
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2014

Novel technologies for the detection and
mitigation of drowsy driving
Samuel Lawoyin
Virginia Commonwealth University, lawoyins@vcu.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Biomedical Devices and Instrumentation Commons, and the Other Biomedical
Engineering and Bioengineering Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/3639

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/235?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/239?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/239?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/3639?utm_source=scholarscompass.vcu.edu%2Fetd%2F3639&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

© Samuel Lawoyin 2014

All Rights Reserved

NOVEL TECHNOLOGIES FOR THE DETECTION AND MITIGATION OF
DROWSY DRIVING

A dissertation submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at Virginia Commonwealth University

by

Samuel Lawoyin,
B.S. Computer Engineering, University of Maryland, Baltimore County, 2011

Director: Dr. Ding-Yu Fei, Associate Professor, Department of Biomedical
Engineering

Virginia Commonwealth University
Richmond, Virginia

December, 2014

ii

Acknowledgements

I would like to acknowledge my advisor, Dr. Ding-Yu Fei, for his support and

expertise with human interacting instruments which greatly enhanced my learning

experience. I would also like to thank Dr. Ou Bai for his immense contributions

especially with human physiological signal collection and processing. Also to the

other members of my committee: Dr. Martin Lenhardt, Dr. Azhar Rafiq, and Dr.

Richard Kunz; they were helpful in providing valuable feedback, guidance, and

support. Gratitude goes to Dr. Riuxin Niu for his expertise in Bayesian algorithm

development. Also to Mrs. Caiting Fu for her great support and cooperation, and to

Xin Liu for his amazing bio-signal processing skills.

I would very importantly also like to thank my parents, family, friends, and

all well-wishers, the encouragement has been much appreciated. Also to all the

students at the VCU BME department, especially graduate students, a community

which fosters collaboration, cooperation, and successful research outcomes. I cannot

mention all of you, but the cooperation has been invaluable.

Finally, appreciation also goes out to all faculty and staff at the VCU School

of Engineering, especially to all whom I collaborated with and/or took classes from.

Everything I learned in some way contributed to my research.

iii

Table of Contents

Acknowledgements ... ii

List of Tables ... x

List of Figures ... xi

List of Abbreviations ... xvi

Abstract ... xvii

Chapter 1: Introduction .. 1

1.1 Motivation ... 1

1.2 Dissertation outline: .. 7

Specific Aim 1: .. 7

Specific Aim 2: .. 8

Specific Aim 3: .. 8

Chapter 2: Literature Review .. 12

2.1. Introduction ... 12

2.2. Current drowsy driving detection technologies .. 13

2.2.1. Physiological methods for drowsy driving detection 13

2.2.2. Behavioral methods for drowsy driving detection 15

2.2.3. Vehicle-based methods for drowsy driving detection 15

2.2.4. “Readiness to perform” measures for drowsy driving detection 16

iv

2.3. Steering Wheel Movements (SWM) as a measure of drowsy driving: 17

2.4. Post review summary: Directions moving forward .. 18

Chapter 3: Specific Aim 1: Technical development of novel, low-cost, and effective

technologies for monitoring Steering Wheel Movements (SWM)............................... 20

3.1. Introduction to the technical development process .. 20

3.2. Methods ... 21

3.2.1 Theoretical bases and algorithms to generate SWM signal via

accelerometer .. 21

3.2.2 Theoretical bases and algorithms to generate SWM signal via

gyroscope .. 32

3.2.3 Theoretical bases and algorithms to generate SWM signal via an

accelerometer-gyroscope fusion ... 34

3.3. Results ... 41

3.3.1 Accelerometer SWM monitoring results .. 41

3.3.2. Gyroscope SWM monitoring results ... 47

3.3.3. Accelerometer-gyroscope fusion SWM monitoring results 48

3.4. Discussion .. 55

3.4.1 Discussion of the Accelerometer-based method 55

3.4.2. Discussion of the gyroscope-accelerometer fusion method 60

v

3.4.3. SWM recording methods and road characteristics 64

3.5. Summary and conclusion ... 66

Chapter 4. Specific Aim 2: Experimental validation of the proposed approaches for

accurate fatigue detection. ... 68

4.1. Introduction to the evaluation process for inertial sensor based drowsiness

detection ... 68

4.2. Methods ... 70

4.2.1. Drowsiness detection using accelerometer based SWM monitoring 70

4.2.2. Test for Accuracy of the gyroscope based Method for Detecting

Drowsiness. ... 81

4.2.3. Test for Accuracy of the fusion Method for Detecting Drowsiness. 81

4.3. Results ... 82

4.3.1. Assessment of the Accelerometer-based measure of SWM for drowsy

driving detection ... 82

4.3.2. Assessment of the gyroscope-based measure of SWM for drowsy

driving detection ... 85

4.3.3. Assessment of the Accelerometer-gyroscope fusion based measure of

SWM for drowsy driving detection ... 85

4.4 Discussion ... 89

vi

4.5. Chapter conclusion .. 89

Chapter 5: Specific Aim 3: Practical Implementation of the novel approach - A

smartphone-based method for real-time IMU drowsy driving detection. 91

5.1. Introduction to the smartphone-based method for drowsy driving detection .. 91

5.2 Material and Methods. ... 95

5.2.1 Equipment ... 95

5.2.2 Gyroscope drift assessment .. 97

5.2.3 Correlation driving tasks ... 98

5.2.4 iPhone classification of drowsy driving via Support Vector Machines

(SVM) ... 99

5.2.5 Context specific classification of drowsy driving via smartphone .. 101

5.3 Results .. 101

5.3.1 Gyroscope drift assessment .. 101

5.3.3 Correlation driving tasks ... 102

5.3.4 iPhone classification of drowsy driving via Support Vector Machines

(SVM) ... 105

5.3.5 Contextual categorization of drowsiness .. 107

5.3.4 Final iPhone app ... 109

5.4 Discussion and conclusions about the evaluation .. 110

vii

5.4.1 Classification accuracy when compared against PC results 111

Chapter 6: Summary, discussion, and suggestions for further studies 112

6.1 Summary .. 112

6.2 Discussion ... 113

6.2.1. Applications of the Novel Method for the Detection of Drowsy

Driving .. 113

6.2.2. Criteria for selection of inertial methods: Comparison of

technologies, and when to use which technology? ... 115

6.3. Suggestions for further study ... 117

Bibliography .. 119

Appendices .. 139

Appendix 1: Detailed literature review ... 139

A1.1 Limitations in Current Detection Technologies - Ground Truth ... 139

A1.2: Referenced Literature Reviews on drowsy driving detection 141

A1.3: Existing physiological signal receivers ... 144

A1.4: Other researchers approaches ... 146

A1.5: Intrusiveness of Physiological methods: Electrodes 149

A1.6: Vehicle Simulation Technologies: .. 151

A1.7: Signal Processing and Analysis: .. 155

viii

A1.8: Signal Classification methods considered: 158

A1.9: Hybrid methods of drowsy driving detection 164

A1.10: Factors that influence drowsiness symptoms and outcomes 166

A1.11: Legal policies and regulations regarding drowsy driving 170

A1.12: Administrative Measures in place to Prevent Drowsy Driving: .. 172

A1.13: Technological methods to detect and mitigate drowsy driving: .. 173

A1.14: EEG Waves used in Drowsiness Detection: 176

A1.15: The Objective Sleepiness scale: ... 177

A1.16: Subjective Sleepiness Scales: ... 178

A1.17: The Psychomotor Vigilance Test (PVT): 180

A1.18: Head Nodding and Yawning as a measure of drowsy driving 181

A1.19: Face and Eye Tracking of Drowsiness Symptoms 182

A1.20: Physiological Measurement of Drowsy Driving 185

A1.21: State-of-the-Art Anti-Drowsiness Intervention Technologies 190

A1.22: Measurement Categories of Drowsy Driving 195

A1.23: Other researcher’s implementations of SWM 196

Appendix 2: iPhone Code in C, Objective C and C++ .. 198

A2.1 IMU Monitor Graphical User Interface (GUI) Code 198

ix

A2.2 Machine Learning - Support Vector Classification Code 225

A2.3 Real Time Machine Learning/Classification APP 255

Appendix 3: A tacticle method for drowsy driver feedback - circuitry 294

Appendix 4: Sample of Participant Data ... 295

x

List of Tables

Table 1. Compensations for accelerometer angle readings 26

Table 2. Correlations between potentiometer-measured and accelerometer-

estimated SWM ... 43

Table 3. Various IMU SWM correlations to a linear potentiometer 47

Table 4. Various IMU device ratios and their correlation to potentiometer ... 49

Table 5. Various IMU device ratios and their correlation to potentiometer ... 51

Table 6. Accelerometer SWM measures and their accuracy levels during

machine learning classification .. 83

Table 7. Accelerometer-gyroscope fusion SWM measures and their accuracy

levels during machine learning classification ... 86

Table 8. SWM measures correlated positively with drowsy measures even in

simple statistical analysis .. 88

Table 9. Device Comparison ... 94

Table 10. Correlating accelerometer data with fusion data 103

Table 11. Correlating iPhone fusion signal to linear potentiometer signal 104

xi

List of Figures

Figure 1. Laboratory test apparatus used by Ogawa and Shimotani (1997)

demonstrated the obtrusiveness and impracticality for daily use of physiological based

methods. ... 14

Figure 2. Single axis sensing of acceleration ... 22

Figure 3. Accelerometer SWM monitoring (a) Dual axis sensing of

acceleration (b) Angle of Inclination ... 25

Figure 4. The accelerometer was placed on the wheel such that the Y axis was

parallel to the 𝑌𝑤 axis and the X axis was parallel to the 𝑋𝑤 axis. When wheel is

centered, 𝜃= 𝜃𝑤 = 0°. .. 27

Figure 5. The mapping of the IMU device to the steering wheel. 36

Figure 6. (a) The accelerations measured on 3 axes during a 180° steering

rotation. (b) The accelerometer angle 𝜃 calculated from Equation 3.11 has a linear

relationship to the potentiometer turn angle 𝜃𝑤. (c) SWM readings of the

potentiometer overlayed with accelerometer estimates. A small section of a steering

test. ... 42

Figure 7. The accelerometer estimated SWM (𝜃) was always highly correlated

with the potentiometer measured SWM (𝜃𝑤) regardless of the angle of inclination

(𝛼), making this method universally adaptive. Horizontal lines indicate values of 𝜃𝑤

 .. 44

xii

Figure 8. (a) On the left, a small section of high speed testing including

sudden SWM (b) On the right a single high speed correction. 45

Figure 9. In simulated driving, the participant demonstrated fatigued SWM as

characterized by an increase in sudden corrective actions. (a)On the left: Sudden

corrective actions that occurred shortly after eye closure events and upon realization

of unintended lane exit.(b)On the right: a single corrective action............................ 47

Figure 10. Using only a gyroscope, the signal was initially accurate, but

developed a drift in this example. .. 48

Figure 11. (a) Accelerometer only SWM signal; (b) Accelerometer only SWM

signal passed through a 4th order low pass Butterworth filter; (c) Gyroscope only

signal demonstrating slow drift; (d) Gyroscope only signal from road test

demonstrating how the gyroscope signal would wander into a slow drift in the longer

term; (e) A 50:50 distribution of accelerometer: gyroscope signals. 50

Figure 12. Various ratios of βgyro:βaccel plotted for (a) 10:90 (b) 90:10 (c) 99:1

(d) 99.5:0.5 .. 52

Figure 13. (a) High Speed SWM outputs remained highly accurate

representations of ground truth steering movements. (b) The final signal (right)

matches the potentiometer signal .. 54

xiii

Figure 14. Sherman et al. (1996) used a high pass filter to eliminate baseline

variations due to road characteristics. At highway speeds, these variations are much

less significant, but are still easily eliminated. ... 66

Figure 15. Illustration of a participant performing driving tasks 73

Figure 16. Participant’s electrodes were affixed in positions according to the

International 10/20 system (Sharbrough, F. et al., 1991) .. 75

Figure 17. Bursts of theta wave activity: theta wave activity were used as a

predictive feature. .. 76

Figure 18. Drowsy SWM (above) are more sudden and of higher amplitudes

than alert SWM (below) .. 78

Figure 19. The criteria for drowsy state labelling ... 80

Figure 20. The described accelerometer-based approach demonstrated higher

accuracy than any of the other predictors it was compared against. 84

Figure 21. The proposed accelerometer-gyroscope fusion method was

equivalent to or significantly better than other compared methods at accurately

predicting driver drowsiness. ... 86

Figure 22. Significant positive correlations exist between the SWM signal and

drowsy measures .. 87

Figure 23. Participant’s EEG theta wave power at Fz as well as SWM

measure of sudden turns demonstrated significant increases during drowsy periods. 88

xiv

Figure 24. Systems design of the classification system 96

Figure 25. Operational flowchart of the device operation 97

Figure 26. Recording SWM data using an iPhone, an IMU-6050, and a

potentiometer. ... 98

Figure 27. Radial Basis Function Classification.. 100

Figure 28. Recording SWM data using an iPhone, an IMU-6050, and a

potentiometer. Unfused gyroscope data revealed drift over time 102

Figure 29. The iPhone accelerometer SWM data was highly correlated to the

iPhone fusion data, except the fusion data was free of characteristic accelerometer

vibration noise. The correlations were as shown below ... 103

Figure 30. iPhone IMU data, MPU-6050 IMU data and potentiometer data

were in strong agreement. .. 103

Figure 31. A section showing only Potentiometer and iPhone data 104

Figure 32. An Early Training Version of the App 104

Figure 33. The IMU App, as Viewed from the iPhone Home Screen 105

Figure 34. Support Vector Machines were used to accurately classify drivers

as drowsy or alert. In final implementation, this classification process was automated

and streamlined ... 106

Figure 35. End User App View ... 106

Figure 36. Contextual SWM readings: the effects of low speeds 108

xv

Figure 37. Contextual understanding of motion and location can enhance

SWM assessment of drowsiness. (a) An iPhones view of a driver being monitored for

drowsiness; (b) The actual route driven. ... 109

Figure 38 Practical deployment of a smartphone application 110

Figure 39. Sherman et al. (1996) found that SWM was an indicator of lane

keeping activities, since SWM leads to lane shifts. .. 197

xvi

List of Abbreviations

ANN - Artificial Neural Networks

DAC - Digital-to-Analog Converter

ECG - Electrocardiography

EEG - Electroencephalography

EM G - Electromyography

EOG - Electrooculography

ESS - Epsworth Sleepiness Scale

GPS - Global Positioning System

GUI - Graphical user interface

FAA - Federal Aviation Administration

FHWA - Federal Highway Administration

HEOG - Horizontal Electrooculography

HRV - Heart Rate Variability

IBI - Inter Beat Interval

IM U - Inertial Measurement Unit

KSS - Karolinska Sleepiness Scale

M EM S - MicroElectroMechanical System

M SLT - Multiple Sleep Latency Test

M WT - Maintenance of Wakefulness Test

NASA - National Aeronautics and Space Administration

NHTSA - National Highway Traffic Safety Administration

NTSB - National Transportation Safety Board

NSF - The National Sleep Foundation

OSS - Objective Sleepiness Scale

PCB - Printed Circuit Board

xvii

PDA - Personal digital assistant

PERCLOS - PERcentage of eye CLOSure

PSG - Polysomnography

PVT - Psychomotor Vigilance Test

RLGs - Ring Laser Gyroscopes

RPM – Rotations per Minute

SDLP - Standard Deviation of Lane Position

SEM - Slow Eye Movements

SSS - Stanford Sleepiness Scale

STDSWM – Standard Deviation of Steering Wheel Movement

SVM - Support Vector Machine

SWM - Steering Wheel Movement

USDOT - U.S. Department of Transportation

VEOG – Vertical Electrooculography

Abstract

NOVEL TECHNOLOGIES FOR THE DETECTION AND MITIGATION OF
DROWSY DRIVING

By Samuel Lawoyin

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy, at Virginia Commonwealth University

Virginia Commonwealth University, 2014

Major Director: Dr. Ding-Yu Fei, Associate Professor, Department of Biomedical
Engineering

In the human control of motor vehicles, there are situations regularly

encountered wherein the vehicle operator becomes drowsy and fatigued due to the

influence of long work days, long driving hours, or low amounts of sleep. Although

various methods are currently proposed to detect drowsiness in the operator, they are

either obtrusive, expensive, or otherwise impractical. The method of drowsy driving

detection through the collection of Steering Wheel Movement (SWM) signals has

become an important measure as it lends itself to accurate, effective, and cost-effective

drowsiness detection. In this dissertation, novel technologies for drowsiness detection

using Inertial Measurement Units (IMUs) are investigated and described. IMUs are an

umbrella group of kinetic sensors (including accelerometers and gyroscopes) which

transduce physical motions into data. Driving performances were recorded using

IMUs as the primary sensors, and the resulting data were used by artificial intelligence

algorithms, specifically Support Vector Machines (SVMs) to determine whether or not

the individual was still fit to operate a motor vehicle. Results demonstrated high

accuracy of the method in classifying drowsiness. It was also shown that the use of a

smartphone-based approach to IMU monitoring of drowsiness will result in the

initiation of feedback mechanisms upon a positive detection of drowsiness. These

feedback mechanisms are intended to notify the driver of their drowsy state, and to

dissuade further driving which could lead to crashes and/or fatalities. The novel

methods not only demonstrated the ability to qualitatively determine a drivers drowsy

state, but they were also low-cost, easy to implement, and unobtrusive to drivers. The

efficacy, ease of use, and ease of access to these methods could potentially eliminate

many barriers to the implementation of the technologies. Ultimately, it is hoped that

these findings will help enhance traveler safety and prevent deaths and injuries to

users.

1

Chapter 1: Introduction

1.1 Motivation

The National Highway Traffic Safety Administration (NHTSA) estimates that

drowsy and fatigued drivers are responsible for about 1,200 deaths and 76,000

injuries each year in the United States (Rau, 1996). Each day in the United States,

80,000 individuals fall asleep behind the steering wheel (American Academy of Sleep

Medicine, 2005). Unfortunately, drowsy driving accounts for more than 250,000

motor vehicle accidents each year with drowsiness behind the wheel contributing to

1,550 deaths and 40,000 injuries per year (U.S. Department of Transportation, 2007).

Sleep deprivation has been shown to result in drowsy driving when the vehicle

operator decides to get behind the wheel unrested (Connor et al., 2002). Some

drowsy drivers were initially alert but their awareness deteriorated with prolonged

driving (Hamblin, 1987). As vehicle operators drive for longer periods of time, they

demonstrate greater signs of drowsy driving, including unintentionally veering off

their intended lane (Thiffault and Bergeron, 2003; Akerstedt and Gillberg, 1990;

Otmani et al., 2005; Philip, 2005). Drowsy driving is not a minor or an uncommon

problem, as it occurs more often than it might initially appear. In a sample of 750

randomly polled participants in Ontario Canada, 14.5% reported having fallen asleep

or nodded off while driving (Vanlaar et al., 2008). One in five adults in the United

States reports getting insufficient sleep, with more than 50 million Americans

2

suffering from a chronic sleep disorder (American Academy of Sleep Medicine, 2005).

The National Sleep Foundation (NSF) estimated that 54% of all adult drivers have

driven while drowsy and 28% do so at least once per month (NSF, 2009).

Prolonging wakefulness has been shown to be just as dangerous to driver

safety as alcohol intoxication (MacLean et al., 2003). Drowsy driving costs hospital

resources, emergency service resources and ultimately human life. Death due to

accidents, especially automotive crashes are the single largest factor responsible for

adolescent mortality (Dahl, 2008), large amounts of which are due to sleep

deprivation.

Due to this high number of fatalities, injuries, and risk caused by drowsy

operators, it is important for progress to be made towards the early detection of

drowsiness and the subsequent appropriate early warning to help make commutes

safer for all.

Many attempts have been made to improve transport safety by the Federal

Aviation Administration (FAA), National Transportation Safety Board (NTSB), and

National Highway Traffic Safety Administration (NHTSA), however, the only

widespread and accepted means to improve the record on fatigued vehicle operation

is by educating drivers on the importance of a good night’s sleep. In the long term,

more needs to be done to reduce the high volume of annual fatalities. Educating

drivers on the importance of sleep is important, however many Americans with

3

sleeping disorders wake up from 8 or 9 hours of sleep without realizing that they are

still severely fatigued, and proceed to operate vehicles.

The severity of the drowsy driving problem, including the resulting fatalities

and severe, often permanent injuries, has spurred a race to develop solutions. To

reduce the rate of accidents, it is important to alert the operator via early detection

of their cognitive status, which they might not be independently aware of.

A few non-technological methods such as getting a good night’s sleep and

encouraging the consumption of energy drinks have been postulated as valid ways to

maintain alertness during travel. These methods however do not qualitatively

determine if the individual who has received sleep and/or energy drinks prior

remains alert after a prolonged period of operation, suggesting that real time

monitoring remains a valid option which will enable active observations of the

transient state of cognitive awareness, and can detect when mental states cross the

blurred boundaries between alertness and drowsiness.

Many technology dependent methods have been proposed for use in the

detection of drowsy or fatigued driving. Slow Eye Movement (SEM) is a physical

change that has been investigated as an indicator of the onset of fatigue. Research

suggests that an individual’s eye speed is usually fairly rapid in response to external

visual stimuli (Shin et al., 2011). As fatigue sets in, electrooculography (EOG) can

be used to observe a reduced speed in eye motions. EOG is the process of measuring

eye movements by attaching electrodes to the skin surrounding the eye. Shin et al.

4

(2011) further determined the threshold parameters for sleep onset in vehicle drivers

using EOG. The threshold parameters were determined by the degree of eye

movement and the rate of degrees moved per second. A reduced speed in eye

movement would therefore suggest that the individual would respond less rapidly to

stimuli (Virkkala et al., 2007). During driving, this reduced alertness suggests the

onset of sleep and an increased risk for accident. Both Shin et al. (2011) and

Virkkala et al. (2007) used EOG as a measure of their physical parameters.

Eyelid closure is also a physical change used as an indicator of the onset of

drowsiness. Not only is eye closure seen as an important indicator of drowsiness, but

the duration of the closure suggests the degree of fatigue. Closures lasting for more

than half a second are especially strong indicators of sleepiness (Ogawa and

Shitomani, 1997). The percent of eyelid closure (PERCLOS) over a time interval has

also been used as a method to detect drowsiness (Wierwille, 1999). Eye closure

monitoring methods can be ineffective if the driver is wearing eyeglasses (Bowman et

al., 2012). If the driver looks down and around him, there might be false positive

readings of eye closure activities (Wierwille et al., 2003).

Lane tracking has been used to detect behavioral cues of drowsy driving

because fatigued drivers are more likely to deviate from their lane as suggested by

Yabuta et al. (1985). In experimental setups, it was demonstrated that drowsy

drivers tend to run over experimental rumble strips which are placed alongside the

lanes and down the center line (Anund et al., 2008). Because roads cannot

5

realistically be expected to always match researcher models, it will be difficult to

measure drowsiness accurately. Roads can be irregular or marked differently than

expected, rendering lane detection algorithms ineffective. Snow, rain and dust can

also obstruct a clear view of lane markings. The potential for a large amount of false

positives can make drivers mistrust alarms based on lane position tracking (Bliss and

Acton, 2003).

Another indicator of drowsiness used by researchers is the

Electroencephalogram (EEG). This involves having signals recorded from the human

scalp and translating them into states of cognition. Being able to detect signals

directly from the brain is the most important physiological indicator of the central

nervous system activation and alertness (Eskandarian et al., 2007). The human brain

gives off a series of EEG frequencies including delta waves, theta waves, alpha waves

and beta waves (Åkerstedt T and Gillberg, 1990). Beta waves range from 13 Hertz to

20 Hertz and show rapid, alert mental activity. From a beta state down to a theta

state, there are increasing amounts of drowsiness, with theta being slow sleep. Alpha

wave activity actually increases during periods of drowsiness. Researchers such as

Huang et al. have been using lower frequency EEG signals as an indicator of

drowsiness (Huang et al., 1996). Physiological methods however are impractical for

regular vehicle and remain within laboratory settings due to their intrusiveness, the

level of expertise necessary to collect the data, the complexity of setup and typically

the non-portability of equipment.

6

Clinicians have used several methods for detecting unintentional sleep onset

and drowsiness such as the Maintenance of Wakefulness Test (MWT) (Virkkala et

al., 2007). The MWT and other similar tests are valid predictors of unintentional

sleep onset, however they cannot be ported onto the roads and highways where the

fatalities are occurring. Consequently, it is necessary to have a cost-effective and

unobtrusive method for monitoring drowsiness that is practical for daily commuter

use.

In terms of visual observation, Wierwille and Ellsworth (1994) determined

that by physical inspection, a keen eye could actually look at video images of a

drivers face and determine when they are drowsy and when they are alert. An

impractical measure for the obvious reason that a driver would require another

person to monitor his drowsiness throughout all driving sessions.

Due to the high efficacy, non-intrusive nature, and promise of drowsiness

detection via Steering Wheel Movement (SWM) monitoring, researchers have come

up with several methods to monitor SWM. Sayed et al. (2001) measured SWM using

equipment built into complex vehicle simulators. This approach is cost prohibitive to

the average user and excessive for users requiring only SWM monitoring without

extra options. Thiffault et al. (2003) placed potentiometers along the axis of the

steering column to measure the turn angle. This would require users to have the

technical knowledge and dexterity to install a potentiometer into the steering column

7

of their vehicle or vehicle simulator. It would also require the dismantling of the

current setup to install the potentiometer.

Given that these methods of monitoring SWM are prohibitive to the average

vehicle operator, there is delay in the feasibility of personal drowsiness monitoring

based on SWM monitoring despite the well documented applicability of SWM in

drowsiness detection and the potential for decreased highway fatalities.

1.2 Dissertation outline:

Goal:

The goal of this dissertation and its associated research projects was to

contribute practical measures to reduce accidents on the highway which are

drowsiness and fatigue induced.

Specific Aims

Specific Aim 1:

The first specific aim was the technical development of novel, low-cost, and

effective technologies to accurately monitor the behavioral characteristic of Steering

Wheel Movements (SWM) for the purpose of detecting drowsy driving. The three

directions primarily researched were the use of an accelerometer-based technologies

for the real time monitoring of SWM, the use of gyroscope-based technologies, and

finally, the simultaneous use of an algorithmically fused physical combination of an

8

accelerometer and a gyroscope on the same MicroElectroMechanical System (MEMS)

die.

Specific Aim 2:

The second specific aim was to perform experimental validation of the

proposed technologies for accurate fatigue detection. The proposed technologies were

used to gather accurate SWM signals, which then underwent signal processing to

selectively extract features which are known to be characteristic of drowsy driving.

These features were then passed to artificial intelligence machines, including Support

Vector Machines (SVMs) for real-time contextual classification of drowsy driving.

Specific Aim 3:

The third and final specific aim was to implement the proposed novel

technology using ubiquitous technologies. An example of a ubiquitous device, due to

its wide proliferation, is a smartphone (iPhone, Android, etc.). The ubiquity of the

carrier technology satisfies the requirement that the method should be easy to

implement and also makes the method accessible. Therefore, a smartphone-based

method was developed for this purpose.

9

Approach:

 The dissertation work began with a requirement to implement a practical,

cost-effective, personal method for drowsy driving early warning that can be easily

adopted by a wide range of drivers with few barriers. The literature was then

reviewed to understand the current state of the field as well as the gaps that

currently constitute barriers to entry for drowsy driving detection technologies. The

primary gaps were found to be: (1) the obtrusive nature of current potential

solutions; (2) the high cost of acquisition of the current technologies; (3) The

complexity of the current technologies which make it inadequate for untrained end-

users, and (4) The requirement for extensive vehicle modifications in the case of

vehicles that do not come with these technologies as a standard factory options. The

use of Inertial Measurement Units (IMUs) were then explored initially through

accelerometers and assessed for their ability to generate classifiable data.

Assessments showed that the method performed with high accuracy on par with

better known technologies. The accelerometer method however was found to be

prone to linear acceleration noises in the absence a low pass filter implementation. A

gyroscope-based method was subsequently employed, and found to be an accurate

representation of the SWM signal. However, prolonged gyroscope use led to signal

drift, requiring regular gyroscope re-calibration. A gyroscope-accelerometer fusion

was then used to simultaneously remove the effects of linear acceleration noise and to

null signal drift. This fusion method was assessed to be on par with better known

10

technologies while retaining high accuracy, low-cost, and non-obtrusive properties.

Although the inertial fusion theory and practical results were positive, it remained

necessary to make the technique practical and accessible to the average non-technical

user. To help distribute this technology to as many drivers as possible, the

algorithms, equations, and artificial intelligence/machine learning code were written

and compiled into a smartphone app, while taking advantage of the fact that the

relevant inertial motion sensors as well as Global Positioning Systems chips (GPS)

come pre-installed on many modern smartphone devices. Smartphone device SWM

output were found to be equivalent to SWM readings obtained from discrete

specialized laboratory IMU devices as well as linear potentiometer devices. The use

of SVM classifications were found to be successful on board the smartphone,

replicating the classification accuracy derived on more powerful offline laboratory

computers, thus resulting in a cost-effective, ubiquitous, completely self-contained,

real-time detection method for drowsy driving detection.

Outline:

Chapter 1 provides an introduction to the scope of the work and dissertation.

Chapter 2 explores the current field of drowsy driving monitoring and detection and

lays the foundational understanding of the problem background and why current

solutions have been inadequate. It surveys the current technologies and

methodologies that have been aimed at solving the problem of drowsy driving and

11

then postulates a solution to the problem. Chapter 3 introduces and summarizes the

process for the technical development of IMU sensors for SWM signal processing, and

provides an understanding of how accelerometers as IMU primary sensors can be an

effective tool for drowsiness monitoring and detection. It also discusses the potential

for sensor noise in the absence of low pass filtering. Further in the chapter the

concept of using gyroscope-based technologies as a means for sensing drowsy driving

is introduced. Also introduced are the processes and benefits derived from the fusion

of a gyroscope and an accelerometer inertial sensors for drowsiness detection.

Chapter 4 provides an objective assessment of the efficacy of using IMU technologies

for drowsiness detection when benchmarked against other known measures including

physiological data, EEG brain activity indicating drowsiness, PERCLOS80, among

others, yielding positive results. Chapter 5 discusses a new, easy to obtain, and

practical solution for monitoring an individual’s level of drowsiness in real time, and

also to alert a drowsy individual about their current cognitive state in the event of

detected drowsiness and to prompt them to take a break from critical operations.

