string>en</string> 

 <key>CFBundleDisplayName</key> 

 <string>${PRODUCT_NAME}</string> 

 <key>CFBundleExecutable</key> 

 <string>${EXECUTABLE_NAME}</string> 

 <key>CFBundleIdentifier</key> 

 <string>sam.${PRODUCT_NAME:rfc1034identifier}</string> 

 <key>CFBundleInfoDictionaryVersion</key> 

 <string>6.0</string> 

 <key>CFBundleName</key> 

 <string>${PRODUCT_NAME}</string> 

 <key>CFBundlePackageType</key> 

 <string>APPL</string> 

 <key>CFBundleShortVersionString</key> 

 <string>1.0</string> 

 <key>CFBundleSignature</key> 

 <string>????</string> 

 <key>CFBundleVersion</key> 

 <string>1.0</string> 

 <key>LSRequiresIPhoneOS</key> 

 <true/> 

 <key>UIMainStoryboardFile</key> 

 <string>Main_iPhone</string> 

 <key>UIMainStoryboardFile~ipad</key> 

 <string>Main_iPad</string> 

 <key>UIRequiredDeviceCapabilities</key> 

 <array> 

  <string>armv7</string> 

 </array> 

 <key>UISupportedInterfaceOrientations</key> 

 <array> 

  <string>UIInterfaceOrientationPortrait</string> 

  <string>UIInterfaceOrientationLandscapeLeft</string> 

  <string>UIInterfaceOrientationLandscapeRight</string> 

 </array> 

 <key>UISupportedInterfaceOrientations~ipad</key> 

 <array> 

  <string>UIInterfaceOrientationPortrait</string> 

  <string>UIInterfaceOrientationPortraitUpsideDown</string> 

  <string>UIInterfaceOrientationLandscapeLeft</string> 

  <string>UIInterfaceOrientationLandscapeRight</string> 

 </array> 

</dict> 

</plist> 
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A2.2 Machine Learning - Support Vector Classification Code 

A2.2.1 main.m 

// 

//  main.m 

//  SVM for IMU 

// 

//  Created by Samuel Lawoyin on 7/20/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import <UIKit/UIKit.h> 

 

#import "imuAppDelegate.h" 

 

int main(int argc, char * argv[]) 

{ 

    @autoreleasepool { 

        return UIApplicationMain(argc, argv, nil, 

NSStringFromClass([imuAppDelegate class])); 

    } 

} 
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A2.2.2 imuAppDelegate.h 

// 

//  imuAppDelegate.h 

//  SVM for IMU 

// 

//  Created by Samuel Lawoyin on 7/20/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import <UIKit/UIKit.h> 

 

@interface imuAppDelegate : UIResponder <UIApplicationDelegate> 

 

@property (strong, nonatomic) UIWindow *window; 

 

@end 
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A2.2.3 imuAppDelegate.m 

// 

//  imuAppDelegate.m 

//  SVM for IMU 

// 

//  Created by Samuel Lawoyin on 7/20/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import "imuAppDelegate.h" 

 

@implementation imuAppDelegate 

 

- (BOOL)application:(UIApplication *)application 

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions 

{ 

    // Override point for customization after application launch. 

    return YES; 

} 

        

- (void)applicationWillResignActive:(UIApplication *)application 

{ 

    // Sent when the application is about to move from active to 

inactive state. This can occur for certain types of temporary 

interruptions (such as an incoming phone call or SMS message) or 

when the user quits the application and it begins the transition to 

the background state. 

    // Use this method to pause ongoing tasks, disable timers, and 

throttle down OpenGL ES frame rates. Games should use this method to 

pause the game. 

} 

 

- (void)applicationDidEnterBackground:(UIApplication *)application 

{ 

    // Use this method to release shared resources, save user data, 

invalidate timers, and store enough application state information to 

restore your application to its current state in case it is 

terminated later.  

    // If your application supports background execution, this 

method is called instead of applicationWillTerminate: when the user 

quits. 

} 

 

- (void)applicationWillEnterForeground:(UIApplication *)application 

{ 

    // Called as part of the transition from the background to the 

inactive state; here you can undo many of the changes made on 

entering the background. 

} 

 

- (void)applicationDidBecomeActive:(UIApplication *)application 

{ 
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    // Restart any tasks that were paused (or not yet started) while 

the application was inactive. If the application was previously in 

the background, optionally refresh the user interface. 

} 

 

- (void)applicationWillTerminate:(UIApplication *)application 

{ 

    // Called when the application is about to terminate. Save data 

if appropriate. See also applicationDidEnterBackground:. 

} 

 

@end 
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A2.2.4 imuViewController.h 

// 

//  imuViewController.h 

//  SVM for IMU 

// 

//  Created by Samuel Lawoyin on 7/20/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import <UIKit/UIKit.h> 

#import <CoreMotion/CoreMotion.h> 

#import <coreText/CoreText.h> 

#import <CoreLocation/CoreLocation.h> 

#import <MobileCoreServices/MobileCoreServices.h> 

#import <MapKit/MapKit.h> 

//#import "svm.h" 

 

@interface imuViewController : UIViewController 

<UITextFieldDelegate> 

@property (strong, nonatomic) IBOutlet UITextField *turnAve; 

 

@property (strong, nonatomic) IBOutlet UITextField *zeroCross; 

 

@property (strong, nonatomic) IBOutlet UITextField *swmSudden; 

 

@property (strong, nonatomic) IBOutlet UITextField *swmSTDev; 

 

- (IBAction)classify:(id)sender; 

 

 

@property (strong, nonatomic) IBOutlet UILabel *turnAveBox; 

@property (strong, nonatomic) IBOutlet UILabel *zeroCrossBox; 

@property (strong, nonatomic) IBOutlet UILabel *swmSuddenBox; 

@property (strong, nonatomic) IBOutlet UILabel *swmSTDevBox; 

@end 

 

 

 

 

@interface DataClass : NSObject 

{ 

    NSString *inputFilename; 

     

    NSString *accArrayFilename; 

    NSString *gyroArrayFilename; 

    NSString *speedArrayFilename; 

    NSString *drowsyArrayFilename; 

     

    NSMutableArray *accArray; 

    NSMutableArray *gyroArray; 

    NSMutableArray *speedArray; 

    NSMutableArray *drowsyArray; 

} 
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//global variable 

@property (nonatomic, retain) NSString* turnAveString; 

@property (nonatomic, retain) NSString* zeroCrossString; 

@property (nonatomic, retain) NSString* swmSuddenString; 

@property (nonatomic, retain) NSString* swmSTDevString; 

 

@property (nonatomic, retain) NSString* classifyString; 

 

 

 

 

@property (nonatomic, retain) NSString *classifyFilename; 

@property (nonatomic, retain) NSString *classifiedOutputFilename; 

@property (nonatomic, retain) NSString *modelFilename; 

 

 

@property (nonatomic, retain) NSString *accArrayFilename; 

@property (nonatomic, retain) NSString *gyroArrayFilename; 

@property (nonatomic, retain) NSString *drowsyArrayFilename; 

@property (nonatomic, retain) NSString *speedArrayFilename; 

@property (nonatomic, retain) NSString *startTime; 

+(DataClass*)getInstance; 

@property (nonatomic, retain) NSMutableArray *accArray; 

@property (nonatomic, retain) NSMutableArray *gyroArray; 

@property (nonatomic, retain) NSMutableArray *speedArray; 

@property (nonatomic, retain) NSMutableArray *drowsyArray; 

@property (nonatomic, assign) double gyroPosition; 

@property (nonatomic, assign) double accAngle; 

@property (nonatomic, assign) double lastGyroPosition; 

@property (nonatomic, assign) double swmFusion; 

@property (nonatomic, assign) double lastSwmFusion; 

//@property (nonatomic, assign) double lastGyroPositionNum; 

@property (nonatomic, assign) double lastX; 

@property (nonatomic, assign) double lastY; 

@property (nonatomic, assign) double lastZ;@property (nonatomic, 

assign) double accelerationX; 

@property (nonatomic, assign) double accelerationY; 

@property (nonatomic, assign) double accelerationZ; 

@property (nonatomic, assign) int revolveCase; 

@property (nonatomic, assign) int recordBoolean; 

@property (nonatomic, assign) int recordCount;//how many times the 

stop button has been pressed for labelling data 

@property (nonatomic, assign) double speed1; 

@property (nonatomic, assign) double speed2; 

 

@end 
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A2.2.5 imuViewController.m 

// 

//  imuViewController.m 

//  SVM for IMU 

// 

//  Created by Samuel Lawoyin on 7/20/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import "imuViewController.h" 

 

#include <stdio.h> 

#include <ctype.h> 

#include <stdlib.h> 

#include <string.h> 

#include <errno.h> 

//#include "svm.h" 

#define INF HUGE_VAL 

#define TAU 1e-12 

#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) 

typedef float Qfloat; 

typedef signed char schar; 

 

#ifndef min 

template <class T> static inline T min(T x,T y) { return (x<y)?x:y; 

} 

#endif 

#ifndef max 

template <class T> static inline T max(T x,T y) { return (x>y)?x:y; 

} 

#endif 

template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; 

y=t; } 

template <class S, class T> static inline void clone(T*& dst, S* 

src, int n) 

{ 

 dst = new T[n]; 

 memcpy((void *)dst,(void *)src,sizeof(T)*n); 

} 

static inline double powi(double base, int times) 

{ 

 double tmp = base, ret = 1.0; 

     

 for(int t=times; t>0; t/=2) 

 { 

  if(t%2==1) ret*=tmp; 

  tmp = tmp * tmp; 

 } 

 return ret; 

} 

 

@interface imuViewController () 
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@end 

 

@implementation DataClass 

@synthesize accArrayFilename; 

@synthesize gyroArrayFilename; 

static DataClass *instance = nil; 

+(DataClass *)getInstance 

{ 

    @synchronized(self) 

    { 

        if (instance==nil) 

        { 

            instance = [DataClass new]; 

        } 

    } 

    return instance; 

} 

 

@end 

 

 

@implementation imuViewController 

 

- (void)viewDidLoad 

{ 

    [super viewDidLoad]; 

 // Do any additional setup after loading the view, typically 

from a nib. 

} 

 

 

 

 

 

 

 

 

    int print_null(const char *s,...) {return 0;} 

 

static int (*info)(const char *fmt,...) = &printf; 

 

struct svm_node *x; 

int max_nr_attr = 64; 

 

struct svm_model* model; 

int predict_probability=0; 

 

static char *line = NULL; 

static int max_line_len; 

 

 

//    struct svm_model *submodel = svm_train(&subprob,&subparam); 

 

struct svm_node 
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{ 

    int index; 

    double value; 

}; 

 

 

struct svm_problem 

{ 

 int l; 

 double *y; 

 struct svm_node **x; 

}; 

 

enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* 

svm_type */ 

enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */ 

 

struct svm_parameter 

{ 

 int svm_type; 

 int kernel_type; 

 int degree; /* for poly */ 

 double gamma; /* for poly/rbf/sigmoid */ 

 double coef0; /* for poly/sigmoid */ 

     

 /* these are for training only */ 

 double cache_size; /* in MB */ 

 double eps; /* stopping criteria */ 

 double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ 

 int nr_weight;  /* for C_SVC */ 

 int *weight_label; /* for C_SVC */ 

 double* weight;  /* for C_SVC */ 

 double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ 

 double p; /* for EPSILON_SVR */ 

 int shrinking; /* use the shrinking heuristics */ 

 int probability; /* do probability estimates */ 

}; 

 

 

// 

// svm_model 

// 

struct svm_model 

{ 

 struct svm_parameter param; /* parameter */ 

 int nr_class;  /* number of classes, = 2 in 

regression/one class svm */ 

 int l;   /* total #SV */ 

 struct svm_node **SV;  /* SVs (SV[l]) */ 

 double **sv_coef; /* coefficients for SVs in decision 

functions (sv_coef[k-1][l]) */ 

 double *rho;  /* constants in decision functions 

(rho[k*(k-1)/2]) */ 

 double *probA;  /* pariwise probability information */ 
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 double *probB; 

 int *sv_indices;        /* sv_indices[0,...,nSV-1] are values 

in [1,...,num_traning_data] to indicate SVs in the training set */ 

     

 /* for classification only */ 

     

 int *label;  /* label of each class (label[k]) */ 

 int *nSV;  /* number of SVs for each class (nSV[k]) */ 

    /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */ 

 /* XXX */ 

 int free_sv;  /* 1 if svm_model is created by 

svm_load_model*/ 

    /* 0 if svm_model is created by svm_train */ 

}; 

 

FILE *input, *output; 

 

 

 

int svm_get_svm_type(const svm_model *model) 

{ 

 return model->param.svm_type; 

} 

 

int svm_get_nr_class(const svm_model *model) 

{ 

 return model->nr_class; 

} 

 

 

 

 

- (IBAction)classify:(id)sender 

{ 

 

    DataClass *obj=[DataClass getInstance]; 

    obj.turnAveString = self.turnAve.text;  //GET 

    self.turnAveBox.text= obj.turnAveString;//PRINT 

     

    obj.zeroCrossString = self.zeroCross.text;  //GET 

    self.zeroCrossBox.text= obj.zeroCrossString;//PRINT 

     

    obj.swmSuddenString = self.swmSudden.text;  //GET 

    self.swmSuddenBox.text= obj.swmSuddenString;//PRINT 

     

    obj.swmSTDevString = self.swmSTDev.text;  //GET 

    self.swmSTDevBox.text= obj.swmSTDevString;//PRINT 

     

     

     

    //*******//******SAVE FILE TO BE CLASSIFIED HERE//*****//***** 

    NSArray *paths = 

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 

NSUserDomainMask, YES); 
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    NSString *documentsDirectory = [paths objectAtIndex:0]; 

    //Second, create the fileName using the queried path 

    obj.classifyFilename = [documentsDirectory 

stringByAppendingPathComponent:@"fileToClassify"]; 

    obj.classifiedOutputFilename = [documentsDirectory 

stringByAppendingPathComponent:@"classifiedOutput"]; 

    obj.modelFilename = [documentsDirectory 

stringByAppendingPathComponent:@"model.txt"]; 

 

     

    //Prepare single line of classification data 

    obj.classifyString = [NSString stringWithFormat: @"1 1:%@ 2:%@ 

3:%@ 

4:%@",obj.turnAveString,obj.zeroCrossString,obj.swmSuddenString,obj.

swmSTDevString]; 

    //Now write to classification file 

    [obj.classifyString writeToFile:obj.classifyFilename atomically: 

YES]; 

     

     

     

    const char *inputChar =[obj.classifyFilename UTF8String];       

//convert NSString to c char the name of the input file tobe 

classified 

    input = fopen(inputChar,"r"); 

     

    const char *outputChar =[obj.classifiedOutputFilename 

UTF8String];  //convert NSString to c char the name of the output 

file with classification results 

 

    const char *modelfile = [obj.modelFilename UTF8String];  

//convert NSString to c char the name of the model file  

     

     

 if(input == NULL) 

 { 

  fprintf(stderr,"can't open input file %s\n",inputChar); 

  exit(1); 

 } 

     

 output = fopen(outputChar,"w"); 

 if(output == NULL) 

 { 

  fprintf(stderr,"can't open output file %s\n",outputChar); 

  exit(1); 

 } 

     

 if((model=svm_load_model(modelfile))==0) 

 { 

  fprintf(stderr,"can't open model file %s\n",modelfile); 

  exit(1); 

 } 
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 x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct 

svm_node)); 

 if(predict_probability) 

 { 

  if(svm_check_probability_model(model)==0) 

  { 

   fprintf(stderr,"Model does not support probabiliy 

estimates\n"); 

   exit(1); 

  } 

 } 

 else 

 { 

  if(svm_check_probability_model(model)!=0) 

   info("Model supports probability estimates, but 

disabled in prediction.\n"); 

 } 

     

 predict(input,output); 

 svm_free_and_destroy_model(&model); 

 free(x); 

 free(line); 

 fclose(input); 

 fclose(output); 

  

} 

 

 

 

 

 