Chapter 6 summarizes and discusses the overall dissertation work, and also provides

suggestions for further work.

12

Chapter 2: Literature Review

2.1. Introduction

To simplify this dissertation document, the literature review in this chapter is

abridged. A more detailed version of the literature review performed is seen in

Appendix 1.

This chapter reviews selected peer-reviewed publications seeking to assess

what role technology has played in the development and evolution of drowsy driving

detection methods to the state of their present day applications. It was necessary to

review the field in order to gain a complete understanding of what directions to take

towards answering the questions relevant to this study. With broadened knowledge,

adequate and appropriate solutions could be proposed, tested, and implemented.

This review commenced with the collation of suitable articles. Searches were

conducted on PubMed for the terms drowsy driving and drowsy driving detection.

The inclusion criteria for primary articles were the most relevant search results of

peer-reviewed articles which resulted from the given keywords (as sorted in order of

relevance by PubMed). Not all primary articles were cited after reading depending

on their depth of technological focus. The primary articles were read for

understanding and review. Primary article references were searched for other articles

to be read which would help to expand understanding of the topics explained in the

primary articles. Any references used in this review that did not meet the above

13

listed criteria were used solely to increase understanding of the primary articles.

Referenced sources were all read.

2.2. Current drowsy driving detection technologies

2.2.1. Physiological methods for drowsy driving detection

Electrooculography (EOG): Electrooculography (EOG) involves utilizing electrodes

attached to the skin surrounding the eye to record the potential difference between

the cornea and the retina. This voltage changes as the eyeballs move enabling eye

tracking (Barea et al., 2002; Young and Sheena, 1975).

Electroencephalography (EEG): Electroencephalography (EEG) involves the

monitoring of electrical signals from the brain via electrodes placed along the scalp.

(Liu et al., 2013; Homan et al., 1987).

Electromyography (EMG): Electromyography (EMG) is a method of monitoring

electrical activities from muscles. Surface EMG from the deltoid and trapezius during

monotonous driving were analyzed by Hostens and Ramon (2005) and the results

showed that EMG amplitude decreased significantly after 1 hour of driving.

Electrocardiography (ECG): Electrocardiography (ECG) is the monitoring of

electrical activity related to the hearts circulatory activity. It has been demonstrated

that heart rate variability (HRV) is applicable for the detection of drowsiness

(Tsuchida et al., 2009).

Respiration: Respiration rates have been proposed for drowsy driving detection.

Ibáñez et al. (2011) proposed inductance plethysmograph bands to monitor

14

participant’s respiration to detect drowsiness. Some clinical tests have been used for

drowsy driving detection including the Multiple Sleep Latency Test (MSLT),

Maintenance of Wakefulness Test (MWT), and polysomnography (PSG). They are

comprehensive tests that measure EEG, EOG, EMG, and ECG simultaneously.

Figure 1. Laboratory test apparatus used by Ogawa and Shimotani (1997)

demonstrated the obtrusiveness and impracticality for daily use of physiological based

methods.

Limitations of physiological methods for detecting drowsy driving

Physiological methods for detecting drowsy driving (EEG, EOG, ECG, EMG,

Respiration) are very limited by their intrusiveness outside of laboratory settings due

to the requirement for electrodes, gel, wiring, and often a method to fasten on the

electrodes such as a dedicated cap. The placement of electrodes necessary for

physiological signal detection is too technical for the average daily commuter.

15

2.2.2. Behavioral methods for drowsy driving detection

Face and eye tracking via video: Video tracking is an unobtrusive means to monitor

driver drowsiness. The driver’s face and the eyes are monitored for signs of

drowsiness.

PERCLOS via Video tracking: PERCLOS is one such measure that has been used to

determine drowsiness (Greneche et al., 2008; Sahayadhas et al., 2012). It represents

the percentage of time the eyes are closed over a given period of time.

Limitations of behavioral methods for drowsy driving detection

Yang et al. (2007) identified four major problems with video monitoring of

facial drowsy features: pose, presence, facial expression and image orientation.

Presence or absence of structural components such as beards, mustaches, and glasses

could create differences from the features expected and could confuse recognition

algorithms. Other failures can occur due to face orientation, lighting conditions, and

distance of eyelid from the camera (Brown et al., 2013).

2.2.3. Vehicle-based methods for drowsy driving detection

Lane tracking: Video is used for lane tracking because fatigued drivers are more

likely to deviate from their lane (Papadelis et al., 2007).

16

Limitations of vehicle-based methods for drowsy driving detection

Lane tracking has significant limitations because roads cannot always match

researcher models and snow, rain, and dust can obstruct a clear view of lane

markings.

2.2.4. “Readiness to perform” measures for drowsy driving detection

Readiness to perform measures are not real time monitors of drowsiness but

rather, they require pre-commute driver participation. The Psychomotor vigilance

test (PVT) involves a simple task in which a respondent is required to respond to

stimuli. The participant’s speed of response to visual stimuli yields a quantifiable

measure of their drowsiness (Loh et al., 2004; Wilkinson and Houghton, 1982).

Subjective sleepiness scales such as the Karolinska Sleepiness Scale (KSS) are

questionnaires for drivers to self-report their own feeling of drowsiness.

Limitations of “Readiness to perform” measures for drowsy driving detection

A fundamental limitation to the PVT test is that it cannot be used in real-

time during driving tasks. Subjective self-assessment is often wrong. Most drivers

underreport their drowsiness (Moller et al., 2006; Sharwood et al., 2012).

17

2.3. Steering Wheel Movements (SWM) as a measure of drowsy driving:

One of the more intuitive methods for monitoring a subject’s driving behavior

is to directly monitor the inputs made to the vehicle’s steering wheel. Importantly,

the relationship between steering wheel rotation and level of awareness of motor

vehicle drivers has been well documented. It was noted as early as the 1960’s that

diminished driver capabilities were associated with increased steering reversal rates

(Platt, 1963; Safford and Rockwell, 1967). Since then, researchers have consistently

seen a correlation between a driver’s intervals of steering adjustments and their level

of drowsiness (Thiffault and Bergeron, 2003; Borghini et al., 2012; Fukuda et al.,

1995; Elling and Sherman, 1994). It has been demonstrated that the majority of

sampled drivers tend to show an increasing trend towards faster and larger steering

corrections as they become drowsy. Not only does the regularity of input decrease in

drowsy drivers, but when they do occur they are large and sudden (Thiffault and

Bergeron, 2003; Borghini, et al, 2012). Steering inputs in fatigued drivers are shown

to have fewer micro corrections and more macro-corrections, with sleeping drivers

making no corrections (Yabuta et al., 1985; Eskandarian and Mortazavi, 2007;

Chaput et al., 1990). Fairclough and Graham (1999) found that sleep deprived

drivers make fewer SWM reversals than normal drivers. Khardi and Vallet (1994)

showed that there was a significant positive correlation between the number of

steering wheel reversals and EEG activity in the theta and alpha bands. This is

important as identical results were replicated in chapter 4 of this study.

18

Iizuka et al., (1986) determined that drowsiness can be detected in drivers

through the monitoring of steering behaviors for the pattern of low activity, followed

by a sudden, high amplitude input. Sherman et al. (1996) made use of SWM signals

to extract such readings as the standard deviation of steering wheel position, the

steering reversal rate, and the mean steering velocity. Further benefits of SWM

measurements are its noted ability to be a strong proxy for monitoring lane keeping

abilities, especially large SWM inputs which are certain to affect lane position.

2.4. Post review summary: Directions moving forward

It was decided that a valid solution to the technology gaps would be an

unobtrusive technology which demonstrated high efficacy, was cost-effective to

vehicle manufacturers and end-users alike, and was able to lend itself to accurate

classification of human drowsy driving. Despite being recognized as a highly effective

tool for drowsy driving detection, SWM has not been implemented on any impactful

scale due to the lack of cost-effective options. So far, SWM monitoring is offered

solely as a premium feature by a few high-end manufacturers on select models such

as the Mercedes Benz “Attention Assist” system which monitors SWM for sudden

large inputs (Euroncap, 2011).

Unlike other methods for monitoring drowsy driving, SWM is completely

unobtrusive to the driver and much less complex to the daily commuter than any

video or electrode based method. The practical implementation of SWM monitoring

using inertial measurement sensors fulfils the requirement for a cost-effective, non-

19

intrusive, and easy to implement method for drowsiness detection. The following

chapters describes the progression of methodologies developed towards this end as

well as their technical validations and outcomes.

20

Chapter 3: Specific Aim 1: Technical development of novel, low-cost,

and effective technologies for monitoring Steering Wheel Movements

(SWM)

3.1. Introduction to the technical development process

Monitoring Steering Wheel Movements (SWM) is a well-documented method

of detecting driver fatigue and drowsiness. Current methods of SWM monitoring as

described in Chapter 2 are prohibitive for daily use due to high costs of

implementation and the necessity for complex modifications to be made to

accommodate the new setup. These limitations have confined potentially lifesaving

drowsiness detection methods based on SWM to laboratory and simulator settings.

Three new methods are developed in this study for monitoring SWM signals. They

are a tri-axial accelerometer-based method, a gyroscope-based method, and a

gyroscope-accelerometer fusion-based method to provide a cost-effective, easy to use,

and efficacious way to monitor SWM without requiring any modifications to the

existing vehicle setup.

In this study, an Inertial Measurement Unit (IMU) based approach for

monitoring the SWM is proposed. IMU sensors include gyroscopes and

accelerometers

The theoretical base and the test procedures for each of these technologies

that were effected towards the achievement of specific aim 1 are described in this

21

chapter. The development of hardware and algorithms necessary for accurate

estimation of SWM signals is described.

3.2. Methods

This section describes the methodologies for the technical implementations of

SWM monitoring using accelerometers, gyroscope, and a fusion of both.

3.2.1 Theoretical bases and algorithms to generate SWM signal via

accelerometer

3.2.1.1. Accelerometer operation

Figure 2. shows a single axis accelerometer under the effects of gravity. Vector

𝑨 was parallel to the axis (x) of the accelerometer being measured in the single axis

setup. The orthogonal projection of the gravity vector 𝒈 upon the x-axis is shown in

Figure 2. The projection line was perpendicular to the vector 𝑨 and the x-axis.

22

Figure 2. Single axis sensing of acceleration

The measured scale value or value of the acceleration 𝑨 was the component of

the gravity vector, 𝒈, resolved along the vector 𝑨 or in the direction of the axis being

measured. 𝜃 was the angle from the horizontal axis (which was perpendicular to the

gravity vector) to the axis of measurement as shown in the Figure 2.

Using this knowledge, it was possible to calculate the acceleration 𝑨:

𝑨 = −𝒈 × sin(𝜃) (3.1)

A clockwise rotation of the measured x axis of the accelerometer from 𝜃 = 0°

to 𝜃 = -90° (downward) resulted in a final acceleration reading of 𝑨 = 1𝒈. When

the x axis was upright and parallel to gravity, i.e. 𝜃 = 90°, the acceleration 𝑨 = -1𝒈.

All the angles of tilt measured by the accelerometer were relative to its 𝑉𝑜𝑢𝑡

value at 0°, also known as the zero 𝒈 bias level. This bias voltage,𝑉𝑏𝑖𝑎𝑠, is a feature

of the accelerometer.

23

The output voltage of the accelerometer for any measured angle is the bias

level plus an additional voltage,𝑉𝑡𝑖𝑙𝑡, caused by the tilt, i.e.

𝑉𝑜𝑢𝑡 = 𝑉𝑏𝑖𝑎𝑠 + 𝑉𝑡𝑖𝑙𝑡 (3.2)

The tilt voltage was proportional to the acceleration A as well as the

sensitivity of the accelerometer. Here, the sensitivity of accelerometer was the tilt

voltage, 𝑉𝑡𝑖𝑙𝑡, per the unit gravity 𝒈 at the tilt angle of 90°. The sensitivity, 𝑆, can

be expressed as:

𝑉𝑡𝑖𝑙𝑡 = 𝑨 × 𝑆 (3.3)

Applying Equation (A1):

𝑉𝑡𝑖𝑙𝑡 = (−𝒈 × 𝑠𝑖𝑛(𝜃)) × 𝑆 (3.4)

Substituting (A4) into (A2):

𝑉𝑜𝑢𝑡 = 𝑉𝑏𝑖𝑎𝑠 + (−𝒈 × 𝑠𝑖𝑛(𝜃)) × 𝑆 (3.5)

From (A2) into (A3),

𝑉𝑜𝑢𝑡 = 𝑉𝑏𝑖𝑎𝑠 + 𝑨 × 𝑆 (3.6)

𝑨 =
𝑉𝑜𝑢𝑡 – 𝑉𝑏𝑖𝑎𝑠

𝑆
 (3.7)

𝑨 =
𝑉𝑡𝑖𝑙𝑡

𝑆
 (3.8)

When using an accelerometer to estimate the tilt angle, the angle

(measurement) sensitivity, which was the change of output voltage with respect to

24

the change of angle, decreased as the measured angle approached 90°. To improve

the angle sensitivity it was necessary to use more than one axis.

In addition, due to identical 𝒈 values at 0+180n degrees (0, 180 and 360

degrees), angle readings were the same at these points. This was another reason it

was necessary to use more than one axis.

Dual axis measurements eliminated the single axis problem of lowered angle

sensitivity at 90 + 180n degrees. In the vertically aligned accelerometers, as the X

axis approached its lowest region of angle sensitivity, the Y axis was just

approaching its region of highest angle sensitivity. The combination of two known

positions also helped us avoid confusion every 0 + 180n degrees.

Figure 3a shows the application of the accelerometer in the x-y plane. The

acceleration components of 𝑨𝒙 and 𝑨𝒚 was expressed as follows.

𝑨𝒙= −𝒈 × sin 𝜃 (3.9)

𝑨𝒚= −𝒈 × cos 𝜃 (3.10)

 Then, the tilt angle can be determined by

𝜃 = 𝑎𝑡𝑎𝑛 (
𝑨𝒙

𝑨𝒚
) (3.11)

where 𝜃 was the SWM being estimated from the accelerometer readings of 𝑨𝒙

and 𝑨𝒚. The steering wheel had an inclination angle α with the horizontal plane as

shown in Figure 3b.

25

Figure 3. Accelerometer SWM monitoring (a) Dual axis sensing of

acceleration (b) Angle of Inclination

When a fixed direction was assigned to the wheel as a reference for 0° rotation

angle such as the vertical up direction shown in Figure 3a, the reading angle from

the wheel was the same as the tilt angle indicated by the accelerometer (Figure 3b).

Accelerometer axial vectors constitute a unit vector whereby |𝑨|

=√(𝑨𝒙)2 + (𝑨𝒚)
2

+ (𝑨𝒛)2 = 1. When the Y axis is parallel to 𝒈 and in the same

direction as 𝒈 (i.e. 𝛼 = 90°), (𝑨𝒙, 𝑨𝒚, 𝑨𝒛) = (0, 1, 0). For all other angles of

inclination (𝛼), the values of 𝑨𝒙 and 𝑨𝒚 both approached in relative ratios, but never

reached 1𝒈 during inclined testing. Taking the arctan of the ratio (
𝑨𝒙

𝑨𝒚
) effectively

“normalized” readings into the x-y plane. Even though the acceleration readings were

proportionally smaller compared to a vertically mounted accelerometer, the

estimated 𝜃 were the same despite any tilt of the wheel.

26

Based on this analysis of accelerometer gravity angle sensing, an algorithm

was developed to calculate the steering wheel rotation angle by using the

trigonometric relationship between the accelerometer readings 𝑨𝒙 and 𝑨𝒚 for the X

and Y axis as shown in Figure 3a in which the Y axis of the accelerometer was

always 90° physically advanced of the X axis. The steering wheel rotation angle was

calculated by Equation 3.11.

The calculation of the steering wheel rotation angle 𝜃 using Equation 3.11 was

ambiguous within the angle range from 0° to 360°. For example, at 𝜃 = 𝑎𝑡𝑎𝑛 (
𝟏

𝟎
), the

results would be either 90° or -90°. A compensatory 180° was added to the calculated

values when the steering wheel rotated between 90° to 270°, while 360° was added to

all rotation angles between 270° to 360°. The compensations are shown in Table 1.

Table 1. Compensations for accelerometer angle readings

𝜃 A

dd

When to compensate

0°-90° +

0°

While 0g < 𝑨𝒙<= -1g

and -1g < 𝑨𝒚<= -0g
90°-180° +

180°

While -1g < 𝑨𝒙<= -0g and -0g < 𝑨𝒚<= 1g

180°-270° +

180°

While -0g < 𝑨𝒙<= 1g and 1g < 𝑨𝒚<= 0g

270°-360° +

360°

While 1g < 𝑨𝒙<= 0g and 1 0g < 𝑨𝒚<= -1g

27

3.2.1.2. The system set-up and the mapping of accelerometer rotational

angle to SWM

The steering wheel was sectioned off into 4 quadrants with the wheel axes

Yw and Xw respectively parallel and perpendicular to the gravity vector (Figure 4).

The focus was primarily on the upper 2 quadrants of the steering wheel.

Figure 4. The accelerometer was placed on the wheel such that the Y axis was

parallel to the 𝑌𝑤 axis and the X axis was parallel to the 𝑋𝑤 axis. When wheel is

centered, 𝜃= 𝜃𝑤 = 0°.

The steering wheel used to gather data was the Top Drive GT (Logic3,

Hertfordshire, England). Voltage readings, 𝑉𝑝 were taken directly from a

potentiometer which was in series with the steering column and directly attached to

it, providing a 1:1 capture of all rotation. These voltages constitute the

potentiometer readings referenced throughout the rest of this dissertation. The

steering wheel also included gas and brake pedals and an automatic transmission.

Voltage levels 𝑉𝑝 were recorded from the linear potentiometer at steering

wheel rotation angles of 𝜃𝑤 = 90°, 0° and -90°. These voltages were divided linearly

28

into 90 parts per quadrant, for a total of 181 data points. Each voltage data point

was then assigned its corresponding degree between -90° and 90°. By this, the linear

potentiometer was used to monitor the SWM (𝜃𝑤).

In order to use a three-axis accelerometer to monitor SWM, the X and Y axes

were affixed on the surface plane of the steering wheel such that the X axis was

parallel with the Xw axis, while the Y axis was parallel to the Yw axis (Figure 4). In

this configuration, 𝜃 was always = 𝜃𝑤 regardless of the actual location on the wheel

surface the accelerometer was placed. A tri-axial accelerometer ADXL335 (Analog

Devices, Norwood, MA.) was used in this study. The supply voltage 𝑉𝑆, to the

ADXL335 was 3.234𝑉 and the bias voltage, 𝑉𝑏𝑖𝑎𝑠 , was 1.620𝑉; approximately half of

𝑉𝑆. At this power supply setting, the sensitivity, 𝑆 of the accelerometer was 323.4𝑚𝑉/

𝒈.

Simulator driving tasks were performed using the Euro Truck Simulator 2

software (SCS Software, Prague, Czech Republic). For monitoring eye closure

activities, an Emerson Go Action Camera (Funai, Osaka, Japan) was used.

3.2.1.3. Data collection and analysis

The measured accelerometer data was passed through a 5Hz, 6th order, low-

pass Butterworth filter to remove high frequency noise and vibrations in the sensitive

accelerometer, thereby limiting its operations to a tilt sensor within feasible human

motion ranges. The accelerometer data as well as the linear potentiometer data were

29

collected using a National Instruments digital to analog converter (DAC) (NI USB-

6008, National Instruments, Austin, TX).

Data were analyzed using MATLAB. For statistical analysis, the linearity

between the potentiometer and accelerometer outputs were determined through

linear regression where the steering rotation 𝜃𝑤 (measured by potentiometer) was the

explanatory variable. Linear curve fittings were applied to the data in order to

record their slopes and y-intercepts. P-values were recorded at 𝛼 = 0.05 and the R2

coefficients of the accelerometer/potentiometer linear fit were also recorded, as well

as the Pearson’s Linear Correlation coefficients.

The correlations between potentiometer measured SWM and accelerometer

estimated SWM signals during simulation and steering tasks were determined using

the cross correlation function of the MATLAB signal processing toolbox.

3.2.1.4. Testing

Calibration test: Characterizing the relationship between 𝜃𝑤 and 𝑉𝑝

The assigned steering wheel angles 𝜃𝑤 and their potentiometer voltages 𝑉𝑝

were calibrated. The relationship was fitted with a characterization equation to assist

all further conversions between potentiometer voltage and angle of rotation and vice

versa.

30

Test #1: Correlation between 𝜃𝑤 and 𝜃.

Part A: Correlation between 𝜃𝑤 and 𝜃 at α = 45°

The steering wheel with the accelerometer mounted was rotated very slowly

clockwise from 𝜃𝑤= 90° to 𝜃𝑤= -90° while data was being recorded from the 3 axes

of the accelerometer as well as from the linear potentiometer. The angle of

inclination was 𝛼 = 45°. For each angle of steering wheel rotation (𝜃𝑤) recorded by

the potentiometer, its corresponding voltage and accelerometer angle of rotation

(𝜃) were recorded. This test was performed 10 times and the results were checked for

consistency. Data was collected at 1200 samples per second. This test was intended

to establish linearity between the SWM measured by the potentiometer 𝜃𝑤 and the

SWM estimated by the accelerometer 𝜃.

Part B: Correlation between 𝜃𝑤 and 𝜃 during imitation drive patterns

After linearity had been established between potentiometer and accelerometer

readings in Part A, SWM activities were performed which were intended to mimic

driving patterns. These movements consisted of clockwise and anti-clockwise steering

wheel rotations in no fixed pattern. The goal of this test was to compare 𝜃𝑤 and 𝜃

during SWM patterns.

31

Test #2: Robustness of 𝜃 measurements at different angles of inclination (𝛼)

The steering wheel was tilted to 𝛼 = 23° and then 𝛼 = 67° angles of

inclination as depicted in Figure 3b. For each new angle of inclination, TEST #1

was repeated. The SWM recorded by the linear potentiometer 𝜃𝑤 was compared to

the SWM estimated by the accelerometer 𝜃 for each angle of inclination. This was a

versatility test intended to establish that linearity remains between 𝜃𝑤 and 𝜃 at

various angles of inclination (𝛼) found on steering wheels.

Test #3: Effects of SWM speed on the readings of 𝜃

In order to test the efficacy of this method in the event of sudden drowsiness

induced SWM, sharp and sudden rotations were performed by manual input to the

steering wheel. 𝜃𝑤 and 𝜃 were recorded. This was intended to be an endurance test

to ensure the accelerometer was able to keep up with sharp and sudden changes in

rotational angle, while still maintaining accuracy and efficacy.

Test #4: Robustness in realistic simulation environment

To test practicality and efficacy in real world situations, a participant was

recruited to perform driving tasks in a simulator environment. The participant was

asked to perform highway driving during the mid-afternoon drowsiness period

described by Stutts et al. (Stutts et al., 1999). The participant’s eye was monitored

for slow eye closure events. Slow eye closure events were defined as eye closures

32

which were slower than blinks and lasted longer than blinks. 𝜃𝑤 and 𝜃 data were

recorded during this period.

3.2.2 Theoretical bases and algorithms to generate SWM signal via

gyroscope

Gyroscopes detect angular velocity and they can be used to derive information

about the angular orientation of the steering wheel. As the gyroscope internal

structure begins to spin or vibrate, it becomes resistant to any movement that could

lead to a change in the direction of spin or vibration. When an external force exerts

an angular rotation on the gyroscope, the Coriolis Effect is felt within the rotating or

vibrating structure which exerts a force on the structure that induces a change in

capacitance. This capacitance change causes a variance in the gyroscopes output

voltage which is in proportion to the angular velocity experienced. As a result, the

output voltage is a direct indication of the angular velocity of the gyroscope. The

voltage can then be digitized as an angular velocity value.

An equation for real time monitoring of the rotational position of a gyroscope

is given by Sakaguchi et al., (1996):

𝜃𝑔𝑦𝑟𝑜[n] = 𝜃𝑔𝑦𝑟𝑜[n-1] + Δn [n] (3.12)

33

where the gyroscope positional angle 𝜃𝑔𝑦𝑟𝑜[n] is based upon knowledge of the last

positional sample 𝜃𝑔𝑦𝑟𝑜[n-1] as well as knowledge of the angular displacement since

the last sample, which is the product of the rate of angular change [n], and the

sample interval, Δn. The new position of gyroscope orientation can be determined as

𝜃𝑔𝑦𝑟𝑜[n] with the above Equation 3.12. The equation was designed especially for

capturing rotational movements originating from human motion (Sakaguchi et al.,

1996). SWM is a product of human motion, and will be served well by this method.

For comparison against current potentiometer based SWM angle recordings, a

linear potentiometer in series with the steering axis was used as a reference. Linear

potentiometer output voltages vary in linear proportion to their angle of rotation and

can be modelled as a standard linear equation:

𝜃𝑤 = 𝑚 × 𝑉𝑝 + 𝑏 (3.13)

where 𝜃𝑤 was the steering wheel angle of rotation in degrees (°) and 𝑉𝑝 was the

potentiometer voltage in volts (𝑉). 𝑚 was the slope of the linear relationship and 𝑏

was the y-intercept of the linear relationship.

To customize our model, the parameters 𝑚 and 𝑉𝑝 were generated by

sampling 90 data points per quadrant of the steering wheel, yielding approximately 1

sample of 𝑉𝑝 per 1°. Using these data points to generate a linear relationship gave

34

values of 𝑚 = −93.409 °/𝑉 and 𝑏 = 177.400°. All further potentiometer readings of

SWM angle were calculated by using these parameters with Equation 3.13 for

derivation of 𝜃𝑤.

3.2.2.1. Testing

3.2.2.1.1 Test for applicability of SWM monitoring with a gyroscope

Equation 3.12 was used for generating the SWM signal 𝜃𝑔𝑦𝑟𝑜[n] using IMU

data collected from the gyroscope during road tests. The resulting signal was

compared against potentiometer readings during the same period to determine the

usability of the signal and its correctness.

3.2.2.1.2 Test for accuracy of SWM readings against linear potentiometer.

After the setup from section 3.2.2 had been used to establish a relationship

between 𝜃𝑔𝑦𝑟𝑜, and 𝜃, as well as a standard for 𝜃𝑤, a participant was recruited to

perform driving simulator activities for 45 minutes. The correlation between

 𝜃𝑔𝑦𝑟𝑜 and 𝜃𝑤 over this prolonged period was calculated.

3.2.3 Theoretical bases and algorithms to generate SWM signal via an

accelerometer-gyroscope fusion

The method for SWM monitoring via gyroscope was described earlier in

section 3.2.2. The equation for SWM monitoring via gyroscope was given as

Equation 3.12. A drawback to using gyroscopes for detection of angular rotation is

35

the tendency for gyroscope positional values to drift (Luinge et al., 1999; Sakaguchi

et al., 1996).

The second part of the proposed IMU device fusion is the accelerometer. An

equation for extracting SWM angle solely via an accelerometer is given as a sample

derivation of Equation 3.11:

𝜃[𝑛] = 𝑎𝑡𝑎𝑛 (
𝑨𝒙[𝒏]

𝑨𝒚[𝒏]
) (3.14)

where 𝜃 was the SWM angle being estimated from the accelerometer readings of

 𝑨𝒙[𝒏] and 𝑨𝒚[𝒏], 𝜃 [𝑛] had a strong positive correlation with the steering wheels

SWM angle 𝜃𝑤[n].

The addition of an accelerometer to the gyroscope compensated for gyroscope

drift via the accelerometers perpetual ability for gravitational alignment. This is

predicated upon the fact that the operation of Equation 3.14 depends upon relative

readings of gravity on the accelerometers separate axes. The accelerometers tendency

to pick up linear vibrations was in turn countered by the gyroscope which has a

sensitivity to angular velocity. The IMU fusion led to a highly effective combination.

When the steering wheel was in a neutral position as shown in Figure 4, the main

sensor was fastened to the steering wheel surface such the accelerometer gave a

36

neutral angular reading of 𝜃[n] = 0° and the gyroscope Z-axis (𝑔𝑧marked as “x”) was

parallel to the steering column axis.

Figure 5. The mapping of the IMU device to the steering wheel.

Combining Equation 3.12 and 3.14., a complimentary filter was designed to

maximize the strengths of both IMU sensors. An ideal relationship between

𝜃𝑓𝑖𝑛𝑎𝑙 and 𝜃 which would be easy to update in real time was found to be the causal

system:

𝜃𝑓𝑖𝑛𝑎𝑙[n] = (𝜃𝑓𝑖𝑛𝑎𝑙[n − 1] + (
Δn [n]+ Δn [n−1]

2
)) ∗ βgyro + atan (

𝑨𝒙[𝒏]

𝑨𝒚[𝒏]
) ∗ βaccel (3.15)

which is effectively a weighted combination of Equation 3.12 and Equation 3.14 with

a few slight modifications. The first modification was that 𝜃𝑓𝑖𝑛𝑎𝑙[n] took over the role

37

of 𝜃𝑔𝑦𝑟𝑜[n]. This consequentially resulted in the causal system referencing 𝜃𝑓𝑖𝑛𝑎𝑙[n-1]

rather than 𝜃𝑔𝑦𝑟𝑜[n-1], which is incidentally more correct for the newly formed

system in terms of accurately calculating angle based in part upon the last known

position. The second difference was that the angular velocity output of the gyroscope

was averaged over current and last known reading. This was intended to provide a

smoother reading and to improve overall accuracy rates of the newly fused system.

At 250Hz of sampling frequency, which yields 250 samples each second, the

averaging of only 2 samples will not adversely affect the overall signal even in the

very short term.

 Finally, βgyro and βaccel were chosen as the coefficients for determining the

percentage contribution of each element in Equation 3.15 to the overall IMU fusion

reading of SWM. The summation case therefore must always hold that:

βgyro + βaccel = 1 (3.16)

The full process for determination of the coefficient weights for Equation 3.15 is

described in section 3.2.3.5.

3.2.3.1. Equipment

The steering wheel used for simulator tasks was the Top Drive GT (Logic3,

Hertfordshire, England). Simulator driving tasks were performed using the OpenDS

driving simulation software. For monitoring eye closure activities, an Emerson Go

38

Action Camera (Funai, Osaka, Japan) was used supplementally along with AgCl

electrodes which performed VEOG and HEOG signal collection.

An MPU-6050 (InvenSense, San Jose, California) which is a 6-axis combined

MEMS gyroscope + accelerometer was the main sensor. The sensitivity of the

gyroscope was set at ±250 ºs-1 while the sensitivity of the accelerometer was set at

±2𝒈. At 4mm x 4mm x 0.9mm and weighing less than a gram, the sensor lends itself

to portability and non-intrusiveness in any SWM application

The IMU data was collected using an amplifier based on the TI-ADS1299

Analog Front-End (Texas Instruments, Dallas, TX). All data were sampled at

250Hz.

Data were analyzed with MATLAB. For statistical analysis, linear

correlations between data were determined through linear regression, Pearson’s

Linear Correlation coefficients, and Spearman’s Rho. P-values were recorded at α =

0.05 unless otherwise specified. The correlations between potentiometer measured

SWM and SWM estimated via the gyroscope-accelerometer algorithm were

determined using the cross correlation (xcorr) function of the MATLAB signal

processing toolbox.

39

3.2.3.2. Test for applicability of SWM monitoring with an accelerometer as

the sole IMU weight

For this test, Equation 3.15 was used for generating the SWM signal 𝜃𝑓𝑖𝑛𝑎𝑙[n].

However, the signal here was generated using IMU data collected from the

accelerometer only during road tests. For this purpose, βgyro was set to 0. The

resulting signal was compared against potentiometer readings during the same period

to determine the usability of the signal and its correctness.

3.2.3.3. Test for applicability of SWM monitoring with a gyroscope as the

sole IMU weight

Equation 3.15 was used for generating the SWM signal 𝜃𝑓𝑖𝑛𝑎𝑙[n]. In order to

limit the SWM signal to IMU data collected from the gyroscope during road tests,

βaccel was set to 0. The resulting signal was compared against potentiometer readings

during the same period to determine the usability of the signal and its correctness.

3.2.3.4. Test for equal weighting of gyroscope: accelerometer coefficients

βgyro: βaccel.

This test was intended to implement true signal combinations as described by

Equation 3.15. Accelerometer and gyroscope input were initially combined at a ratio

of 50:50 for βgyro: βaccel.

40

3.2.3.5. Test to determine optimal weights for gyroscope: accelerometer

coefficients βgyro: βaccel

Combining the two inertial measures of SWM measurements into a single

efficient unit required the optimal weight distribution of each component. It was

intended that the shock resistant gyroscope which was sensitive to angular rotations

inherent to steering behavior and less sensitive to linear or translational noise would

provide the bulk of SWM monitoring data. It was also intended that the drift

resistant accelerometer would contribute just enough orientation data to ensure that

the gyroscope measurement was perpetually calibrated against gravity so that the

angle did not drift with time.

Road tests on the highway were useful for making a determination of what

ratio of βgyro:βaccel was most effective. The aim was to decide which weight ratio

yielded the best data in relation to the potentiometer, since the method was to

eventually be an efficient replacement of the potentiometer for steering behavior

monitoring.

41

3.2.3.6. Test for accuracy of SWM readings against linear potentiometer

using selected weights.

After the setup from section 3.2.3 had been used to establish a relationship

between 𝜃𝑔𝑦𝑟𝑜, 𝜃𝑓𝑖𝑛𝑎𝑙, and 𝜃, as well as a standard for 𝜃𝑤, a participant was recruited

to perform driving simulator activities for 45 minutes. The correlation between

𝜃𝑓𝑖𝑛𝑎𝑙 and 𝜃𝑤 over this prolonged period was calculated.

Once strong correlation was seen in a simulator environment, an actual road

test was performed which involved the physical mounting of the simulator’s steering

wheel platform into the vehicle interior while driving tasks were performed by a

passenger. This test involved about 20 minutes of driving tasks involving high speed

highway driving and city driving in stop-and-go traffic.

3.3. Results

3.3.1 Accelerometer SWM monitoring results

3.3.1.1. Calibration task: Calibration of potentiometer readings with wheel

angles

The potentiometer voltages were plotted versus their assigned steering wheel

angles. The relationship was fitted with a characterization equation of 𝜃𝑤 =

 −93.409 ∗ 𝑉𝑝 + 177.400, where 𝜃𝑤 was the steering wheel angle of rotation in

degrees (°) and 𝑉𝑝 was the potentiometer voltage in volts (𝑉). This characterization

42

equation was then used for all further conversions between potentiometer voltage

and angle of rotation and vice versa.

3.3.1.2 Test #1: Correlation between 𝜽𝒘 and �̂� at the inclination angle (α) of

45°

3.3.1.2.1 Correlation between 𝜽𝒘 and �̂�.

This describes the results of the data collected from Part A of test #1. The

measured tri-axial accelerometer readings 𝐀𝐱, 𝐀𝐲 and 𝐀𝐳 were plotted versus steering

wheel angles 𝛉𝐰 in Figure 6a.

Figure 6. (a) The accelerations measured on 3 axes during a 180° steering

rotation. (b) The accelerometer angle 𝜃 calculated from Equation 3.11 has a linear

relationship to the potentiometer turn angle 𝜃𝑤. (c) SWM readings of the

potentiometer overlayed with accelerometer estimates. A small section of a steering

test.

The accelerometer SWM from the 10 slow turns calculated by 𝜃 = atan (
𝑨𝒙

𝑨𝒚
)

was plotted against the potentiometer measured SWM, 𝜃𝑤 in Figure 6b. The results

of Figure 6b showed a high linearity of R2=1 and slope=0.998. The high correlation

43

between the potentiometer and accelerometer SWM are seen in the 45° row of Table.

2 with more detailed values.

Table 2. Correlations between potentiometer-measured and accelerometer-

estimated SWM

α
R2

{𝜃𝑤,𝑉𝑝}

Slope

{𝜃𝑤, 𝜃}

R2

{𝜃𝑤, 𝜃}

Pearson

Coefficient

{𝜃𝑤,𝜃}

p-value linear regression

{𝜃𝑤, 𝜃}

23° 0.999 0.996 1 0.999 <0.001

45° 0.998 0.998 1 0.999 <0.001

67° 0.996 0.996 1 1.000 <0.001

3.3.1.2.2. Correlation between 𝜽𝒘 and �̂� during imitation drive patterns.

This describes the results of the data collected from Part B of test #1. In this

test, the continuous changes in steering wheel rotations with time during simulation

yielded the highly correlated overlaid plot seen in Figure 6c. The cross correlation

coefficient between potentiometer measured SWM 𝜃 and accelerometer estimated 𝜃𝑤

in this case was 1.000.

3.3.1.3 Test #2: Robustness of �̂� measurements at different angles of

inclination (𝜶)

The results obtained from the 3 different inclination angles yielded highly

linear relationships between the potentiometer measured SWM and the accelerometer

estimated SWM at the various tilt angles. As shown in Table 2, 𝜃 was always highly

correlated to 𝜃𝑤 despite the different inclination angles.

44

By comparing the 181 data points from each of the three angles of inclination

tested (23°, 45° and 67°), it was seen that although the values of 𝑨𝒙 and 𝑨𝒚 were

proportionally reduced relative to their inclination to gravity, the values of 𝜃

estimated were always approximately the same among all three values of 𝛼 for any

given 𝜃𝑤. Figure 7 shows the values of 𝑨𝒙 and 𝑨𝒚 at several typical angles of wheel

rotation (𝜃𝑤) with the three inclination angles (𝛼). By comparing the estimated

angles 𝜃 to all measured angles 𝜃𝑤, it was proven that at all three angles of

inclination (𝛼), 𝜃 remained very strongly correlated to 𝜃𝑤 regardless of the

inclination.

Figure 7. The accelerometer estimated SWM (𝜃) was always highly correlated

with the potentiometer measured SWM (𝜃𝑤) regardless of the angle of inclination

(𝛼), making this method universally adaptive. Horizontal lines indicate values of 𝜃𝑤

45

3.3.1.4 Test #3: Effects of SWM speed on the readings of �̂�

TEST #4 involved sudden turns. The accelerometer was capable of keeping

up with even the most sudden steering wheel movements that were tested. The

complete battery of more than 20 sudden rotations yielded a signal cross correlation

coefficient of 0.999 between 𝜃𝑤 and 𝜃. A small section of this test is shown in Figure

8a.

To plot Figure 8a as well as Figure 8b shown below, the potentiometer

calibration equation calculated in section 3.3.1. was used to convert the

potentiometer voltage recorded from its DAC channel directly into 𝜃𝑤. Over the

same sample period, Equation 3.11 was used to convert readings collected from the

accelerometers DAC channels directly into 𝜃. 𝜃𝑤 and 𝜃 were then overlayed in the

resulting plots.

Figure 8. (a) On the left, a small section of high speed testing including

sudden SWM (b) On the right a single high speed correction.

46

When the readings were focused in to analyze a single steep turn, as shown in

Figure 8b, there was a change in 𝜃𝑤 of Δ𝜃𝑤 = 42.76° over a period Δs = 66.67

milliseconds. Over the same time period, the DAC recorded a change of the

accelerometer angle reading of Δ𝜃= 42.68°. This gave us a recorded turn rate of

641.45°s-1 for 𝜃𝑤 and 640.18°s-1 for 𝜃. These are both very sharp turns, quite

impossible for a human driver to make under normal safe driving circumstances.

3.3.1.5 Test #4: Robustness of measurements in realistic simulation

environment

Test #4 involved simulated driving. The participant involved in simulator

testing performed highway driving until slow eye closure events were observed. Three

slow eye closure events were observed within 18 seconds. Two seconds after the last

eye closure event, the participant deviated from the driving lane and made sudden

corrective swerve motions upon this realization until lane keeping was eventually re-

established.

The sudden corrective swerve motions are seen in Figure 9a. The analyzed

motion shown in Figure 9b zooms in on one of these corrective SWM inputs. The

observed input lasted less than 0.18 seconds. Over this period, Δ𝜃𝑤 = 59.92°, while

Δ𝜃 = 59.09°. This gave a turn rate of 342.38°s-1 on the potentiometer and 337.65°s-1

on the accelerometer. The Pearson’s correlation coefficient between 𝜃𝑤 and 𝜃 over

this single corrective action was 0.995.

47

Figure 9. In simulated driving, the participant demonstrated fatigued SWM as

characterized by an increase in sudden corrective actions. (a)On the left: Sudden

corrective actions that occurred shortly after eye closure events and upon realization

of unintended lane exit.(b)On the right: a single corrective action.

3.3.2. Gyroscope SWM monitoring results

Data were analyzed using MATLAB. Correlations between the gyroscopes

SWM data and the potentiometers SWM data were determined via Pearson’s Linear

Correlation coefficients, Spearman’s Rho, and Kendall’s tau. Signal cross correlation

between the Inertial Measurement Units output signal and the potentiometers

output signal were determined through the xcorr function of the MATLAB signal

processing toolbox. P-values were recorded at α < 0.05.

Table 3. Various IMU SWM correlations to a linear potentiometer

Correlation to Potentiometer Results

XCorr Spearman’s Pearson’

s

Kendall’s

0.63 0.85 0.85 0.69

48

Figure 10. Using only a gyroscope, the signal was initially accurate, but

developed a drift in this example.

3.3.3. Accelerometer-gyroscope fusion SWM monitoring results

Data were analyzed using MATLAB. Correlations between the inertial unit’s

SWM data and the potentiometers SWM data were determined via Pearson’s Linear

Correlation coefficients, Spearman’s Rho, and Kendall’s tau. Signal cross correlation

between the Inertial Measurement Units output signal and the potentiometers

output signal were determined through the xcorr function of the MATLAB signal

processing toolbox. P-values were recorded at α < 0.05.

49

3.3.3.1. SWM fusion monitoring with 100% accelerometer weighting

For this test, Equation 3.15 was used to generate the SWM signal 𝜃𝑓𝑖𝑛𝑎𝑙[n]

from IMU data collected from the accelerometer during road tests. In this case, βgyro

was set to 0.

The purely accelerometer signal demonstrated noticeable amounts of road

noise during road tests (Figure 11a). Although a low pass filter conveniently removes

the noise (Figure 11b), the use of a gyroscope fusion demonstrated better results

when optimal weighting eliminated the need for hardware or software filtering.

Table 4. Various IMU device ratios and their correlation to potentiometer

 Ratio Correlation to Potentiometer Results

 βaccel : βgyro XCorr Spearman’s Pearson’s Kendall’s

a 100 : 0 0.91 0.88 0.89 0.70

b 100 : 0 (5Hz low-pass) 0.96 0.95 0.96 0.80

c & d 0 : 100 (high gyro drift) 0.63 0.85 0.85 0.69

e 50 : 50 0.93 0.90 0.91 0.73

50

Figure 11. (a) Accelerometer only SWM signal; (b) Accelerometer only SWM

signal passed through a 4th order low pass Butterworth filter; (c) Gyroscope only

signal demonstrating slow drift; (d) Gyroscope only signal from road test

demonstrating how the gyroscope signal would wander into a slow drift in the longer

term; (e) A 50:50 distribution of accelerometer: gyroscope signals.

3.3.3.2. SWM fusion monitoring with 100% gyroscope weighting

The SWM signal 𝜃𝑓𝑖𝑛𝑎𝑙[n] was generated from IMU data collected solely from

the gyroscope during road tests. In this case, βaccel was set to 0. Figure 11c shows a

24 second section of the gyroscope output waveform after about 10 minutes of road

driving. While the gyroscope output was of the correct waveform to match the

potentiometer output, the drifting caused the signal to eventually center around 150°

(Figure 11c) whereas it would always be centered at 0° when calibrated by the

accelerometer complement.

4 8 12 16 20 24
-40

-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

w

[n]

final

[n]

(a)

4 8 12 16 20 24
-40

-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

w

[n]

final

[n]

(b)

4 8 12 16 20 24

0

50

100

150

Time (s)

S
W

M
 A

n
g

le
 (

°)

w

[n]

final

[n]

(c)

0 400 800 1200

0

500

1000

Time (s)

S
W

M
 A

n
g

le
 (

°)

final

[n]

w

[n]

(d)

4 8 12 16 20 24
-40

-20

0

20

40

60

Time (s)
S

W
M

 A
n

g
le

 (
°)

w

[n]

final

[n]

(e)

51

3.3.3.3. SWM monitoring using equal weighting of gyroscope and

accelerometer inputs

This test was intended to implement true signal combinations as described by

Equation 3.15. Accelerometer and gyroscope input were initially combined at a ratio

of 50:50 for βgyro: βaccel. The signal generated from this ratio yielded a fairly noisy

signal (Figure 11d). However, the signal generated through this weighting was less

noisy than the signal generated by the accelerometer only.

3.3.3.4. Optimal weights discovery for gyroscope: accelerometer

coefficients βgyro: βaccel.

Data used to optimize the weight ratio were collected during actual road

driving to ensure a robust selection. Various ratios were tried during this analysis

and a few of the important ratios are shown in Table 5.

Table 5. Various IMU device ratios and their correlation to potentiometer

 Ratio Correlation to Potentiometer Results

 βgyro : βaccel XCor Spearman’s Pearson’s Kendall’s

a 10 : 90 0.92 0.89 0.89 0.71

b 90 : 10 0.97 0.96 0.95 0.81

c 99 : 1 0.98 0.97 0.98 0.88

d 99.5 : 0.5 0.94 0.90 0.90 0.73

52

The ratio which was finally chosen was 99:1 or βgyro=0.99, βaccel=0.01 (Figure

12c) because it had a stronger correlation to potentiometer readings in all measures

of correlation used, indicating signal correctness. Additionally, visual inspection

revealed a good balance between noise reduction properties and better signal

agreement with potentiometer readings.

Figure 12. Various ratios of βgyro:βaccel plotted for (a) 10:90 (b) 90:10 (c) 99:1

(d) 99.5:0.5

SWM readings from cases in which the βgyro:βaccel ratio favored the

accelerometer tended towards introducing linear vibrations. These are very easily

removable using a low pass filter or an averaging filter. However, using the selected

4 8 12 16 20 24
-40

-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

w

[n]

final

[n]

(a)

4 8 12 16 20 24
-40

-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

w

[n]

final

[n]

(b)

4 8 12 16 20 24
-40

-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

w

[n]

final

[n]

(c)

4 8 12 16 20 24
-40

-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

w

[n]

final

[n]

(d)

53

weight ratio of 99:1 as in this case, the accelerometer and gyroscope fusion yielded

data that was not significantly affected by linear noises or vibrations, even during

highway driving, and city driving on rough roads. It was unnecessary to filter the

data. The gyroscope’s design as a measure of angular velocity about clearly defined

axes contributed greatly to the efficacy of this method for low-noise SWM

monitoring. SWM readings from cases in which the βgyro:βaccel ratio heavily favored

the gyroscope tended towards introducing slow signal drift, while SWM readings

from cases in which the βgyro:βaccel ratio heavily favored the accelerometer tended

towards introducing artefacts (Figure 12a). The selected ratio yielded optimal

results.

3.3.3.5. Accuracy of fusion SWM readings as compared to the

potentiometer.

When subjected to prolonged SWM inputs over a 45 minute driving task, a

strong cross correlation between the two signals 𝜃𝑓𝑖𝑛𝑎𝑙 and 𝜃𝑤 was discovered (xcorr:

0.99; R2: 0.96; p = 0; Pearson: 0.99; p <0.05).

As an extension of this test, the SWM readings derived from s 𝜃𝑓𝑖𝑛𝑎𝑙 data

were found to be capable of keeping up with even the most rapid steering wheel

movements that were tested. The steering wheel was subjected to greater than 20

sudden rotations at rates up to 150°s-1 and the results during high speed rotations

yielded a high signal cross correlation between 𝜃𝑤 and 𝜃𝑓𝑖𝑛𝑎𝑙 (xcorr: 0.98; p<0.05;

54

Pearson: 0.97; p<0.05). A small section of this test is shown in Figure 13a. The

MPU-6050 sensor has a range of up to ±2000 °s-1 and was configured in this test for

use up to ±250 °s-1.

To plot Figure 13. shown below, Equation 3.13 was used to convert the

potentiometer voltages recorded from its amplifier channel directly into 𝜃𝑤. Over the

same sample period, Equation 3.12 was used to fuse readings collected from the

gyroscope and accelerometer channels directly into 𝜃𝑓𝑖𝑛𝑎𝑙. 𝜃𝑤 and 𝜃𝑓𝑖𝑛𝑎𝑙 were then

overlaid in the resulting plots.

Figure 13. (a) High Speed SWM outputs remained highly accurate

representations of ground truth steering movements. (b) The final signal (right)

matches the potentiometer signal

The road test using the simulator steering wheel showed very positive results

for the proposed method. The signal 𝜃𝑓𝑖𝑛𝑎𝑙 was highly correlated to the

potentiometer output 𝜃𝑤 (xcorr: 0.992; Pearson: 0.988, p=0; R2: 0.976, p=0) and the

signals overlapped each other for the majority of the recorded time (Figure 13b).

16 16.50 17
15

20

25

30

35

Time (s)

S
W

M
 A

n
g

le
 (

°)

w

[n]
final

[n]a.

0 4 8 12 16 20 24
-20

0

20

40

60

80

Time (s)

S
W

M
 A

n
g

le
 (

°)

w

[n]

final

[n]

b.

55

3.4. Discussion

3.4.1 Discussion of the Accelerometer-based method

This section demonstrated that a simple tri-axial accelerometer can be used to

accurately monitor SWM for drowsy driving activities including sudden corrections

and wide angle corrections. The methods efficacy was confirmed by comparing the

accelerometers SWM estimates with the actual SWM readings taken from the

steering wheel potentiometer. The method was tested for efficacy at various angles of

inclination without a resulting loss of accuracy. The described method allows for

inexpensive drowsiness detection without complex equipment or major modifications

to the current steering system.

The findings of this section demonstrate a novel approach to drowsy driving

monitoring which offers an easy and practical way to deploy individual drowsy

driving monitoring. This method does not require extensive modifications to existing

vehicle setups. The high affordability of this accelerometer-based method also

improves the feasibility of wide scale deployment. The results are especially

important because many individual researchers as well as federal regulators have

invested large amounts of time and manpower to stem the thousands of highway

fatalities and injuries that occur worldwide each year as a result of drowsy driving.

Although these efforts have yielded reliable methods such as SWM, which has been

touted by researchers and government agencies as potential lifesavers, there has still

been no widespread practical means to actually apply this method. As a result, the

56

vast majority of highway vehicles continue to operate without drowsy driving

detection mechanisms, and thousands of fatalities and injuries continue to occur

annually. With this method, the well documented SWM method of drowsy driving

detection can be applied to curb highway accidents and deaths with minimal cost to

drivers and car manufacturers.

3.4.1.1. Accelerometer noise

The use of an accelerometer to monitor SWM is a very effective, cheap and

versatile method. However, as with other methods, there are limitations. Figure 7a

shows “ears” on the signal gathered by the accelerometer, as compared to the

smoother turn shown by the potentiometer. This resulted from a controlled sudden

turn. During the turn, the accelerometer picked up motion-based accelerations and

decelerations. These motion-based accelerations and decelerations are different from

the static accelerations due to gravity that the tilt sensor is based upon and are

considered noise within this application.

A low pass filter was used to attenuate high frequency spikes that resulted

from non-gravity related accelerations. The filter also helped to attenuate the

recording of vibrations and shakes which can be found in vehicles, while keeping the

tilt sensor functions active and preserve monitoring of SWM activities. In this study,

a 5Hz low pass filter was chosen to monitor SWM activities because SWM activities

were not realistically expected to exceed 5 rotation cycles per second. This value can

57

easily be adjusted up or down to fit more specific needs or driving conditions. The

balance must be made between feasible SWM speeds and the present noises.

As expected, the potentiometer did not measure any motion based

accelerations, just angular rotations. Its signal is clear of the related spikes.

Although most of the vibrations encountered by vehicles fall within frequency

bands that can easily be filtered out by the low pass filter, certain vibrations such as

those due to motion-based accelerations within a vehicle’s suspension system possess

sufficiently low frequencies to encroach upon the filter’s low pass band. Vibrations

due to engine shake, general vehicle body bending or torsion, and bending of the

driveline will be sufficiently attenuated by a low pass filter since these vibrations

contain frequency components within the range of 11-100Hz (Suciu et al., 2011).

Vibrations from suspension systems and wheels however have a frequency range of

0.5-2Hz (Xia et al., 2008). When these low frequency vibrations do occur, they can

potentially intrude upon the frequency range of steering signals. The application of

tri-axial accelerometers in the monitoring of SWM was tested in a vehicle simulator

setting. Because low frequency motion-based accelerations of the suspension system

could potentially encroach into the filter’s pass band, the use of a gyroscope in

addition to an accelerometer is considered in chapter 5.

58

3.4.1.2. Slight variations between 𝜽𝒘 and �̂�

Slight variations in recorded turn rate between the potentiometer and

accelerometer were due to sampling noises or tiny linear acceleration spikes due to

motion (as opposed to static acceleration used in tilt measurements) which had made

it past the low-pass filter. Variations between 𝜃𝑤 and 𝜃 could also be partly due to

inadequate sensitivity of the accelerometer. A higher sensitivity accelerometer will

give finer and more specific readings over small rotations, rather than a more

stepwise change in readings as seen in lower sensitivity accelerometers. Stepwise

changes mean the values must reach a threshold before the next reading and might

continue to read slightly lower or slightly higher than actual value until the next

threshold point. Overall, the accelerometer readings maintained high accuracy, even

during sudden movements.

3.4.1.3. Accelerometer mount point

While the accelerometer can be mounted on any surface of the wheel

perpendicular to the steering column axis, the location should be chosen carefully to

reduce noise, vibration and excessive g’s and/or motion based accelerations due to

wide rotational arcs. For example, an accelerometer placed at the extremities of the

steering wheel will experience wider rotational arc’s which might make it more

susceptible to picking up linear, motion based accelerations. An accelerometer placed

in the center of the wheel would experience few artefacts, but might be

59

inconveniently placed if it interferes with the safety mechanisms of the vehicle. A

balance has to always be made by the operator to determine the best mount point.

3.4.1.4. Rotations beyond 360°

Most steering wheels rotate through more than 360°. This effect can be

compensated for through the use of predictive readings. Whatever device reads the

accelerometers output can integrate a tiny microcontroller to adjust for this. If 361°

to 720° is the base case, any measurements beyond a full counter-clockwise rotation

should adaptively read between 0° to 360° and any measurements beyond a full

clockwise rotation should adaptively read between 721° to 1080°.

3.4.1.5. Road angles

If a vehicle in the course of accelerometer based SWM monitoring encounters

an undulating road with ascending and descending gradients, no adjustments are

necessary. As depicted in Figure 7, the calculated 𝜃 was always approximately the

same for every given 𝜃𝑤 regardless of the angle of inclination (𝛼).

The magnitude of accelerations measured in the x-y plane = 1 when the

steering wheel is vertical (𝑖. 𝑒. √(𝑨𝒙
𝟐 + 𝑨𝒚

𝟐) = 𝟏). For all other angles of inclination

above or below 𝛼 = 90°, the x-y plane magnitude is proportionally lower than 1, but

60

always yielding the same angle 𝜃 relative to the steering wheel angle of rotation 𝜃𝑤.

The rest of the magnitude is lost to 𝑨𝒛, which in turn reflects the angle of inclination.

If the steering wheel being monitored for SWM has a very low angle of

inclination, the values of 𝑨𝒙, 𝑨𝒚 would become very close to 0. At this point, reading

rotational angles might become unreliable. Fortunately most steering wheels do not

have this problem.

In the event that this method of SWM monitoring is used on banked roads,

the bank angle of the road will read into the tilt angle of the accelerometer and give

small errors in angle estimation. This error due to bank angle may not be significant

when monitoring SWM for drowsy driving detection. Furthermore, this can be easily

compensated for through the use of a reference accelerometer. A reference

accelerometer in this case is a static calibrated accelerometer which has its Y axis

vertical and aligned with the gravity vector 𝒈. Any turn angle measured across the

reference accelerometer is subtracted from the steering wheel accelerometer to

compensate for the bank angle, thus restoring accuracy to the readings.

3.4.2. Discussion of the gyroscope-accelerometer fusion method

The gyroscope-accelerometer fusion method was tested for efficacy during real

road driving. The described method allows for an inexpensive, non-intrusive, and

very easy to implement drowsiness detection system without the requirement for

complex equipment or major modifications to the current steering system. Although

61

some minor vibrations were seen during the mounting of the device in road tests,

these vibrations affected angular signal at less than 0.1° angular displacement when

unfiltered. However it is important to know that SWM assessment of driver

drowsiness is a vehicle based behavioral measure which relies upon detection of

trends slowly increasing towards drowsiness and not necessarily upon precision

within 0.1°. Further assessments of the method through the creation of a mobile

phone application were able to utilize the mobile device’s internal gyroscope and

accelerometer for accurate SWM monitoring for drowsiness detection.

βgyro was eventually chosen to be 0.99 and βaccel was chosen as 0.01. The

output 𝜃𝑓𝑖𝑛𝑎𝑙 was the positional angle result of the combined IMU setup in degrees.

This output indicated the current wheel orientation in units of degrees (°). The shock

resistant gyroscope provided most of the SWM monitoring while the drift resistant

accelerometer contributed only the minimum amount of orientation data to ensure

that the gyroscope measurement was perpetually calibrated against gravity and did

not drift with time.

These findings are important because the method does not require extensive

modifications to existing vehicle setups. The high affordability of this primarily

gyroscope-based method also improves the feasibility of wide scale deployment. Many

individual researchers and federal regulators have invested large amounts of time and

manpower to stem the thousands of highway fatalities and injuries that occur

worldwide each year as a result of drowsy driving. Although these efforts have

62

yielded reliable methods such as SWM, which has been touted by researchers and

government agencies as a potential lifesaver, there has still been no widespread

practical means to apply this method. As a result, the vast majority of highway

vehicles continue to operate without drowsy driving detection mechanisms, and

thousands of fatalities and injuries continue to occur annually. With this method, the

well documented SWM method of drowsy driving detection can be applied to curb

highway accidents and deaths with minimal cost to drivers and car manufacturers.

The proposed method yielded an average accuracy of 83% and an average true

positive rate of 83.75%. An earlier study performed by Johns (2003) proposed the

detection of drowsiness with the amplitude-velocity ratio of eye-blinks and was able

to achieve 75% true positive rate. A later study by Picot (2010) also utilizing eye

activity including PERCLOS yielded an 81.7% true positive rate. PERCLOS alone

was only able to achieve 82.8% true positive rate (Picot, 2010). True positive rate

was calculated as the ratio between the number of “drowsy” samples correctly

classified by our system and the number of actual drowsy labelled samples.

3.4.2.1. Slight variations between 𝜽𝒘 and 𝜽𝒇𝒊𝒏𝒂𝒍

Slight variations existed between 𝜃𝑤 and 𝜃𝑓𝑖𝑛𝑎𝑙 which could be observed in the

high velocity rotation testing performed in 3.3.10. The 𝜃𝑓𝑖𝑛𝑎𝑙 signal which comprised

mostly of gyroscope data exhibited “ears” at the beginning and end of very sudden

63

turns during periods of high and rapidly changing angular velocities (Figure 12a).

Overall, the 𝜃𝑓𝑖𝑛𝑎𝑙 readings maintained high accuracy, even during sudden

movements. Although such unusually high velocity steering activities are not

expected to occur except during the most extreme driving cases, possibly involving

road accidents. Despite this, the readings of 𝜃𝑓𝑖𝑛𝑎𝑙 maintained high accuracy.

3.4.2.2. Comparison of the accelerometer-gyroscope method with the

accelerometer-based method

 The proposed method yielded a more noise resistant method of SWM

monitoring when compared to the accelerometer-based method described in chapter

3. The use of a low pass filter is effective against vehicle and road noises using the

previous method, however, if a practical application of SWM monitoring calls for no

phase shifting margin, then the current fusion method might be better suited. Phase

shifted signals retain their accurate waveforms, however time delay could occur if

filtered improperly. The currently proposed method did not demonstrate any need

for filtering, even during real road trials.

 The unfiltered accelerometer-based method, while more prone to linear

vibration noise than the current method, is very effective in drowsy driving

simulation tasks especially as it is dangerous to place sleep deprived subjects on the

highway.