 

void predict(FILE *input, FILE *output) 

{ 

 int correct = 0; 

 int total = 0; 

 double error = 0; 

 double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0; 

     

 int svm_type=svm_get_svm_type(model); 

 int nr_class=svm_get_nr_class(model); 

 double *prob_estimates=NULL; 

 int j; 

     

 if(predict_probability) 

 { 

  /*if (svm_type==NU_SVR || svm_type==EPSILON_SVR) 

   info("Prob. model for test data: target value = 

predicted value + z,\nz: Laplace distribution e^(-

|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));*/ 

  //else 

  //{ 

   int *labels=(int *) malloc(nr_class*sizeof(int)); 

   svm_get_labels(model,labels); 
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   prob_estimates = (double *) 

malloc(nr_class*sizeof(double)); 

   fprintf(output,"labels"); 

   for(j=0;j<nr_class;j++) 

    fprintf(output," %d",labels[j]); 

   fprintf(output,"\n"); 

   free(labels); 

 // } 

 } 

     

 max_line_len = 1024; 

 line = (char *)malloc(max_line_len*sizeof(char)); 

 while(readline(input) != NULL) 

 { 

  int i = 0; 

  double target_label, predict_label; 

  char *idx, *val, *label, *endptr; 

  int inst_max_index = -1; // strtol gives 0 if wrong 

format, and precomputed kernel has <index> start from 0 

         

  label = strtok(line," \t\n"); 

  if(label == NULL) // empty line 

   exit_input_error(total+1); 

         

  target_label = strtod(label,&endptr); 

  if(endptr == label || *endptr != '\0') 

   exit_input_error(total+1); 

         

  while(1) 

  { 

   if(i>=max_nr_attr-1) // need one more for index = -

1 

   { 

    max_nr_attr *= 2; 

    x = (struct svm_node *) 

realloc(x,max_nr_attr*sizeof(struct svm_node)); 

   } 

             

   idx = strtok(NULL,":"); 

   val = strtok(NULL," \t"); 

             

   if(val == NULL) 

    break; 

   errno = 0; 

   x[i].index = (int) strtol(idx,&endptr,10); 

   if(endptr == idx || errno != 0 || *endptr != '\0' || 

x[i].index <= inst_max_index) 

    exit_input_error(total+1); 

   else 

    inst_max_index = x[i].index; 

             

   errno = 0; 

   x[i].value = strtod(val,&endptr); 
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   if(endptr == val || errno != 0 || (*endptr != '\0' 

&& !isspace(*endptr))) 

    exit_input_error(total+1); 

             

   ++i; 

  } 

  x[i].index = -1; 

         

  if (predict_probability && (svm_type==C_SVC || 

svm_type==NU_SVC)) 

  { 

   predict_label = 

svm_predict_probability(model,x,prob_estimates); 

   fprintf(output,"%g",predict_label); 

   for(j=0;j<nr_class;j++) 

    fprintf(output," %g",prob_estimates[j]); 

   fprintf(output,"\n"); 

  } 

  //else 

  //{ 

   predict_label = svm_predict(model,x); 

   fprintf(output,"%g\n",predict_label); 

  //} 

         

  if(predict_label == target_label) 

   ++correct; 

  error += (predict_label-target_label)*(predict_label-

target_label); 

  sump += predict_label; 

  sumt += target_label; 

  sumpp += predict_label*predict_label; 

  sumtt += target_label*target_label; 

  sumpt += predict_label*target_label; 

  ++total; 

 } 

 if (svm_type==NU_SVR || svm_type==EPSILON_SVR) 

 { 

  info("Mean squared error = %g 

(regression)\n",error/total); 

  info("Squared correlation coefficient = %g 

(regression)\n", 

             ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ 

             ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)) 

             ); 

 } 

 else 

  info("Accuracy = %g%% (%d/%d) (classification)\n", 

             (double)correct/total*100,correct,total); 

 if(predict_probability) 

  free(prob_estimates); 

} 
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void svm_free_and_destroy_model(struct svm_model** model_ptr_ptr) 

{ 

 if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL) 

 { 

  svm_free_model_content(*model_ptr_ptr); 

  free(*model_ptr_ptr); 

  *model_ptr_ptr = NULL; 

 } 

} 

 

 

 

 svm_model *svm_load_model(const char *model_file_name) 

{ 

 FILE *fp = fopen(model_file_name,"rb"); 

 if(fp==NULL) return NULL; 

     

 char *old_locale = strdup(setlocale(LC_ALL, NULL)); 

 setlocale(LC_ALL, "C"); 

     

 // read parameters 

     

 svm_model *model = Malloc(svm_model,1); 

 model->rho = NULL; 

 model->probA = NULL; 

 model->probB = NULL; 

 model->sv_indices = NULL; 

 model->label = NULL; 

 model->nSV = NULL; 

  

 // read header 

 if (!read_model_header(fp, model)) 

 { 

  fprintf(stderr, "ERROR: fscanf failed to read model\n"); 

  setlocale(LC_ALL, old_locale); 

  free(old_locale); 

  free(model->rho); 

  free(model->label); 

  free(model->nSV); 

  free(model); 

  return NULL; 

 } 

  

 // read sv_coef and SV 

     

 int elements = 0; 

 long pos = ftell(fp); 

     

 max_line_len = 1024; 

 line = Malloc(char,max_line_len); 

 char *p,*endptr,*idx,*val; 

     

 while(readline(fp)!=NULL) 

 { 
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  p = strtok(line,":"); 

  while(1) 

  { 

   p = strtok(NULL,":"); 

   if(p == NULL) 

    break; 

   ++elements; 

  } 

 } 

 elements += model->l; 

     

 fseek(fp,pos,SEEK_SET); 

     

 int m = model->nr_class - 1; 

 int l = model->l; 

 model->sv_coef = Malloc(double *,m); 

 int i; 

 for(i=0;i<m;i++) 

  model->sv_coef[i] = Malloc(double,l); 

 model->SV = Malloc(svm_node*,l); 

 svm_node *x_space = NULL; 

 if(l>0) x_space = Malloc(svm_node,elements); 

     

 int j=0; 

 for(i=0;i<l;i++) 

 { 

  readline(fp); 

  model->SV[i] = &x_space[j]; 

         

  p = strtok(line, " \t"); 

  model->sv_coef[0][i] = strtod(p,&endptr); 

  for(int k=1;k<m;k++) 

  { 

   p = strtok(NULL, " \t"); 

   model->sv_coef[k][i] = strtod(p,&endptr); 

  } 

         

  while(1) 

  { 

   idx = strtok(NULL, ":"); 

   val = strtok(NULL, " \t"); 

             

   if(val == NULL) 

    break; 

   x_space[j].index = (int) strtol(idx,&endptr,10); 

   x_space[j].value = strtod(val,&endptr); 

             

   ++j; 

  } 

  x_space[j++].index = -1; 

 } 

 free(line); 

     

 setlocale(LC_ALL, old_locale); 
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 free(old_locale); 

     

 if (ferror(fp) != 0 || fclose(fp) != 0) 

  return NULL; 

     

 model->free_sv = 1; // XXX 

 return model; 

} 

 

 

static char* readline(FILE *input) 

{ 

 int len; 

     

 if(fgets(line,max_line_len,input) == NULL) 

  return NULL; 

     

 while(strrchr(line,'\n') == NULL) 

 { 

  max_line_len *= 2; 

  line = (char *) realloc(line,max_line_len); 

  len = (int) strlen(line); 

  if(fgets(line+len,max_line_len-len,input) == NULL) 

   break; 

 } 

 return line; 

} 

 

void exit_input_error(int line_num) 

{ 

 fprintf(stderr,"Wrong input format at line %d\n", line_num); 

 exit(1); 

} 

 

 

void svm_get_labels(const struct svm_model *model, int *label); 

 

 

 

double svm_get_svr_probability(const struct svm_model *model); 

 

int svm_check_probability_model(const svm_model *model) 

{ 

    return ((model->param.svm_type == C_SVC || model->param.svm_type 

== NU_SVC) && 

            model->probA!=NULL && model->probB!=NULL) || 

    ((model->param.svm_type == EPSILON_SVR || model->param.svm_type 

== NU_SVR) && 

     model->probA!=NULL); 

} 

 

double svm_predict(const svm_model *model, const svm_node *x) 

{ 

 int nr_class = model->nr_class; 
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 double *dec_values; 

 if(model->param.svm_type == ONE_CLASS || 

    model->param.svm_type == EPSILON_SVR || 

    model->param.svm_type == NU_SVR) 

  dec_values = Malloc(double, 1); 

 else 

  dec_values = Malloc(double, nr_class*(nr_class-1)/2); 

 double pred_result = svm_predict_values(model, x, dec_values); 

 free(dec_values); 

 return pred_result; 

} 

 

double svm_predict_values(const svm_model *model, const svm_node *x, 

double* dec_values) 

{ 

 int i; 

 if(model->param.svm_type == ONE_CLASS || 

    model->param.svm_type == EPSILON_SVR || 

    model->param.svm_type == NU_SVR) 

 { 

  double *sv_coef = model->sv_coef[0]; 

  double sum = 0; 

  for(i=0;i<model->l;i++) 

   sum += sv_coef[i] * Kernel::k_function(x,model-

>SV[i],model->param); 

  sum -= model->rho[0]; 

  *dec_values = sum; 

         

  if(model->param.svm_type == ONE_CLASS) 

   return (sum>0)?1:-1; 

  else 

   return sum; 

 } 

 else 

 { 

  int nr_class = model->nr_class; 

  int l = model->l; 

   

  double *kvalue = Malloc(double,l); 

  for(i=0;i<l;i++) 

   kvalue[i] = Kernel::k_function(x,model->SV[i],model-

>param); 

         

  int *start = Malloc(int,nr_class); 

  start[0] = 0; 

  for(i=1;i<nr_class;i++) 

   start[i] = start[i-1]+model->nSV[i-1]; 

         

  int *vote = Malloc(int,nr_class); 

  for(i=0;i<nr_class;i++) 

   vote[i] = 0; 

         

  int p=0; 

  for(i=0;i<nr_class;i++) 
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   for(int j=i+1;j<nr_class;j++) 

   { 

    double sum = 0; 

    int si = start[i]; 

    int sj = start[j]; 

    int ci = model->nSV[i]; 

    int cj = model->nSV[j]; 

     

    int k; 

    double *coef1 = model->sv_coef[j-1]; 

    double *coef2 = model->sv_coef[i]; 

    for(k=0;k<ci;k++) 

     sum += coef1[si+k] * kvalue[si+k]; 

    for(k=0;k<cj;k++) 

     sum += coef2[sj+k] * kvalue[sj+k]; 

    sum -= model->rho[p]; 

    dec_values[p] = sum; 

                 

    if(dec_values[p] > 0) 

     ++vote[i]; 

    else 

     ++vote[j]; 

    p++; 

   } 

         

  int vote_max_idx = 0; 

  for(i=1;i<nr_class;i++) 

   if(vote[i] > vote[vote_max_idx]) 

    vote_max_idx = i; 

         

  free(kvalue); 

  free(start); 

  free(vote); 

  return model->label[vote_max_idx]; 

 } 

} 

 

static const char *kernel_type_table[]= 

{ 

 "linear","polynomial","rbf","sigmoid","precomputed",NULL 

}; 

 

double svm_predict_probability( 

                               const svm_model *model, const 

svm_node *x, double *prob_estimates) 

{ 

 if ((model->param.svm_type == C_SVC || model->param.svm_type 

== NU_SVC) && 

     model->probA!=NULL && model->probB!=NULL) 

 { 

  int i; 

  int nr_class = model->nr_class; 

  double *dec_values = Malloc(double, nr_class*(nr_class-

1)/2); 
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  svm_predict_values(model, x, dec_values); 

         

  double min_prob=1e-7; 

  double **pairwise_prob=Malloc(double *,nr_class); 

  for(i=0;i<nr_class;i++) 

   pairwise_prob[i]=Malloc(double,nr_class); 

  int k=0; 

  for(i=0;i<nr_class;i++) 

   for(int j=i+1;j<nr_class;j++) 

   { 

   

 pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],mode

l->probA[k],model->probB[k]),min_prob),1-min_prob); 

    pairwise_prob[j][i]=1-pairwise_prob[i][j]; 

    k++; 

   } 

 

 multiclass_probability(nr_class,pairwise_prob,prob_estimates); 

         

  int prob_max_idx = 0; 

  for(i=1;i<nr_class;i++) 

   if(prob_estimates[i] > prob_estimates[prob_max_idx]) 

    prob_max_idx = i; 

  for(i=0;i<nr_class;i++) 

   free(pairwise_prob[i]); 

  free(dec_values); 

  free(pairwise_prob); 

  return model->label[prob_max_idx]; 

 } 

 else  

  return svm_predict(model, x); 

} 

 

 

// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng 

static void multiclass_probability(int k, double **r, double *p) 

{ 

 int t,j; 

 int iter = 0, max_iter=max(100,k); 

 double **Q=Malloc(double *,k); 

 double *Qp=Malloc(double,k); 

 double pQp, eps=0.005/k; 

  

 for (t=0;t<k;t++) 

 { 

  p[t]=1.0/k;  // Valid if k = 1 

  Q[t]=Malloc(double,k); 

  Q[t][t]=0; 

  for (j=0;j<t;j++) 

  { 

   Q[t][t]+=r[j][t]*r[j][t]; 

   Q[t][j]=Q[j][t]; 

  } 

  for (j=t+1;j<k;j++) 
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  { 

   Q[t][t]+=r[j][t]*r[j][t]; 

   Q[t][j]=-r[j][t]*r[t][j]; 

  } 

 } 

 for (iter=0;iter<max_iter;iter++) 

 { 

  // stopping condition, recalculate QP,pQP for numerical 

accuracy 

  pQp=0; 

  for (t=0;t<k;t++) 

  { 

   Qp[t]=0; 

   for (j=0;j<k;j++) 

    Qp[t]+=Q[t][j]*p[j]; 

   pQp+=p[t]*Qp[t]; 

  } 

  double max_error=0; 

  for (t=0;t<k;t++) 

  { 

   double error=fabs(Qp[t]-pQp); 

   if (error>max_error) 

    max_error=error; 

  } 

  if (max_error<eps) break; 

   

  for (t=0;t<k;t++) 

  { 

   double diff=(-Qp[t]+pQp)/Q[t][t]; 

   p[t]+=diff; 

  

 pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); 

   for (j=0;j<k;j++) 

   { 

    Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); 

    p[j]/=(1+diff); 

   } 

  } 

 } 

 if (iter>=max_iter) 

  info("Exceeds max_iter in multiclass_prob\n"); 

 for(t=0;t<k;t++) free(Q[t]); 

 free(Q); 

 free(Qp); 

} 

 

 

void svm_free_model_content(svm_model* model_ptr) 

{ 

 if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != 

NULL) 

  free((void *)(model_ptr->SV[0])); 

 if(model_ptr->sv_coef) 

 { 
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  for(int i=0;i<model_ptr->nr_class-1;i++) 

   free(model_ptr->sv_coef[i]); 

 } 

     

 free(model_ptr->SV); 

 model_ptr->SV = NULL; 

     

 free(model_ptr->sv_coef); 

 model_ptr->sv_coef = NULL; 

     

 free(model_ptr->rho); 

 model_ptr->rho = NULL; 

     

 free(model_ptr->label); 

 model_ptr->label= NULL; 

     

 free(model_ptr->probA); 

 model_ptr->probA = NULL; 

     

 free(model_ptr->probB); 

 model_ptr->probB= NULL; 

     

 free(model_ptr->sv_indices); 

 model_ptr->sv_indices = NULL; 

     

 free(model_ptr->nSV); 

 model_ptr->nSV = NULL; 

} 

 

// FSCANF helps to handle fscanf failures. 

// Its do-while block avoids the ambiguity when 

// if (...) 