64

The benefit of the currently proposed system is the enhancement of the

strengths and weaknesses of two completely different sensors in a method whereby

they both work more effectively. The use of a gyroscope for the majority of the SWM

data eliminates the problem of linear vibrations due to the gyroscopes insensitivity to

such data. It is seen that both methods are effective and accurate for their

individually specific tasks. The current method was not prone to road noise, engine

noises, and other vehicle noises.

3.4.3. SWM recording methods and road characteristics

No unexpected effects were yielded when the final gyroscope-accelerometer

fusion was road-tested in these experiments, however, as relevant discussion which

may be applicable in unique road conditions, the role of road characteristics is

discussed here.

Road curvature contributes a slow, low frequency component to SWM signals.

At the highway speeds applicable to the proposed algorithm’s speed cutoff, the low

frequency component appears as a low amplitude slow variation which hovers at 0°.

It is insignificant in comparison to higher frequency, significant amplitude inputs

characteristic of lane keeping SWM. If it is desired to completely eliminate this

component however, Mortazavi et al. (2009) prescribed subtracting the mean SWM

component from the data. Fletcher et al. (2005) ascertained that subtracting the

running mean will eliminate this component.

65

Lane changes provide a similar signal component to that seen in road

curvature. As an alternative to removing the mean component, Otmani et al. (2005)

found that this component can easily be completely eliminated through the exclusive

use of SWM turns between 0.5° and 5°. Ting et al. (2008) suggested that regardless

of low frequency components, the use of any SWM signals might be irrelevant for

drowsy driving detection if they are below 6–10°, because a fatigued driver uses large

SWM (6–10°) or extremely large SWM (> 10°), which are unmistakable when

compared against any low frequency, low amplitude components. Östlund et al.

(2004) mentioned that the spectral power of useful SWM lies within the 0.3‐0.6 Hz

band, outside the range of road characteristic components. Sherman et al. (1996) ran

spectral analyses and found that these low frequency components lie within the 0-

0.03Hz range, while useful SWM is from 0.1-2.0Hz, which agrees with other

researcher findings.

66

Figure 14. Sherman et al. (1996) used a high pass filter to eliminate baseline

variations due to road characteristics. At highway speeds, these variations are much

less significant, but are still easily eliminated.

Because lane change, road curvature, and tilt can contribute a slow, low

frequency, low amplitude component to SWM data, there could be a resulting

baseline component in the signal. This component may vary as the road does, but

does not drift. A high-pass filter will eliminate this component.

3.5. Summary and conclusion

Simulation and experimental results showed that accelerometer (R2 ≈ 1; p <

0.001) and fusion (R2 ≈ 0.96; p < 0.05) measured wheel rotation angles were linearly

correlated with the actual wheel rotation angles registered by the potentiometer, and

67

that SWM recorded were also strongly correlated with actual wheel rotation. The

excellent agreement between the proposed methods estimated wheel rotation and the

actual wheel rotation suggests that inertial measurement technologies can be a useful

tool to monitor the SWM for the detection of drowsy driving. Because of their cost-

effective nature, the proposed methods could help proliferate the practical

deployment of individual drowsy detection without the need for complex equipment

or major modifications to the current steering system.

This study demonstrated that the IMU technologies can be used to accurately

monitor SWM for drowsy driving activities including sudden corrections and wide

angle corrections. The efficacy of the method was confirmed by comparing the SWM

estimates generated by the method with actual SWM readings collected from the

steering wheel potentiometer, yielding high correlations. The high correlations

suggest that IMU methods could be used as a direct replacement of other SWM

measures for the implementation of SWM based drowsy detection algorithms.

68

Chapter 4. Specific Aim 2: Experimental validation of the proposed

approaches for accurate fatigue detection.

4.1. Introduction to the evaluation process for inertial sensor based drowsiness

detection

As discussed earlier in chapter 2, researchers have proposed many methods for

the detection of drowsy and fatigued driving including detection by monitoring

Steering Wheel Movements (SWM). Research has determined that SWM is both an

effective and unobtrusive method for the detection of driver drowsiness (Sayed and

Eskandarian, 2001; Thiffault and Bergeron, 2003). Researchers have consistently

reported a correlation between a driver’s frequency of steering adjustments and their

level of drowsiness (Vanlaar et al., 2008; Dahl, 2008). Not only does the regularity of

SWM input decrease in drowsy drivers, but when SWM inputs do occur they are

large and sudden (Thiffault and Bergeron, 2003; Borghini et al., 2012). Researchers

also observed that SWM inputs in fatigued drivers have fewer micro-corrections and

more macro-corrections, with sleeping drivers making no corrections (Yabuta et al.,

1985; Chaput et al, 1990; Eskandarian et al., 2007). It has been demonstrated that

the majority of sampled drivers show an increasing trend towards faster and larger

steering corrections as they become drowsy (Eskandarian et al., 2007).

The ability for an inertial sensors to accurately estimate SWM angle was

introduced earlier in chapter 3. Angular data alone does not give drowsiness

detection. The unanswered question left from the prior study was the most

69

important question: how effective would the method be when it is actively used for

drowsiness detection. This current chapter addresses the question by extracting

relevant features from the angular data and investigating the accuracy of drowsiness

classifications based solely on accelerometer data. Results were compared to the

classification results yielded from other well-known methods.

The implementation of the accelerometer for SWM monitoring requires a

minimal setup that is easy to install and uninstall. The only requirement is that the

accelerometer be affixed to any surface of the steering wheel that will allow the

accelerometer to be perpendicular to the axis of the steering column.

Hu and Zheng (2009) explored the use of Support Vector Machines (SVMs) to

create training models for the detection of drowsy driving. In that study, the alert

and drowsy states were labeled using the Karolinska Sleepiness Scale, the Karolinska

Drowsiness Score, as well as data ranked by the duration of time to accident. In

that study, the SVM model was then trained using 11 EOG parameters including

blink duration, blink amplitude, lid opening and closure speed and duration above

80% of rise amplitude among other measures. The highest predictive value had a

cross-validated accuracy of 80.74%.

This study was conducted by collecting driving data from participants,

labelling their data, and then using machine learning algorithms to generate

predictive models which could independently classify drowsy-states using provided

data rows.

70

Support Vector Machines (SVM) were used to classify drowsy states. The

machine learning algorithms initially classified drowsiness based solely upon non-

intrusive accelerometer based SWM. Finally, the algorithms were used to classify

drowsy states based upon physiological and behavioral predictive values for

comparison.

This study demonstrates the implementation of an inertial sensor-based

method for drowsy driving detection. It shows how the method will be effective and

yield high accuracy classifications of a driver’s drowsy state. This demonstrates the

potential of the method to save lives.

4.2. Methods

4.2.1. Drowsiness detection using accelerometer based SWM monitoring

4.2.1.1. Experimental Subjects

Eight subjects consented to participate in this study. The mean number of

years of licensed driving was 8.63 years while the median was 5 years. The mean

participant age was 27.5 years while the median was 25 years. The group consisted of

7 males and 1 female. All participants were required to have at least a year’s worth

of licensed driving experience. All participants were monetarily compensated for their

participation. A sample of the participant data collected is shown in Appendix 4.

71

4.2.1.2. Equipment

Physiological and SWM data were collected via an amplifier based on the

ADS1299 Low-Noise, 8-Channel, 24-Bit Analog Front-End for Biopotential

Measurements (Texas Instruments, Dallas, TX). EEG data were collected with the

use of an electrode cap fitted with AgCl electrodes. EOG data was collected from

vertical and horizontal channels using AgCl cup electrodes. OpenDS open source

vehicle simulation software was used to provide driving scenarios.

4.2.1.3. Driving tasks

The participants were recruited to perform driving tasks in a vehicle simulator

setting. The simulator was equipped with a steering wheel and automatic

transmission. The driving tasks were specifically designed to augment the aims of

this dissertation. As much drowsy information was to be collected from the

participants to improve labelling and training of the machine learning models.

Previous studies have shown that visual stimuli including message signs

markedly diminish the onset of drowsiness symptoms (Merat and Jamson, 2013).

Further, it was seen that applying simple road markings such as chevrons diminished

the measures of drowsiness (Merat and Jamson, 2013). Results gathered from 33

driving simulator participants showed that road markings, message signs warning

against drowsiness, and even the well deployed rumble strips all gave similar

reductions in drowsiness with no marked difference between the three treatments

72

(Merat and Jamson, 2013). As a result, it was necessary to eliminate as much visual

stimuli as possible as they could be as effective as rumble strips in delaying the

intended effects of drowsiness.

Additionally, to increase the subject’s likelihood of giving useful drowsy data,

the roadways had to be as monotonous as possible (Thiffault and Bergeron, 2003;

Merat and Jamson, 2013; Oron-Gilad and Ronen, 2007). Thiffault and Bergeron

(2003) designed research to create a drowsiness inducing road which was optimized

to be as geometrically monotonous as possible. Specifically for simulator monitoring

of driving behavior, Rosey et al., (2008) noted that for adequate steering control on

roadways, the driver must preview the road ahead and then make minute SWM

inputs necessary to stay in the lane. The same was also noted by previous

researchers (Donges, 1978; Land and Horwood, 1995; Land and Lee, 1994).

Because monotonous roads are where drowsy related accidents are likely to

occur (Merat and Jameson, 2013), and Gray and Regan (2000) also found that

delayed reaction times which lead to accidents occur on monotonous roads, it was

necessary therefore to prioritize such roads in the current study to gain maximum

physiological, physical and behavioral drowsiness data. As a result, the participants

of the current study were tasked with maintaining a course of travel without making

road exit events. Road exit events occurred whenever the indicated white lane

markings on either side of the road were encroached upon. Due to slow drifts, it was

impossible for participants to maintain course on the road without experiencing road

73

exit events unless constant routine SWM inputs were made to maintain the course.

A drowsy driver therefore who had become sufficiently inattentive or hypovigilant

would eventually exit the road. In addition, all roadside distractions were removed.

The driver was faced with a road with lane markings on both sides. All road signs

and unnecesary road markings were removed

All participants performed 4 driving tasks with each task lasting 45 minutes.

This brought the total driving period to 180 minutes per individual. During this

time, the driver’s physiological signals of EOG and EEG were collected.

Figure 15. Illustration of a participant performing driving tasks

4.2.1.4. Data collection

Driving data from the participants were recorded from both physiological and

SWM readings. Physiological data included EEG and EOG. Video of the driver’s

eyes was also recorded during this period using a high definition camera.

74

During the driving tasks, the participants EEG signals were recorded from the

Oz and the Fz channels of the International 10-20 EEG mapping, where Oz and Fz

are commonly used for drowsiness and fatigue studies (Hu and Zheng, 2009).

Electrodes were referenced to linked earlobes. The participants Horizontal EOG

(HEOG) were recorded to track their eye speed and movements as they scanned the

centerline and the solid lane markings which they were required to remain within.

The participants ECG were also recorded. The biosensors used for ECG, EEG, and

EOG monitoring were AgCl electrodes. The EEG electrodes were used with an

electrode cap. A high definition camera was used to monitor the driver’s eyes for eye

closure events which were used as a supplement to validate EOG data for PERCLOS

analysis.

PERCLOS80 analysis were performed using the same EOG method used by

Picot (2010). For confirming the PERCLOS and eye-blink data, video data was

sectioned into 1 minute periods, and then each minute of video was exhaustively

inspected several times by at least 2 researchers to validate the physiological

measurements.

4.2.1.4.1. Data recording of physiological and behavioral predictive features.

The physiological and behavioral data recorded as predictors of drowsiness per

minute were:

75

1. Theta power at Fz: The theta power collected at location Fz of the

International 10-20 system was used as a predictor of drowsiness. Periods

of increased theta power suggests that the driver was approaching a sleepy

or drowsy episode.

Figure 16. Participant’s electrodes were affixed in positions according to the

International 10/20 system (Sharbrough, F. et al., 1991)

2. Alpha power at Oz: Alpha power was collected from the occipital region at

location Oz of the International 10-20 system. Periods of increased alpha

power indicated that the driver was in the initial periods of reduced alertness.

Increased alpha activities have been shown by researchers to indicate

increased sleepiness (Merat and Jameson, 2013). Alpha rhythms are increased

76

during the transition from alertness to drowsiness and are attenuated during

alert periods (Torsvall and Åakerstedt, 1987). Increased alpha activities

indicate that mental relaxation has begun to settle in, and hypovigillance

could occur at this stage. Continuing in this relaxed stage could eventually

lead to full drowsiness.

Figure 17. Bursts of theta wave activity: theta wave activity were used as a

predictive feature.

3. The number of eye blinks per minute : Another predictor of drowsiness

used was the number of eye blinks observed per minute. Eye blinks increase as

drivers become more drowsy which underlines the positive relationship

between drowsiness and eye blinks. (Picot et al., 2009; Papadelis et al., 2007).

Eye blink frequency has been found to be especially high right before driving

accidents occur (Papadelis et al., 2007). Apart from being a physiological

77

measure, eye blinking could also be considered as a behavioral predictor of

drowsiness.

4. The average horizontal eye speed via HEOG : As drivers become more

drowsy, it is expected that their eye speed of scanning the road will change

with time (Shin et al., 2011; Virkkala et al., 2007). The average eye speed per

minute was collected using the method described by Chieh et al. (2005).

5. PERCLOS 80: PERCLOS indicates the number of times per period of time

that the eyes are closed. PERCLOS values are especially high right before

accidents (Papadelis et al., 2007). In this case, the period of time measured

was one minute. P80 was used which indicates that the eyes had to be closed

at least 80% to be included in the analysis.

4.2.1.4.2 Accelerometer-based SWM features.

During the driving tasks, the angle of rotation of the steering wheel was

measured using accelerometer-based SWM monitoring. An MPU-6050 digital

accelerometer component (InvenSense, San Jose, California) was employed.

The hardware method for accelerometer-based SWM signal collection was

introduced previously in chapter 3. The most important equation of the method

related the static acceleration due to gravity measured across the accelerometer’s x-

axis (𝑨𝒙) with that measured across the y-axis (𝑨𝒚) according to Equation 3.11.

78

A neutral steering wheel position gave a 0° reading. Right turns from the

neutral steering position yielded positive angle values while left turns from neutral

gave negative steering angle values.

Figure 18. Drowsy SWM (above) are more sudden and of higher amplitudes

than alert SWM (below)

4.2.1.4.3 Predictive features extracted from the SWM signal.

The accelerometer-based SWM predictive features of drowsiness per minute were:

1. The number of sudden SWM turns exceeding 8.3°s -1: During

driving tasks, drowsy participants make large and sudden rotations of the

steering wheel with increasing frequency. The threshold used to qualify

large and sudden turns were those above 8.3°s-1.The number of turns

which were found in excess of 8.3°s-1 were recorded each minute.

2. The number of SW M zero crossings: As drivers become more drowsy,

their driving patterns become more erratic and they meander within their

79

lane. Drowsy drivers also become more prone to exiting their lane. The

number of SWM zero crossings is a measure of how much corrective

steering is being required by the drowsy driver as they attempt to remain

in their driving lane. This is distinct from normal and less drastic lane

maintainance SWM inputs characteristic of alert drivers. More frequent

crossings of the 0° mark indicate reactive inputs.

3. The standard deviation of steering wheel movements : As drivers

become drowsy, their driving patterns eventually show signs of meandering

from the lane center. This can be observed in the increased standard

deviation of the SWM recordings.

4. The average amplitude of SWM turns : Although the total number of

SWM turn inputs decrease during periods of drowsiness, the average

amplitude of turns that do occur increase as the SWM inputs become less

frequent, but larger in amplitude.

4.2.1.5. Labelling the data rows with drowsy classes

Similar to the labelling criteria used by Arun et al. (2012), alert blocks were

labelled as the first 10 minutes of the initial 2 drives when the drivers were still

expected to be alert while drowsy/fatigue blocks were labelled as the last 10 minutes

of the final 2 drives when drivers had been subjected to hours of monotonous driving,

and were expected to be experiencing fatigue. Arun et al. (2012) determined that

80

drowsiness would set in after 1.5 hours or 90 minutes of driving. Our earliest drowsy

label began at 125 minutes of prolonged, monotonous, non-interactive, drowsiness

inducing driving.

Figure 19. The criteria for drowsy state labelling

4.2.1.6. Training and validation of machine learning algorithms.

Physiological and behavioral predictors were used independently for training

and validation: Theta power at Fz, Alpha power at Oz, the number of eye blinks per

minute, the average horizontal eye speed via HEOG, and PERCLOS 80. The

proposed SWM values were used together as predictors to train a single model. The

SWM measures used where all derived from the accelerometer-based method: (1) the

number of sudden SWM turns exceeding 8.3°s-1, (2) the number of SWM zero

crossings, (3) the standard deviation of steering wheel movements, and (4) the SWM

average amplitude of turns.

81

4.2.2. Test for Accuracy of the gyroscope based Method for Detecting

Drowsiness.

Due to the tendency for gyroscopic drift, gyroscopes were not independently

used for drowsiness classification. Instead, a progression was made towards the fused

method involving accelerometers and gyroscopes as explained below in Section 4.2.3.

4.2.3. Test for Accuracy of the fusion Method for Detecting Drowsiness.

For determining the methods accuracy in detecting drowsiness, drowsy data

collected from 24 hours of driving tasks involving 8 participants. Every 180 minute

period contributed by each driver was sectioned into 180 blocks of 1 minute each.

4.2.3.1. Physiological predictive features.

The physiological predictive features used for this validation experiment were:

1. Theta power at Fz.

2. Alpha power at Oz.

3. The number of eye blinks per minute.

4.2.3.2. Behavioral predictive features.

The behavioral predictive features used for this validation experiment were:

1. The average horizontal eye speed via HEOG.

2. PERCLOS 80.

82

4.2.3.3. Inertial sensor based predictive features.

The inertial sensor predictive features used for this validation experiment per minute

were:

1. The number of sudden SWM turns exceeding 8.3°s-1

2. The number of SWM zero crossings.

3. The standard deviation of steering wheel movements

4. The average amplitude of SWM turns

4.2.3.3. Data block labelling.

The first 5 blocks of the first 2 driving tasks were labelled as alert. The last 5

minutes of the last 2 drives when drivers had been subjected to hours of monotonous

driving, were labelled as drowsy. Similar labeling of drowsy driving via lengthy time

durations have been used by Arun et al. (2012).

4.3. Results

4.3.1. Assessment of the Accelerometer-based measure of SWM for drowsy

driving detection

After data blocks had previously labelled as described in 4.2, validation was

performed and the results are described here.

83

Physiological data were used to train the SVM and tested with 10-fold cross

validation. The Physiological data were: Average Theta power at Fz, and Average

Alpha power at Oz. Behavioral data used were: Average Eye movement speed, and

PERCLOS 80 score.

Finally accelerometer generated data were together used for training the SVM

with a combination of the following predictor values: The number of steering wheel

zero crossings, the standard deviation of steering wheel movements, and the average

amplitude of SWM turns.

Trained Support Vector Machines using the labelled data yielded Table 6.

Table 6. Accelerometer SWM measures and their accuracy levels during

machine learning classification

 Drowsiness Measure Sensitivity

(%)

Specificity

(%)

Mean

Accuracy (%)

Accuracy

Paired - t

 M easure Ref.

Proposed

Vehicle Measure

Accelerometer

predictors

current 76.88±12.79 80.00±10.69 78.44±10.17

Physiological

Measures

Theta Fz (Åkerstedt and

Gillberg, 1990)

70.00±18.71 73.75±14.08 71.88±14.38 t: 1.59

p: 0.07

 Alpha Oz (Sayed and

Eskandarian,

2001; Thiffault

and Bergeron,

2003)

68.13±17.72 68.125±14.62 68.13±13.55 t: 2.10

p: <0.04

Behavioral

Measures

HEOG

speed

(Eskandarian et

al., 2007;

Åkerstedt and

Gillberg, 1990)

66.25±24.61 76.25±9.16 71.25±9.16 t: 1.74

p: 0.06

 PERCLOS80 (Borghini et al.,

2012; Picot et

al., 2009)

78.13±15.80 60.63±18.98 69.38±12.16 t: 2.24

p: <0.03

84

At 78.44% and 80.00% respectively, the average accuracy and specificity of

drowsiness classification using the proposed accelerometer method outpaced

drowsiness classifications from other well-known methods including EEG,

PERCLOS, and EOG.

Figure 20. The described accelerometer-based approach demonstrated higher

accuracy than any of the other predictors it was compared against.

In summary, the average accuracy of drowsiness state classification using only

accelerometer-based predictors was 78.44%±10.17 which gave better accuracy

compared to other tested measures.

85

4.3.2. Assessment of the gyroscope-based measure of SWM for drowsy

driving detection

Due to gyroscope drift which led to an eventual offset from the actual SWM

signal, the gyroscope-based method was not assessed for its efficacy for drowsiness

detection.

4.3.3. Assessment of the Accelerometer-gyroscope fusion based measure of

SWM for drowsy driving detection

Training Support Vector Machines using the labelled data yielded Table 7.

Physiological data were used to train the SVM and tested with 10-fold cross

validation. The Physiological data were: Average Theta power at Fz, Average Alpha

power at Oz. Behavioral data used were: Average Eye movement speed, and

PERCLOS 80 score.

. Finally IMU generated data were together used for training the SVM with a

combination of the following predictor values: The number of steering wheel zero

crossings, the standard deviation of steering wheel movements, and the average

amplitude of SWM turns.

86

Table 7. Accelerometer-gyroscope fusion SWM measures and their accuracy

levels during machine learning classification

 Drowsiness M easure Sensitivity

(%)

Specificity

(%)

M ean

Accuracy(%)

Accuracy

Paired - t

 M easure Ref.

Proposed

Vehicle

M easure

Fusion

predictors

current 83.75±21.34 83.00±15.58 81.25±16.43

Physiological

M easures

Theta Fz (Virkalla et al., 2007),

(Suciu et al., 2011)

66.25±28.25 78.00±13.89 88.75±13.56 t: 1.59

p: 0.07

 Alpha Oz (Akerstedt and

Gillberg,1990),

(Huang et al., 1996)

52.50±32.40 68.00±15.79 83.75±5.17 t: 2.04

p: <0.05

Behavioral

M easures

HEOG

speed

(Shin et al., 2011),

(Virkalla et al., 2007)

60.00±26.18 69.00±18.12 72.50±15.81 t: 3.55

p: <0.01

 PERCLOS

80

(Wierwille et al.,

2003), (Picot et al.,

2010)

70.00±19.27 69.00±21.50 68.75±12.46 t: 2.40

p: <0.03

Figure 21. The proposed accelerometer-gyroscope fusion method was

equivalent to or significantly better than other compared methods at accurately

predicting driver drowsiness.

87

For further analysis, a participant’s data was sectioned into 5 minute periods

for a total of 36 data points per 180 minutes. During each 5 minute period, the

average EEG theta power in the frontal region Fz showed positive correlation to the

number of SWM sudden turns recorded by 𝜃𝑓𝑖𝑛𝑎𝑙 (Spearman: 0.71, p<0.05; Pearson:

0.68, p<0.05; R2: 0.46, p<0.05) (Figure 22). Sudden SWM inputs were considered to

be any steering rotations in excess of 8.33°s-1. The number of eye blinks recorded by

EOG were also positively correlated with the number of sudden SWM activities

(Spearman: 0.75, p<0.05; Pearson: 0.72, p<0.05; R2: 0.51, p<0.05).

Figure 22. Significant positive correlations exist between the SWM signal and

drowsy measures

88

Table 8. SWM measures correlated positively with drowsy measures even in

simple statistical analysis

Drowsiness

M easure

Correlation 0-1 (all p<0.05)

Known M easure Spearman Pearson R 2

Increased Theta (Fz) 0.71 0.68 0.46

Increased Blinks

(VEOG)

0.75 0.72 0.51

Artificial Intelligence, namely Support Vector Machines gave more powerful

results than simple statistical correlations could, effectively classifying a driver as

either alert or drowsy.

Figure 23. Participant’s EEG theta wave power at Fz as well as SWM

measure of sudden turns demonstrated significant increases during drowsy periods.

89

4.4 Discussion

The proposed methods of accelerometer and gyroscope-accelerometer fusion

demonstrated a high level of accuracy when classifying participants as either drowsy

or alert. Accuracy was defined as the proportion of the total number of class

predictions that were correct predictions. Importantly, it was shown to be a valid

predictor of drowsiness as it outpaced the other compared measures.

With the implementation of this method, the well documented SWM method

of drowsy driving detection can be applied to curb highway accidents and deaths

with minimal cost to drivers and car manufacturers. Inertial-based SWM systems

can be installed in vehicles where they can be used to detect driver’s drowsy

behaviors without the need for intrusive, complex and expensive physiological

methods. The method is a cost-effective, efficacious, and accurate way to implement

wide-scale drowsy driving detection.

4.5. Chapter conclusion

This chapter demonstrated that a simple inertial motion sensor can be used to

accurately monitor drowsiness and make accurate classifications of the driver’s

current state using only SWM predictors. The efficacy of the method was confirmed

through the use of machine learning algorithms with 10 fold cross-validation to assess

the accuracy of the method. The method was able to accurately predict when the

drivers were alert and when the drivers were drowsy.

90

The findings of this study demonstrate that the method of inertial sensor-

based drowsiness detection via SWM is an easy to implement and practical way to

deploy individual drowsy driving monitoring. The method does not require extensive

modifications to existing vehicle setups. And the high affordability of the

accelerometer-based method improves the feasibility of wide scale deployment. Most

importantly, the method shows a high degree of accuracy even when deployed

independently using machine learning.

91

Chapter 5: Specific Aim 3: Practical Implementation of the novel

approach - A smartphone-based method for real-time IMU drowsy

driving detection.

5.1. Introduction to the smartphone-based method for drowsy driving detection

In the aim of delivering the newly developed method to a widely available

carrier, smartphone implementations of the technology and algorithm were

undertaken. This study was conducted by applying the theoretical algorithms

derived in earlier chapters, especially chapter 3. Apps were written to effectively

convert smartphones into a drowsy driving mobile computer. The apps gained access

to internal sensors including a gyroscope, accelerometer, and GPS chip, and the

retrieved data were used to assess driver drowsiness in line with the developed

algorithms. A linear potentiometer was used in the steering column to measure SWM

and turn angles for comparison against the smartphone readings. The combined

setup was used to monitor SWM over an extended period of time and the results

were recorded.

After initial successful trials in comparing the steering output of the

smartphone based method to a linear potentiometer reading, the limitations of the

potentiometer based method were easily observed. The potentiometer was practical

only in simulator environments, and would require extensive modification to install

in a standard motor vehicle. Additionally, such a setup would require additional

92

hardware and software to further process the input data into drowsiness data, tasks

a smartphone can perform all at once.

The method described in this chapter provides not only for the

implementation of drowsy driving monitoring on newly manufactured vehicles, but

due to its non-intrusive nature it also allows for retrofitting on older vehicles and

current model vehicles which on average continue to be manufactured with no

drowsy driving detection mechanisms.

In order to ascertain that a smartphone-based IMU was is more cost effective

than the potentiometer method that has been proposed in literature, it was necessary

to have a side-by-side comparison of costs. The potentiometer used by Thiffault and

Bergeron (2003) is unspecified, however in the search for a suitable potentiometer,

the following parameters were requested from Digi key:

Low Error Tolerance – Tolerances at or below ± 3% of resistance is necessary

for accurate SWM readings in a linear rotary potentiometer.

Low Temperature Coefficients – Because vehicles travel in both summer and

winter times, it is essential for learned data to not drift too much over time. Small

changes in potentiometer angular readings could lead to miss-classification of

drowsiness state. Coefficients at or below ±20ppm/°C fell into the criteria

Ample Rotational Ability – There are a multitude of cheap small

potentiometers that can be easily obtained, however, they are unsuitable for SWM

monitoring because they are mostly limited to only 270° of rotation as a maximum.

93

For installation in a motor vehicle, the rotation range must be equal to, or exceed

the rotational range of the vehicle steering wheel. The criteria in this case was that

the potentiometer must be able to rotate at least 1080°, which is 3 full 360° rotations.

Going by these minimum requirements, the cheapest

potentiometer fitting this bill was the AR1KL.25 manufactured

by TT Electronics which is cataloged on

Digi-Key as 987-1179-ND. It produces

1kohm of resistance and the unit cost is $58.21USD. For an

increase to 500kohms, the most expensive potentiometer meeting

this requirement was the 3400S-1-504L manufactured by Bourns Inc. under Digi-Key

parts number 3400S-1-504L-ND and the unit cost is $203.25USD, which is more than

double the cost of a new $99.99 iPhone 5c smartphone from AT&T. In addition, the

smartphone method is widely available to everyone and remains on their person at

all times. In addition, it does not require installation and has no initial cost of

acquisition since it is already owned by most.

In this mass production of vehicles, potentiometer costs could grow very large

given these numbers, further adding to manufacturer reluctance

to adopt such means except when mandated by Federal

regulations. It is thus reasonable to say that an IMU based

method is very cost-effective.

94

In technologically advanced countries, smartphone proliferation is very

widespread. For example, the current penetration of smartphone use in the US

comprises 61% of the entire population (Nielsen, 2013) and 73% of the Korean

population (Noh, 2013). In England 94 % of adults and 90.3% of teenagers owned a

mobile phone in 2012. It is estimated that smartphone penetration as a percentage

of mobile phone users among teenagers will reach 81% this year and will rise to 96%

in 2017 (Beland and Murphy, 2014). At this rate, smartphones availability is largely

expected to continue to grow.

Table 9. Device Comparison

 Smartphone Custom Built

Hardware using the

proposed fusion

technology

Potentiometer

Initial cost of

acquisition

$0.00 (Already

owned)

$50.00 USD total for

complete hardware

(sensor,

microcontroller,

circuitboard etc.). Cost

further minimized in

mass production.

$58.21USD to $203.25USD (For

sensor only)

Further

Costs

Steering wheel

mount

Installation if

integrated install

requested.

PCB fabrication,

microcontroller, and overhead

costs for implementation in

order to install into vehicles.

Installation M inimal, affix to

steering wheel

Minimal, affix to

steering wheel or

Integrated install into

steering wheel

Complete removal and re-

installation of vehicle steering

column to attach

potentiometer.