//    FSCANF(); 

// is used 

// 

#define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream, 

_format, _var) != 1) return false; }while(0) 

bool read_model_header(FILE *fp, svm_model* model) 

{ 

 svm_parameter& param = model->param; 

 char cmd[81]; 

 while(1) 

 { 

  FSCANF(fp,"%80s",cmd); 

         

  if(strcmp(cmd,"svm_type")==0) 

  { 

   FSCANF(fp,"%80s",cmd); 

   int i; 

   for(i=0;svm_type_table[i];i++) 

   { 

    if(strcmp(svm_type_table[i],cmd)==0) 

    { 

     param.svm_type=i; 
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     break; 

    } 

   } 

   if(svm_type_table[i] == NULL) 

   { 

    fprintf(stderr,"unknown svm type.\n"); 

    return false; 

   } 

  } 

  else if(strcmp(cmd,"kernel_type")==0) 

  { 

   FSCANF(fp,"%80s",cmd); 

   int i; 

   for(i=0;kernel_type_table[i];i++) 

   { 

    if(strcmp(kernel_type_table[i],cmd)==0) 

    { 

     param.kernel_type=i; 

     break; 

    } 

   } 

   if(kernel_type_table[i] == NULL) 

   { 

    fprintf(stderr,"unknown kernel function.\n"); 

    return false; 

   } 

  } 

  else if(strcmp(cmd,"degree")==0) 

   FSCANF(fp,"%d",&param.degree); 

  else if(strcmp(cmd,"gamma")==0) 

   FSCANF(fp,"%lf",&param.gamma); 

  else if(strcmp(cmd,"coef0")==0) 

   FSCANF(fp,"%lf",&param.coef0); 

  else if(strcmp(cmd,"nr_class")==0) 

   FSCANF(fp,"%d",&model->nr_class); 

  else if(strcmp(cmd,"total_sv")==0) 

   FSCANF(fp,"%d",&model->l); 

  else if(strcmp(cmd,"rho")==0) 

  { 

   int n = model->nr_class * (model->nr_class-1)/2; 

   model->rho = Malloc(double,n); 

   for(int i=0;i<n;i++) 

    FSCANF(fp,"%lf",&model->rho[i]); 

  } 

  else if(strcmp(cmd,"label")==0) 

  { 

   int n = model->nr_class; 

   model->label = Malloc(int,n); 

   for(int i=0;i<n;i++) 

    FSCANF(fp,"%d",&model->label[i]); 

  } 

  else if(strcmp(cmd,"probA")==0) 

  { 

   int n = model->nr_class * (model->nr_class-1)/2; 
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   model->probA = Malloc(double,n); 

   for(int i=0;i<n;i++) 

    FSCANF(fp,"%lf",&model->probA[i]); 

  } 

  else if(strcmp(cmd,"probB")==0) 

  { 

   int n = model->nr_class * (model->nr_class-1)/2; 

   model->probB = Malloc(double,n); 

   for(int i=0;i<n;i++) 

    FSCANF(fp,"%lf",&model->probB[i]); 

  } 

  else if(strcmp(cmd,"nr_sv")==0) 

  { 

   int n = model->nr_class; 

   model->nSV = Malloc(int,n); 

   for(int i=0;i<n;i++) 

    FSCANF(fp,"%d",&model->nSV[i]); 

  } 

  else if(strcmp(cmd,"SV")==0) 

  { 

   while(1) 

   { 

    int c = getc(fp); 

    if(c==EOF || c=='\n') break; 

   } 

   break; 

  } 

  else 

  { 

   fprintf(stderr,"unknown text in model file: 

[%s]\n",cmd); 

   return false; 

  } 

 } 

     

 return true; 

     

} 

 

static double sigmoid_predict(double decision_value, double A, 

double B) 

{ 

 double fApB = decision_value*A+B; 

 // 1-p used later; avoid catastrophic cancellation 

 if (fApB >= 0) 

  return exp(-fApB)/(1.0+exp(-fApB)); 

 else 

  return 1.0/(1+exp(fApB)) ; 

} 

 

static const char *svm_type_table[] = 

{ 

 "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL 

}; 
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// 

// Kernel evaluation 

// 

// the static method k_function is for doing single kernel 

evaluation 

// the constructor of Kernel prepares to calculate the l*l kernel 

matrix 

// the member function get_Q is for getting one column from the Q 

Matrix 

// 

class QMatrix { 

public: 

 virtual Qfloat *get_Q(int column, int len) const = 0; 

 virtual double *get_QD() const = 0; 

 virtual void swap_index(int i, int j) const = 0; 

 virtual ~QMatrix() {} 

}; 

 

class Kernel: public QMatrix { 

public: 

 Kernel(int l, svm_node * const * x, const svm_parameter& 

param); 

 virtual ~Kernel(); 

     

 static double k_function(const svm_node *x, const svm_node *y, 

                             const svm_parameter& param); 

 virtual Qfloat *get_Q(int column, int len) const = 0; 

 virtual double *get_QD() const = 0; 

 virtual void swap_index(int i, int j) const // no so const... 

 { 

  swap(x[i],x[j]); 

  if(x_square) swap(x_square[i],x_square[j]); 

 } 

protected: 

     

 double (Kernel::*kernel_function)(int i, int j) const; 

     

private: 

 const svm_node **x; 

 double *x_square; 

     

 // svm_parameter 

 const int kernel_type; 

 const int degree; 

 const double gamma; 

 const double coef0; 

     

 static double dot(const svm_node *px, const svm_node *py); 

 double kernel_linear(int i, int j) const 

 { 

  return dot(x[i],x[j]); 

 } 
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 double kernel_poly(int i, int j) const 

 { 

  return powi(gamma*dot(x[i],x[j])+coef0,degree); 

 } 

 double kernel_rbf(int i, int j) const 

 { 

  return exp(-gamma*(x_square[i]+x_square[j]-

2*dot(x[i],x[j]))); 

 } 

 double kernel_sigmoid(int i, int j) const 

 { 

  return tanh(gamma*dot(x[i],x[j])+coef0); 

 } 

 double kernel_precomputed(int i, int j) const 

 { 

  return x[i][(int)(x[j][0].value)].value; 

 } 

}; 

 

Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& 

param) 

:kernel_type(param.kernel_type), degree(param.degree), 

gamma(param.gamma), coef0(param.coef0) 

{ 

 switch(kernel_type) 

 { 

  case LINEAR: 

   kernel_function = &Kernel::kernel_linear; 

   break; 

  case POLY: 

   kernel_function = &Kernel::kernel_poly; 

   break; 

  case RBF: 

   kernel_function = &Kernel::kernel_rbf; 

   break; 

  case SIGMOID: 

   kernel_function = &Kernel::kernel_sigmoid; 

   break; 

  case PRECOMPUTED: 

   kernel_function = &Kernel::kernel_precomputed; 

   break; 

 } 

     

 clone(x,x_,l); 

     

 if(kernel_type == RBF) 

 { 

  x_square = new double[l]; 

  for(int i=0;i<l;i++) 

   x_square[i] = dot(x[i],x[i]); 

 } 

 else 

  x_square = 0; 

} 
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Kernel::~Kernel() 

{ 

 delete[] x; 

 delete[] x_square; 

} 

 

double Kernel::dot(const svm_node *px, const svm_node *py) 

{ 

 double sum = 0; 

 while(px->index != -1 && py->index != -1) 

 { 

  if(px->index == py->index) 

  { 

   sum += px->value * py->value; 

   ++px; 

   ++py; 

  } 

  else 

  { 

   if(px->index > py->index) 

    ++py; 

   else 

    ++px; 

  } 

 } 

 return sum; 

} 

 

double Kernel::k_function(const svm_node *x, const svm_node *y, 

                          const svm_parameter& param) 

{ 

 switch(param.kernel_type) 

 { 

  case LINEAR: 

   return dot(x,y); 

  case POLY: 

   return 

powi(param.gamma*dot(x,y)+param.coef0,param.degree); 

  case RBF: 

  { 

   double sum = 0; 

   while(x->index != -1 && y->index !=-1) 

   { 

    if(x->index == y->index) 

    { 

     double d = x->value - y->value; 

     sum += d*d; 

     ++x; 

     ++y; 

    } 

    else 

    { 

     if(x->index > y->index) 
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     { 

      sum += y->value * y->value; 

      ++y; 

     } 

     else 

     { 

      sum += x->value * x->value; 

      ++x; 

     } 

    } 

   } 

             

   while(x->index != -1) 

   { 

    sum += x->value * x->value; 

    ++x; 

   } 

             

   while(y->index != -1) 

   { 

    sum += y->value * y->value; 

    ++y; 

   } 

    

   return exp(-param.gamma*sum); 

  } 

  case SIGMOID: 

   return tanh(param.gamma*dot(x,y)+param.coef0); 

  case PRECOMPUTED:  //x: test (validation), y: SV 

   return x[(int)(y->value)].value; 

  default: 

   return 0;  // Unreachable  

 } 

} 

void svm_get_labels(const svm_model *model, int* label) 

{ 

 if (model->label != NULL) 

  for(int i=0;i<model->nr_class;i++) 

   label[i] = model->label[i]; 

} 

 

- (void)didReceiveMemoryWarning 

{ 

    [super didReceiveMemoryWarning]; 

    // Dispose of any resources that can be recreated. 

} 

 

 

 

@end 
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A2.2.6 SVM for IMU-Info.plist 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 

"http://www.apple.com/DTDs/PropertyList-1.0.dtd"> 

<plist version="1.0"> 

<dict> 

 <key>CFBundleDevelopmentRegion</key> 

 <string>en</string> 

 <key>CFBundleDisplayName</key> 

 <string>${PRODUCT_NAME}</string> 

 <key>CFBundleExecutable</key> 

 <string>${EXECUTABLE_NAME}</string> 

 <key>CFBundleIdentifier</key> 

 <string>sam.${PRODUCT_NAME:rfc1034identifier}</string> 

 <key>CFBundleInfoDictionaryVersion</key> 

 <string>6.0</string> 

 <key>CFBundleName</key> 

 <string>${PRODUCT_NAME}</string> 

 <key>CFBundlePackageType</key> 

 <string>APPL</string> 

 <key>CFBundleShortVersionString</key> 

 <string>1.0</string> 

 <key>CFBundleSignature</key> 

 <string>????</string> 

 <key>CFBundleVersion</key> 

 <string>1.0</string> 

 <key>LSRequiresIPhoneOS</key> 

 <true/> 

 <key>UIMainStoryboardFile</key> 

 <string>Main_iPhone</string> 

 <key>UIMainStoryboardFile~ipad</key> 

 <string>Main_iPad</string> 

 <key>UIRequiredDeviceCapabilities</key> 

 <array> 

  <string>armv7</string> 

 </array> 

 <key>UISupportedInterfaceOrientations</key> 

 <array> 

  <string>UIInterfaceOrientationPortrait</string> 

  <string>UIInterfaceOrientationLandscapeLeft</string> 

  <string>UIInterfaceOrientationLandscapeRight</string> 

 </array> 

 <key>UISupportedInterfaceOrientations~ipad</key> 

 <array> 

  <string>UIInterfaceOrientationPortrait</string> 

  <string>UIInterfaceOrientationPortraitUpsideDown</string> 

  <string>UIInterfaceOrientationLandscapeLeft</string> 

  <string>UIInterfaceOrientationLandscapeRight</string> 

 </array> 

</dict> 

</plist> 
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A2.2.7 SVM for IMU-Prefix.pch 

// 

//  Prefix header 

// 

//  The contents of this file are implicitly included at the 

beginning of every source file. 

// 

 

#import <Availability.h> 

 

#ifndef __IPHONE_5_0 

#warning "This project uses features only available in iOS SDK 5.0 

and later." 

#endif 

 

#ifdef __OBJC__ 

    #import <UIKit/UIKit.h> 

    #import <Foundation/Foundation.h> 

#endif 
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A2.3 Real Time Machine Learning/Classification APP 

A2.3.1 main.m 

// 

//  main.m 

//  IMUf 

// 

//  Created by Samuel Lawoyin on 7/19/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import <UIKit/UIKit.h> 

 

#import "imuAppDelegate.h" 

 

int main(int argc, char * argv[]) 

{ 

    @autoreleasepool { 

        return UIApplicationMain(argc, argv, nil, 

NSStringFromClass([imuAppDelegate class])); 

    } 

} 
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A2.3.2 imuViewController.m 

// 

//  imuViewController.m 

//  IMUa 

// 

//  Created by Samuel Lawoyin on 7/9/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import "imuViewController.h" 

 

#include <stdio.h> 

#include <ctype.h> 

#include <stdlib.h> 

#include <string.h> 

#include <errno.h> 

//#include "svm.h" 

#define INF HUGE_VAL 

#define TAU 1e-12 

#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) 

typedef float Qfloat; 

typedef signed char schar; 

 

#ifndef min 

template <class T> static inline T min(T x,T y) { return (x<y)?x:y; 

} 

#endif 

#ifndef max 

template <class T> static inline T max(T x,T y) { return (x>y)?x:y; 

} 

#endif 

template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; 

y=t; } 

template <class S, class T> static inline void clone(T*& dst, S* 

src, int n) 

{ 

 dst = new T[n]; 

 memcpy((void *)dst,(void *)src,sizeof(T)*n); 

} 

static inline double powi(double base, int times) 

{ 

 double tmp = base, ret = 1.0; 

     

 for(int t=times; t>0; t/=2) 

 { 

  if(t%2==1) ret*=tmp; 

  tmp = tmp * tmp; 

 } 

 return ret; 

} 
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@interface imuViewController () 

@end 

 

 

@implementation DataClass 

@synthesize accArrayFilename; 

@synthesize gyroArrayFilename; 

static DataClass *instance = nil; 

+(DataClass *)getInstance 

{ 

    @synchronized(self) 

    { 

        if (instance==nil) 

        { 

            instance = [DataClass new]; 

        } 

    } 

    return instance; 

} 

 

@end 

 

@implementation MapViewController 

//@synthesize locationManager; 

 

 

 

- (void)didReceiveMemoryWarning 

{ 

    [super didReceiveMemoryWarning]; 

    // Dispose of any resources that can be recreated. 

} 

@end 

 

/* 

@implementation NSArray (Stats) 

-(NSNumber *) calculateStat:(NSString *) stat 

{ 

    NSArray *args=@[[NSExpression expressionForConstantValue:self]]; 

    NSString *statFormatted = [stat stringByAppendingString:@":"]; 

    NSExpression *expression=[NSExpression 

expressionForFunction:statFormatted arguments: args]; 

    return [expression expressionValueWithObject:nil context:nil]; 

} 

@end*/ 

 

@implementation imuViewController 

 

CLLocationManager *locationManager; 

 

- (void)viewDidLoad 

{ 
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    [super viewDidLoad]; // Do any additional setup after loading 

the view, typically from a nib. 

     

    DataClass *obj=[DataClass getInstance]; 

     

     

    obj.recordBoolean=1; //RECORDING state automaticcally TRUE upon 

startup 

 

     

    locationManager = [[CLLocationManager alloc] init]; 

    locationManager.delegate=self; 

    locationManager.desiredAccuracy=kCLLocationAccuracyBest; 

    [locationManager startUpdatingLocation]; 

     

    NSTimer *minuteTimer = [NSTimer 

scheduledTimerWithTimeInterval:60.0 

                                    target:self 

                                    selector:@selector(minuteTime) 

                                    userInfo:nil 

                                    repeats:YES]; 

     

    //Create a new file path for recording the drift data///////// 

    //First query for the app documents directory 

    NSArray *paths = 

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 

NSUserDomainMask, YES); 

    NSString *documentsDirectory = [paths objectAtIndex:0]; 

     

     

    NSString *gyroRecordCount = [NSString 

stringWithFormat:@"gyro%i.dat",obj.recordCount];//What iteration of 

gyroscope recording 

    NSString *accRecordCount = [NSString 

stringWithFormat:@"acc%i.dat",obj.recordCount];//What iteration of 

accelerometer recording 

    NSString *drowsyRecordCount = [NSString 

stringWithFormat:@"drowsy%i.dat",obj.recordCount];//What iteration 

of drowsy recording 

    NSString *speedRecordCount = [NSString 

stringWithFormat:@"speed%i.dat",obj.recordCount];//What iteration of 

drowsy recording 

    NSString *angVelRecordCount = [NSString 

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What iteration 

of drowsy recording 

     NSString *locationRecordCount = [NSString 

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What iteration 

of drowsy recording 

    //To avoid overwriting useful data, first check that the date 

name does not exist. 