95

5.2 Material and Methods.

5.2.1 Equipment

Potentiometer data as a gold standard, as well as IMU-6050 data were

collected via an amplifier based on the ADS1299 Low-Noise, 8-Channel, 24-Bit

Analog Front-End for Bio-potential Measurements (Texas Instruments, Dallas, TX).

iPhone IMU data was collected internally to the iPhone 4s (Apple, Cupertino, CA)

exploiting it’s on board IMU sensors including its accelerometer and gyroscope.

Accelerometer and Gyroscope data was calculated according to the equation:

𝜃 = 𝑎𝑡𝑎𝑛 (
𝑨𝒚

𝑨𝒙
) (5.1)

This equation is similar to Equation 3.11, the difference shows up in its output: the

angular results of 𝜃 are rotated 90° counter-clockwise for convenient use of the

iPhone in the landscape orientation.

Gyroscope and accelerometer data were then fused according to Equation

3.15. GPS data were also recovered from the onboard chip and used for determining

the drivers speed, position, location, and direction of travel for contextual

understanding of the SWM data and for differentiating highway driving from

motionless and low-speed SWM signals. Code was written in Objective C, C, and

C++ for the real-time collation, processing, and classification of data extracted from

built-in IMU and GPS sensors. The code can be seen in the Appendix of this

document. LibSVM open source was ported into the machine learning algorithms.

96

MATLAB was used for the processing and analysis of the data, and for statistical

comparisons of the methods to each other. OpenDS open source vehicle simulation

software was used to provide driving scenarios.

Figure 24. Systems design of the classification system

97

Figure 25. Operational flowchart of the device operation

5.2.2 Gyroscope drift assessment

The iPhone was affixed to their steering wheel using a vehicle steering wheel

fastener as shown in Figure 26. Driving tasks were performed using OpenDS driving

simulator to simulate long-distance highway driving for an hour. Based solely upon

98

gyroscope data, SWM data was recorded from the iPhone and the discrete MPU-

6050 MEMS IMU device. For reference, SWM data was also recorded from the

steering wheel potentiometer.

Figure 26. Recording SWM data using an iPhone, an IMU-6050, and a

potentiometer.

5.2.3 Correlation driving tasks

Once the drift had been compensated for using a fusion filter for combining

gyroscope and accelerometer data, the iPhone was once again affixed to their steering

wheel using a vehicle steering wheel fastener as shown in Figure 26. Driving tasks

were performed on the simulator for an hour and the correlations between the data

99

collected by the IMU-6050, the linear potentiometer, and the iPhone internal IMU

devices were compared for accuracy and correlations.

5.2.4 iPhone classification of drowsy driving via Support Vector Machines

(SVM)

Once it was accertained that iPhone SWM data was highly correlated to

better known measures such as the potentiometer, it was assesed for its abilities to

classify driver drowsiness using trained models with machine learning algorithms. For

this LibSVM (Chang and Lin, 2011) was ported into the objective-C code and

programmed into the iPhone. The code can be seen in the appendix section of this

document.

After Inertial sensor control, SWM measurement, machne learning SVMs, and

other algorithm codes were ported into IMU project code, the iPhone was

programmed and tested for its classification abilities.

The iPhone was then fed with the trained model as well as SWM data to

characterize as drowsy or non-drowsy, and the results were assesed for accuracy and

agreement against offline methods such as more-powerful standalone PC’s.

The radial basis function was used for Support Vector Classification in this

smartphone implementation.

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−γ||𝑥𝑖 − 𝑥𝑗||
2

 (5.1)

100

The Radial Basis kernel function, K, mapped the inputs (xi,xj) to the feature space.

(xi,xj) is example data, and γ represents the gausian function 𝛾 = (
1

2 𝜎2) . For the

iPhone model training in this case γ =0.25.

Figure 27. Radial Basis Function Classification

Sixty (60) drowsy data points, each containing 4 drowsiness predictors (The

number of sudden SWM turns exceeding 8.3°s-1, the number of SWM zero crossings,

the standard deviation of steering wheel movements, and the average amplitude of

SWM turns) were passed to the iPhone to classify using the ported LibSVM

libraries. Also passed to the iPhone was a model trained offline on more powerful

PC’s.

101

5.2.5 Context specific classification of drowsy driving via smartphone

Context specific cues for drowsy driving detection using a smartphone include

such factors as the speed of travel when characteristic drowsy SWM signals are

observed. An alert driver attempting to find a parking space at low speeds might

make characteristic drowsy SWM inputs. A broader knowledge of driving conditions

will reduce false positives.

5.3 Results

5.3.1 Gyroscope drift assessment

With the iPhone affixed to their steering wheel, driving tasks were performed

using the OpenDS driving simulator to simulate long-distance highway driving

revealed noticeable drift after about 15 minutes. The drift was high enough to

change the gyroscope reading. Figure 28. shows a difference between accelerometer

measured angle and gyroscope measured angle. This difference was minimal at the

start of recording, but increased as the gyroscope drifted with time. All further

iPhone SWM readings implemented an optimized Acceleromter/Gyroscope fusion

which eliminated drift.

102

Figure 28. Recording SWM data using an iPhone, an IMU-6050, and a

potentiometer. Unfused gyroscope data revealed drift over time

5.3.3 Correlation driving tasks

Once the gyroscope drift had been compensated for through the use of a

fusion filter combining gyroscope and accelerometer data, the iPhone was once again

affixed to their steering wheel. Driving tasks performed using OpenDS driving

simulator to simulate long-distance highway driving for an hour revealed high

correlations between the iPhone IMU data, the MPU-6050 MEMS IMU device, and

the steering wheel potentiometer.

103

Figure 29. The iPhone accelerometer SWM data was highly correlated to the

iPhone fusion data, except the fusion data was free of characteristic accelerometer

vibration noise. The correlations were as shown below

Table 10. Correlating accelerometer data with fusion data

Correlation Measures (all p-values <0.05)

R2 xcorr Pearson’s Spearman Kendall

0.99 0.9953 0.9947 0.9922 0.9563

Figure 30. iPhone IMU data, MPU-6050 IMU data and potentiometer data

were in strong agreement.

22 24 26 28 30 32 34

-40

-20

0

20

40

Time (seconds)

S
W

M
 A

n
g

le
 (

°)

Accelerometer vs. Gyroscope Fusion
gyro

gyro

66 68 70 72 74 76

-40

-20

0

20

40

60

Time (seconds)

S
W

M
 A

n
g

le
 (

°)

Steering Wheel

MPU-6050 Accelerometer

MPU-6050 Fusion

i-Phone Accelerometer

i-Phone Fusion

104

Table 11. Correlating iPhone fusion signal to linear potentiometer signal

Correlation Measures (all p-values <0.05)

R2 xcorr Pearson’s Spearman Kendall

0.9970 0.9987 0.9987 0.9986 0.9719

Figure 31. A section showing only Potentiometer and iPhone data

Figure 32. An Early Training Version of the App

132 134 136

-40

-20

0

20

40

60

Time (seconds)

S
W

M
 A

n
g

le
 (

°)

Steering Potentiometer

i-Phone Fusion

105

Figure 33. The IMU App, as Viewed from the iPhone Home Screen

5.3.4 iPhone classification of drowsy driving via Support Vector Machines

(SVM)

After LibSVM code was ported into IMU project code, the iPhone was

programmed and tested for its classification abilities.

The 60 drowsy data points which were input, each containing 4 drowsiness

predictors (The number of sudden SWM turns exceeding 8.3°s-1, the number of SWM

zero crossings, the standard deviation of steering wheel movements, and the average

amplitude of SWM turns) yielded results which showed 100% classification

agreement between classification performed by the PC and the classifications

performed independently by the iPhone code. This result demonstrated the succesful

106

independent operation of the algorithm, and assured that the device can be improved

at anytime through the simple uploading of a newer trained model. Of further

benefit, it was not neccesary for training to be performed on the iPhone for the

accuracy to be as high as on a standard PC.

Figure 34. Support Vector Machines were used to accurately classify drivers

as drowsy or alert. In final implementation, this classification process was automated

and streamlined

Figure 35. End User App View

107

The model files were loaded into the iOS operating systems folders were it

could be accessed by the IMU classifier program. For each one minute of SWM data,

a file “fileToClassify” was generated based on the 4 parameter data observed over the

past minute. The “fileToClassify” was then passed through the classifier algorithms

along with “model.txt” were each line was labelled as drowsy and non-drowsy. By

providing a PC and the iPhone with identical “fileToClassify,” classification

agreements were recorded at 100%. Each line of data is assigned a discrete result

“classifiedOutput” which pertains to their drowsy status over the last 1 minute block.

5.3.5 Contextual categorization of drowsiness

The use of contextual determination of drowsiness helped ensure a reduction

in false positives. A sample of participant data is shown below in Figure 36. This

participant exhibited large amounts of SWM data that could be classified by the

machine as drowsy due to the high standard deviation and large number of sudden

turns of the SWM signal. However knowledge of the vehicle speed enables a better

interpretation of the data.

108

Figure 36. Contextual SWM readings: the effects of low speeds

Highlighted in red boxes are driving periods which could be prone to a higher

number of false positives due to unusually high number of high amplitude turns and

increased standard deviation. However a contextual analysis of the vehicle speed

data reveals speeds close to 0 mph, coinciding with the low speed activities typically

seen in city traffic, parking maneuvers, and small road navigation. Outside of these

red boxes, the machine learning algorithms are much more effective during the more

typical highway drive. It is not expected that any highway going vehicle would in

any event encounter a 90 turn except in the event of a significant accident.

109

Figure 37. Contextual understanding of motion and location can enhance

SWM assessment of drowsiness. (a) An iPhones view of a driver being monitored for

drowsiness; (b) The actual route driven.

5.3.4 Final iPhone app

The final app combined the Graphical User Interface (GUI) app with the

SVM machine learning app to create a real-time method for practical drowsy driving

detection.

Drowsiness data from the iPhone was collected at intervals of 1 minute similar

to the earlier trials. Each minute was processed to generate an SWM signal, and

then the signal was further processed to extract the 4 predictor values: the number of

SWM zero crossings, the standard deviation of steering wheel movements

(STDSWM), the average amplitude of SWM turns, and the number of sudden SWM

turns exceeding 8.3°s-1. These values were used for drowsiness classification via the

offline trained models. These predictor values were then fed into the machine and the

provided training model for classification. Each minute yielded a definitive real-time

110

result: drowsy or not drowsy. A drowsy classification will then display a visual

notification on the screen.

Figure 38 Practical deployment of a smartphone application

5.4 Discussion and conclusions about the evaluation

This chapter describes how a smartphone which is equipped with internal

IMU abilities can be repurposed through code to be a highly accurate means for the

measurement of SWM, and additionally a means for collecting and classifying driver

drowsiness data.

A simple tri-axial accelerometer and gyroscope on board the smart phone can

be used to generate SWM signals which can then be used to actively monitor

drowsiness and make accurate classifications of the driver’s current state.

111

The findings within this chapter demonstrate that the method of smartphone-

based drowsiness detection via SWM is an easy to implement and practical way to

deploy individual drowsy driving monitoring. The method does not require extensive

modifications to existing vehicle setups. The high affordability and proliferation of

suitable smartphones improves the feasibility of wide scale deployment.

With the implementation of this method, the well documented SWM method

of drowsy driving detection can be applied to curb highway accidents and deaths

with minimal cost to drivers and car manufacturers.

5.4.1 Classification accuracy when compared against PC results

The classification accuracy of the smartphone method was demonstrably very

high when classifying predictor variables side-by-side against a PC, agreeing 100%

with offline classifications. This was expected as they both classified using the same

trained models.

112

Chapter 6: Summary, discussion, and suggestions for further studies

6.1 Summary

This study described the theoretical basis and algorithms necessary for the

development of effective, low-cost, non-obtrusive technologies for the accurate

monitoring of SWM signals and detection of drowsiness via inertial sensors. Results

indicated that SWM monitoring using accelerometer (R2 ≈ 1; p < 0.001) and

accelerometer-gyroscope fusion (R2 ≈ 0.96; p < 0.05) were highly correlated to SWM

signals recorded using a linear potentiometer. When Support Vector Machines were

used to train machine models for 10-fold cross validation of drowsiness classification,

a mean accuracy level of 81.25% was achieved using the accelerometer-gyroscope

fusion technique.

The described technologies provide a simple means to deploy a well-

documented method of drowsy driving detection by SWM which hitherto has

remained within the positive results of numerous successful driving trials, but has yet

never proliferated widely into the automobile industry where it has potential to save

lives. The proposed method provides not only for the implementation of drowsy

driving monitoring on newly manufactured vehicles, but due to its non-intrusive

nature it also allows for retrofitting on older vehicles and current model vehicles

which on average continue to be manufactured with no drowsy driving detection

mechanisms.

113

The classifiers used in this study were intended to demonstrate the efficacy of

inertial sensors method. The selection of machine learning parameters or kernels were

not optimized. Although a high overall accuracy of 81.25% was achieved using only

data derived from the fusion of inertial devices. It is expected that future work will

include method optimization of the SWM predictors selected, fine tuning of labelling

criteria, tweaking of machine learning parameters and types, as well as the use of

larger and more robust datasets to bring overall accuracy closer to 100%.

6.2 Discussion

6.2.1. Applications of the Novel Method for the Detection of Drowsy Driving

It is predicted that unobtrusive methods for the early detection of drowsy

driving will become vehicle standards and multiple unobtrusive methods will

eventually be used in combination for improved accuracy and reduction in false

positives.

Not only is the NHTSA revamping its safety rating program, but it is also

currently actively recommending that consumers purchase vehicles with drowsiness

detection systems. For the 2012 model year, the NHSTA identified 68 models with

either lane position tracking technologies or collisions warnings technologies or both.

Only 45 models were identified by the same criteria in 2011 (NHTSA, 2011). It is

expected that vehicle manufacturers will rapidly adopt drowsiness detection systems

114

in their vehicles provided that they are unobtrusive, cheap to implement, closed loop

from detection to intervention, and have high accuracy with low incidences of false

positives. Any system that provides this has the potential to be widely adopted and

proliferated within the next 10 years. This provides an important advantage to the

IMU technologies studied in this dissertation.

An advantage of portable devices deployment of drowsy driving mechanisms is

that older cars can be retrofitted or equipped with smartphone or PDA based

systems such as the systems proposed by Li and Chung (2013) or Chieh et al. (2005).

In 1997, Brown (1997) estimated that reliable and affordable technological

countermeasures against driver fatigue would be commercially available within 5- 10

years. This prediction was partly true in that the technology of drowsy driving

detection was becoming reliable. Unfortunately there are no truly widespread closed

loop solutions, with all such solutionse sold exclusively in more expensive upper-end

vehicles.

Because safety ratings and consumer awards are very important to car

manufacturers, early adoption of inevitable safety mechanisms will be imperative on

their part. Due to the large numbers of deaths and injuries due to drowsy driving,

drowsiness detection technologies will almost certainly become standard safety

features such as seatbelts and airbags once the technology is matured, effective and

affordable enough.

115

6.2.2. Criteria for selection of inertial methods: Comparison of technologies,

and when to use which technology?

Accelerometers: In low noise road or simulator based environments, the

accelerometer-based method might be adequate or preferable to a gyroscope-

accelerometer fusion method if an experimenter has access to cheaper accelerometers.

The use of band filters would benefit an accelerometer-based application in the

presence of noise.

For monitoring SWM in the accelerometer-based method, an accelerometer

was essentially used as an angular position sensor. Because the accelerometer is

always subjected to acceleration due to gravity,𝒈, even when it appears to be at

“rest,” the effects of gravity can always be detected on each of the three

accelerometer sensing axes. Accordingly, any accelerometer with a range of at least

±1𝒈 can theoretically be used as a rotation sensor relative to the horizontal plane in

the presence of the earth’s gravitational field.

Similar to gyroscopes, accelerometers can also be used to measure the rate of

angular change by dividing the angular change in tilt by the change in time or more

generally, by taking the derivative of the accelerometers angular readings. At the

same time, the accelerometer is always calibrated towards the gravity vector 𝒈. For

the accelerometer-based method for SWM monitoring, 𝑨𝒛 does not represent rotation

in the x-y plane. However, 𝑨𝒛 is still very useful for the detection of the angle of

inclination, 𝛼 and the gradient of climb or descent.

116

Gyroscopes: Gyroscopes can also be used to derive information about the

orientation of the steering wheel. Once a gyroscope is spinning, it tends to maintain

its axis of rotation. This can be used to determine its relative orientation. A tri-axial

gyroscope outputs 3 values, which indicate the rate of change of angle for each axis,

usually in °s-1. These values can then be used to determine the motion of the steering

wheel relative to its original position where the rotor first started spinning. By

knowing the prior tri-axial position and then adding the subsequent rotation derived

from rate of change data, the new axial positions can be estimated. This method

however may need calibration before each use to reset to a relative gyroscope reading

of 0° before adding on the relative changes. The gyroscope itself cannot measure

position, however, it can detect angular changes and then help to derive the new

position by integrating the angular velocity signal received from the gyroscope. This

introduces drift, however into the estimate (Luinge et a., 1999). The positions

derived from the gyroscope remain relative not to the steering wheel for instance, but

to the location where the rotor first started spinning. Knowledge of the gyroscopes

original orientation, which an accelerometer can provide, is necessary to gain any

benefit from knowing the rate of change relative to that original position. The

tendency for reasonably-priced gyroscopes to drift does not make them agood choice

for real-time SWM monitoring.

117

Fusion: Although analog accelerometers are coming into widespread use, there

has since come about the availability of 6-axis digital MEMS sensors which

incorporate both a gyroscope and an accelerometer in a tiny footprint (4x4x0.9mm)

such as the one used in this study. The benefit of this newer sensor type is that the

combined setup helps to simultaneously improve the accuracy of both the

accelerometer and the gyroscope. Because accelerometers are prone to linear

vibration noise and gyroscopes are prone to slow drifts, the combination of the two

sensors has provided new opportunities for SWM monitoring that were originally not

available in discrete analog inertial sensors. Further, these opportunities are provided

in a very tiny, unobtrusive, and inexpensive package.

6.3. Suggestions for further study

Future work on the gyroscope-accelerometer method described in chapter 3

will involve embedding this technology into vehicle steering wheels which can be

implemented independently of smartphones. Vehicle manufacturers will benefit from

such an implementation. Other future work will include the investigation of alternate

inertial components by manufacturers to further optimize cost/performance output

for the end user.

Further work on the smartphone-based method described in chapter 5 will

include increased contextual determinations of drowsiness. Modern smartphones are

118

able to receive data on the time of day, times of sunrise/sunset, weather conditions

including rain/fog/mist, and other potential contributors to drowsy symptoms.

Additionally, an individual’s cellphone can store individual characteristic data.

The current method as it is would require drivers to undergo a training period

to collecting their unique drowsy driving parameters for proper labelling of their data

in order to generate the most appropriate model suitable for their driving habits.

Future work will explore the possibility and feasibility of more generalized features

which can be seen across all drivers. This could potentially eliminate the training

period for individual drivers. Alternatively, an appropriate form of unsupervised

machine learning could be explored.

119

Bibliography

ABTAHI, S., HARIRI, B. and SHIRMOHAMMADI, S., 2011. Driver drowsiness monitoring

based on yawning detection, Instrumentation and Measurement Technology

Conference (I2MTC), 2011 IEEE 2011, IEEE, pp. 1-4.

ÅKERSTEDT, T. and GILLBERG, M., 1990. Subjective and objective sleepiness in the

active individual. International Journal of Neuroscience, 52(1-2), pp. 29-37.

American Academy of Sleep Medicine (AASM), 2005. Drowsy driving

ANUND, A., KECKLUND, G., VADEBY, A., HJÄLMDAHL, M. and ÅKERSTEDT, T.,

2008. The alerting effect of hitting a rumble strip—A simulator study with sleepy

drivers. Accident Analysis & Prevention, 40(6), pp. 1970-1976.

ALDANA, K., "Auto safety agency unveils list of vehicles to be tested as part of revamped

safety ratings program", (NHTSA), [online] 2011,

http://www.nhtsa.gov/About+NHTSA/Press+Releases/2011/ci.NHTSA+Announce

s+Model+Year+2012+Vehicles+to+be+Rated+Under+Government+5-

Star+Safety+Ratings+Program.print (Accessed: 1 February 2014).

APPELS, A. and MULDER, P., 1988. Excess fatigue as a precursor of myocardial

infarction. European heart journal, 9(7), pp. 758-764.

ARNEDT, J.T., WILDE, G.J., MUNT, P.W. and MACLEAN, A.W., 2001. How do

prolonged wakefulness and alcohol compare in the decrements they produce on a

simulated driving task? Accident Analysis & Prevention, 33(3), pp. 337-344.

ARUN, S., SUNDARAJ, K. and MURUGAPPAN, M., 2012. Hypovigilance detection using

energy of electrocardiogram signals. Journal of Scientific and Industrial

Research, 71(12), pp. 794-799.

AURELL, J., NORDMARK, S. and FRÖJD, N., 2000. Correlation between objective

handling characteristics and subjective perception of handling qualities of heavy

vehicles, Proc. of AVEC 2000.

BALASUBRAMANIAN, V. and ADALARASU, K., 2007. EMG-based analysis of change in

muscle activity during simulated driving. Journal of Bodywork and Movement

Therapies, 11(2), pp. 151-158.

120

BALKIN, T.J., HORREY, W.J., GRAEBER, R.C., CZEISLER, C.A. and DINGES, D.F.,

2011. The challenges and opportunities of technological approaches to fatigue

management. Accident Analysis & Prevention, 43(2), pp. 565-572.

BARANCHUK, A., QUINLAN, C., MICHAEL, K., SIMPSON, C.S., REDFEARN, D.P.

and FITZPATRICK, M., 2009. Truths and lies from the polysomnography ECG

recording: An electrophysiologist perspective. Case reports in medicine, 2009.

BAREA, R., BOQUETE, L., MAZO, M. and LÓPEZ, E., 2002. System for assisted

mobility using eye movements based on electrooculography. Neural Systems and

Rehabilitation Engineering, IEEE Transactions on, 10(4), pp. 209-218.

BAY, S.D., 1999. Nearest neighbor classification from multiple feature subsets. Intelligent

data analysis, 3(3), pp. 191-209.

BERGASA, L.M., NUEVO, J., SOTELO, M.A., BAREA, R. and LOPEZ, M.E., 2006.

Real-time system for monitoring driver vigilance. Intelligent Transportation Systems,

IEEE Transactions on, 7(1), pp. 63-77.

BLISS, J.P. and ACTON, S.A., 2003. Alarm mistrust in automobiles: how collision alarm

reliability affects driving. Applied Ergonomics, 34(6), pp. 499-509.

BOER, E., RAKAUSKAS, M.E., WARD, N.J. and GOODRICH, M.A., 2005. Steering

entropy revisited, Proceedings of the 3rd International Driving Symposium on

Human Factors in Driver Assessment, Training and Vehicle Design 2005, pp. 25-32.

BORGHINI, G., ASTOLFI, L., VECCHIATO, G., MATTIA, D. and BABILONI, F., 2012.

Measuring neurophysiological signals in aircraft pilots and car drivers for the

assessment of mental workload, fatigue and drowsiness. Neuroscience &

Biobehavioral Reviews, .

BOWMAN, D.S., SCHAUDT, W.A. and HANOWSKI, R.J., 2012. Advances in Drowsy

Driver Assistance Systems Through Data Fusion. Handbook of Intelligent

Vehicles. Springer, pp. 895-912.

BRANDT, T., STEMMER, R. and RAKOTONIRAINY, A., 2004. Affordable visual driver

monitoring system for fatigue and monotony, Systems, Man and Cybernetics, 2004

IEEE International Conference on 2004, IEEE, pp. 6451-6456.

BROWN, I.D., 1997. Prospects for technological countermeasures against driver

fatigue. Accident Analysis & Prevention, 29(4), pp. 525-531.

121

BROWN, T., JOHNSON, R. and MILAVETZ, G., 2013. Identifying periods of drowsy

driving using EEG. Annals of advances in automotive medicine, 57, pp. 99.

BROWN, T., LEE, J., SCHWARZ, C., FIORENTINO, D. and MCDONALD, A., 2014.

Assessing the Feasibility of Vehicle-Based Sensors to Detect Drowsy Driving, .

CAMPAGNE, A., PEBAYLE, T. and MUZET, A., 2004. Correlation between driving

errors and vigilance level: influence of the driver's age. Physiology & Behavior, 80(4),

pp. 515-524.

CARSKADON, M.A., DEMENT, W.C., MITLER, M.M., ROTH, T., WESTBROOK, P.R.

and KEENAN, S., 1986. Guidelines for the multiple sleep latency test (MSLT): a

standard measure of sleepiness. Sleep, 9(4), pp. 519-524.

CHALDER, T., BERELOWITZ, G., PAWLIKOWSKA, T., WATTS, L., WESSELY, S.,

WRIGHT, D. and WALLACE, E., 1993. Development of a fatigue scale. Journal of

psychosomatic research, 37(2), pp. 147-153.

CHANG, C., KO, L., LIN, F., SU, T., JUNG, T., LIN, C. and CHIOU, J., 2010. Drowsiness

monitoring with EEG-based MEMS biosensing technologies. GeroPsych: The Journal

of Gerontopsychology and Geriatric Psychiatry, 23(2), pp. 107.

CHAPUT, D., PETIT, C., PLANQUE, S. and TARRIÈRE, C., 1990. Un système

embarqué de détection de l'hypovigilance. Journées d’études: le maintien de la

vigilance dans les Transports.Lyon, France, INRETS, Lyon, France, .

CHEN, Y., 2001. Application of tilt sensors in human-computer mouse interface for people

with disabilities. Neural Systems and Rehabilitation Engineering, IEEE Transactions

on, 9(3), pp. 289-294.

CHIEH, T.C., MUSTAFA, M.M., HUSSAIN, A., HENDI, S.F. and MAJLIS, B.Y., 2005.

Development of vehicle driver drowsiness detection system using electrooculogram

(EOG),Computers, Communications, & Signal Processing with Special Track on

Biomedical Engineering, 2005. CCSP 2005. 1st International Conference on 2005,

IEEE, pp. 165-168.

CHIEN, J. and WU, C., 2002. Discriminant waveletfaces and nearest feature classifiers for

face recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 24(12), pp. 1644-1649.

CONNOR, J., NORTON, R., AMERATUNGA, S., ROBINSON, E., CIVIL, I., DUNN, R.,

BAILEY, J. and JACKSON, R., 2002. Driver sleepiness and risk of serious injury to

122

car occupants: population based case control study. BMJ (Clinical research

ed.), 324(7346), pp. 1125.

CUINGNET, R., CHUPIN, M., BENALI, H. and COLLIOT, O., 2010. Spatial and

anatomical regularization of SVM for brain image analysis, Advances in Neural

Information Processing Systems 2010, pp. 460-468.

CUMMINGS, P., KOEPSELL, T.D., MOFFAT, J.M. and RIVARA, F.P., 2001.

Drowsiness, counter-measures to drowsiness, and the risk of a motor vehicle

crash. Injury Prevention, 7(3), pp. 194-199.

DAHL, R.E., 2008. Biological, developmental, and neurobehavioral factors relevant to

adolescent driving risks. American Journal of Preventive Medicine, 35(3), pp. S278-

S284.

DINGES, D.F., MALLIS, M.M., MAISLIN, G. and POWELL, I., 1998. Evaluation of

techniques for ocular measurement as an index of fatigue and the basis for alertness

management, .

SUMMARIES OF CURRENT DROWSY DRIVING LAWS, National Conference of State

Legislatures (NCSL), [online] 2013,

http://www.ncsl.org/research/transportation/summaries-of-current-drowsy-driving-

laws.aspx (Accessed: 1 February 2014).

Limitations Driving Hours, California Department of Motor Vehicles (CADMV), [online]

2010, http://www.dmv.ca.gov/pubs/vctop/d14_8/vc34501_2.htm (Accessed: 1

February 2014).

DAMOUSIS, I.G., TZOVARAS, D. and STRINTZIS, M.G., 2009. A fuzzy expert system

for the early warning of accidents due to driver hypo-vigilance. Personal and

Ubiquitous Computing, 13(1), pp. 43-49.

DASGUPTA, A., GEORGE, A., HAPPY, S., ROUTRAY, A. and SHANKER, T., 2013.

An on-board vision based system for drowsiness detection in automotive

drivers. International Journal of Advances in Engineering Sciences and Applied

Mathematics, 5(2-3), pp. 94-103.

DAVIS, G., POPOVIC, D., JOHNSON, R.R., BERKA, C. and MITROVIC, M., 2009.

Building Dependable EEG Classifiers for the Real World–It’s Not Just about the

Hardware. Foundations of Augmented Cognition. Neuroergonomics and Operational

Neuroscience. Springer, pp. 355-364.

123

DAZA, I.G., BERGASA, L.M., BRONTE, S., YEBES, J.J., ALMAZÁN, J. and ARROYO,

R., 2014. Fusion of Optimized Indicators from Advanced Driver Assistance Systems

(ADAS) for Driver Drowsiness Detection. Sensors, 14(1), pp. 1106-1131.

DELORME, A. and MAKEIG, S., 2004. EEGLAB: an open source toolbox for analysis of

single-trial EEG dynamics including independent component analysis. Journal of

neuroscience methods, 134(1), pp. 9-21.

DINGES, D.F., MAISLIN, G., BREWSTER, R.M., KRUEGER, G.P. and CARROLL,

R.J., 2005. Pilot test of fatigue management technologies. Transportation Research

Record: Journal of the Transportation Research Board, 1922(1), pp. 175-182.

DINGUS, T.A., MCGEHEE, D.V., MANAKKAL, N., JAHNS, S.K., CARNEY, C. and

HANKEY, J.M., 1997. Human factors field evaluation of automotive headway

maintenance/collision warning devices. Human Factors: The Journal of the Human

Factors and Ergonomics Society, 39(2), pp. 216-229.

DOHENY, Kathleen., “Technology Aimed at Helping Drowsy Drivers Stay Awake",

Edmunds, [online] 2012, http://www.edmunds.com/car-safety/technology-aimed-at-

helping-drowsy-drivers-stay-awake.html (Accessed: Access date).

DONGES, E., 1978. A two-level model of driver steering behavior. Human Factors: The

Journal of the Human Factors and Ergonomics Society, 20(6), pp. 691-707.

ESKANDARIAN, A. and MORTAZAVI, A., 2007. Evaluation of a smart algorithm for

commercial vehicle driver drowsiness detection, Intelligent Vehicles Symposium, 2007

IEEE 2007, IEEE, pp. 553-559.

Attention Assist, EURONCAP, [online] 2011,

http://www.euroncap.com/rewards/mercedes_benz_attention_assist.aspx

(Accessed: 1 February 2014).

FAIRCLOUGH, S.H. and GRAHAM, R., 1999. Impairment of driving performance caused

by sleep deprivation or alcohol: a comparative study. Human Factors: The Journal

of the Human Factors and Ergonomics Society, 41(1), pp. 118-128.

FLETCHER, L., PETERSSON, L. and ZELINSKY, A., 2005. Road scene monotony

detection in a fatigue management driver assistance system, Intelligent Vehicles

Symposium, 2005. Proceedings. IEEE 2005, IEEE, pp. 484-489.

124

FLORES, M.J., ARMINGOL, J.M. and DE LA ESCALERA, A., 2011. Driver drowsiness

detection system under infrared illumination for an intelligent vehicle. IET intelligent

transport systems, 5(4), pp. 241-251.

FONSECA, C., CUNHA, J.S., MARTINS, R., FERREIRA, V., DE SÁ, J.M., BARBOSA,

M. and DA SILVA, A.M., 2007. A novel dry active electrode for EEG

recording. Biomedical Engineering, IEEE Transactions on, 54(1), pp. 162-165.

FUKUDA, J., AKUTSU, E. and AOKI, K., 1995. An estimation of driver's drowsiness level

using interval of steering adjustment for lane keeping. JSAE Review, 16(2), pp. 197-

199.

GONDRAN, C., SIEBERT, E., FABRY, P., NOVAKOV, E. and GUMERY, P., 1995.

Non-polarisable dry electrode based on NASICON ceramic. Medical and Biological

Engineering and Computing, 33(3), pp. 452-457.

GRAY, R. and REGAN, D., 2000. Risky driving behavior: a consequence of motion

adaptation for visually guided motor action. Journal of experimental psychology:

human perception and performance, 26(6), pp. 1721.

GREENE, M., 1996. A solid state attitude heading reference system for general aviation,

Emerging Technologies and Factory Automation, 1996. EFTA'96. Proceedings., 1996

IEEE Conference on1996, IEEE, pp. 413-417.

GRENÈCHE, J., KRIEGER, J., ERHARDT, C., BONNEFOND, A., ESCHENLAUER, A.,

MUZET, A. and TASSI, P., 2008. EEG spectral power and sleepiness during 24h of

sustained wakefulness in patients with obstructive sleep apnea syndrome. Clinical

Neurophysiology, 119(2), pp. 418-428.

GUTIÉRREZ, J., MEDINA, F.V. and PORTA-GÁNDARA, M.Á., 2010. Vertically aligned

accelerometer for wheeled vehicle odometry. Mechatronics, 20(5), pp. 617-625.

HALLVIG, D., ANUND, A., FORS, C., KECKLUND, G., KARLSSON, J.G., WAHDE, M.

and ÅKERSTEDT, T., 2013. Sleepy driving on the real road and in the simulator—

A comparison.Accident Analysis & Prevention, 50, pp. 44-50.

HAMBLIN, P., 1987. Lorry driver's time habits in work and their involvement in traffic

accidents. Ergonomics, 30(9), pp. 1323-1333.

HARALDSSON, P. and AKERSTEDT, T., 2001. Drowsiness--greater traffic hazard than

alcohol. Causes, risks and treatment]. Läkartidningen, 98(25), pp. 3018.

125

HARRISON, Y. and HORNE, J.A., 2000. The impact of sleep deprivation on decision

making: a review. Journal of Experimental Psychology: Applied, 6(3), pp. 236.

HO, C., TAN, H.Z. and SPENCE, C., 2005. Using spatial vibrotactile cues to direct visual

attention in driving scenes. Transportation Research Part F: Traffic Psychology and

Behaviour,8(6), pp. 397-412.

HOFFBECK, J.P. and LANDGREBE, D.A., 1996. Covariance matrix estimation and

classification with limited training data. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 18(7), pp. 763-767.

HOMAN, R.W., HERMAN, J. and PURDY, P., 1987. Cerebral location of international

10–20 system electrode placement. Electroencephalography and clinical

neurophysiology, 66(4), pp. 376-382.

HORNE, J.A. and BAULK, S.D., 2004. Awareness of sleepiness when

driving. Psychophysiology, 41(1), pp. 161-165.

HOSTENS, I. and RAMON, H., 2005. Assessment of muscle fatigue in low level

monotonous task performance during car driving. Journal of Electromyography and

Kinesiology, 15(3), pp. 266-274.

HU, S. and ZHENG, G., 2009. Driver drowsiness detection with eyelid related parameters

by Support Vector Machine. Expert Systems with Applications, 36(4), pp. 7651-7658.

HUANG, R.S., KUO, C.J., TSAI, L. and CHEN, O.T., 1996. EEG pattern recognition-

arousal states detection and classification, Neural Networks, 1996., IEEE

International Conference on1996, IEEE, pp. 641-646.

HUIGEN, E., PEPER, A. and GRIMBERGEN, C., 2002. Investigation into the origin of

the noise of surface electrodes. Medical and biological engineering and

computing, 40(3), pp. 332-338.

IIZUKA, H., OBARA, H., SEKO, Y. and YANAGISHIMA, T., 1986. Method and system

for detection of driver drowsiness by an abrupt steering change following no steering

movement, .

INGRE, M., ÅKERSTEDT, T., PETERS, B., ANUND, A. and KECKLUND, G., 2006.

Subjective sleepiness, simulated driving performance and blink duration: examining

individual differences. Journal of sleep research, 15(1), pp. 47-53.

126

IWAMOTO, K., TAKAHASHI, M., NAKAMURA, Y., KAWAMURA, Y., ISHIHARA, R.,

UCHIYAMA, Y., EBE, K., NODA, A., NODA, Y. and YOSHIDA, K., 2008. The

effects of acute treatment with paroxetine, amitriptyline, and placebo on driving

performance and cognitive function in healthy Japanese subjects: A double‐blind

crossover trial. Human Psychopharmacology: Clinical and Experimental, 23(5), pp.

399-407.

JENSSEN, R., ERDOGMUS, D., PRINCIPE, J.C. and ELTOFT, T., 2007. The laplacian

classifier. Signal Processing, IEEE Transactions on, 55(7), pp. 3262-3271.

JI, Q. and YANG, X., 2002. Real-time eye, gaze, and face pose tracking for monitoring

driver vigilance. Real-Time Imaging, 8(5), pp. 357-377.

JI, Q., ZHU, Z. and LAN, P., 2004. Real-time nonintrusive monitoring and prediction of

driver fatigue. Vehicular Technology, IEEE Transactions on, 53(4), pp. 1052-1068.

JI, Q., LAN, P. and LOONEY, C., 2006. A probabilistic framework for modeling and real-

time monitoring human fatigue. Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, 36(5), pp. 862-875.

JIAO, K., LI, Z., CHEN, M., WANG, C. and QI, S., 2004. Effect of different vibration

frequencies on heart rate variability and driving fatigue in healthy

drivers. International archives of occupational and environmental health, 77(3), pp.

205-212.

JOHNS, M., 2003. The amplitude-velocity ratio of blinks: a new method for monitoring

drowsiness. Sleep, 26, pp. A51.

JOHNSON, R.R., POPOVIC, D.P., OLMSTEAD, R.E., STIKIC, M., LEVENDOWSKI,

D.J. and BERKA, C., 2011. Drowsiness/alertness algorithm development and

validation using synchronized EEG and cognitive performance to individualize a

generalized model. Biological psychology, 87(2), pp. 241-250.

JUNG, T., HUANG, K., CHUANG, C., CHEN, J., KO, L., CHIU, T. and LIN, C., 2010.

Arousing feedback rectifies lapse in performance and corresponding EEG power

spectrum,Engineering in Medicine and Biology Society (EMBC), 2010 Annual

International Conference of the IEEE 2010, IEEE, pp. 1792-1795.

JUNG, T., MAKEIG, S., HUMPHRIES, C., LEE, T., MCKEOWN, M.J., IRAGUI, V. and

SEJNOWSKI, T.J., 2000. Removing electroencephalographic artifacts by blind

source separation.Psychophysiology, 37(2), pp. 163-178.

127

KANG, H., 2013. Various Approaches for Driver and Driving Behavior Monitoring: A

Review, Computer Vision Workshops (ICCVW), 2013 IEEE International

Conference on 2013, IEEE, pp. 616-623.

KHANDOKER, A.H., PALANISWAMI, M. and KARMAKAR, C.K., 2009. Support vector

machines for automated recognition of obstructive sleep apnea syndrome from ECG

recordings.Information Technology in Biomedicine, IEEE Transactions on, 13(1),

pp. 37-48.

KHARDI, S. and VALLET, M., 1994. DRIVERS VIGILANCE. ANALYSIS OF

DIFFERENCES IN VIGILANCE STATES ASSESSMENT BY PHYSIOLOGICAL

AND MECHANICAL INDICATORS,TOWARDS AN INTELLIGENT

TRANSPORT SYSTEM. PROCEEDINGS OF THE FIRST WORLD CONGRESS

ON APPLICATIONS OF TRANSPORT TELEMATICS AND INTELLIGENT

VEHICLE-HIGHWAY SYSTEMS, NOVEMBER 30-3RD DECEMBER 1994,

PARIS. VOLUME 4 1994.

KHUSHABA, R.N., KODAGODA, S., LAL, S. and DISSANAYAKE, G., 2011. Driver

drowsiness classification using fuzzy wavelet-packet-based feature-extraction

algorithm. Biomedical Engineering, IEEE Transactions on, 58(1), pp. 121-131.

KIRCHER, K. and AHLSTROM, C., 2010. Predicting visual distraction using driving

performance data, Annals of Advances in Automotive Medicine/Annual Scientific

Conference 2010, Association for the Advancement of Automotive Medicine, pp. 333.

KRAJEWSKI, J., GOLZ, M. and SOMMER, D., 2009. Detecting sleepy drivers by pattern

recognition based analysis of steering wheel behaviour. Der Mensch im Mittelpunkt

technischer Systeme, , pp. 288-291.

KRAJEWSKI, J., SOMMER, D., TRUTSCHEL, U., EDWARDS, D. and GOLZ, M., 2009.

Steering wheel behavior based estimation of fatigue, Proceedings of the Fifth

International Driving Symposium on Human Factors in Driver Assessment, Training

and Vehicle Design 2009, pp. 118-124.

LAL, S.K. and CRAIG, A., 2001. Electroencephalography activity associated with driver

fatigue: Implications for a fatigue countermeasure device. Journal of

Psychophysiology, 15(3), pp. 183.

LAND, M. and HORWOOD, J., 1995. Which parts of the road guide

steering? Nature, 377(6547), pp. 339-340.

LAND, M.F. and LEE, D.N., 1994. Where do we look when we steer. Nature, .

128

LAWOYIN, S., FEI, D.Y. and BAI, O., in press. Accelerometer-based steering wheel

movement monitoring for drowsy driving detection. Proceedings of the Institution of

Mechanical Engineers, Part D: Journal of Automobile Engineering,.

LEAVITT, J., SIDERIS, A. and BOBROW, J.E., 2006. High bandwidth tilt measurement

low-cost sensors. Mechatronics, IEEE/ASME Transactions on, 11(3), pp. 320-327.

LEE, H., RYU, S. and LEE, J., 2009. Optimal posture of Mobile Inverted Pendulum using

a single gyroscope and tilt sensor, ICCAS-SICE, 2009 2009, IEEE, pp. 865-870.

LEUFKENS, T., RAMAEKERS, J., DE WEERD, A., RIEDEL, W. and VERMEEREN,

A., 2014. Residual effects of zopiclone 7.5 mg on highway driving performance in

insomnia patients and healthy controls: a placebo controlled crossover

study. Psychopharmacology, , pp. 1-14.

LI, G. and CHUNG, W., 2013. Detection of driver drowsiness using wavelet analysis of

heart rate variability and a support vector machine classifier. Sensors, 13(12), pp.

16494-16511.

LI, K., SIMONS-MORTON, B.G. and HINGSON, R., 2013. Impaired-driving prevalence

among US high school students: Associations with substance use and risky driving

behaviors.American Journal of Public Health, 103(11), pp. e71-e77.

LI, X., ZHAO, Q., LIU, L., PENG, H., QI, Y., MAO, C., FANG, Z., LIU, Q. and HU, B.,

2012. Improve Affective Learning with EEG Approach. Computing and

Informatics, 29(4), pp. 557-570.

LIANG, S., LIN, C., WU, R., CHEN, Y., HUANG, T. and JUNG, T., 2006. Monitoring

driver's alertness based on the driving performance estimation and the EEG power

spectrum analysis,Engineering in Medicine and Biology Society, 2005. IEEE-EMBS

2005. 27th Annual International Conference of the 2006, IEEE, pp. 5738-5741.

LIANG, W.C., YUAN, J., SUN, D.C. and LIN, M.H., 2009. Changes in physiological

parameters induced by indoor simulated driving: Effect of lower body exercise at

mid-term break.Sensors, 9(9), pp. 6913-6933.

LIN, C., HUANG, K., CHAO, C., CHEN, J., CHIU, T., KO, L. and JUNG, T., 2010. Tonic

and phasic EEG and behavioral changes induced by arousing

feedback. NeuroImage, 52(2), pp. 633-642.

129

LIN, C., HUANG, K., CHUANG, C., KO, L. and JUNG, T., 2013. Can arousing feedback

rectify lapses in driving? Prediction from EEG power spectra. Journal of neural

engineering, 10(5), pp. 056024.

LITTNER, M.R., KUSHIDA, C., WISE, M., DAVILA, D.G., MORGENTHALER, T.,

LEE-CHIONG, T., HIRSHKOWITZ, M., DANIEL, L., BAILEY, D. and BERRY,

R.B., 2005. Practice parameters for clinical use of the multiple sleep latency test and

the maintenance of wakefulness test. Sleep, 28(1), pp. 113-121.

LIU, C.C., HOSKING, S.G. and LENNÉ, M.G., 2009. Predicting driver drowsiness using

vehicle measures: Recent insights and future challenges. Journal of Safety

Research, 40(4), pp. 239-245.

LIU, N., CHIANG, C. and HSU, H., 2013. Improving driver alertness through music

selection using a mobile EEG to detect brainwaves. Sensors, 13(7), pp. 8199-8221.

LIU, Y., 2001. Comparative study of the effects of auditory, visual and multimodality

displays on drivers' performance in advanced traveller information

systems. Ergonomics, 44(4), pp. 425-442.

LOH, S., LAMOND, N., DORRIAN, J., ROACH, G. and DAWSON, D., 2004. The validity

of psychomotor vigilance tasks of less than 10-minute duration. Behavior Research

Methods, Instruments, & Computers, 36(2), pp. 339-346. LUCZAK, S., OLEKSIUK,

W. and BODNICKI, M., 2006. Sensing tilt with MEMS accelerometers. Sensors

Journal, IEEE, 6(6), pp. 1669-1675.

LÖTTERS, J., SCHIPPER, J., VELTINK, P., OLTHUIS, W. and BERGVELD, P., 1998.

Procedure for in-use calibration of triaxial accelerometers in medical applications.

Sensors and Actuators A: Physical, 68(1), pp. 221-228.

LUINGE, H., VELTINK, P. and BATEN, C., 1999. Estimating orientation with gyroscopes

and accelerometers. Technology and health care, 7(6), pp. 455-459.

ALEXANDER, S. CONSTANTIN, F.A. DOUGLAS, P.H. and Isabelle, G., 2011. “Support

Vector Machines (SVMs) for Binary Classification: Classical Formulation” in A

Gentle Introduction to Support Vector Machines in Biomedicine: Theory and

methods. World Scientific.

MACLEAN, A.W., DAVIES, D.R. and THIELE, K., 2003. The hazards and prevention of

driving while sleepy. Sleep medicine reviews, 7(6), pp. 507-521.

130

MAHACHANDRA, M., SUTALAKSANA, I.Z. and SURYADI, K., 2012. Sensitivity of

heart rate variability as indicator of driver sleepiness, Network of Ergonomics

Societies Conference (SEANES), 2012 Southeast Asian 2012, IEEE, pp. 1-6.

MALIK, S.W. and KAPLAN, J., 2005. Sleep deprivation. Primary Care: Clinics in Office

Practice, 32(2), pp. 475-490.

MARDI, Z., ASHTIANI, S.N.M. and MIKAILI, M., 2011. EEG-based Drowsiness Detection

for Safe Driving Using Chaotic Features and Statistical Tests. Journal of medical

signals and sensors, 1(2), pp. 130.

MARTÍN DE DIEGO, I., S SIORDIA, O., CRESPO, R., CONDE, C. and CABELLO, E.,

2013. Analysis of hands activity for automatic driving risk detection. Transportation

Research Part C: Emerging Technologies, 26, pp. 380-395.

MCDONALD, A.D., LEE, J.D., SCHWARZ, C. and BROWN, T.L., 2013. Steering in a

Random Forest Ensemble Learning for Detecting Drowsiness-Related Lane

Departures. Human Factors: The Journal of the Human Factors and Ergonomics

Society, , pp. 0018720813515272.

MERAT, N. and JAMSON, A.H., 2013. The effect of three low-cost engineering treatments

on driver fatigue: A driving simulator study. Accident Analysis & Prevention, 50, pp.

8-15.

MILLER, H.A. and HARRISON, D.C., 1974. Biomedical electrode technology: theory and

practice. Academic Pr.

MIYAJI, M., KAWANAKA, H. and OGURI, K., 2009. Driver's cognitive distraction

detection using physiological features by the adaboost, Intelligent Transportation

Systems, 2009. ITSC'09. 12th International IEEE Conference on 2009, IEEE, pp. 1-

6.

MOLLER, H.J., KAYUMOV, L., BULMASH, E.L., NHAN, J. and SHAPIRO, C.M., 2006.

Simulator performance, microsleep episodes, and subjective sleepiness: normative

data using convergent methodologies to assess driver drowsiness. Journal of

psychosomatic research, 61(3), pp. 335-342.

MORTAZAVI, A., ESKANDARIAN, A. and SAYED, R., 2009. Effect of drowsiness on

driving performance variables of commercial vehicle drivers. International Journal of

Automotive Technology, 10(3), pp. 391-404.

131

MURUGAPPAN, M., WALI, M.K., AHMMAD, R.B. and MURUGAPPAN, S., 2013.

Subtractive fuzzy classifier based driver drowsiness levels classification using

EEG, Communications and Signal Processing (ICCSP), 2013 International

Conference on 2013, IEEE, pp. 159-164.

MUZET, A., PÉBAYLE, T., LANGROGNET, J. and OTMANI, S., 2003. AWAKE pilot

study no. 2: Testing steering grip sensor measures. CEPA, Gatineau, QC, Canada,

Tech.Rep.IST-2000-28062, .

National Sleep Foundation White Paper, National Sleep Foundation, [online] 2009,

http://www.sleepfoundation.org/article/white-papers/national-sleep-foundation-

white-paper (Accessed: 1 February 2014).

NAKAYAMA, O., FUTAMI, T., NAKAMURA, T. and BOER, E.R., 1999. Development of

a steering entropy method for evaluating driver workload. SAE transactions, 108(6;

PART 1), pp. 1686-1695.

NOACHTAR, S., BINNIE, C., EBERSOLE, J., MAUGUIERE, F., SAKAMOTO, A. and

WESTMORELAND, B., 1999. A glossary of terms most commonly used by clinical

electroencephalographers and proposal for the report form for the EEG findings. The

International Federation of Clinical Neurophysiology. Electroencephalography and

clinical neurophysiology.Supplement, 52, pp. 21-41.

O’HANLON, J.F. and KELLEY, G.R., 1977. Comparison of performance and physiological

changes between drivers who perform well and poorly during prolonged vehicular

operation.Vigilance. Springer, pp. 87-109.

OGAWA, K. and SHIMOTANI, M., 1997. A Drowsiness detection system. Mitsubishi

Electric Advance, , pp. 13-16.

ORON-GILAD, T. and RONEN, A., 2007. Road characteristics and driver fatigue: a

simulator study. Traffic Injury Prevention, 8(3), pp. 281-289.

ÖSTLUND, J., NILSSON, L., CARSTEN, O., MERAT, N., JAMSON, H., JAMSON, S.,

MOUTA, S., CARVALHAIS, J., SANTOS, J. and ANTTILA, V., 2004. Deliverable

2-HMI and safety-related driver performance. Human Machine Interface And the

Safety of Traffic in Europe. Project HASTE GRD1/2000/25361 S, 12.

OTMANI, S., ROGÉ, J. and MUZET, A., 2005. Sleepiness in professional drivers: Effect of

age and time of day. Accident Analysis & Prevention, 37(5), pp. 930-937.

132

PAPADELIS, C., CHEN, Z., KOURTIDOU-PAPADELI, C., BAMIDIS, P.D.,

CHOUVARDA, I., BEKIARIS, E. and MAGLAVERAS, N., 2007. Monitoring

sleepiness with on-board electrophysiological recordings for preventing sleep-deprived

traffic accidents. Clinical Neurophysiology, 118(9), pp. 1906-1922.

PATEL, M., LAL, S., KAVANAGH, D. and ROSSITER, P., 2011. Applying neural

network analysis on heart rate variability data to assess driver fatigue. Expert

Systems with Applications,38(6), pp. 7235-7242.

PENG, Y., BOYLE, L.N. and HALLMARK, S.L., 2012. Driver's lane keeping ability with

eyes off road: Insights from a naturalistic study. Accident Analysis & Prevention, .

PETERS, R.D., WAGNER, E., ALICANDRI, E., FOX, J.E., THOMAS, M.L., THORNE,

D.R., SING, H.C. and BALWINSKI, S.M., 1999. Effects of partial and total sleep

deprivation on driving performance. Public Roads, 62(4),.

PHILIP, P., 2005. Sleepiness of occupational drivers. Industrial Health, 43(1), pp. 30-33.

PHILIP, P., TAILLARD, J., MOORE, N., DELORD, S., VALTAT, C., SAGASPE, P. and

BIOULAC, B., 2006. The Effects of Coffee and Napping on Nighttime Highway

DrivingA Randomized Trial. Annals of Internal Medicine, 144(11), pp. 785-791.

PICOT, A., CHARBONNIER, S. and CAPLIER, A., 2010. Drowsiness detection based on

visual signs: blinking analysis based on high frame rate video, Instrumentation and

Measurement Technology Conference (I2MTC), 2010 IEEE 2010, IEEE, pp. 801-804.

POH, M., MCDUFF, D.J. and PICARD, R.W., 2011. Advancements in noncontact,

multiparameter physiological measurements using a webcam. Biomedical

Engineering, IEEE Transactions on, 58(1), pp. 7-11.

POWELL, N.B. and CHAU, J.K., 2010. Sleepy driving. Medical Clinics of North

America, 94(3), pp. 531-540.

RAIDY, D.J. and SCHARFF, L.F., 2005. EFFECTS OF SLEEP DEPRIVATION ON

AUDITORY AND VISUAL MEMORY TASKS 1, 2. Perceptual and motor

skills, 101(2), pp. 451-467.

RAMAEKERS, J.G., 2003. Antidepressants and driver impairment: empirical evidence from

a standard on-the-road test. The Journal of Clinical Psychiatry, 64(1), pp. 20-29.

RAU, P., 1996. NHTSA’s Drowsy driver research program. Washington DC: National

Highway Traffic Safety Administration, .

133

REAM, E. and RICHARDSON, A., 1996. Fatigue: a concept analysis. International Journal

of Nursing Studies, 33(5), pp. 519-529.

RODRIGUEZ-IBANEZ, N., GARCIA-GONZALEZ, M., FERNANDEZ-CHIMENO, M. and

RAMOS-CASTRO, J., 2011. Drowsiness detection by thoracic effort signal analysis

in real driving environments, Engineering in Medicine and Biology Society, EMBC,

2011 Annual International Conference of the IEEE 2011, IEEE, pp. 6055-6058.

ROSEY, F., AUBERLET, J., BERTRAND, J. and PLAINCHAULT, P., 2008. Impact of

perceptual treatments on lateral control during driving on crest vertical curves: a

driving simulator study. Accident Analysis & Prevention, 40(4), pp. 1513-1523.

SAHAYADHAS, A., SUNDARAJ, K. and MURUGAPPAN, M., 2013. Drowsiness

detection during different times of day using multiple features. Australasian Physical

& Engineering Sciences in Medicine, , pp. 1-8.

SAHAYADHAS, A., SUNDARAJ, K. and MURUGAPPAN, M., 2012. Detecting driver

drowsiness based on sensors: a review. Sensors, 12(12), pp. 16937-16953.

SAKAGUCHI, T., KANAMORI T., KATAYOSE H., Human Motion Capture by

Integrating Gyroscopes and Accelerometers. International Conference on Multisensor

Fusion and Integration for Intelligent Systems, 1996.

SASADA, K., IWAMOTO, K., KAWANO, N., KOHMURA, K., YAMAMOTO, M.,

ALEKSIC, B., EBE, K., NODA, Y. and OZAKI, N., 2013. Effects of repeated dosing

with mirtazapine, trazodone, or placebo on driving performance and cognitive

function in healthy volunteers. Human Psychopharmacology: Clinical and

Experimental, .

SAYED, R. and ESKANDARIAN, A., 2001. Unobtrusive drowsiness detection by neural

network learning of driver steering. Proceedings of the Institution of Mechanical

Engineers, Part D: Journal of Automobile Engineering, 215(9), pp. 969-975.

SELLERS, E.W., TURNER, P., SARNACKI, W.A., MCMANUS, T., VAUGHAN, T.M.

and MATTHEWS, R., 2009. A novel dry electrode for brain-computer

interface. Human-Computer Interaction. Novel Interaction Methods and

Techniques. Springer, pp. 623-631.

SERRETTI, A., CALATI, R., GORACCI, A., DI SIMPLICIO, M., CASTROGIOVANNI,

P. and DE RONCHI, D., 2010. Antidepressants in healthy subjects: What are the

psychotropic/psychological effects? European Neuropsychopharmacology, 20(7), pp.

433-453.

134

SHARBROUGH, F., CHATRIAN, G., LESSER, R., LÜDERS, H., NUWER, M. and

PICTON, T., 1991. American Electroencephalographic Society guidelines for

standard electrode position nomenclature. J.Clin.Neurophysiol, 8(2), pp. 200-202.

SHARWOOD, L.N., ELKINGTON, J., STEVENSON, M., GRUNSTEIN, R.R.,

MEULENERS, L., IVERS, R.Q., HAWORTH, N., NORTON, R. and WONG, K.K.,

2012. Assessing sleepiness and sleep disorders in Australian long-distance commercial

vehicle drivers: self-report versus an “at home” monitoring device. Sleep, 35(4), pp.

469.

SHERMAN, P.J., ELLING, M. and BREKKE, M., 1996. The potential of steering wheel

information to detect driver drowsiness and associated lane departure.

SHIN, H., JUNG, S., KIM, J. and CHUNG, W., 2010. Real time car driver's condition

monitoring system, Sensors, 2010 IEEE 2010, IEEE, pp. 951-954.

SHIN, D., SAKAI, H. and UCHIYAMA, Y., 2011. Slow eye movement detection can

prevent sleep‐related accidents effectively in a simulated driving task. Journal of

Sleep Research,20(3), pp. 416-424.

SIGARI, M., FATHY, M. and SORYANI, M., 2013. A Driver Face Monitoring System for

Fatigue and Distraction Detection. International Journal of Vehicular

Technology, 2013.

SIORDIA, O., DE DIEGO, I., CONDE, C. and CABELLO, E., 2011. Combining traffic

safety knowledge for driving risk detection, Intelligent Transportation Systems

(ITSC), 2011 14th International IEEE Conference on 2011, IEEE, pp. 564-569.

SIVASANKARI, N. and THANUSHKODI, K., 2009. Automated epileptic seizure detection

in EEG signals using fast-ICA and neural network. Int.J.Adv.Soft

Comput.Appl, 1(2), pp. 91-104.

SMOLENSKY, M.H., DI MILIA, L., OHAYON, M.M. and PHILIP, P., 2011. Sleep

disorders, medical conditions, and road accident risk. Accident Analysis &

Prevention, 43(2), pp. 533-548.

SPENCE, C. and DRIVER, J., 1998. Inhibition of return following an auditory cue The role

of central reorienting events. Experimental Brain Research, 118(3), pp. 352-360.

STEVENS, R.H., GALLOWAY, T. and BERKA, C., 2007. EEG-related changes in

cognitive workload, engagement and distraction as students acquire problem solving

skills. User Modeling 2007. Springer, pp. 187-196.

135

STEVENS, R.H., GALLOWAY, T. and BERKA, C., 2007. Exploring neural trajectories of

scientific problem solving skill acquisition. Foundations of Augmented

Cognition. Springer, pp. 400-408.

STONE, P., 2004. DROWSINESS AND FATIGUE. Management of advanced disease, , pp.

119.

STUTTS, J.C., WILKINS, J.W. and VAUGHN, B.V., 1999. Why do people have drowsy

driving crashes. Input from drivers who just did.Washington: AAA Foundation for

Traffic Safety, .

SUBASI, A., 2007. EEG signal classification using wavelet feature extraction and a mixture

of expert model. Expert Systems with Applications, 32(4), pp. 1084-1093.

SUBASI, A., 2005. Epileptic seizure detection using dynamic wavelet network. Expert

Systems with Applications, 29(2), pp. 343-355.

SUCIU, C.V., TOBIISHI, T. and MOURI, R., 2011. Modeling and simulation of a vehicle

suspension with variable damping and elastic properties versus the excitation

frequency, P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2011

International Conference on 2011, IEEE, pp. 402-407.

TACK, B.B., 1990. Self‐reported fatigue in rheumatoid arthritis a pilot study. Arthritis &

Rheumatism, 3(3), pp. 154-157.

TAHERI, B.A., KNIGHT, R.T. and SMITH, R.L., 1994. A dry electrode for EEG

recording. Electroencephalography and Clinical Neurophysiology, 90(5), pp. 376-383.

THIFFAULT, P. and BERGERON, J., 2003. Monotony of road environment and driver

fatigue: a simulator study. Accident Analysis & Prevention, 35(3), pp. 381-391.

TING, P., HWANG, J., DOONG, J. and JENG, M., 2008. Driver fatigue and highway

driving: A simulator study. Physiology & Behavior, 94(3), pp. 448-453.