 

     

    //Second, create the file using the queried path 
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    //NSString *arrayFilename = [documentsDirectory 

stringByAppendingPathComponent:@"drift.dat"]; 

     

     

    obj.accArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:accRecordCount]; 

    obj.gyroArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:gyroRecordCount]; 

    obj.drowsyArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:drowsyRecordCount]; 

    obj.speedArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:speedRecordCount]; 

    obj.locationArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:locationRecordCount]; 

    obj.angVelArrayFilename = [documentsDirectory 

stringByAppendingPathComponent:angVelRecordCount]; 

 

     

    self.filename.text= obj.drowsyArrayFilename; // display save 

location array name 

     

     

     

     

    //Make the array you reserved in .h properties file 

    //self.driftArray = [[NSMutableArray alloc] init]; 

    obj.accArray = [[NSMutableArray alloc] init]; 

    obj.gyroArray = [[NSMutableArray alloc] init]; 

    obj.drowsyArray = [[NSMutableArray alloc] init]; 

    obj.speedArray = [[NSMutableArray alloc] init]; 

    obj.locationArray = [[NSMutableArray alloc] init]; 

    obj.angVelArray = [[NSMutableArray alloc] init]; 

     

    obj.floatGyroArray = [[NSMutableArray alloc] init]; 

    obj.floatAngVelArray = [[NSMutableArray alloc] init]; 

 

 

     

    self.length.text= [NSString stringWithFormat:@"%@ lines of data 

currently stored to:", @([obj.accArray count])]; // display array 

length, gyro and acc should have same count due to same number of 

iterations 

     

    //  [self.driftArray writeToFile:arrayFilename atomically: YES]; 

     

    //DONE 

     

    NSDate *currentTime = [NSDate date]; 

    NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init]; 

    [dateFormatter setDateFormat:@"dd/M/yy     hh:mm:ss"]; 

    NSString *resultString = [dateFormatter 

stringFromDate:currentTime]; 

     

     



 

260 

 

    self.todaysDate.text = [NSString stringWithFormat: @"%@ 

\ntimestamp>%f", resultString,[NSDate 

timeIntervalSinceReferenceDate] ]; 

     

    [UIApplication sharedApplication].idleTimerDisabled = YES; 

//KEEP ALIVE 

     

    self.motionManager = [[CMMotionManager alloc]init]; 

    self.motionManager.accelerometerUpdateInterval=0.01; //max 

100/sec or 100Hz 

    self.motionManager.gyroUpdateInterval=0.01; 

    [self.motionManager 

startAccelerometerUpdatesToQueue:[NSOperationQueue currentQueue] 

                                             

withHandler:^(CMAccelerometerData  *accelerometerData, NSError 

*error) 

     {[self outputAccelerationData:accelerometerData.acceleration]; 

         if(error){ 

             NSLog(@"%@", error); 

         } 

     }]; 

    [self.motionManager startGyroUpdatesToQueue:[NSOperationQueue 

currentQueue] 

                                    withHandler:^(CMGyroData 

*gyroData, NSError *error) 

      

     {[self outputRotationData:gyroData.rotationRate]; 

     }]; 

     

    [self.motionManager 

startDeviceMotionUpdatesToQueue:[NSOperationQueue currentQueue] 

                                            

withHandler:^(CMDeviceMotion *motion, NSError *error) 

     {[self processMotion:motion]; 

     }]; 

     

    {[self.locationManager startUpdatingLocation];}; 

 //   {[self.startReadingLocation:;]}; 

     

     

} 

             

 

            int print_null(const char *s,...) {return 0;} 

             

            static int (*info)(const char *fmt,...) = &printf; 

             

            struct svm_node *x; 

            int max_nr_attr = 64; 

             

            struct svm_model* model; 

            int predict_probability=0; 

             

            static char *line = NULL; 
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            static int max_line_len; 

             

             

            //    struct svm_model *submodel = 

svm_train(&subprob,&subparam); 

             

    struct svm_node 

    { 

        int index; 

        double value; 

    }; 

             

             

    struct svm_problem 

    { 

        int l; 

        double *y; 

        struct svm_node **x; 

    }; 

             

    enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* 

svm_type */ 

    enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type 

*/ 

             

    struct svm_parameter 

    { 

        int svm_type; 

        int kernel_type; 

        int degree; /* for poly */ 

        double gamma; /* for poly/rbf/sigmoid */ 

        double coef0; /* for poly/sigmoid */ 

         

        /* these are for training only */ 

        double cache_size; /* in MB */ 

        double eps; /* stopping criteria */ 

        double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ 

        int nr_weight;  /* for C_SVC */ 

        int *weight_label; /* for C_SVC */ 

        double* weight;  /* for C_SVC */ 

        double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ 

        double p; /* for EPSILON_SVR */ 

        int shrinking; /* use the shrinking heuristics */ 

        int probability; /* do probability estimates */ 

    }; 

             

             

            // 

            // svm_model 

            // 

    struct svm_model 

    { 

        struct svm_parameter param; /* parameter */ 
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        int nr_class;  /* number of classes, = 2 in 

regression/one class svm */ 

        int l;   /* total #SV */ 

        struct svm_node **SV;  /* SVs (SV[l]) */ 

        double **sv_coef; /* coefficients for SVs in decision 

functions (sv_coef[k-1][l]) */ 

        double *rho;  /* constants in decision functions 

(rho[k*(k-1)/2]) */ 

        double *probA;  /* pariwise probability information 

*/ 

        double *probB; 

        int *sv_indices;        /* sv_indices[0,...,nSV-1] are 

values in [1,...,num_traning_data] to indicate SVs in the training 

set */ 

         

        /* for classification only */ 

         

        int *label;  /* label of each class (label[k]) */ 

        int *nSV;  /* number of SVs for each class (nSV[k]) 

*/ 

        /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */ 

        /* XXX */ 

        int free_sv;  /* 1 if svm_model is created by 

svm_load_model*/ 

        /* 0 if svm_model is created by svm_train */ 

    }; 

             

            FILE *input, *output; 

             

             

             

            int svm_get_svm_type(const svm_model *model) 

    { 

        return model->param.svm_type; 

    } 

             

            int svm_get_nr_class(const svm_model *model) 

    { 

        return model->nr_class; 

    } 

             

             

             

 

             

             

- (void)startReadingLocation 

{ 

    self.locationManager = [[CLLocationManager alloc] init]; 

    self.locationManager.delegate=self; 

    self.locationManager.desiredAccuracy=20;    

//kCLLocationAccuracyBest; 

    [self.locationManager startUpdatingLocation]; 
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} 

-(void)locationManager:(CLLocationManager *)manager 

didUpdateToLocation:(CLLocation *)newLocation 

fromLocation:(CLLocation *)oldLocation 

{ 

    DataClass *obj=[DataClass getInstance]; 

     

    obj.speed1=newLocation.speed*2.23693629; 

    obj.latitude = newLocation.coordinate.latitude; 

    obj.longitude = newLocation.coordinate.longitude; 

 

     

     //   self.speed1label.text =[NSString 

stringWithFormat:@"%f",obj.speed1 ]; 

     

    //Manual calculation (optional for comparison) 

    if(oldLocation!=nil) 

    { 

        CLLocationDistance distanceChange=[newLocation 

getDistanceFrom:oldLocation];//getDistanceFrom alternate to 

distanceFromLocation 

        NSTimeInterval sinceLastUpdate=[newLocation.timestamp 

timeIntervalSinceDate:oldLocation.timestamp]; 

        obj.speed2=(distanceChange/sinceLastUpdate)*2.23693629; 

     //   self.speed2label.text =[NSString 

stringWithFormat:@"%f",obj.speed2 ]; 

 

         

    } 

     

} 

 

 

-(void)outputAccelerationData:(CMAcceleration)acceleration 

//ACCELEROMETER Ax Ay Az 

{ 

    DataClass *obj=[DataClass getInstance]; 

     

    self.accx.text = [NSString stringWithFormat:@" 

%.2fg",acceleration.x]; 

    self.accy.text = [NSString stringWithFormat:@" 

%.2fg",acceleration.y]; 

    self.accz.text = [NSString stringWithFormat:@" 

%.2fg",acceleration.z]; 

     

    obj.lastX   =obj.accelerationX;// Last X polarity 

    obj.lastY   =obj.accelerationY;// Last Y polarity 

    obj.lastZ   =obj.accelerationZ;// Last Z polarity 

    obj.accelerationX = acceleration.x; //NEW are sent out to global 

    obj.accelerationY = acceleration.y; //to determine >360 turns 

    obj.accelerationZ = acceleration.z; //to determine >360 turns 

     

    //Center 
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    obj.accAngle = atan2(acceleration.y,acceleration.x)*(180/M_PI); 

} 

 

-(void)outputRotationData:(CMRotationRate)rotation  //GYRO ANGULAR 

CHANGE RATE 

{ 

    DataClass *obj=[DataClass getInstance]; 

     

    obj.lastGyroPosition = obj.gyroPosition; //LAST GYRO POSITION 

    obj.lastSwmFusion = obj.swmFusion;  //LAST SWM READING 

     

    obj.gyroPosition = - ((rotation.z-

0.0082764553)*(180/M_PI))*0.01; 

   // obj.gyroPosition = - ((rotation.z)*(180/M_PI))*0.01; 

 

 

    self.gyroPosition.text = [NSString stringWithFormat:@" 

%1.2f°/s",obj.gyroPosition];//PRINT TO SCREEN 

     

    obj.swmFusion = 

(obj.lastSwmFusion+((obj.lastGyroPosition+obj.gyroPosition)/2))*0.9 

+ (obj.accAngle*0.1); 

 

     

    self.swmFusion.text= [NSString stringWithFormat:@" 

%.2f°",obj.swmFusion]; //PRINT IT 

     

    if (obj.recordBoolean==1) //If start button pressed, record 

    { 

        [obj.gyroArray addObject:[NSString stringWithFormat:@" 

%f",obj.swmFusion]];//SAVE FUSION ANGLE TO ARRAY 

        [obj.speedArray addObject:[NSString stringWithFormat:@" 

%f",obj.speed1]];//SAVE FUSION ANGLE TO ARRAY 

        [obj.locationArray addObject:[NSString stringWithFormat:@" 

%f, %f",obj.latitude, obj.longitude]];//SAVE LOCATION TO ARRAY 

        [obj.angVelArray addObject:[NSString stringWithFormat:@" 

%f",(obj.gyroPosition)*100]];//SAVE ANGULAR VELOCITY TO ARRAY 

    } 

     

     

    self.speed1label.text = [NSString stringWithFormat:@"%d mph", 

(int)obj.speed1]; 

    self.speed2label.text = [NSString stringWithFormat:@"%f mph", 

obj.speed2]; 

     

     

     

    self.angVel.text = [NSString stringWithFormat:@"%f mph", 

obj.gyroPosition*100]; 

 

     

     

    //self.drowsyStatus.text= [NSString stringWithFormat:@"%d 

Count", [obj.gyroArray count]];//Print alert results to alert screen 
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} 

-(void)processMotion:(CMDeviceMotion*)motion 

 

{ 

    CMQuaternion quatYaw = 

self.motionManager.deviceMotion.attitude.quaternion; 

    self.currentYaw.text = [NSString stringWithFormat:@" 

%0.2f°",asin(2*(quatYaw.x*quatYaw.z - 

quatYaw.w*quatYaw.y))*(180/M_PI)];//quaternion yaw 

} 

 

 

 

 

 

- (IBAction)startButton:(id)sender 

{ 

    DataClass *obj=[DataClass getInstance]; 

    if (obj.recordBoolean == 0)//start button only works if stopped 

    { 

        obj.recordBoolean=1; 

 

    } 

} 

 

             

             

             

             

- (void)minuteTime          //Timer initiates this process once a 

minute 

{ 

    DataClass *obj=[DataClass getInstance];  //new Object instance 

     

     

    //*******//******SAVE FILE TO BE CLASSIFIED ,,, RECORD PATH 

UPDATE HERE//*****//***** 

    NSArray *paths = 

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 

NSUserDomainMask, YES); 

    NSString *documentsDirectory = [paths objectAtIndex:0]; 

    //Second, create the fileName using the queried path 

    obj.classifyFilename = [documentsDirectory 

stringByAppendingPathComponent:@"fileToClassify"]; 

     

    obj.classifiedOutputFilename = [documentsDirectory 

stringByAppendingPathComponent:@"classifiedOutput"]; 

     

    obj.modelFilename = [documentsDirectory 

stringByAppendingPathComponent:@"model.txt"]; 
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    int suddenTurns=0;   //counter for number of zero crossings 

    int zeroCrossings=0;   //counter for number of zero crossings 

    float countr=0;           //counter for calculating ave angle 

    float averg= 0;           //counter for average turn angle 

    float stDev = 0; 

    int oldPositiveOrNegative = 1;   // set initially as positive 

//if current scan is positive or negative for determining zero xings 

    int newPositiveOrNegative = 1;   // set initially as positive 

    int hadLowSpeed = 0; 

   

     

     

     

     

    //**********************************************************//#2 

COUNT # ZERO XINGS 

 

    //CALIBRATE / INITIALIZE 

    if ([obj.gyroArray[0] floatValue] < 0)   //if the first item in 

array is negative, then set to negative, else leave as positive 

                    { 

                             oldPositiveOrNegative = 0; 

     //self.drowsyStatus.text= [NSString stringWithFormat:@"%d 

minutTime", obj.recordBoolean ];//Print alert results to alert 

screen 

 

                    } 

  

 

 

    for (int e=0; e<[(obj.gyroArray) count]; e++)     //iterate 

through ENTIRE array, 0 to length-1 

    { 

        if ([obj.gyroArray[e] floatValue]< 0)               // if 

current value[e] is negative 

        {newPositiveOrNegative = 0;}                        //set 

position as negative 

        else                                                // if 

value positive 

        {newPositiveOrNegative = 1;}                        //set 

position as positive 

 

 

         

        if (newPositiveOrNegative != oldPositiveOrNegative) // if a 

change in sign has occured 

        { 

            zeroCrossings++;                                //a zero 

crossing has occured 

        } 

         

        oldPositiveOrNegative = newPositiveOrNegative;      //pass 

on the baton 



 

267 

 

 

    } 

    //self.drowsyStatus.text= [NSString stringWithFormat:@"%d zero 

crossings", zeroCrossings ];//Print alert results to alert screen 

 

     

  //************************************************//#1 COUNT # 

TURN Average 

     

    for (int h=0; h<[(obj.gyroArray) count]; h++)     //FIRST 

RECTIFY- iterate through array, 0 to length-1 

    { 

        if ([obj.gyroArray[h] floatValue] < 0) // if less than zero- 

Needs Signal Rectification Loop 

        { 

[obj.floatGyroArray addObject:[NSNumber 

numberWithFloat:[obj.gyroArray[h] floatValue]*-1]]; 

        }  //Rectify it 

        else 

        { 

[obj.floatGyroArray addObject:[NSNumber 

numberWithFloat:[obj.gyroArray[h] floatValue]]]; 

 

        } 

         

    } 

    for (int j=0; j< [(obj.floatGyroArray) count]; j++) // Count 

Average 

    { 

        //countr=countr+[(NSNumber *) [obj.floatGyroArray 

objectAtIndex:j] floatValue]; 

        countr=countr+[obj.floatGyroArray[j] floatValue]; 

    } 

    averg=(countr/[(obj.floatGyroArray) count]); 

//self.drowsyStatus.text= [NSString stringWithFormat:@"%f turn ave", 

averg ];//Print alert results to alert screen 

 

     

    //**************************************//#3 COUNT # ANGULAR 

VELOCITY ABOVE 8.3DEG/SEC 

     

    for (int f=0; f< [(obj.angVelArray) count]; f++)     //FIRST 

RECTIFY- iterate through array, 0 to length-1 

    { 

        if ([obj.angVelArray[f] floatValue] < 0) // if negative- 

Signal Rectification Loop 

        { 

            //float y=[(NSNumber *)[obj.angVelArray objectAtIndex:f] 

floatValue]*-1; 