TORSVALL, L. and ÅAKERSTEDT, T., 1987. Sleepiness on the job: continuously

measured EEG changes in train drivers. Electroencephalography and Clinical

Neurophysiology, 66(6), pp. 502-511.

State Law Limiting Taxi Driver Hours Violated in Coachella Valley,

TransportationReviews, [online] 2010,

http://transportationreviews.com/news/2010/11/state-law-limiting-taxi-driver-hours-

violated-in-coachella-valley/ (Accessed: 1 February 2014).

136

Denver Taxi Companies Allegedly Violated State Maximum-Hours Rule,

TransportationReviews, [online] 2010,

http://transportationreviews.com/news/2010/09/denver-taxi-companies-allegedly-

violated-state-maximum-hours-rule/ (Accessed: 1 February 2014).

TSUCHIDA, A., BHUIYAN, M.S. and OGURI, K., 2009. Estimation of drowsiness level

based on eyelid closure and heart rate variability, Engineering in Medicine and

Biology Society, 2009. EMBC 2009. Annual International Conference of the

IEEE 2009, IEEE, pp. 2543-2546.

 Hours of service of drivers, US Department of Transportation (USDOT), [online] 2013,

http://www.fmcsa.dot.gov/rules-

regulations/administration/fmcsr/fmcsrguidedetails.aspx?menukey=395 (Accessed: 1

February 2014).

U.S. Department of Transportation (USDOT), “Advanced Driver Fatigue Research.”

Washington: D.C. U.S. Department of Transportation, (2007): Print.

VANLAAR, W., SIMPSON, H., MAYHEW, D. and ROBERTSON, R., 2008. Fatigued and

drowsy driving: A survey of attitudes, opinions and behaviors. Journal of Safety

Research, 39(3), pp. 303-309.

VAZ FRAGOSO, C.A., VAN NESS, P.H., ARAUJO, K.L., IANNONE, L.P. and

MAROTTOLI, R.A., 2013. Sleep Disturbances and Driving Practices of Older

Drivers. Journal of the American Geriatrics Society, 61(10), pp. 1730-1737.

VELDHUIJZEN, D.S., VAN WIJCK, A., WILLE, F., VERSTER, J., KENEMANS, J.,

KALKMAN, C., OLIVIER, B. and VOLKERTS, E.R., 2006. Effect of chronic

nonmalignant pain on highway driving performance. Pain, 122(1), pp. 28-35.

VERSTER, J.C. and ROTH, T., 2011. Standard operation procedures for conducting the

on-the-road driving test, and measurement of the standard deviation of lateral

position (SDLP).International Journal of General Medicine, 4, pp. 359.

VIRKKALA, J., HASAN, J., VÄRRI, A., HIMANEN, S. and HÄRMÄ, M., 2007. The use

of two-channel electro-oculography in automatic detection of unintentional sleep

onset. Journal of neuroscience methods, 163(1), pp. 137-144.

WANG, L., WU, X., BA, B. and DONG, W., 2006. A Vision-Based Method to Detect

PERCLOS Features. Computer Engineering & Science, 6, pp. 017.

137

WANG, T. and SHI, P., 2005. Yawning detection for determining driver drowsiness, VLSI

Design and Video Technology, 2005. Proceedings of 2005 IEEE International

Workshop on2005, IEEE, pp. 373-376.

WEILER, J.M., BLOOMFIELD, J.R., WOODWORTH, G.G., GRANT, A.R., LAYTON,

T.A., BROWN, T.L., MCKENZIE, D.R., BAKER, T.W. and WATSON, G.S., 2000.

Effects of Fexofenadine, Diphenhydramine, and Alcohol on Driving PerformanceA

Randomized, Placebo-Controlled Trial in the Iowa Driving Simulator. Annals of

Internal Medicine, 132(5), pp. 354-363.

WIERWILLE, W.W. and ELLSWORTH, L.A., 1994. Evaluation of driver drowsiness by

trained raters. Accident Analysis & Prevention, 26(5), pp. 571-581.

WIERWILLE, W., 1999. Historical perspective on slow eyelid closure: Whence

PERCLOS, Technical Proceedings of Ocular Measures of Driver Alertness

Conference, Herndon, VA.(FHWA Technical Report No. MC-99-136). Washington,

DC: Federal Highway Administration, Office of Motor Carrier and Highway

Safety 1999, pp. 31-53.

WIERWILLE, W., HANOWSKI, R., OLSON, R., DINGES, D., PRICE, N., MAISLIN, G.,

POWELL IV, J., ECKER, A., MALLIS, M. and SZUBA, M., 2003. NHTSA drowsy

driver detection and interface project-Final report. Contract No.DTNH22-D-00-

07007, Task Order, 1.

WILKINSON, R.T. and HOUGHTON, D., 1982. Field test of arousal: a portable reaction

timer with data storage. Human Factors: The Journal of the Human Factors and

Ergonomics Society, 24(4), pp. 487-493.

WILLIAMSON, A.M. and FEYER, A., 2000. Moderate sleep deprivation produces

impairments in cognitive and motor performance equivalent to legally prescribed

levels of alcohol intoxication. Occupational and environmental medicine, 57(10), pp.

649-655.

WILLIAMSON, A., LOMBARDI, D.A., FOLKARD, S., STUTTS, J., COURTNEY, T.K.

and CONNOR, J.L., 2011. The link between fatigue and safety. Accident Analysis &

Prevention, 43(2), pp. 498-515.

WINNINGHAM, M.L., NAIL, L.M., BURKE, M.B., BROPHY, L., CIMPRICH, B.,

JONES, L.S., PICKARD-HOLLEY, S., RHODES, V., ST PIERRE, B. and BECK,

S., 1994. Fatigue and the cancer experience: the state of the knowledge. Oncology

nursing forum 1994, pp. 23.

138

XIA, Q., SONG, Y. and ZHU, X., 2008. The research development on driving fatigue based

on perclos. Techniques of Automation and Applications, 6, pp. 013.

YABUTA, K., IIZUKA, H., YANAGISHIMA, T., KATAOKA, Y. and SENO, T., 1985.

The development of drowsiness warning devices, Proceedings 10 th International

Technical Conference on Experimental Safety Vehicles, Washington 1985.

YANG, B. and HUANG, Y., 2005. A study on drowsy driver monitor system using

perclos. Contr Autom, 21, pp. 119-121.

YANG, G., LIN, Y. and BHATTACHARYA, P., 2010. A driver fatigue recognition model

based on information fusion and dynamic Bayesian network. Information

Sciences, 180(10), pp. 1942-1954.

YANG, M., KRIEGMAN, D.J. and AHUJA, N., 2002. Detecting faces in images: A

survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(1),

pp. 34-58.

YAZDANI, A., EBRAHIMI, T. and HOFFMANN, U., 2009. Classification of EEG signals

using Dempster Shafer theory and a k-nearest neighbor classifier, Neural

Engineering, 2009. NER'09. 4th International IEEE/EMBS Conference on 2009,

IEEE, pp. 327-330.

YOKOYAMA, M., OGURI, K. and MIYAJI, M., 2008. Effect of Sound Pressure Levels of

Music on Driver’s Drowsiness, 15th World Congress on Intelligent Transport Systems

and ITS America's 2008 Annual Meeting 2008.

YOUNG, L.R. and SHEENA, D., 1975. Eye-movement measurement techniques. American

Psychologist, 30(3), pp. 315.

ZHANG, X., ZHAO, X., DU, H. and RONG, J., 2013. A Study on the Effects of Fatigue

Driving and Drunk Driving on Drivers’ Physical Characteristics. Traffic injury

prevention, (just-accepted),.

ZHANG, Z. and ZHANG, J., 2006. Driver fatigue detection based intelligent vehicle

control, Pattern Recognition, 2006. ICPR 2006. 18th International Conference

on 2006, IEEE, pp. 1262-1265.

ZHAO, S., XU, G. and TAO, T., 2009. Detecting of Driver's Drowsiness Using

Multiwavelet Packet Energy Spectrum, Image and Signal Processing, 2009. CISP'09.

2nd International Congress on 2009, IEEE, pp. 1-5.

139

Appendices

Appendix 1: Detailed literature review

A1.1 Limitations in Current Detection Technologies - Ground Truth

Ground truth when it comes to drowsiness is very difficult to determine.

Fragoso et al. (2013) used baseline measures for driving behaviors which included

medical history, daily driving mileage, Insomnia Severity Index (ISI), Epworth

Sleepiness Scale (ESS), and Sleep Apnea Clinical Score (SACS).

Daza et al. (2014) proposed a method termed “Supervised KSS” for generating

ground truth by using binary classification of KSS scores. The scores were divided

into alert (1-6) or drowsy (8-9) with responses of 7 discarded. A 3 expert panel voted

on ground truth based upon KSS scores, visual observation, and vehicle sensor data.

Many researchers have used EEG as ground truth for drowsiness, since the

alpha bands and theta bands yield direct brain indicators of sleep and drowsiness.

It was important, during the literature review portion of this dissertation, to

stress the relevance of ground truth when interpreting the results cited in this

review. Each result was understood to be relative to the participant datasets used for

analysis and well as the data processing methods used. An 82% drowsiness detection

accuracy in one experimental setting was not considered necessarily better than an

80% drowsiness detection accuracy in another; the results were all read contextually.

Additionally, the same data sets obtained from different technologies (EEG, Eye-

Closures, SWM, SDLP) were shown to yield different classification accuracies

140

depending partly on the efficacy of the technology, but also partly upon the method

subsequently used for data processing, classification, the machine learning algorithms

used, or the optimizations performed. The reported classification accuracies in and of

themselves did not immediately suggest that one data collection technology was

superior to the other. In general, accuracy was the ratio of the number correct

classifications to the total number of classifications. False positive rates were

generally the rate of positive drowsiness classifications in an individual known to not

be drowsy.

141

A1.2: Referenced Literature Reviews on drowsy driving detection

Table A1.2. Drowsy Driving Method Reviews

Ref. Review focus
Dissimilarity to independent

review

Sahayadha

s et al.

(2012).

The prior review is focused on sensor

technologies

The prior review is limited to

sensors. The current independent

review seeks to cover a general

overview of technologies.

Brown,

(1997)

The prior review contributes

predictions on future drowsy driving

technologies

The current review describes how

the predictions may have

materialized.

Kang

(2013)

The prior review was focused on the

driver and his/her driving behaviors

including driver distractions and

other unsafe practices.

The current review does not

emphasize driver distraction, rather

the focus is on driver drowsiness

detection technologies.

Powell et

al. (2010)

This prior review is based on a

discussion about sleepiness behind

the wheel and its risks. The review

describes the history of the drowsy

driving problem, as well as causes of

drowsy driving. Legal case studies

were discussed and the comparative

effects of alcohol were discussed.

A historical discussion on drowsy

driving. The current review

provides a focus on the development

and evolution of technologies which

formed around the problem of

drowsy driving.

142

Liu et al.

(2009)

Liu et al. (2009) reviewed the current

state of knowledge to determine if

vehicle based measures such as SDLP

are a reliable predictor of drowsiness

in real time. It described the methods

of drowsiness manipulation that have

been used in peer-reviewed studies,

and then gave information such as

the vehicle-based measures used to

quantify drowsiness, the driving tasks

involved, and the outcome of the

vehicle based measure.

Liu et al. (2009) covered the current

state of drowsy driving detection,

however, the technologies behind

them were not mentioned except

when pertinent for basic

understanding of the review. The

current review is focused primarily

on technologies.

MacLean

et al.

(2003)

MacLean et al. (2003) wrote a review

on the current state of drowsy

driving prevention. It discussed the

long term solutions to drowsy driving

through educating drivers about sleep

deprivation, and how to help drivers

identify drowsy driving. It also

discussed legislation aimed to curb

drowsy driving.

The current review does not focus

on preventative measures of

engaging drivers such as education

but rather aims instead to describe

the interplay between technological

innovations and drowsy driving.

Dinges et

al. (2005)

The prior study reviewed

technologies to assess the effects of

feedback from a

group of fatigue management

technologies (FMT) on alertness

The current review does not test

any technologies, it is only intended

as a review of technologies.

Williamson

et al.,

(2011)

The review aimed to examine

evidence for the link between fatigue

and safety, especially in transport

and occupational settings.

The current review examines

fatigue, and safety, based around

the technologies that detect

drowsiness.

143

Smolensky

et al.,

(2011)

Smolensky et al. (2011) compiled a

review on the effects of sleep

disorders and medical conditions on

excessive daytime fatigue, which lead

to an increased accident risk.

The current review benefits from

analyses of sleep disorders because

an understanding of them leads to a

better insight of how to apply

technologies to detect sleep

deprived drowsiness.

Balkin et

al., (2011)

This review discussed the challenges

and opportunities of technological

approaches to fatigue management

including pre-work tests for fitness-

for-duty assessments. It focused on

the practical applications of the

technology

The current review also has a

technological focus. However, rather

than overviewing chiefly primary

technologies, a wider view of the

evolution of all related technologies

is provided.

144

A1.3: Existing physiological signal receivers

Researchers have made use of a wide variety of physiological signal receivers

to collect and amplify EEG signals. Portable EEG devices have been employed to

reduce the intrusiveness of EEG readings. Liu et al. (Liu et al., 2013) adopted the

portable brainwave sensor by NeuroSky (San Jose, CA, USA) to collect data from

scalp location FP1. This device was wireless, portable and used dry electrode

transducers. It was also independently capable of processing raw brainwave data, and

is based upon an open platform with an interface that allows for the development of

compatible Android and iPhone applications. Other portable equipment such as the

B-Alert (Biopac, Goleta, CA) has provided portable EEG monitoring (Davis et al.,

2009; Stevens et al., 2007a; Stevens et al 2007b). The B-Alert is wireless and allows

researchers to monitor participants for EEG and heart rate (Brown et al., 2013;

Johnson et al., 2011). The B-Alert system has fixed sensor locations for three head

sizes (small, medium and large). The B-Alert X10 system included positions: Fz, F3,

F4, Cz, C3, C4, P3, P4, POz (positions depicted in Figure 16), as well as ECG

monitoring. Brown et al. (Brown et al., 2013) noted that the B-Alert X10 system

integrated the amplification, digitization and transmission of signals while being

worn on a single compact unit on the head. The same study noted that combining

the amplification and digitization of EEG close to the sensors and wireless

transmitter keeps signal quality high even in areas of high EMI interference.

145

Lin et al. (2013) used EEG to monitor the changes that occurred in the brain

after a drowsy driver received arousing feedback. Campagne et al. (2004) established

correlations between lower-frequency EEG changes and driving errors. Khushaba et

al. (2011) found that EEG channels were capable of achieving low error rates

(<10%) in drowsiness classification without any assistance from other methods. By

adding either EOG or ECG channels, the results showed further improvements in

reduction of error rates. Using EEG signals, Murugappan et al. (2013) extracted

wavelet based features which were then used to determine the drowsy states of

participants. Researchers observed via EEG that drivers had sleep bursts

accompanied by theta waves and K-complexes while they still had their eyes open,

something EOG and video monitoring might have missed. Furthermore, the drowsy

drivers were oblivious to the fact that they had been driving while asleep (O’Hanlon

and Kelley, 1977).

146

A1.4: Other researchers approaches

Table A1.4. Drowsiness detection technologies and their outcomes

Ref.
Approa

ch
Classification

subject

s

Sensor

Positive

outcome

measurement

Negative

outcome

measurement

Self-reported

limitations

Drowsiness

Validated

by

(Oslund et

al., 2004)
EEG Bilateral test

Not

reported
Electrode

True positive:

84.16%

False Positive:

19.59%

Eye blinks and

yawns would

improve

reliability

Not reported

(Kaur and

Kaur,

2013)

EEG
Neural

Network

Not

reported
Electrodes

True positive:

81.80%

False Positive:

18.20%

Only 25

channel EEG

limits accuracy

Not reported

(Chieh et

al., 2005)
EOG

Comparison to

threshold
10 Electrode

Detection rate

89.56%
Not reported Not reported webcam

(Hu and

Zheng,

2009)

EOG SVM classifier 37 Electrodes

accurately

detect sleepy:

86.67% very

sleepy: 100%

Wrong

detection:

16.67%

Only sleep-

deprived

subjects

included.

No data from

alert condition

KSS

EEG

(Arun et

al, 2012)

ECG

Quadratic

discriminant

analysis(QDA)

& KNN

Classifiers

15

Electrodes

IR

Camera

Drowsiness

classification:

100%

None specified

Normal state

classification

only 97.9%

1.5hr drive

(Li and

Chung,

2013)

HRV

(PPG)
SVM classifier 4

PPG

sensor

node

95% accuracy

95% sensitivity

95% selectivity

None reported None reported PERCLOS

(Liu et al.,

2013)
EEG

Integrated

ANN, SVM,

and kNN

40 Electrodes
Correctness:

81.3%

False positives:

23.9%

Classifiers need

3000

generations to

stabilize

Pre-trained

neural

network

(Sahayadh

as et al.,

2013)

HRV(E

CG)

EMG

Std dev, mean,

median, max,

min, energy

and LF/HF

ratio of HRV

15 Electrodes

ECG drowsy

detection:

(p<0.01).

EMG:

(p<0.001)

None reported

Facial

expressions

didn’t correlate

with KSS

Video

recording,

KSS

(Mardi et

al., 2011)
EEG ANN 10 Electrodes

classification

accuracy:

83.3%

None reported None reported

ESS,

Video

Monitor

(Rodrigue

z- Ibáñez,

2011)

Inductiv

e

thoracic

band

Thoracic Effort

Derived

Drowsiness

index (TEDD)

36
Electrodes

Webcam

Drowsy

sensitivity:

83.1%

Selectivity:

95.3%

None reported

Need further

work to avoid

band use

EEG

PERCLOS

External

Observer

(Picot et

al., 2010)
EOG

Fuzzy fusion of

EOG data
20 Electrodes

True positive:

81.70%

False positive:

13.40%
None reported

OSS

PERCLOS

(Damousis

et al.,

2009)

EOG
Fuzzy expert

system
44 Electrodes

92% accuracy

in accident

prediction

30% false

alarms

Include EEG

data in future

to improve

accuracy

Correct

Accident

prediction

147

(Khushab

a et al.,

2011)

EOG

ECG

EEG

Kernel based

LDA
31 Electrodes

97% accurate

drowsy

classification.

5.58%

Kernel spectral

regression

computationall

y expensive

Expert

observers rate

video

(Patel et

al., 2011)

HRV

(ECG)

Neural

Network
12 Electrodes

90% drowsy

classification
Not reported

limited data

set means

accuracy of

neural network

cannot be

entirely

validated

Not reported

(Krajewski

et al.,

2009)

SWM

Average of

linear kernel

SVM, radial

kernel SVM, 5-

nearest

neighbor,

decision tree &

logistic

regression

12

Simulator

-based

SWM

monitor

recognition

rate 86.1%

sensitivity

:77.4%;

specificity

93.3%

None reported

Need more

feature sets for

comparison in

future tests

KSS

(Dasgupta

et

al.,2013)

PERCL

OS

Haar – like

classifier (face)

SVM classifier

(eyes)

20 Camera

Eye state

classification:

97%

False

Positive:5.5%

Poor results for

drivers wearing

glasses

EEG

(Abtahi et

al., 2011)

Yawnin

g

Kalman Filter

LDA classifier

Not

reported
Camera Not reported Not reported

Lighting,

glasses, beard

affect readings

Not reported

(Flores et

al., 2011)

Eye

state
SVM

Not

reported
Camera

As high as

97.78% correct

eye closure

classification

Some face and

eye tracking

failures

Need stereo

vision to

improve future

outcomes

Videos of

driver eye

closures

Tsuchida

et al.

(2009)

Eyeblin

k

interval,

HRV

(ECG)

Loss-based

decoding

ECOC

5
Camera

Electrode

Accuracy:

88.78%
None reported

LDA & KNN

give poor

classification

NEDO Facial

expression

Bergasa et

al. (2006)

PERCL

OS,

eye

closure

duration

, blink

frequenc

y, nod

frequenc

y, face

position,

fixed

gaze

Fuzzy classifier
Not

reported
Camera Accuracy 100% None reported

Glasses and

sunlight

decrease

accuracy

Hybrid

measures

Limitations on the studies listed in Table A1.4 include parameters tested by Arun et al. (2012). In this experiment, the

researchers assumed drowsiness. In the absence of a proven benchmark however, it cannot be ascertained that the

participants indeed became drowsy, therefore the reported 100% classification of drowsiness might not necessarily be

adequate. Chieh et al. (2005) used a webcam to provide reference to EOG data during recordings, but it is not used as a

benchmark, not even with the well-known PERCLOS method. A threshold of Rapid Eye Movements (REM) was then used

148

to classify EOG signals as either drowsy or not. Without side-by-side comparison with an established method, it is hard to

ascertain reliability.

149

A1.5: Intrusiveness of Physiological methods: Electrodes

Bio-potential electrodes conduct physiological signals from the measured skin

tissue to the amplifier. Because of this very specific function, one of the most

important characteristics of bio-potential electrodes is low skin-electrode impedance

(Huigen, 2002). High impedances create noise and attenuate physiological signals

(Miller & Harrison, 1974). Skin abrasion along with electrode gels are the usual

method of reducing skin-electrode impedance. Abrasion irritates skin and can cause

bleeding while skin gel hardens and loses conductivity over prolonged periods of use.

In order to avoid the problems associated with wet electrodes, researchers

have suggested the use of dry electrodes. Gondran (1995) demonstrated the use of Na

super ionic conductors (NAISCON) to record bioelectric signals based on sodium ion

exchange between the skin and electrode. The NAISCON electrode did not need any

gel and the impedance decreased as a function of time as perspiration came in

contact with the electrode, a process which began immediately upon application.

Fonseca (2007) introduced a dry electrode with in-situ active pre-amplification to

mitigate the effects of high skin impedance. Sellers (2009) demonstrated that hybrid

dry electrode sensor arrays (HESA) work as effectively as wet electrodes. Taheri et

al. (1994) proposed a prototype dry electrode for EEG recording which required no

skin preparation or conductive paste but had the added potential for reduced

sensitivity to motion artifacts and a better signal-to-noise ratio. The electrode was a

150

3 mm stainless steel disk with a 200 nm nitride coating. The dry electrode was found

to perform on par with commercially available wet electrodes.

More recently, Chang et al. (2010) fabricated silicon dry electrodes based on

Micro-Electro-Mechanical Systems (MEMS) which pierce the upper layer (stratum

corneum) of the epidermis, connecting directly to the electrically conducting layer

(stratum germinativum) of the epidermis. The results showed that the dry electrodes

on average had 4.4kohms lower impedances compared to wet Au and AgCl electrodes

regardless of prior skin preparation.

Silver based electrodes were the most popular electrodes found in literature for

drowsy detection. AgCl electrodes were used by researchers such as Chang et al.

(2010). Liang et al. (2005), made use of sintered Ag/AgCl electrodes. Ag electrodes

were used by Otmani et al. (2005). Liang et al. (2005) suggested that drivers use as

few electrodes as possible to make practical routine use possible. They also suggest

the use of only 2 channels of EEG signals.

151

A1.6: Vehicle Simulation Technologies:

Vehicle simulators provide a safe way to perform the human trials which are

necessary to test the efficacy of driver drowsiness detection technologies. They avoid

the risks and ethical dilemmas associated with placing heavily sleep deprived

participants on busy public roads. Peters et al. (1999) explained that it would be

unsafe to perform driving experiments with highly sleep deprived participants under

real driving conditions, a high-fidelity highway driving simulator was used instead.

Chang et al. (2010) among others made use of Virtual Reality (VR) based

driving environments projected upon screens. It included a driving simulator cabin,

and a Stewart motion platform with six degrees of freedom (lateral, longitudinal,

vertical, pitch, roll, and yaw).

Anund et al. (2008) conducted drowsy driving studies in an “advanced

moving-base driving simulator” at the Swedish National Road and Transport

Research Institute (VTI). The simulator had a cabin from the front part of a Volvo

850 with a manual 5-shift gearbox. Car cabin noise and vibration levels were

simulated. The participant had three channels of forward view totaling 120 × 30

degrees from the participant’s view. The simulator model had been validated earlier

(Chang et al., 2010; Aurell et al., 2000). The participants drove on a 2-lane

motorway with a speed limit of 68mph. Ambient lighting corresponded to daylight

and no other traffic existed. Anund et al. (2008) obtained speed (mean and

variability) and lateral position (mean and variability) from the simulator. Lane

152

departure was defined as two wheels touching the lane boundaries (center line or the

right edge line).

Otmani et al. (2005) made use of a driving simulator PAVCAS (Poste

d’Analyse de la Vigilance en Conduite Automobile Simule´e). It consisted of a front

car cabin and a mobile base with four degrees of freedom. The simulator was located

in a climatic chamber and the humidity, temperature, noise, and light were kept

constant for all participants

Brown et al. (2013) used The National Advanced Driving Simulator (NADS),

which they claimed to be the highest fidelity simulator in the United States. It

included a full size vehicle cab, and video provided by 360 degree visuals. The

simulator built in functions were used to record drivers control input. The NADS has

11 degrees of freedom and high frequency actuators which simulated road feel.

Simulated sounds were provided by a 3D audio system. Brown et al. (2013) asked

participants to complete surveys about how they felt about the realism of the

simulator before study eligibility was determined.

Lin et al. (2013) also tested participants in virtual-reality (VR) based

highway-driving experiments. Liu et al. (2013) used vehicle simulations to test

nighttime driving performance. Sasada et al. (2013) used a driving simulator (Toyota

Central R&D Labs, Nagakute, Japan) to test the effects of drugs on driver

performance. The simulator software was run on a Windows XP Personal computer

(PC) which had a connected steering wheel, accelerator and brake. Images were

153

projected onto a screen by LCD projector (TH-LB30NT; Panasonic, Osaka, Japan)

(Iwamoto et al., 2008).

Weiler et al. (2000) tested the effects of alcohol and drugs on drowsy driving

made use of The “Iowa Driving Simulator” which collected data using built in

functions. It consisted of a domed enclosure mounted on a hexapod motion

platform. The inner walls of the dome were the screen upon which images were

projected. Simulated roads were a two-lane rural highway 12 feet wide with a posted

speed limit of 55 miles/h with low-density traffic.

Diego et al. (2013) demonstrated a method to properly define ground truth of

the driving risk in a simulation task, to properly benchmark subsequent driving

performance. The ground truth was generated through the evaluations of experts

through a simulation reproduction tool called Virtual Co driver (Diego et al., 2011;

Siordia et al., 2011).

Limitations

It is important to note that simulator drowsiness behaviors could be

influenced by the subject’s knowledge that the consequences of driver errors in a

simulator would not result in injury or death. Thus, from a psychological point of

view, most simulator studies might require further studies (Papadelis et al., 2007).

Studies which base algorithm results on simulator data are limited. Hallvig et al.

154

(2013) confirmed that significant differences existed between simulated and real

driving outcomes on drowsy driving. Using a high fidelity, moving base driving

simulator to monitor driving performance via EEG, EOG and subjective KSS, the

simulator resulted in higher levels of subjective and physiological sleepiness than real

driving. Furthermore, Lateral variability was more responsive to simulator night

driving than in real driving. Real driving participants at night demonstrated a

movement further left in the lane with an accompanying reduction of speed. These

behaviors were not replicated in the simulator. In general, caution must be taken

when drawing generalities from simulation data.

155

A1.7: Signal Processing and Analysis:

Raw signals are rarely used directly for analysis of drowsy driving. For the

purposes of analyzing and sorting through collected SWM signals as well as

validation signals collected through other known methods, appropriate signal

processing methods were researched for applicability and suitability of intended

purpose.

Usually processes are applied to the signals during and after data collection to

convert them into more easily interpretable forms for the identification of drowsiness.

Signal processing improves drowsiness detection because it aids in the extraction of

pertinent data useful for drowsiness classifications. Signal processing also eliminates

noise and other artefacts from signals. Signal processing techniques are relevant to

certain primary technologies, for instance, PERCLOS as a measure of the percentage

of eye closures during a given time does not immediately lend itself to Fast Fourier

Transformations. The following methods have been used be researchers to process

signals:

Channel Separation: Lin et al. (2013) performed independent component

analysis (ICA) on 30 channel EEG to separate the channels into independent

components (IC) using EEGLAB. Papadelis et al. (2007) used the Infomax ICA

algorithm to remove artifacts from their eight EEG channels data also using

EEGLAB. After ICA separated out the independent components, EOG and EMG

156

data were then eliminated. Delorme and Makeig (2004) had earlier explained how to

use EEGLAB for processing of EEG data.

Fast Fourier Transforms: Fast Fourier Transforms (FFT) have been used

to convert signals from the time domain into the frequency domain where it is

decomposed into its frequency components. Lin et al. (2013) used FFT to convert

data from the time domain to the frequency domain to enable further analyses of

frequency bands. Brown et al. (2013) used a FFT to extract power spectral densities

from EEG signals, especially alpha and theta power waves which were used to

predict wakefulness. Researchers have used power spectrum analysis to detect the

level of driver drowsiness (Chang et al., 2010; Liang et al., 2005). The frequency

band where the power spectrum covers is then interpreted into the driver’s state of

drowsiness.

Li and Chung (2013) used FFT based methods on HRV data and found out

that wavelet based methods performed better when analyzed as non-stationary

signals.

Differentiating Similar Data: Lin et al. (2013) used The Wilcoxon rank

sum test (Matlab statistical toolbox, Mathworks) to identify significant differences

157

among combinations of feature extractions and classifiers for assessing the efficacy of

the drowsy intervention feedback.

Artefact Rejection: Jung et al. (2000). Proposed a method of removing a

wide variety of artefacts from EEG data based on blind source separation by

Independent Component Analysis (ICA). Papadelis et al. (2007) then used the

Infomax ICA algorithm to remove artifacts from their EEG data.

Filters: Filters are commonly used to remove line noise, baseline drift, and

unwanted noisy artefacts. Using EEGLAB, Papadelis et al. (2007) passed EEG

recordings through a band-pass filter by combining a 40 Hz 2nd order Butterworth

low-pass filter with a 0.5 Hz high-pass filter. Papadelis et al. (2007) also band-passed

filtered EOG data with a 13 Hz 2nd order low-pass Butterworth filter and a 1 Hz

high-pass filter. ECG data were filtered similarly with a 40 Hz 2nd order low-pass

Butterworth filter and a 1 Hz high-pass filter. In the same manner, EMG data were

filtered between a 100 Hz 2nd order low-pass Butterworth filter and a 20 Hz high-

pass filter. Papadelis et al. (2007) applied a 50-Hz hardware notch filter to all

measurements to remove power line noise.