            //[obj.floatAngVelArray addObject:[NSNumber 

numberWithFloat:y]];  //Rectify it 

             

[obj.floatAngVelArray addObject:[NSNumber 

numberWithFloat:[obj.angVelArray[f] floatValue]*-1]]; 
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        } 

        else 

        { 

            //float y=[(NSNumber *)[obj.angVelArray objectAtIndex:f] 

floatValue]; 

            //[obj.floatAngVelArray addObject:[NSNumber 

numberWithFloat:y]];  //Rectify it 

[obj.floatAngVelArray addObject:[NSNumber 

numberWithFloat:[obj.angVelArray[f] floatValue]]]; 

        } 

         

    } 

     

//    self.drowsyStatus.text= [NSString stringWithFormat:@"%d sudden 

turnt", [obj.floatAngVelArray count] ];//Print alert results to 

alert screen 

 

     

    float threshold = 8.3;  //8.3deg/sec 

     

    for (int g=1; g< [obj.floatAngVelArray count]; g++) // Count 

SPIKES Start at 1 so as to compare prior 0 

    { 

        if (([obj.floatAngVelArray[g-1] floatValue]>= threshold) && 

([obj.floatAngVelArray[g] floatValue] < threshold)) //if signal 

descends below 8.3, count as 1 

        {suddenTurns++;} 

    } 

//    self.drowsyStatus.text= [NSString stringWithFormat:@"%d sudden 

turnt", suddenTurns ];//Print alert results to alert screen 

 

 

        //**************************************//#4 STDEV SWM 

     /*   NSNumber *stDevTemp = [obj.gyroArray 

calculateStat:@"stdev"]; 

     

        stDev=[stDevTemp floatValue];*/ 

     

    float sumSquareDiff = 0; 

     

    for (NSNumber *number in obj.gyroArray) 

    { 

        float numberVal = [number floatValue]; 

        float difference = numberVal-averg; 

        sumSquareDiff +=difference*difference; 

    } 

    stDev= sqrt(sumSquareDiff/([(obj.floatGyroArray) count])); 

     

        

//***************************************************************** 

     

//self.drowsyStatus.text= [NSString stringWithFormat:@"%f stDev", 

stDev ];//Print alert results to alert screen 
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    //**************************** LOW SPEED CHECK 

************************* 

    for (int k=0; k< [obj.speedArray count]; k++) // scan all speeds 

over last minute 

    { 

        if ([obj.speedArray[k] floatValue]<= 30) //if speed descends 

below 30mph, count as 1 

        {hadLowSpeed++;} 

    } 

     

 //   self.drowsyStatus.text= [NSString stringWithFormat:@"%d low 

speed", hadLowSpeed ];//Print alert results to alert screen 

 

 

    

//***************************************************************** 

 

     

     

     

     

 

     

     

     

     

    //CLEAR PRIOR FILES /////////////////////////// 

    NSError *error; 

    [[NSFileManager 

defaultManager]removeItemAtPath:obj.classifyFilename error:&error]; 

    if (error) 

    { 

         

    } 

     

    NSError *error2; 

    [[NSFileManager 

defaultManager]removeItemAtPath:obj.classifiedOutputFilename 

error:&error2]; 

    if (error2) 

    { 

         

    } 

     

  

     

    ///////////////////////////////////////////////// 

 /*   averg=0.005049887; 

    zeroCrossings=10; 

    suddenTurns=5; 

    stDev=2.348442267;*/ 
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        obj.turnAveString = [NSString stringWithFormat:@"%f", 

averg]; 

        obj.zeroCrossString = [NSString stringWithFormat:@"%d", 

zeroCrossings]; 

        obj.swmSuddenString = [NSString stringWithFormat:@"%d", 

suddenTurns]; 

        obj.swmSTDevString = [NSString stringWithFormat:@"%f", 

stDev]; 

         

     

        //Prepare single line of classification data 

        obj.classifyString = [NSString stringWithFormat: @"1 1:%@ 

2:%@ 3:%@ 

4:%@",obj.turnAveString,obj.zeroCrossString,obj.swmSuddenString,obj.

swmSTDevString]; 

        //Now write to classification file 

        [obj.classifyString writeToFile:obj.classifyFilename 

atomically: YES]; 

         

         

     

     

        const char *modelfile = [obj.modelFilename UTF8String];  

//convert NSString to c char the name of the model file 

         

     

     

     

        const char *inputChar =[obj.classifyFilename UTF8String];       

//convert NSString to c char the name of the input file tobe 

classified 

     

     

        const char *outputChar =[obj.classifiedOutputFilename 

UTF8String];  //convert NSString to c char the name of the output 

file with classification results 

     

     

 

        input = fopen(inputChar,"r"); 

        if(input == NULL) 

        { 

            fprintf(stderr,"can't open input file %s\n",inputChar); 

            exit(1); 

        } 

     

     

     

     

        output = fopen(outputChar,"w"); 

        if(output == NULL) 

        { 
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            fprintf(stderr,"can't open output file 

%s\n",outputChar); 

            exit(1); 

        } 

  

     if((model=svm_load_model(modelfile))==0) 

        { 

       

            fprintf(stderr,"can't open model file %s\n",modelfile); 

            exit(1); 

        } 

     

        x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct 

svm_node)); 

        if(predict_probability) 

        { 

            if(svm_check_probability_model(model)==0) 

            { 

                fprintf(stderr,"Model does not support probabiliy 

estimates\n"); 

                exit(1); 

            } 

        } 

        else 

        { 

            if(svm_check_probability_model(model)!=0) 

                info("Model supports probability estimates, but 

disabled in prediction.\n"); 

        } 

  //  self.drowsyStatus.text= [NSString stringWithFormat:@"%@ 

model!", obj.modelFilename]; 

 

     

 

    //**********//MACHINE CLASSIFICATION // *************// 

       predict(input,output);    //Output is printed to file 

"classifiedOutput" 

 

        svm_free_and_destroy_model(&model); 

        free(x); 

        free(line); 

        fclose(input); 

        fclose(output); 

    //*************//LIBSVM TTERMINATE//******************// 

 

     

   NSString *svmResult = [NSString 

stringWithContentsOfFile:obj.classifiedOutputFilename 

encoding:NSUTF8StringEncoding error:NULL]; //Open result file and 

get result 

    NSInteger intSvmResult = [svmResult integerValue]; 
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  //  self.drowsyStatus.text= [NSString stringWithFormat:@"SVM 

RESULT %d", intSvmResult];//Print alert results to alert screen 

 

    if((intSvmResult==1) && (hadLowSpeed == 0)) // If SVM=drowsy and 

car = NOT slow 

        { 

            self.drowsyStatus.text= [NSString stringWithFormat:@"YOU 

ARE DROWSY!"];//Display Visible Drowsy Warning. drowsy if and only 

if SVM=drowsy && car !=slow 

        } 

     

    if((hadLowSpeed != 0)) // REGARDLESS OF SWM OUTPUT, IF car IS 

slow 

        { 

             self.drowsyStatus.text= [NSString 

stringWithFormat:@"SUFFICIENT HIGHWAY SPEED NOT REACHED"];//Print 

alert results to alert screen 

        } 

     

    if((intSvmResult==0) && (hadLowSpeed == 0)) // If SVM=ALERT and 

car was not slow 

        { 

            self.drowsyStatus.text= [NSString 

stringWithFormat:@"ALERT"];//Print alert results to alert screen 

        } 

 

     

  

    if([obj.gyroArray count])//destroy everything for now until next 

minute 

        { 

            [obj.gyroArray removeAllObjects]; 

            [obj.floatGyroArray removeAllObjects]; 

            [obj.floatAngVelArray removeAllObjects]; 

            [obj.angVelArray removeAllObjects]; 

            [obj.locationArray removeAllObjects]; 

            [obj.speedArray removeAllObjects]; 

        } 

     

 

     

  

} 

 

 

 

 

 

 

    void predict(FILE *input, FILE *output) 

    { 

        int correct = 0; 

        int total = 0; 

        double error = 0; 
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        double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0; 

         

        int svm_type=svm_get_svm_type(model); 

        int nr_class=svm_get_nr_class(model); 

        double *prob_estimates=NULL; 

        int j; 

         

        if(predict_probability) 

        { 

            /*if (svm_type==NU_SVR || svm_type==EPSILON_SVR) 

             info("Prob. model for test data: target value = 

predicted value + z,\nz: Laplace distribution e^(-

|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));*/ 

            //else 

            //{ 

   int *labels=(int *) malloc(nr_class*sizeof(int)); 

   svm_get_labels(model,labels); 

   prob_estimates = (double *) 

malloc(nr_class*sizeof(double)); 

   fprintf(output,"labels"); 

   for(j=0;j<nr_class;j++) 

    fprintf(output," %d",labels[j]); 

   fprintf(output,"\n"); 

   free(labels); 

            // } 

        } 

         

        max_line_len = 1024; 

        line = (char *)malloc(max_line_len*sizeof(char)); 

        while(readline(input) != NULL) 

        { 

            int i = 0; 

            double target_label, predict_label; 

            char *idx, *val, *label, *endptr; 

            int inst_max_index = -1; // strtol gives 0 if wrong 

format, and precomputed kernel has <index> start from 0 

             

            label = strtok(line," \t\n"); 

            if(label == NULL) // empty line 

                exit_input_error(total+1); 

             

            target_label = strtod(label,&endptr); 

            if(endptr == label || *endptr != '\0') 

                exit_input_error(total+1); 

             

            while(1) 

            { 

                if(i>=max_nr_attr-1) // need one more for index = -

1 

                { 

                    max_nr_attr *= 2; 

                    x = (struct svm_node *) 

realloc(x,max_nr_attr*sizeof(struct svm_node)); 

                } 
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                idx = strtok(NULL,":"); 

                val = strtok(NULL," \t"); 

                 

                if(val == NULL) 

                    break; 

                errno = 0; 

                x[i].index = (int) strtol(idx,&endptr,10); 

                if(endptr == idx || errno != 0 || *endptr != '\0' || 

x[i].index <= inst_max_index) 

                    exit_input_error(total+1); 

                else 

                    inst_max_index = x[i].index; 

                 

                errno = 0; 

                x[i].value = strtod(val,&endptr); 

                if(endptr == val || errno != 0 || (*endptr != '\0' 

&& !isspace(*endptr))) 

                    exit_input_error(total+1); 

                 

                ++i; 

            } 

            x[i].index = -1; 

             

            if (predict_probability && (svm_type==C_SVC || 

svm_type==NU_SVC)) 

            { 

                predict_label = 

svm_predict_probability(model,x,prob_estimates); 

                fprintf(output,"%g",predict_label); 

                for(j=0;j<nr_class;j++) 

                    fprintf(output," %g",prob_estimates[j]); 

                fprintf(output,"\n"); 

            } 

            //else 

            //{ 

   predict_label = svm_predict(model,x); 

   fprintf(output,"%g\n",predict_label); 

            //} 

             

            if(predict_label == target_label) 

                ++correct; 

            error += (predict_label-target_label)*(predict_label-

target_label); 

            sump += predict_label; 

            sumt += target_label; 

            sumpp += predict_label*predict_label; 

            sumtt += target_label*target_label; 

            sumpt += predict_label*target_label; 

            ++total; 

        } 

        if (svm_type==NU_SVR || svm_type==EPSILON_SVR) 

        { 
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            info("Mean squared error = %g 

(regression)\n",error/total); 

            info("Squared correlation coefficient = %g 

(regression)\n", 

                 ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ 

                 ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)) 

                 ); 

        } 

        else 

            info("Accuracy = %g%% (%d/%d) (classification)\n", 

                 (double)correct/total*100,correct,total); 

        if(predict_probability) 

            free(prob_estimates); 

         

    } 

     

     

     

    void svm_free_and_destroy_model(struct svm_model** 

model_ptr_ptr) 

    { 

        if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL) 

        { 

            svm_free_model_content(*model_ptr_ptr); 

            free(*model_ptr_ptr); 

            *model_ptr_ptr = NULL; 

        } 

    } 

     

     

     

    svm_model *svm_load_model(const char *model_file_name) 

    { 

        FILE *fp = fopen(model_file_name,"rb"); 

        if(fp==NULL) return NULL; 

         

        char *old_locale = strdup(setlocale(LC_ALL, NULL)); 

        setlocale(LC_ALL, "C"); 

         

        // read parameters 

         

        svm_model *model = Malloc(svm_model,1); 

        model->rho = NULL; 

        model->probA = NULL; 

        model->probB = NULL; 

        model->sv_indices = NULL; 

        model->label = NULL; 

        model->nSV = NULL; 

         

        // read header 

        if (!read_model_header(fp, model)) 

        { 

            fprintf(stderr, "ERROR: fscanf failed to read model\n"); 

            setlocale(LC_ALL, old_locale); 
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            free(old_locale); 

            free(model->rho); 

            free(model->label); 

            free(model->nSV); 

            free(model); 

            return NULL; 

        } 

         

        // read sv_coef and SV 

         

        int elements = 0; 

        long pos = ftell(fp); 

         

        max_line_len = 1024; 

        line = Malloc(char,max_line_len); 

        char *p,*endptr,*idx,*val; 

         

        while(readline(fp)!=NULL) 

        { 

            p = strtok(line,":"); 

            while(1) 

            { 

                p = strtok(NULL,":"); 

                if(p == NULL) 

                    break; 

                ++elements; 

            } 

        } 

        elements += model->l; 

         

        fseek(fp,pos,SEEK_SET); 

         

        int m = model->nr_class - 1; 

        int l = model->l; 

        model->sv_coef = Malloc(double *,m); 

        int i; 

        for(i=0;i<m;i++) 

            model->sv_coef[i] = Malloc(double,l); 

        model->SV = Malloc(svm_node*,l); 

        svm_node *x_space = NULL; 

        if(l>0) x_space = Malloc(svm_node,elements); 

         

        int j=0; 

        for(i=0;i<l;i++) 

        { 

            readline(fp); 

            model->SV[i] = &x_space[j]; 

             

            p = strtok(line, " \t"); 

            model->sv_coef[0][i] = strtod(p,&endptr); 

            for(int k=1;k<m;k++) 

            { 

                p = strtok(NULL, " \t"); 

                model->sv_coef[k][i] = strtod(p,&endptr); 
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            } 

             

            while(1) 

            { 

                idx = strtok(NULL, ":"); 

                val = strtok(NULL, " \t"); 

                 

                if(val == NULL) 

                    break; 

                x_space[j].index = (int) strtol(idx,&endptr,10); 

                x_space[j].value = strtod(val,&endptr); 

                 

                ++j; 

            } 

            x_space[j++].index = -1; 

        } 

        free(line); 

         

        setlocale(LC_ALL, old_locale); 

        free(old_locale); 

         

        if (ferror(fp) != 0 || fclose(fp) != 0) 

            return NULL; 

         

        model->free_sv = 1; // XXX 

        return model; 

    } 

     

     

    static char* readline(FILE *input) 

    { 

        int len; 

         

        if(fgets(line,max_line_len,input) == NULL) 

            return NULL; 

         

        while(strrchr(line,'\n') == NULL) 

        { 

            max_line_len *= 2; 

            line = (char *) realloc(line,max_line_len); 

            len = (int) strlen(line); 

            if(fgets(line+len,max_line_len-len,input) == NULL) 

                break; 

        } 

        return line; 

    } 

     

    void exit_input_error(int line_num) 

    { 

        fprintf(stderr,"Wrong input format at line %d\n", line_num); 

        exit(1); 

    } 
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    void svm_get_labels(const struct svm_model *model, int *label); 

     

     

     

    double svm_get_svr_probability(const struct svm_model *model); 

     

    int svm_check_probability_model(const svm_model *model) 

    { 

        return ((model->param.svm_type == C_SVC || model-

>param.svm_type == NU_SVC) && 

                model->probA!=NULL && model->probB!=NULL) || 

        ((model->param.svm_type == EPSILON_SVR || model-

>param.svm_type == NU_SVR) && 

         model->probA!=NULL); 

    } 

     

    double svm_predict(const svm_model *model, const svm_node *x) 

    { 

        int nr_class = model->nr_class; 

        double *dec_values; 

        if(model->param.svm_type == ONE_CLASS || 

           model->param.svm_type == EPSILON_SVR || 

           model->param.svm_type == NU_SVR) 

            dec_values = Malloc(double, 1); 

        else 

            dec_values = Malloc(double, nr_class*(nr_class-1)/2); 

        double pred_result = svm_predict_values(model, x, 

dec_values); 

        free(dec_values); 

        return pred_result; 

    } 

     

    double svm_predict_values(const svm_model *model, const svm_node 

*x, double* dec_values) 

    { 

        int i; 

        if(model->param.svm_type == ONE_CLASS || 

           model->param.svm_type == EPSILON_SVR || 

           model->param.svm_type == NU_SVR) 

        { 

            double *sv_coef = model->sv_coef[0]; 

            double sum = 0; 

            for(i=0;i<model->l;i++) 

                sum += sv_coef[i] * Kernel::k_function(x,model-

>SV[i],model->param); 

            sum -= model->rho[0]; 

            *dec_values = sum; 

             

            if(model->param.svm_type == ONE_CLASS) 

                return (sum>0)?1:-1; 

            else 

                return sum; 

        } 

        else 
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        { 

            int nr_class = model->nr_class; 

            int l = model->l; 

             

            double *kvalue = Malloc(double,l); 

            for(i=0;i<l;i++) 

                kvalue[i] = Kernel::k_function(x,model->SV[i],model-

>param); 

             

            int *start = Malloc(int,nr_class); 

            start[0] = 0; 

            for(i=1;i<nr_class;i++) 

                start[i] = start[i-1]+model->nSV[i-1]; 

             

            int *vote = Malloc(int,nr_class); 

            for(i=0;i<nr_class;i++) 

                vote[i] = 0; 

             

            int p=0; 

            for(i=0;i<nr_class;i++) 

                for(int j=i+1;j<nr_class;j++) 

                { 

                    double sum = 0; 

                    int si = start[i]; 

                    int sj = start[j]; 

                    int ci = model->nSV[i]; 

                    int cj = model->nSV[j]; 

                     

                    int k; 

                    double *coef1 = model->sv_coef[j-1]; 

                    double *coef2 = model->sv_coef[i]; 

                    for(k=0;k<ci;k++) 

                        sum += coef1[si+k] * kvalue[si+k]; 

                    for(k=0;k<cj;k++) 

                        sum += coef2[sj+k] * kvalue[sj+k]; 

                    sum -= model->rho[p]; 

                    dec_values[p] = sum; 

                     

                    if(dec_values[p] > 0) 

                        ++vote[i]; 

                    else 

                        ++vote[j]; 

                    p++; 

                } 

             

            int vote_max_idx = 0; 

            for(i=1;i<nr_class;i++) 

                if(vote[i] > vote[vote_max_idx]) 

                    vote_max_idx = i; 

             

            free(kvalue); 

            free(start); 

            free(vote); 

            return model->label[vote_max_idx]; 
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        } 

    } 

     

    static const char *kernel_type_table[]= 

    { 

        "linear","polynomial","rbf","sigmoid","precomputed",NULL 

    }; 

     

    double svm_predict_probability( 

                                   const svm_model *model, const 

svm_node *x, double *prob_estimates) 

    { 

        if ((model->param.svm_type == C_SVC || model->param.svm_type 

== NU_SVC) && 

            model->probA!=NULL && model->probB!=NULL) 

        { 

            int i; 

            int nr_class = model->nr_class; 

            double *dec_values = Malloc(double, nr_class*(nr_class-

1)/2); 

            svm_predict_values(model, x, dec_values); 

             

            double min_prob=1e-7; 

            double **pairwise_prob=Malloc(double *,nr_class); 

            for(i=0;i<nr_class;i++) 

                pairwise_prob[i]=Malloc(double,nr_class); 

            int k=0; 

            for(i=0;i<nr_class;i++) 

                for(int j=i+1;j<nr_class;j++) 

                { 

                    

pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model-

>probA[k],model->probB[k]),min_prob),1-min_prob); 

                    pairwise_prob[j][i]=1-pairwise_prob[i][j]; 

                    k++; 

                } 

            

multiclass_probability(nr_class,pairwise_prob,prob_estimates); 

             

            int prob_max_idx = 0; 

            for(i=1;i<nr_class;i++) 

                if(prob_estimates[i] > prob_estimates[prob_max_idx]) 

                    prob_max_idx = i; 

            for(i=0;i<nr_class;i++) 

                free(pairwise_prob[i]); 

            free(dec_values); 

            free(pairwise_prob); 

            return model->label[prob_max_idx]; 

        } 

        else 

            return svm_predict(model, x); 

    } 
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    // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng 

    static void multiclass_probability(int k, double **r, double *p) 

    { 

        int t,j; 

        int iter = 0, max_iter=max(100,k); 

        double **Q=Malloc(double *,k); 

        double *Qp=Malloc(double,k); 

        double pQp, eps=0.005/k; 

         

        for (t=0;t<k;t++) 

        { 

            p[t]=1.0/k;  // Valid if k = 1 

            Q[t]=Malloc(double,k); 

            Q[t][t]=0; 

            for (j=0;j<t;j++) 

            { 

                Q[t][t]+=r[j][t]*r[j][t]; 

                Q[t][j]=Q[j][t]; 

            } 

            for (j=t+1;j<k;j++) 

            { 

                Q[t][t]+=r[j][t]*r[j][t]; 

                Q[t][j]=-r[j][t]*r[t][j]; 

            } 

        } 

        for (iter=0;iter<max_iter;iter++) 

        { 

            // stopping condition, recalculate QP,pQP for numerical 

accuracy 

            pQp=0; 

            for (t=0;t<k;t++) 

            { 

                Qp[t]=0; 

                for (j=0;j<k;j++) 

                    Qp[t]+=Q[t][j]*p[j]; 

                pQp+=p[t]*Qp[t]; 

            } 

            double max_error=0; 

            for (t=0;t<k;t++) 

            { 

                double error=fabs(Qp[t]-pQp); 

                if (error>max_error) 

                    max_error=error; 

            } 

            if (max_error<eps) break; 

             

            for (t=0;t<k;t++) 

            { 

                double diff=(-Qp[t]+pQp)/Q[t][t]; 

                p[t]+=diff; 

                

pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); 

                for (j=0;j<k;j++) 

                { 
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                    Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); 

                    p[j]/=(1+diff); 

                } 

            } 

        } 

        if (iter>=max_iter) 

            info("Exceeds max_iter in multiclass_prob\n"); 

        for(t=0;t<k;t++) free(Q[t]); 

        free(Q); 

        free(Qp); 

    } 

     

     

    void svm_free_model_content(svm_model* model_ptr) 

    { 

        if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV 

!= NULL) 

            free((void *)(model_ptr->SV[0])); 

        if(model_ptr->sv_coef) 

        { 

            for(int i=0;i<model_ptr->nr_class-1;i++) 

                free(model_ptr->sv_coef[i]); 

        } 

         

        free(model_ptr->SV); 

        model_ptr->SV = NULL; 

         

        free(model_ptr->sv_coef); 

        model_ptr->sv_coef = NULL; 

         

        free(model_ptr->rho); 

        model_ptr->rho = NULL; 

         

        free(model_ptr->label); 

        model_ptr->label= NULL; 

         

        free(model_ptr->probA); 

        model_ptr->probA = NULL; 

         

        free(model_ptr->probB); 

        model_ptr->probB= NULL; 

         

        free(model_ptr->sv_indices); 

        model_ptr->sv_indices = NULL; 

         

        free(model_ptr->nSV); 

        model_ptr->nSV = NULL; 

    } 

     

    // FSCANF helps to handle fscanf failures. 

    // Its do-while block avoids the ambiguity when 

    // if (...) 

    //    FSCANF(); 

    // is used 
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    // 

#define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream, 

_format, _var) != 1) return false; }while(0) 

    bool read_model_header(FILE *fp, svm_model* model) 

    { 

        svm_parameter& param = model->param; 

        char cmd[81]; 

        while(1) 

        { 

            FSCANF(fp,"%80s",cmd); 

             

            if(strcmp(cmd,"svm_type")==0) 

            { 

                FSCANF(fp,"%80s",cmd); 

                int i; 

                for(i=0;svm_type_table[i];i++) 

                { 

                    if(strcmp(svm_type_table[i],cmd)==0) 

                    { 

                        param.svm_type=i; 

                        break; 

                    } 

                } 

                if(svm_type_table[i] == NULL) 

                { 

                    fprintf(stderr,"unknown svm type.\n"); 

                    return false; 

                } 

            } 

            else if(strcmp(cmd,"kernel_type")==0) 

            { 

                FSCANF(fp,"%80s",cmd); 

                int i; 

                for(i=0;kernel_type_table[i];i++) 

                { 

                    if(strcmp(kernel_type_table[i],cmd)==0) 

                    { 

                        param.kernel_type=i; 

                        break; 

                    } 

                } 

                if(kernel_type_table[i] == NULL) 

                { 

                    fprintf(stderr,"unknown kernel function.\n"); 

                    return false; 

                } 

            } 

            else if(strcmp(cmd,"degree")==0) 

                FSCANF(fp,"%d",&param.degree); 

            else if(strcmp(cmd,"gamma")==0) 

                FSCANF(fp,"%lf",&param.gamma); 

            else if(strcmp(cmd,"coef0")==0) 

                FSCANF(fp,"%lf",&param.coef0); 

            else if(strcmp(cmd,"nr_class")==0) 
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                FSCANF(fp,"%d",&model->nr_class); 

            else if(strcmp(cmd,"total_sv")==0) 

                FSCANF(fp,"%d",&model->l); 

            else if(strcmp(cmd,"rho")==0) 

            { 

                int n = model->nr_class * (model->nr_class-1)/2; 

                model->rho = Malloc(double,n); 

                for(int i=0;i<n;i++) 

                    FSCANF(fp,"%lf",&model->rho[i]); 

            } 

            else if(strcmp(cmd,"label")==0) 

            { 

                int n = model->nr_class; 

                model->label = Malloc(int,n); 

                for(int i=0;i<n;i++) 

                    FSCANF(fp,"%d",&model->label[i]); 

            } 

            else if(strcmp(cmd,"probA")==0) 

            { 

                int n = model->nr_class * (model->nr_class-1)/2; 

                model->probA = Malloc(double,n); 

                for(int i=0;i<n;i++) 

                    FSCANF(fp,"%lf",&model->probA[i]); 

            } 

            else if(strcmp(cmd,"probB")==0) 

            { 

                int n = model->nr_class * (model->nr_class-1)/2; 

                model->probB = Malloc(double,n); 

                for(int i=0;i<n;i++) 

                    FSCANF(fp,"%lf",&model->probB[i]); 

            } 

            else if(strcmp(cmd,"nr_sv")==0) 

            { 

                int n = model->nr_class; 

                model->nSV = Malloc(int,n); 

                for(int i=0;i<n;i++) 

                    FSCANF(fp,"%d",&model->nSV[i]); 

            } 

            else if(strcmp(cmd,"SV")==0) 

            { 

                while(1) 

                { 

                    int c = getc(fp); 

                    if(c==EOF || c=='\n') break; 

                } 

                break; 

            } 

            else 

            { 

                fprintf(stderr,"unknown text in model file: 

[%s]\n",cmd); 

                return false; 

            } 

        } 
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        return true; 

         

    } 

     

    static double sigmoid_predict(double decision_value, double A, 

double B) 

    { 

        double fApB = decision_value*A+B; 

        // 1-p used later; avoid catastrophic cancellation 

        if (fApB >= 0) 

            return exp(-fApB)/(1.0+exp(-fApB)); 

        else 

            return 1.0/(1+exp(fApB)) ; 

    } 

     

    static const char *svm_type_table[] = 

    { 

        "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL 

    }; 

     

     

    // 

    // Kernel evaluation 

    // 

    // the static method k_function is for doing single kernel 

evaluation 

    // the constructor of Kernel prepares to calculate the l*l 

kernel matrix 

    // the member function get_Q is for getting one column from the 

Q Matrix 

    // 

    class QMatrix { 

    public: 

        virtual Qfloat *get_Q(int column, int len) const = 0; 

        virtual double *get_QD() const = 0; 

        virtual void swap_index(int i, int j) const = 0; 

        virtual ~QMatrix() {} 

    }; 

     

    class Kernel: public QMatrix { 

    public: 

        Kernel(int l, svm_node * const * x, const svm_parameter& 

param); 

        virtual ~Kernel(); 

         

        static double k_function(const svm_node *x, const svm_node 

*y, 

                                 const svm_parameter& param); 

        virtual Qfloat *get_Q(int column, int len) const = 0; 

        virtual double *get_QD() const = 0; 

        virtual void swap_index(int i, int j) const // no so 

const... 

        { 
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            swap(x[i],x[j]); 

            if(x_square) swap(x_square[i],x_square[j]); 

        } 

    protected: 

         

        double (Kernel::*kernel_function)(int i, int j) const; 

         

    private: 

        const svm_node **x; 

        double *x_square; 

         

        // svm_parameter 

        const int kernel_type; 

        const int degree; 

        const double gamma; 

        const double coef0; 

         

        static double dot(const svm_node *px, const svm_node *py); 

        double kernel_linear(int i, int j) const 

        { 

            return dot(x[i],x[j]); 

        } 

        double kernel_poly(int i, int j) const 

        { 

            return powi(gamma*dot(x[i],x[j])+coef0,degree); 

        } 

        double kernel_rbf(int i, int j) const 

        { 

            return exp(-gamma*(x_square[i]+x_square[j]-

2*dot(x[i],x[j]))); 

        } 

        double kernel_sigmoid(int i, int j) const 

        { 

            return tanh(gamma*dot(x[i],x[j])+coef0); 

        } 

        double kernel_precomputed(int i, int j) const 

        { 

            return x[i][(int)(x[j][0].value)].value; 

        } 

    }; 

     

    Kernel::Kernel(int l, svm_node * const * x_, const 

svm_parameter& param) 

    :kernel_type(param.kernel_type), degree(param.degree), 

    gamma(param.gamma), coef0(param.coef0) 

    { 

        switch(kernel_type) 

        { 

            case LINEAR: 

                kernel_function = &Kernel::kernel_linear; 

                break; 

            case POLY: 

                kernel_function = &Kernel::kernel_poly; 

                break; 
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            case RBF: 

                kernel_function = &Kernel::kernel_rbf; 

                break; 

            case SIGMOID: 

                kernel_function = &Kernel::kernel_sigmoid; 

                break; 

            case PRECOMPUTED: 

                kernel_function = &Kernel::kernel_precomputed; 

                break; 

        } 

         

        clone(x,x_,l); 

         

        if(kernel_type == RBF) 

        { 

            x_square = new double[l]; 

            for(int i=0;i<l;i++) 

                x_square[i] = dot(x[i],x[i]); 

        } 

        else 

            x_square = 0; 

    } 

     

    Kernel::~Kernel() 

    { 

        delete[] x; 

        delete[] x_square; 

    } 

     

    double Kernel::dot(const svm_node *px, const svm_node *py) 

    { 

        double sum = 0; 

        while(px->index != -1 && py->index != -1) 

        { 

            if(px->index == py->index) 

            { 

                sum += px->value * py->value; 

                ++px; 

                ++py; 

            } 

            else 

            { 

                if(px->index > py->index) 

                    ++py; 

                else 

                    ++px; 

            } 

        } 

        return sum; 

    } 

     

    double Kernel::k_function(const svm_node *x, const svm_node *y, 

                              const svm_parameter& param) 

    { 
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        switch(param.kernel_type) 

        { 

            case LINEAR: 

                return dot(x,y); 

            case POLY: 

                return 

powi(param.gamma*dot(x,y)+param.coef0,param.degree); 

            case RBF: 

            { 

                double sum = 0; 

                while(x->index != -1 && y->index !=-1) 

                { 

                    if(x->index == y->index) 

                    { 

                        double d = x->value - y->value; 

                        sum += d*d; 

                        ++x; 

                        ++y; 

                    } 

                    else 

                    { 

                        if(x->index > y->index) 

                        { 

                            sum += y->value * y->value; 

                            ++y; 

                        } 

                        else 

                        { 

                            sum += x->value * x->value; 

                            ++x; 

                        } 

                    } 

                } 

                 

                while(x->index != -1) 

                { 

                    sum += x->value * x->value; 

                    ++x; 

                } 

                 

                while(y->index != -1) 

                { 

                    sum += y->value * y->value; 

                    ++y; 

                } 

                 

                return exp(-param.gamma*sum); 

            } 

            case SIGMOID: 

                return tanh(param.gamma*dot(x,y)+param.coef0); 

            case PRECOMPUTED:  //x: test (validation), y: SV 

                return x[(int)(y->value)].value; 

            default: 

                return 0;  // Unreachable  
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        } 

    } 

    void svm_get_labels(const svm_model *model, int* label) 

    { 

        if (model->label != NULL) 

            for(int i=0;i<model->nr_class;i++) 

                label[i] = model->label[i]; 

    } 

     

 

 

- (void)didReceiveMemoryWarning 

{ 

    [super didReceiveMemoryWarning]; 

    // Dispose of any resources that can be recreated. 

} 

 

@end 

 

 

 

 

 

A2.3.3 imuViewController.h 

// 

//  imuViewController.h 

//  IMUa 

// 

//  Created by Samuel Lawoyin on 7/9/14. 

//  Copyright (c) 2014 Samuel Lawoyin. All rights reserved. 

// 

 

#import <UIKit/UIKit.h> 

#import <CoreMotion/CoreMotion.h> 

#import <coreText/CoreText.h> 

#import <Foundation/Foundation.h> 

#import <CoreLocation/CoreLocation.h> 

#import <MobileCoreServices/MobileCoreServices.h> 

#import <MapKit/MapKit.h> 

 

//double attitudeYaw; 

//double attitudeRoll; 

 

//double currentFusion; 

//double lastFusion; 

//double currentYaw; 
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//double lastYaw; 

 

 

//double lastVelocityZ; 

//double currentVelocityZ; 

 

//double length; 

#define kRequiredAccuracy 500.0 //in meters 

#define kMaxAge 10.0            //in seconds 

 

 

 

 

 

@interface imuViewController : 

UIViewController<CLLocationManagerDelegate> 

 

 

//@property (nonatomic) NSMutableArray *driftArray; 

 

@property (strong, nonatomic)IBOutlet UILabel *length; 

 

@property (strong, nonatomic) IBOutlet UILabel *filename; 

 

@property (strong, nonatomic)IBOutlet UILabel *accx; 

@property (strong, nonatomic)IBOutlet UILabel *accy; 

@property (strong, nonatomic)IBOutlet UILabel *accz; 

@property (strong, nonatomic)IBOutlet UILabel *accAngle; 

 

@property (strong, nonatomic)IBOutlet UILabel *angVel; 

 

 

@property (strong, nonatomic)IBOutlet UILabel *currentYaw; 

@property (strong, nonatomic)IBOutlet UILabel *gyroPosition; 

@property (strong, nonatomic)IBOutlet UILabel *swmFusion; 

@property (strong, nonatomic)IBOutlet UILabel *dataBlockSaved; 

 

 

@property (strong, nonatomic)IBOutlet UILabel *recordProgress; //Is 

recording ongoing or not? 

 

@property (strong, nonatomic)IBOutlet UILabel *todaysDate; 

 

@property (strong, nonatomic)IBOutlet UILabel *speed1label; 

@property (strong, nonatomic)IBOutlet UILabel *speed2label; 

 

 

@property (strong, nonatomic)IBOutlet UILabel *drowsyStatus; 

 

 

 

 

@property (strong, nonatomic)IBOutlet UILabel  *revolveCase; 
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- (IBAction)stopButton:(id)sender; 

 

- (IBAction)startButton:(id)sender; 

 

- (IBAction)drowsyButton:(id)sender; 

 

 

 

@property (strong, nonatomic) CMMotionManager *motionManager; 

 

@property(nonatomic, retain) CLLocationManager* locationManager; 

 

 

 

@end 

 

@interface MapViewController:UIViewController <MKMapViewDelegate, 

CLLocationManagerDelegate> 

{ 

    MKMapView *mapView; 

    CLLocationManager *locationManager; 

    CLLocationSpeed speed; 

    NSTimer *timer; 

} 

 

@property(nonatomic, retain) NSTimer*timer; 

 

 

@end 

/* 

@interface NSArray (Stats) 

- (NSNumber *)calculateStat:(NSString *)stat; 

@end*/ 

 

@interface DataClass : NSObject 

{ 

    NSMutableArray *floatGyroArray; 

    NSMutableArray *floatAngVelArray; 

     

    NSString *accArrayFilename; 

    NSString *gyroArrayFilename; 

    NSString *speedArrayFilename; 

    NSString *locationArrayFilename; 

    NSString *drowsyArrayFilename; 

    NSString *angVelArrayFilename; 

 

    NSMutableArray *accArray; 

    NSMutableArray *gyroArray; 

    NSMutableArray *speedArray; 

    NSMutableArray *locationArray; 

    NSMutableArray *drowsyArray; 

    NSMutableArray *angVelArray; 

     

} //global variable 
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@property (nonatomic, retain) NSString* turnAveString; 

@property (nonatomic, retain) NSString* zeroCrossString; 

@property (nonatomic, retain) NSString* swmSuddenString; 

@property (nonatomic, retain) NSString* swmSTDevString; 

 

@property (nonatomic, retain) NSString* classifyString; 

 

 

 

 

@property (nonatomic, retain) NSString *classifyFilename; 

@property (nonatomic, retain) NSString *classifiedOutputFilename; 

@property (nonatomic, retain) NSString *modelFilename; 

 

 

@property (nonatomic, retain) NSString *accArrayFilename; 

@property (nonatomic, retain) NSString *gyroArrayFilename; 

@property (nonatomic, retain) NSString *drowsyArrayFilename; 

@property (nonatomic, retain) NSString *speedArrayFilename; 

@property (nonatomic, retain) NSString *locationArrayFilename; 

@property (nonatomic, retain) NSString *angVelArrayFilename; 

 

@property (nonatomic, retain) NSString *startTime; 

+(DataClass*)getInstance; 

@property (nonatomic, retain) NSMutableArray *accArray; 

@property (nonatomic, retain) NSMutableArray *gyroArray; 

@property (nonatomic, retain) NSMutableArray *speedArray; 

@property (nonatomic, retain) NSMutableArray *locationArray; 

@property (nonatomic, retain) NSMutableArray *drowsyArray; 

@property (nonatomic, retain) NSMutableArray *angVelArray; 

 

@property (nonatomic, retain) NSMutableArray *floatGyroArray; 

@property (nonatomic, retain) NSMutableArray *floatAngVelArray; 

 

 

 

@property (nonatomic, assign) double gyroPosition; 

@property (nonatomic, assign) double accAngle; 

@property (nonatomic, assign) double lastGyroPosition; 

@property (nonatomic, assign) double swmFusion; 

@property (nonatomic, assign) double lastSwmFusion; 

//@property (nonatomic, assign) double lastGyroPositionNum; 

@property (nonatomic, assign) double lastX; 

@property (nonatomic, assign) double lastY; 

@property (nonatomic, assign) double lastZ;@property (nonatomic, 

assign) double accelerationX; 

@property (nonatomic, assign) double accelerationY; 

@property (nonatomic, assign) double accelerationZ; 

@property (nonatomic, assign) int revolveCase; 

@property (nonatomic, assign) int recordBoolean; 

@property (nonatomic, assign) int recordCount;//how many times the 

stop button has been pressed for labelling data 

@property (nonatomic, assign) double speed1; 
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@property (nonatomic, assign) double speed2; 

@property (nonatomic, assign) double latitude; 

@property (nonatomic, assign) double longitude; 

 

 

@end 
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Appendix 3: A tacticle method for drowsy driver feedback - circuitry 
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Appendix 4: Sample of Participant Data 

Participant 1 data 

  
SSS KSS ESS PVT 

Baseline Initial Before Experiment  2 3 11 0.27 

first drive 
 

4 6 14 0.27 

second drive 
 

4 6 18 0.27 

third drive 
 

5 8 20 0.27 

forth drive 
 

5 8 21 0.28 

 

180 data points (180 minutes, 1 count per period listed left to right on each row)  

 

Average Amplitude of turns (degrees) 

0.000280812 0.007171409 0.010067143 0.00649348 0.010441967 0.009119134

 0.007534325 0.011547997 0.010271313 0.010743189 0.012463837 0.012157309

 0.010327285 0.012629501 0.008819203 0.011007639 0.015164728 0.013285446

 0.012864678 0.011062628 0.010760606 0.00994421 0.010457376 0.006590593

 0.010852695 0.012984876 0.00878779 0.008158092 0.009020682 0.004928419

 0.008256759 0.010766339 0.008850569 0.006259508 0.008828981 0.008995828

 0.01153712 0.006294309 0.00976532 0.009902117 0.010472073 0.010524873

 0.009481093 0.009845928 0.008279115 0.004259769 0.008926953 0.004921678

 0.010187143 0.011367961 0.014695077 0.009068412 0.00584406 0.005627621

 0.010150949 0.00419871 0.005668273 0.010585075 0.009667418 0.006738601

 0.010622917 0.0099526 0.009808069 0.008903924 0.00782724 0.011623016

 0.009198203 0.01017617 0.010080684 0.008115251 0.010539548 0.010281187

 0.011369006 0.010345049 0.00467495 0.003167076 0.005049887 0.0110785

 0.012184155 0.008027859 0.011422439 0.009001709 0.012740754 0.000363112

 0.004301716 0.004315007 0.007499447 0.006122332 0.008185631 0.003591489

 0.004259769 0.008926953 0.004921678 0.010187143 0.011367961 0.014695077

 0.009068412 0.00584406 0.005627621 0.010150949 0.00419871 0.005668273

 0.010585075 0.009667418 0.006738601 0.010622917 0.0099526 0.009808069

 0.008903924 0.00782724 0.011623016 0.009198203 0.01017617 0.010080684

 0.008115251 0.010539548 0.010281187 0.011369006 0.010345049 0.00467495

 0.003167076 0.005049887 0.0110785 0.012184155 0.008027859 0.011422439

 0.009001709 0.012740754 0.000363112 0.004301716 0.004315007 0.007499447

 0.006122332 0.008185631 0.003591489 0.004259769 0.008926953 0.004921678

 0.010187143 0.011367961 0.014695077 0.009068412 0.00584406 0.005627621

 0.010150949 0.00419871 0.005668273 0.010585075 0.009667418 0.006738601

 0.010622917 0.0099526 0.009808069 0.008903924 0.00782724 0.011623016

 0.009198203 0.01017617 0.010080684 0.008115251 0.010539548 0.010281187

 0.011369006 0.010345049 0.00467495 0.003167076 0.005049887 0.0110785

 0.012184155 0.008027859 0.011422439 0.009001709 0.012740754 0.000363112

 0.004301716 0.004315007 0.007499447 0.006122332 0.008185631 0.003591489 

 

SWM zero crossings 

1 7 10 11 10 7 12 9 8 8 12 9

 7 18 7 9 12 11 12 9 9 9 8 5

 12 10 9 8 10 6 13 9 7 12 11 9

 9 6 11 9 14 23 6 14 25 6 10 11

 8 13 16 7 12 15 8 4 10 12 7 5
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 8 8 8 12 8 11 6 8 12 6 9 8

 10 10 11 35 10 11 10 8 11 7 11 8

 7 1 8 4 7 7 6 10 11 8 13 16

 7 12 15 8 4 10 12 7 5 8 8 8

 12 8 11 6 8 12 6 9 8 10 10 11

 35 10 11 10 8 11 7 11 8 7 1 8

 4 7 7 6 10 11 8 13 16 7 12 15

 8 4 10 12 7 5 8 8 8 12 8 11

 6 8 12 6 9 8 10 10 11 35 10 11

 10 8 11 7 11 8 7 1 8 4 7 7 

 

Number of SWM sudden turns 

0 0 1 0 2 0 0 0 0 1 2 4

 0 3 0 0 2 0 0 0 3 7 8 0

 0 0 0 0 0 0 0 0 0 0 0 6

 5 0 0 0 5 4 0 6 4 5 0 0

 6 0 6 3 0 0 0 0 0 4 8 0

 8 5 0 0 0 9 0 10 7 0 4 3

 5 5 4 0 5 7 9 0 13 6 8 0

 0 0 5 0 0 0 5 0 0 6 0 6

 3 0 0 0 0 0 4 8 0 8 5 0

 0 0 9 0 10 7 0 4 3 5 5 4

 0 5 7 9 0 13 6 8 0 0 0 5

 0 0 0 5 0 0 6 0 6 3 0 0

 0 0 0 4 8 0 8 5 0 0 0 9

 0 10 7 0 4 3 5 5 4 0 5 7

 9 0 13 6 8 0 0 0 5 0 0 0 

 

Standard Deviation of SWM  

0.118864026 3.044220696 3.24054051 2.837454901 3.404645159 3.179812825

 3.260556946 4.035925128 3.704374668 3.417743277 3.964736717 3.795744524

 3.487387985 4.025134497 3.404674083 3.597012231 4.183075725 3.76114105

 3.693504778 3.24995211 3.565207827 3.190534997 3.88676365 3.338769324

 3.58691166 4.022038722 3.090326911 3.346036848 3.323865322 2.678479674

 3.171092407 3.760746991 3.489000769 2.781534092 3.323552126 3.438817332

 3.914760469 2.770705301 3.645399238 3.442671716 3.274305839 3.515156857

 3.486218137 3.289275769 2.700402906 1.913857093 3.515709489 1.763286662

 3.686896434 3.335503304 3.976918789 3.611051373 2.350681657 3.166085093

 3.869745525 2.888246934 2.40197961 3.774146257 3.364470193 2.857039305

 3.815350382 3.72989643 3.543732278 3.441625972 3.713334412 3.340712802

 3.819549575 3.361689601 3.347642281 3.384112229 3.69940388 3.691987618

 3.50308916 3.651145244 1.667748516 2.538707861 2.348442267 3.6779574

 3.827910265 3.077765142 3.709149755 3.727026494 3.505196448 0.218063058

 2.60696266 2.041668762 3.81013391 3.009254512 3.413257141 1.89987185

 1.913857093 3.515709489 1.763286662 3.686896434 3.335503304 3.976918789

 3.611051373 2.350681657 3.166085093 3.869745525 2.888246934 2.40197961

 3.774146257 3.364470193 2.857039305 3.815350382 3.72989643 3.543732278

 3.441625972 3.713334412 3.340712802 3.819549575 3.361689601 3.347642281

 3.384112229 3.69940388 3.691987618 3.50308916 3.651145244 1.667748516

 2.538707861 2.348442267 3.6779574 3.827910265 3.077765142 3.709149755

 3.727026494 3.505196448 0.218063058 2.60696266 2.041668762 3.81013391

 3.009254512 3.413257141 1.89987185 1.913857093 3.515709489 1.763286662

 3.686896434 3.335503304 3.976918789 3.611051373 2.350681657 3.166085093

 3.869745525 2.888246934 2.40197961 3.774146257 3.364470193 2.857039305
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 3.815350382 3.72989643 3.543732278 3.441625972 3.713334412 3.340712802

 3.819549575 3.361689601 3.347642281 3.384112229 3.69940388 3.691987618

 3.50308916 3.651145244 1.667748516 2.538707861 2.348442267 3.6779574

 3.827910265 3.077765142 3.709149755 3.727026494 3.505196448 0.218063058

 2.60696266 2.041668762 3.81013391 3.009254512 3.413257141 1.89987185 

             

EEG - Average power of theta activity at position Fz 

2.74834E-06 2.26541E-06 2.23827E-06 2.0824E-06 2.17584E-06 2.2189E-06

 2.28478E-06 2.0686E-06 2.06786E-06 1.88574E-06 1.91133E-06 2.0869E-06

 2.01369E-06 1.97226E-06 1.95416E-06 1.95427E-06 1.98915E-06 1.91282E-06

 1.94053E-06 1.95995E-06 2.12609E-06 1.83529E-06 1.92844E-06 2.22769E-06

 2.10758E-06 2.17981E-06 2.52351E-06 2.18264E-06 2.08731E-06 2.33484E-06

 1.9154E-06 2.16735E-06 2.23965E-06 2.31848E-06 2.20633E-06 2.4652E-06

 2.18614E-06 2.11507E-06 2.16236E-06 1.99988E-06 2.32584E-06 2.61759E-06

 2.29772E-06 2.65666E-06 2.64125E-06 3.15E-06 2.00E-06 2.20E-06 1.82E-06 2.21E-06

 2.00E-06 1.89E-06 2.17E-06 2.08E-06 1.90E-06 2.18E-06 1.96E-06 2.43E-06 2.26E-06 2.20E-06 2.15E-06

 2.21E-06 2.13E-06 1.93E-06 2.14E-06 2.13E-06 1.95E-06 2.38E-06 2.33E-06 2.20E-06 2.03E-06 2.02E-06

 2.25E-06 2.08E-06 2.70E-06 2.51E-06 2.62E-06 2.29E-06 2.25E-06 2.11E-06 2.24E-06 2.17E-06 2.46E-06

 2.41E-06 2.20E-06 2.34E-06 2.44E-06 2.15E-06 2.46E-06 2.37E-06 3.15E-06 2.00E-06 2.20E-06 1.82E-06

 2.21E-06 2.00E-06 1.89E-06 2.17E-06 2.08E-06 1.90E-06 2.18E-06 1.96E-06 2.43E-06 2.26E-06 2.20E-06

 2.15E-06 2.21E-06 2.13E-06 1.93E-06 2.14E-06 2.13E-06 1.95E-06 2.38E-06 2.33E-06 2.20E-06 2.03E-06

 2.02E-06 2.25E-06 2.08E-06 2.70E-06 2.51E-06 2.62E-06 2.29E-06 2.25E-06 2.11E-06 2.24E-06 2.17E-06

 2.46E-06 2.41E-06 2.20E-06 2.34E-06 2.44E-06 2.15E-06 2.46E-06 2.37E-06 3.15E-06 2.00E-06 2.20E-06

 1.82E-06 2.21E-06 2.00E-06 1.89E-06 2.17E-06 2.08E-06 1.90E-06 2.18E-06 1.96E-06 2.43E-06 2.26E-06

 2.20E-06 2.15E-06 2.21E-06 2.13E-06 1.93E-06 2.14E-06 2.13E-06 1.95E-06 2.38E-06 2.33E-06 2.20E-06

 2.03E-06 2.02E-06 2.25E-06 2.08E-06 2.70E-06 2.51E-06 2.62E-06 2.29E-06 2.25E-06 2.11E-06 2.24E-06

 2.17E-06 2.46E-06 2.41E-06 2.20E-06 2.34E-06 2.44E-06 2.15E-06 2.46E-06 2.37E-06 

 

EEG - Average power of alpha wave activity at position Oz 

1.46689E-06 1.19313E-06 1.13356E-06 1.09233E-06 1.15897E-06 1.14856E-06

 1.16853E-06 1.06386E-06 1.1591E-06 1.11338E-06 1.06035E-06 1.17613E-06

 1.07113E-06 1.15167E-06 1.10939E-06 1.13412E-06 1.13693E-06 1.11186E-06

 1.04881E-06 1.09776E-06 1.15977E-06 1.09627E-06 1.16215E-06 1.12923E-06

 1.1111E-06 1.17606E-06 1.21548E-06 1.27134E-06 1.11685E-06 1.21074E-06

 1.15336E-06 1.14761E-06 1.12809E-06 1.22033E-06 1.13542E-06 1.11814E-06

 1.19445E-06 1.21888E-06 1.18092E-06 1.16111E-06 1.19713E-06 1.19994E-06

 1.14158E-06 1.14047E-06 1.14913E-06 1.57E-06 1.10E-06 1.13E-06 1.05E-06 1.14E-06

 1.06E-06 1.13E-06 1.18E-06 1.12E-06 1.09E-06 1.18E-06 1.17E-06 1.17E-06 1.20E-06 1.25E-06 1.18E-06

 1.13E-06 1.22E-06 1.12E-06 1.17E-06 1.21E-06 1.16E-06 1.20E-06 1.24E-06 1.24E-06 1.20E-06 1.17E-06

 1.12E-06 1.20E-06 1.20E-06 1.13E-06 1.18E-06 1.13E-06 1.14E-06 1.21E-06 1.28E-06 1.15E-06 1.13E-06

 1.07E-06 1.06E-06 1.25E-06 1.18E-06 1.21E-06 1.13E-06 1.21E-06 1.57E-06 1.10E-06 1.13E-06 1.05E-06

 1.14E-06 1.06E-06 1.13E-06 1.18E-06 1.12E-06 1.09E-06 1.18E-06 1.17E-06 1.17E-06 1.20E-06 1.25E-06

 1.18E-06 1.13E-06 1.22E-06 1.12E-06 1.17E-06 1.21E-06 1.16E-06 1.20E-06 1.24E-06 1.24E-06 1.20E-06

 1.17E-06 1.12E-06 1.20E-06 1.20E-06 1.13E-06 1.18E-06 1.13E-06 1.14E-06 1.21E-06 1.28E-06 1.15E-06

 1.13E-06 1.07E-06 1.06E-06 1.25E-06 1.18E-06 1.21E-06 1.13E-06 1.21E-06 1.57E-06 1.10E-06 1.13E-06

 1.05E-06 1.14E-06 1.06E-06 1.13E-06 1.18E-06 1.12E-06 1.09E-06 1.18E-06 1.17E-06 1.17E-06 1.20E-06

 1.25E-06 1.18E-06 1.13E-06 1.22E-06 1.12E-06 1.17E-06 1.21E-06 1.16E-06 1.20E-06 1.24E-06 1.24E-06

 1.20E-06 1.17E-06 1.12E-06 1.20E-06 1.20E-06 1.13E-06 1.18E-06 1.13E-06 1.14E-06 1.21E-06 1.28E-06

 1.15E-06 1.13E-06 1.07E-06 1.06E-06 1.25E-06 1.18E-06 1.21E-06 1.13E-06 1.21E-06 

 

Number of blinks 

21 9 8 9 11 9 10 10 6 8 7 10

 9 10 9 11 9 11 11 12 11 8 11 15

 13 12 19 15 11 14 11 12 16 13 15 18
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 15 13 13 10 13 10 18 22 21 18 8 11

 10 11 11 8 13 12 8 15 12 14 17 12

 13 11 10 11 14 12 9 18 17 15 9 12

 15 13 23 18 22 17 18 14 17 16 22 18

 14 14 19 13 18 21 18 8 11 10 11 11

 8 13 12 8 15 12 14 17 12 13 11 10

 11 14 12 9 18 17 15 9 12 15 13 23

 18 22 17 18 14 17 16 22 18 14 14 19

 13 18 21 18 8 11 10 11 11 8 13 12

 8 15 12 14 17 12 13 11 10 11 14 12

 9 18 17 15 9 12 15 13 23 18 22 17

 18 14 17 16 22 18 14 14 19 13 18 21 

 

Average HEOG speed 

2.49063E-06 1.09541E-06 1.01453E-06 9.42585E-07 9.928E-07 1.10561E-06

 9.4884E-07 8.21843E-07 1.02601E-06 8.75142E-07 7.55186E-07 1.10241E-06

 8.83289E-07 9.28699E-07 8.54622E-07 8.45961E-07 8.87907E-07 8.62482E-07

 7.66913E-07 9.11784E-07 9.07779E-07 7.23898E-07 7.78674E-07 1.11071E-06

 8.79705E-07 9.01038E-07 1.50876E-06 1.30872E-06 1.08286E-06 1.29308E-06

 9.69247E-07 9.24294E-07 9.3736E-07 1.40971E-06 1.13396E-06 9.58139E-07

 9.86942E-07 1.22072E-06 1.21744E-06 1.15155E-06 1.23061E-06 2.26662E-06

 1.34464E-06 1.37548E-06 1.50603E-06 3.58E-06  8.45E-07  1.02E-06

 6.55E-07 1.01E-06 7.51E-07 9.68E-07 1.19E-06 1.28E-06 9.04E-07 1.60E-06 1.17E-06 1.60E-06 1.19E-06

 9.99E-07 1.08E-06 1.19E-06 9.33E-07 8.70E-07 1.26E-06 1.19E-06 1.06E-06 1.39E-06 1.36E-06 1.22E-06

 1.32E-06 1.05E-06 9.67E-07 8.37E-07 2.00E-06 1.49E-06 1.55E-06 1.38E-06 1.31E-06 1.26E-06 1.42E-06

 1.01E-06 1.15E-06 7.42E-07 9.87E-07 1.38E-06 1.08E-06 1.14E-06 1.63E-06 1.73E-06 3.58E-06 8.45E-07

 1.02E-06 6.55E-07 1.01E-06 7.51E-07 9.68E-07 1.19E-06 1.28E-06 9.04E-07 1.60E-06 1.17E-06 1.60E-06

 1.19E-06 9.99E-07 1.08E-06 1.19E-06 9.33E-07 8.70E-07 1.26E-06 1.19E-06 1.06E-06 1.39E-06 1.36E-06

 1.22E-06 1.32E-06 1.05E-06 9.67E-07 8.37E-07 2.00E-06 1.49E-06 1.55E-06 1.38E-06 1.31E-06 1.26E-06

 1.42E-06 1.01E-06 1.15E-06 7.42E-07 9.87E-07 1.38E-06 1.08E-06 1.14E-06 1.63E-06 1.73E-06 3.58E-06

 8.45E-07 1.02E-06 6.55E-07 1.01E-06 7.51E-07 9.68E-07 1.19E-06 1.28E-06 9.04E-07 1.60E-06 1.17E-06

 1.60E-06 1.19E-06 9.99E-07 1.08E-06 1.19E-06 9.33E-07 8.70E-07 1.26E-06 1.19E-06 1.06E-06 1.39E-06

 1.36E-06 1.22E-06 1.32E-06 1.05E-06 9.67E-07 8.37E-07 2.00E-06 1.49E-06 1.55E-06 1.38E-06 1.31E-06

 1.26E-06 1.42E-06 1.01E-06 1.15E-06 7.42E-07 9.87E-07 1.38E-06 1.08E-06 1.14E-06 1.63E-06 1.73E-06 

 

PERCLOS80 score 

1.44 0.534 0.468 0.522 0.63 0.51 0.57 0.63 0.39 0.462 0.396

 0.672 0.54 0.624 0.582 0.852 0.546 0.726 0.75 0.714 0.696 0.486

 0.702 1.194 0.876 0.72 1.194 0.96 0.732 0.852 0.672 0.768 1.032 0.87

 0.978 1.296 0.882 0.858 0.774 0.606 0.768 0.57 1.11 1.296 1.254 1.05

 0.516 0.744 0.684 0.69 0.702 0.54 0.81 0.738 0.504 1.008 0.768 0.9

 1.11 0.75 0.84 0.702 0.606 0.696 0.93 0.762 0.552 1.122 1.05

 0.942 0.576 0.756 0.924 0.84 1.572 1.092 1.344 0.99 1.098 0.822

 1.038 0.912 1.26 1.08 0.804 0.834 1.128 0.744 1.176 1.452 1.05

 0.516 0.744 0.684 0.69 0.702 0.54 0.81 0.738 0.504 1.008 0.768 0.9

 1.11 0.75 0.84 0.702 0.606 0.696 0.93 0.762 0.552 1.122 1.05

 0.942 0.576 0.756 0.924 0.84 1.572 1.092 1.344 0.99 1.098 0.822

 1.038 0.912 1.26 1.08 0.804 0.834 1.128 0.744 1.176 1.452 1.05

 0.516 0.744 0.684 0.69 0.702 0.54 0.81 0.738 0.504 1.008 0.768 0.9

 1.11 0.75 0.84 0.702 0.606 0.696 0.93 0.762 0.552 1.122 1.05

 0.942 0.576 0.756 0.924 0.84 1.572 1.092 1.344 0.99 1.098 0.822

 1.038 0.912 1.26 1.08 0.804 0.834 1.128 0.744 1.176 1.452 
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Standard Deviation of Lane Position 

0.244135953 0.254415465 0.202616248 0.213256451 0.207874622 0.185437759

 0.2839469 0.296691536 0.327227866 0.283340048 0.291570427 0.319056863

 0.370108203 0.306655963 0.28143299 0.249147938 0.272025083 0.228679147

 0.239159548 0.326434257 0.285994816 0.325984576 0.292325934 0.190720176

 0.269530006 0.251986374 0.187110151 0.249189138 0.336418488 0.247927125

 0.290124624 0.244703473 0.274791472 0.120382201 0.287121572 0.332422591

 0.322815326 0.168153519 0.258264802 0.200965443 0.282922507 0.238738354

 0.30449268 0.250672898 0.288363607 0.274104252 0.210927352 0.226750224

 0.180684256 0.281415073 0.188129246 0.268675728 0.191425723 0.272267634

 0.328834403 0.181219585 0.418464958 0.313355544 0.30489154 0.263465504

 0.230374727 0.242689417 0.281976534 0.325757183 0.33300871 0.325442335

 0.378423431 0.294514065 0.292007147 0.336601278 0.34530727 0.273131056

 0.281139994 0.322199538 0.081337278 0.249212902 0.252757763 0.371338349

 0.290366494 0.319998857 0.253581358 0.405266755 0.247898618 0.106040727

 0.376642275 0.183263685 0.324103009 0.233140001 0.331524265 0.307465227

 0.231241731 0.295145803 0.274120707 0.206412894 0.242189998 0.349266588

 0.344340421 0.268693838 0.258253169 0.248110244 0.311640962 0.205582927

 0.122687015 0.282564832 0.323723122 0.340429196 0.377866275 0.292239576

 0.177896588 0.209660985 0.234813256 0.086717784 0.188262501 0.160042777

 0.334177826 0.343064632 0.388996199 0.318927454 0.320366694 0.368601773

 0.270902265 0.297143069 0.339365791 0.354769566 0.356275098 0.332088581

 0.450861661 0.254735071 0.344724446 0.425679498 0.365373514 0.290869693

 0.057501196 0.390136663 0.190567435 0.293811955 0.289408218 0.295675118

 0.329167325 0.257593193 0.315519698 0.224877536 0.086273217 0.353267197

 0.169733881 0.35196003 0.51352937 0.443489561 0.371333297 0.283976259

 0.10135882 0.436137246 0.499606893 0.277621153 0.230591677 0.17133126

 0.096639104 0.352799578 0.290184627 0.255584102 0.376252673 0.456840174

 0.315998137 0.333936591 0.379948548 0.338146657 0.278192323 0.174353504

 0.266442698 0.31344649 0.261764314 0.133585511 0.364225423 0.370206274

 0.313921632 0.275168049 0.380384007 0.462662352 0.395326252 0.438724337 

 

36 data points (180 minutes) 

Lane exit event 

0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0

            

           

ECG Heart Rate Variability (HRV) - Inter Beat Interval (IBI) RR interval mean (ms) 

936.7385  917.045  937.2923  912.6667  918.8675  934.7669

 932.2018  896.8235  909.8443  940.7927  972.4921  1.00E+03

 963.4206  998.1165  1.03E+03 994.2387  973.0633  1.02E+03

 1.06E+03 1.04E+03 972.7961  999.7874  974.0388  1.03E+03

 1.05E+03 1.05E+03 975.7013  942.0725  937.8795  941.2952

 975.4313  955.4312  965.2384  974.8025  981.0377  978.3009 
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