Lin et al. (2013) pre-processed EEG data using a low-pass filter of 50 Hz and

a high-pass filter of 0.5 Hz to remove both the line noise and baseline drift. Artefacts

158

such as muscle activity, blinks, eyes movement and environmental noise were

manually removed.

A1.8: Signal Classification methods considered:

Although SWM signals and other signals used for drowsiness assessments can

by themselves be used for drowsiness detection, they do not perform at the same

level of accuracy, or at the same power when free of feature selection and

classification. Even signals that have been adequately pre-processed then need to be

passed to a classifier which intelligently sorts the incoming data as being

characteristic of a drowsy individual or an alert one.

Classifiers are simply methods to categorize inputs and for pattern

recognition. It can be used to categorize SWM input signals into drowsy states and

non-drowsy states. It can also be used to facilitate pattern recognition necessary for

facial monitoring. Some of the signal classifiers that have been used for drowsy

driving detection are:

Support Vector M achines (SVM): Vapnik and Cortes introduced Support

Vector Machines (SVM) in 1995 (Alexander et al., 2011). SVM aims to split datasets

into two parts: member objects of a specified class and non-member objects. It has

emerged as a powerful technique for pattern recognition using wavelet based methods

(Li and Chung, 2013). Li and Chung (2013) used SVM for feature classification of

159

HRV. SVM has also been used to classify data during EEG collection from drowsy

drivers (Lin et al., 2013). The primary advantage of SVM is its ability to minimize

structural and empirical risk (Khandoker et al., 2009).

Gaussian M aximum Likelihood Classifier (M L): One of the earliest

known users of the Gaussian maximum likelihood classifier (ML) method of

classification were Hoffbeck and Landgrebe (1996). The decision rule in a Gaussian

ML classifier is to label the vector x as class j if the likelihood of class j is the

greatest among the classes. It was used by Lin et al. (2013) to classify data during

EEG collection from drowsy drivers.

K-Nearest Neighbor Classifier (kNN): K-nearest neighbor classifier

(kNN) predicts the class of unknown instances by relating it to what is known

according to a distance function (Lin et al., 2013). The key idea behind kNN

classification is that “similar observations belong to similar classes” (Murugappan et

al., 2013). Early work on kNN was done by Bay (1999) who wanted an algorithm to

combine classification methods but designed to improve upon the accuracy of the

already existing nearest neighbor (NN) classifier. kNN was used by Lin et al. (2013)

to classify data during EEG collection from drowsy drivers. A further improved

Dempster-Shafter theory (DS)-based kNN classifier was applied to EEG data

160

collected in five different psychological events (Yazdani et al., 2009). Experimental

data showed that the improved DS-based method produced considerably better

accuracy compared to traditional kNN method (Liu et al., 2013b). Larger feature

vectors yield poor classification rates for kNN (Murugappan et al., 2013b).

Linear discriminant analysis (LDA): The LDA classifier is another

classifier that has been used to classify human physiological signals. Murugappan et

al., (2013b) used it for ECG classification and found it simple to use, partly because

it has fewer computational requirements, and because it provided good results for

several classification applications. The study reported that LDA does not require any

external parameters for classification besides training and testing samples. It was also

discovered that LDA was not optimal for nonlinear EEG data due to its linear

nature. Chien and Wu (2002) used LDA to enhance class discriminability for facial

detection while designing a hybrid method which would combine feature extraction,

discriminant analysis and classification into one process. The greatest limitation of

LDA found was that it only allows linear or quadratic relationships between the

input and output (Murugappan et al., 2013).

Artificial N eural Network (ANN): Artificial neural networks ANN work

by learning both types of patterns (drowsy and non-drowsy). After the two types

161

have been learned, the EEG signals are then input into the system where they are

then categorized into drowsy or non-drowsy (Liu et al.,2013). In research work

performed by Subasi, (2005, 2007), a Discrete Wavelet Transform was used to

analyze the EEG and the Daubechies 4 Wavelet Filter (DB4) was employed to

categorize the signals into five levels. The features for these five levels were then fed

into an ANN classifier. Another study used relative wavelet energy of the brainwaves

as the input to an ANN classifier (Guo et al., 2008) while Sivasankari and

Thanushkodi (2009) used Fast Independent Component Analysis (FastICA) to

analyze the EEG before applying ANN classification.

Laplacian Classifiers: The Laplacian Classifier was designed to solve the

problem of classification in signal processing, the goal was to appropriately classify a

test data set (Jenssen et al., 2007). Laplacian Classifiers have been used to simplify

brain image analysis in combination with SVM classifiers (Cuingnet et al., 2010).

Naïve Bayes: Naïve Bayes are simple Bayes networks which are widely used

due to their efficiency and accuracy (Li et al., 2012). Li et al. (2012) used Naïve

Bayes classifiers to identify the characteristics of EEG signals produced by humans.

162

Bayesian Networks: A Bayesian network is a probabilistic system that

integrates evidences from multiple sources into one representative format Ji et al.,

(2004). Fatigue was modelled by Ji et al. (2004) using Bayesian networks

parameterized by nodes including: light, heat, humidity, anxiety, time zone, and

sleep disorder. Arcs connect parent and child nodes representing probabilistic

dependency. Bayesian networks can be trained by associating statistical probabilities

to each of these nodes either through objective training data, or subjective surveys.

Dynamic Bayesian Networks (DBN): A Dynamic Bayesian Network, is

similar to a regular or static Bayesian Network, however it accounts for the dynamic

nature of fatigue, wherein the interplay and relationship between nodes can be

dynamically altered over time. Dynamic Bayesian Networks therefore account for the

temporal aspect of driver drowsiness. (Ji et al., 2006) found that the utility of DBN’s

lie in their ability to explicitly model events that are not detected on a particular

point of time, but they can be described through multiple states of observation that

produce a judgment of one complete final event. Yang et al. (2010) used DBN’s to

recognize driver fatigue through fusion of multiple contextual and physiological

features (EEG, ECG). First order Hidden Markov Models were used to compute the

dynamic interplay of the DBN nodes at the different time periods.

163

Random Forests: A Random Forest (RF) is a machine learning ensemble

classifier. As the name implies, an RF is a collection of many decision trees. Each of

the trees makes a decision when fed with an input, and the mode decision that is

output from the trees within the forest becomes the forests output. McDonalds et al.

(2013) made use of RF’s to classify SWM data for detecting drowsiness related lane

departures. They concluded that the method had a higher drowsiness classification

accuracy than PERCLOS using 72 participant data.

Overall, Liu et al. (2013) found in their particular study that the SVM

classifier produced the best classification results of driver drowsiness using EEG

when compared against ANN, kNN, and an Integrated Classification Method which

used a weighted average of the other 3 methods. The kNN classifier had the lowest

accuracy in that particular case, however, the kNN classifier produced the best false

negative outcomes. Lin et al. (2013) found that using feature extraction with

principal component analysis (PCA) and ML classifiers achieved the best

performance (mean: 77.8%±5.4). However, they also found that SVM yielded a more

robust performance, regardless of whether feature extraction was used.

164

A1.9: Hybrid methods of drowsy driving detection

SWM combined with other signal collection methods, such as physiological

methods is often counter-intuitive as it undermines the SWM benefit of being non-

intrusive, simple, and non-obstructive. Typically, the use of multiple measures of

drowsiness improves accuracy and reduces false positives. PSG is a comprehensive

test that measures EEG, EOG, EMG, and ECG simultaneously and can be used to

monitor daytime drowsiness (Li and Chung, 2013).

A hybrid algorithm using EEG, EOG, ECG and wavelet-packet-based feature

extraction had an accuracy of 97% in detecting driver drowsiness (Khushaba et al.,

2011).

Khushaba et al. (2011) noticed that by using EEG with ECG signal only, they

were able to achieve lower error rates than using EEG with EOG only. Using ECG

or EOG alone however was unable to provide very powerful results.

Liu et al. (2013a) simulated nighttime driving while monitoring both EEG

signals and facial images to collect measurements which could be used for drowsy

driving detection.

Peters et al. (1999) collected data through a variety of measures during

simulated driving including EEG recording, videotaping, driving performance data

such as speed and lateral placement variance, and questionnaire data.

Li and Chung (2013) correlated PERCLOS successfully to the KSS reports of

subjects to indicate drowsiness.

165

Horne and Baulk (2004) established correlations between the EEG power

(alpha and theta) and lateral lane position in simulated driving.

166

A1.10: Factors that influence drowsiness symptoms and outcomes

A background introduction to the causes and influences of drowsy driving is

necessary in advance of going any further into an assesment of drowsy driving

technologies. To fully appreciate the mode of operation of the technologies, it is

important to understand the underlying mechanisms that bring about the symptoms

which technology can ultimately detect to provide an assessment of the driver.

A major contributing factor to drowsy driving is sleep deprivation. Some

drivers suffer sleep deprivation as a result of inadequate rest, sleep disorders, sleep

disturbances, or other factors. It has been shown that sleep deprivation is just as

dangerous to driver safety as alcohol intoxication (Tack, 1990; Malik and Kaplan,

2005; Dahl, 2008; Williamson and Feyer, 2000) which could explain the resulting

injuries, fatalities and declines in driver performance. It is known that drowsy

driving is just as dangerous as drunk driving (Li et al., 2013; Haraldsson and

Milavetz, 2013). Sleep deprivation has been shown to have adverse effects on

attention, vigilance, decision-making ability, communication skills, and memory

(Killgore, 2010; Raidy and Scharff, 2005; Harrison and Horne, 2000). The

impairment caused by prolonged wakefulness can be adverse to cognition, judgment,

or motor skills. Fatigue, monotony, or deprived sleep may induce drowsiness or

sleepiness (Brandt et al., 2004).

Time on task is also a major factor contributing to driver drowsiness. With

prolonged driving, even those drivers who do receive sufficient sleep will eventually

167

suffer a decline in performance as time on task is extended. As vehicle operators

drive for longer periods of time, they demonstrate increasingly worsening symptoms

of drowsy driving, including unintentionally veering off their intended lane (Thiffault

and Bergeron, 2003; Åkerstedt and Gillberg, 1990; Otmani et al., 2005; Phillip,

2005).This is a form of task-based fatigue and the resulting drowsiness leads to a

deterioration of awareness (Hamblin, 1987).

It has been mentioned that drowsy driving mimics the negative effects of

intoxication, however alcohol in itself can directly influence drowsy symptoms. Often,

alcohol intoxication might cause a driver to demonstrate the positive signs of

drowsiness. It is important to understand the effects of alcohol and controlled

substances on drowsiness symptoms as they can significantly affect research

outcomes despite best technologies. Researchers (Li, 2013) found that in general,

alcohol and drug use impaired driving performance proportionate to the amount of

alcohol or drugs that the driver had consumed. It was also seen that the resulting

impairment contributed significantly to motor vehicle crashes. Because of results

similar to this, Brown et al. (2013) and Weiler et al. (2000) tested all participants for

Blood Alcohol Content (BAC) prior to experimentation to ensure they were not

being influenced by alcohol.

Drugs can either induce or alleviate symptoms of drowsiness. Weiler et al.

(2000) found that driving simulator participants who took diphenhydramine were

more coherent than when they took alcohol. It was also found in the same study that

168

lane keeping and steering ability were impaired by diphenhydramine and alcohol.

Sasada et al. (2013) found that the drug Mirtazapine significantly increased SDLP as

compared to the drug trazodone. Mirtazapine also increased participants subjective

scoring of drowsiness on the Stanford Sleepiness Scale (SSS) compared to trazodone

and placebo. After continuous use however, the effect was lost. The same study by

Sasada et al. (2013) found that among sedative antidepressants, Tri-Cyclic

Antidepressants (TCAs) showed anticholinergic (inhibiting the binding of the

acetylcholine neurotransmitter leading to sedation) properties as well as other

sedative properties. TCAs have been shown by several researchers to impair

cognitive and psychomotor performance (Serretti et al., 2010) including driving

performance (Ramaekers, 2003; Iwamoto et al., 2008). Drugs such as Zopiclone have

been found to impair highway driving performance in both insomnia patients and

healthy controls (Leufkens et al., 2014). Lin et al. (2013) ensured that all simulator

participants were free of neurological and psychological disorders and that none

abused drugs or alcohol. To avoid further influences, no subject reported sleep

deprivation on the day before the experiments, and none must have worked night

shifts during the preceding year or travelled through more than one time zone in the

preceding two months.

Caffeine is a stimulant that is used widely to improve driver alertness. As a

result, Brown et al. (2013) asked participants not to ingest any caffeine or other

stimulant drug prior to drowsy driving experimentation. Those who did were

169

removed from the study or rescheduled. Drinking coffee and napping both have

statistically significant effects in reducing driving impairment and restoring alertness

(Phillip, 2006). Cummings et al. (2001) found that drowsy driving crashes may be

reduced by consuming coffee.

Music can be used as a stimulant to relieve drowsiness in drivers. This is

important as most vehicles are equipped with equipment to play music. Yokoyama et

al. (2008) concluded that loud music suppressed and delayed the onset of drowsiness.

Liu et al. (2013) found that music refreshed drivers. Cummings et al. (2001) found

that drowsiness related crashes can be reduced if the driver plays the radio.

170

A1.11: Legal policies and regulations regarding drowsy driving

In order to combat fatalities and loses due to drowsy driving, the U.S.

Department of Transportation (USDOT) has implemented several “Hours of Service”

regulations to help combat drowsy driving and reduce crashes and fatalities. For

example, U.S. Federal regulations prohibit property-carrying commercial drivers

from operating a motor vehicle without first getting 10 hours of rest. Importantly,

private drivers are not held to the same regulations as commercial drivers, which

potentially places them at risk for crashes, albeit given that private drivers have less

incentives to drive long hours for profit. Property-carrying commercial drivers are

also prohibited by federal regulations from operating their vehicles for more than 14

hours since their last rest period. Passenger-carrying commercial drivers are required

to get 8 hours of rest, and must not drive for more than 10 hours following rest

(USDOT, 2013). There are at least seven states in the United States where laws exist

pertaining to drowsy driving (NCSL, 2014). In New Jersey, driving with 24 hours of

sleep deprivation is considered reckless driving, punishable by fines and jail-time, and

in Utah road signs are being installed to warn against drowsy driving and to provide

rest stop information to drivers based on findings by the Utah Department of

Transportation on drowsy driving (NCSL, 2012). The California Department of

Transportation does not permit any driver to operate a vehicle after having been on

duty for 80 hours on any consecutive 8 days (CADMV, 2014). MacLean et al. (2003)

discussed long term solutions to drowsy driving through education and legislation.

171

Although education could play an important role in stemming drowsy driving, the

potential for human errors despite education and the possibility for drivers to

subjectively underestimate their own drowsiness leaves a gap for technology.

172

A1.12: Administrative Measures in place to Prevent Drowsy Driving:

Independent commercial vehicle operators tend to have policies in place which

are expected to fall in line with federal and state regulations. Sometimes, due to an

interest in increased profits, the operators either do not fully comply, or chose to

turn a blind eye to state and federal regulations. As a result, several commercial

operators have been fined for violating these regulations (TransReview, 2010) or for

not enforcing policies intended to limit their driver’s service hours (TransReview,

2010). Internal policies are intended to prevent employees from violating legal

regulations. Unfortunately, administrative measures do not apply to the individual

highway commuters who are at risk for drowsy accidents.

173

A1.13: Technological methods to detect and mitigate drowsy driving:

Brown (1997) wrote prospects and predictions on driver drowsiness detection

technologies of the future in 1997. Technology is able to definitively inform a driver

of their drowsy state, rather than rely on prior education which many might

unfortunately forget or ignore. The rate of technological advancement calls for

sufficiently frequent reviews.

Researchers have categorized the technologies for drowsy driving detection

based upon the methods employed. Liu et al. (2009) categorized drowsiness measures

into subjective, physiological, and vehicle based measures. Physiological and vehicle-

based measures of drowsy driving detection are almost exclusively technology driven.

Subjective measures involve participant response questionnaires such as the

Karolinska Sleepiness Scale (KSS). Subjective measures can be technology driven if

participant responses are recorded via electronic devices, handheld computers, and

tablet computers. Physiological measures include objective measures of human

electrical signals, especially from the brain, eyes, muscles, and heart. Brain, eye,

muscle and heart signals can be analyzed through electroencephalography (EEG),

electrooculography (EOG), electromyography (EMG), and electrocardiography

(ECG) respectively. Vehicle based methods of drowsiness detection include

monitoring the speed of driving (Arnedt et al., 2001; Fairclough and Graham, 1999),

the standard deviation of lane position (SDLP) (Ingre et al., 2006; Peng et al., 2012),

and Steering Wheel Movements (SWM) (Fairclough and Graham, 1999; Fukuda et

174

al., 1995; Elling and Sherman, 1994; Thiffault and Bergeron, 2003; Borghini et al.,

2012; Eskandarian and Mortazavi, 2007; Chaput et al., 1990; Yabuta et al., 1985;

Sayed and Eskandarian, 2001). Behavioral measures of drowsy driving involve facial

monitoring for eye blinking (Papadelis et al., 2007), slow eye movements (SEM)

(Shin et al., 2010), head nodding (Brandt et al., 2004), and eye closure activities

including PERcentage of eyelid CLOSure (PERCLOS) (Xia et al., 2008; Wang et al.,

2006). Objective scales such as the Objective Sleepiness Scale (OSS) combine

features of physiological and behavioral signs of drowsiness to score driver

drowsiness. OSS algorithms score drowsiness based upon agreements between EEG

data and physical eye closures. Finally, apart from the primary technology or

methods behind drowsiness detection, including the aforementioned behavioral,

physiological and subjective methods, there are secondary technologies that aid,

support, and enhance the primary technologies. For example, while EEG is a

primary technology for drowsiness detection, high conductance electrodes, low

impedance electrode gels, and high quality bio-signal amplifiers are secondary

technologies which support the primary measure. Secondary technologies are

responsible for data acquisition from the primary technology, real time monitoring

and interpretation of the same data, automatic determination of drowsy states based

upon earlier interpretation of the data, and finally the feedback system which alerts

the driver about their state of drowsiness. Owing to the fact that a lot of drivers,

especially those with conditions such as sleep apnea tend to underestimate their

175

levels of sleep deprivation (Grenèche et al., 2008), combined with the large losses in

human life due to drowsy driving, it is important that the technologies for drowsy

detection are improved, affordable, and accessible.

176

A1.14: EEG Waves used in Drowsiness Detection:

Table A1.14 EEG Waves used in Drowsiness Detection

Wave Frequency Amplitude Occurrence

associated with

Alpha 8 – 13 Hz 30 - 50 μV Quiet rest

Beta 14 - 30 Hz 5 - 20 μV Thinking

Theta 4 – 7 Hz < 30 μV Drowsiness

Delta 0.5 – 3 Hz 100 - 200 μV Asleep

177

A1.15: The Objective Sleepiness scale:

The Objective sleepiness scale (OSS) was developed by Muzet et al. (2003)

and is a hybrid of physiological and behavioral signs of drowsiness (Table A1.15). It

involves the use of EEG to monitor alpha and theta waves as well as the monitoring

of eye blinking data. A score of 0 indicates the driver is awake while a scale of 4

indicates the driver is very drowsy.

Table A1.15 Objective Sleepiness Scale (OSS)

Score Cumulative EEG duration Blinks and eye movements

0 No α or θ Normal

1 α and/or θ < 5s Normal

2 α and/or θ < 5s

or

α and/or θ > 5s

Slow

Normal

3 α and/or θ < 10s

or

α and/or θ > 10s

Slow

Normal

4 Continuous α and/or θ Slow

Limitations of OSS for drowsy driving detection:

OSS as a measure of driver drowsiness suffers from the same limitations as

physiological measures of drowsy driving. EEG is obtrusive and unsuitable for daily

use. EOG as a measure of eye movements and blinks is also intrusive.

178

A1.16: Subjective Sleepiness Scales:

Subjective sleepiness scales such as the Karolinska Sleepiness Scale (KSS) are

questionnaires for drivers to self-report their own feeling of drowsiness. There are

several subjective sleepiness scales including the Karolinska Sleepiness Scale (KSS),

the Stanford Sleepiness Scale (SSS), the Epsworth Sleepiness Scale (ESS) and the

Retrospective Sleepiness Scale (RSS). The RSS uses the same scale as SSS, and is

administered via survey, but it is an estimate from a continuous time measurement

over the course of the drive. The mentioned subjective scales all feature a score based

on subjective feelings of sleepiness as exemplified in Table A1.16.

Table A1.16 Karolinska Sleepiness Scale (KSS)

1 Extremely alert

2 Very alert

3 Alert

4 Fairly alert

5 Neither alert nor sleepy

6 Some signs of sleepiness

7 Sleepy, but no effort to keep alert

8 Sleepy, some effort to keep alert

9 Very sleepy, great effort to keep alert, fighting sleep

Limitations of Subjective Sleepiness Scales for drowsy driving detection:

Subjective self-reporting of drowsiness is often wrong. Most drivers

underreport their drowsiness level (Moller et al., 2006; Sharwood et al., 2012). Weiler

et al. (2000) found that participants self-reported drowsiness were not a good

predictor of impairment and were weakly associated with steering instability and left

179

lane excursions. It should therefore be with caution that researchers draw conclusions

about the efficacy of their new drowsiness detection techniques when benchmarked

against subjective measures. Further, it was noted that KSS scores become unreliable

after 3 hours of testing (Daza et al., 2014).

180

A1.17: The Psychomotor Vigilance Test (PVT):

The Psychomotor vigilance test (PVT) is an objective measure of drowsiness.

It involves a simple task in which a respondent is required to respond to stimuli. The

test measures the speed of a participant’s response to visual stimuli and gives a

quantifiable measure of their drowsiness based on their demonstrated response speed

(Loh et al., 2004; Wilkinson and Houghton, 1982). PVT tests usually cannot be

performed during driving, and are more adequate for use before, after, and in-

between driving tasks for assessing readiness-to-perform and fitness-for-duty.

Researchers have found significant fatigue-related impairment during the first

5 minutes of a 10 minute PVT test (Loh et al., 2004). As a result, it was suggested

that an entire 10 minute test is not necessary. Brown et al. (2013) made use of a

version of the PVT test (Cognitive Media, Iowa City, IA) to assist with identifying

periods of drowsy driving to help successfully demonstrate the efficacy and utility of

EEG in the detection of drowsy driving.

Limitations of Psychomotor Vigilance Test (PVT) as a measure of drowsy

driving

A fundamental limitation to the PVT test is that it cannot be used in real-

time during driving tasks. It may however be used prior to driving to assess

“readiness for task.”

181

A1.18: Head Nodding and Yawning as a measure of drowsy driving

Apart from eye and face monitoring, drowsy drivers can also be detected by

teaching machines to recognize patterns of head nodding (Wang et al., 2006; Bergasa

et al., 2006) and yawning (Abtahi et al., 2011; Wang and Shi, 2005). Facial detection

methods include appearance based (learning) methods, feature invariant methods,

knowledge based methods, and template matching methods (Campagne et al., 2004).

In the feature invariant methods, algorithms are used to find structural features that

will exist even when there are variations in subject’s position, camera viewpoint or

lighting conditions. Knowledge based methods involve prior knowledge in the form of

rules of what constitutes a human face (Campagne, 2004). In template matching

methods, face patterns are fed to the algorithm, which then make correlations

between the loaded template and the current camera image being monitored. Facial

detection can then be made. Appearance based (learning) methods are similar to

template methods in that templates are involved in both methods. This difference is

that the facial templates used in appearance based methods are themselves learned

from a series of training images.

Limitations of Head Nodding and Yawning as a measure of drowsy

driving

Head nodding and yawning monitoring comes with the same disadvantages

found in video monitoring for face and eye tracking (2.5.3.1.). Video occlusion

completely defeats the algorithms for face recognition and facial feature tracking.

182

A1.19: Face and Eye Tracking of Drowsiness Symptoms

Video tracking is a way to unobtrusively monitor driver drowsiness. The

driver’s face and the eyes are monitored for signs of drowsiness such as frequent eye

blinking, long eye blinks, slow eye movements and other signs of drowsiness.

PERCLOS is one such measure of video monitored eye closure activities that has

been used to determine drowsiness (Greneche et al., 2008; Sahayadhas et al., 2012).

It is a measure of the percentage of eyelid closures over a set time period (Yang and

Huang, 2005) and has also been used as a method to detect drowsiness (Wierwille,

1999). Not only is eye closure seen as an important indicator of drowsiness, but the

duration of the closure suggests the degree of fatigue. Closures lasting for more than

half a second are especially strong indicators of sleepiness (Ogawa and Shimotani,

1997). Dasgupta et al. (2013) benchmarked PERCLOS as a measure of drowsiness

against EEG and found an eye classification rate of 97%.

Researchers have noted that a keen human eye can monitor video of a drivers

face and accurately determine when they are drowsy (Wierswille and Ellsworth,

1994; Liang et al., 2006). Technology has made video monitoring more practical by

automating this task. PERCLOS benefits greatly from image processing techniques

which require highly controlled environmental settings (Liu et al., 2013). PERCLOS

measurements can be assisted by beaming infrared (IR) light into the drivers eye and

then monitoring the pupil for the reflected IR beams. Under IR light, the eye

appears as a bright spot compared to the rest of the face which makes eye detection

183

straightforward (Ji and Yang, 2002; Grace et al., 1998; Bergasa et al., 2006; Flores et

al., 2011). Papadelis et al. (2007) used an Eye Leads Sensor (ELS) system (Siemens,

Germany) to detect the eye blink duration for use in PERCLOS calculations. The

ELS consisted of a camera with two near infrared lighting units that enable night

measurements. A Personal computer (PC) was used to analyze PERCLOS data. Li

and Chung (2013) used PERCLOS of 30-40% to indicate drowsiness and correlated it

successfully to the KSS reports of subjects.

Limitations of Drowsy Driving Detection Technologies Based Upon Face

and Eye Tracking

Yang et al. (2007) identified four major problems with video monitoring of

facial drowsy features: pose, presence, facial expression and image orientation. Pose

referred to the variation of the image relative to the camera and how the pose can

render facial features occluded, including the eyes. Fortunately, feature invariant

methods of facial detection are able to note facial features even when there are

variations in the subjects pose, environmental lighting, and image orientation (Sigari

et al., 2013). Occluded features especially eyes may still remain a problem in

methods such as PERCLOS. Presence or absence of structural components such as

beards, mustaches, and glasses could create differences from the features expected

and could confuse recognition algorithms. Eye closure methods can be ineffective if

184

the driver is wearing eyeglasses (Bowman et al., 2012) or if the driver looks down

and around him (Wierwille et al., 2003). Other failures can occur due to face

orientation, lighting conditions, and distance of eyelid from the camera (Brown et al.,

2013).

Although the use of eye tracking is physically unobtrusive, one of its

drawbacks is that it only detects the outward symptoms of drowsiness resulting from

an already existing state of drowsiness rather than monitoring a developing internal

state of drowsiness. Highway safety would benefit from the ability to detect the

drowsy driver’s state as soon as possible before any further deterioration occurs that

could result in further externally observable symptoms. O’Hanlon and Kelley (1977)

observed that observed sleep bursts in drivers EEG while they still had their eyes

open, something eye tracking by either EOG and video monitoring might have

missed. It is still unclear at what point physiological changes due to fatigue become

dangerous, however the goal of technology should be the earliest possible detection

before any danger to the driver is posed.

In general, for video based monitoring, it is necessary to prevent occlusions, to

use high quality cameras for proper capture of texture and patterns, and to keep

environmental lighting as constant and adequate as possible.

185

A1.20: Physiological Measurement of Drowsy Driving

Electrooculography (EOG) is a physiological method that has been used for

detection of drowsy driving. Electrodes attached to the skin surrounding the eye

record the potential difference between the cornea and the retina. This voltage

changes as the eyeballs move enabling eye tracking (Barea et al., 2002; Young and

Sheena, 1975). Besides eye movements, researchers have also monitored the eyelid by

extractions from EOG signals (Damousis et al., 2009). Khushaba et al. (2011)

monitored blink rate through vertical EOG from the left eye as an indicator for

drowsy driving. The same study found that EOG alone cannot provide very powerful

results compared to those provided by EEG alone. Hu and Zheng (2009) found that

Support Vector Machine (SVM) classifiers trained with EOG data accurately

detected when the subject was sleepy in up to 86.67% of the trials. Chieh et al.

(2005) found that (EOG) was an alternative to video-based monitoring of eye

activities to determine driver drowsiness. The same study achieved a drowsy driver

detection rate of more than 80% and further proposed a method that utilized a

Personal Digital Assistant (PDA) to monitor driver drowsiness via EOG.

Electroencephalography (EEG) involves the monitoring of electrical signals

from the brain via electrodes placed along the scalp. The most comprehensive and

standard method of monitoring of brainwaves is the International 10–20 Electrode

Placement System (10–20 System) which arranges 37 electrodes on the scalp (Liu et

al., 2013; Homan et al., 1987). This system was also used for validation of the IMU

186

based SWM monitoring methods described in this dissertation. The EEG scalp

positions mentioned in the rest of this article are in reference to this standard. EEG

waves can be categorized into classes by their frequency ranges.

Alpha waves are generated from the parietal and the occipital regions of the

brain when a conscious person is quietly at rest, while theta waves are released from

the parietal and the temporal regions of the brain when a person is in a state of deep

relaxation (Liu et al., 2013). Alpha-waves and theta-waves especially are signs of

sleep and relaxation, and can be indicative of drowsy driving. As a result, dissipating

these waves might indicate that drowsy driving intervention has been successful. For

example, an alpha block occurs when a drowsy driver receives stimulating input

which restores mental alertness and dissipates alpha -waves.

Researchers observed via EEG that drivers had sleep bursts accompanied by

theta waves and K-complexes while they still had their eyes open, something EOG

and video monitoring might have missed. Furthermore, the drowsy drivers were

oblivious to the fact that they had been driving while asleep (O’Hanlon and Kelley,

1977).

Electromyography (EMG) is a method of monitoring electrical activities from

muscles. Surface EMG from the deltoid and trapezius during monotonous driving

were analyzed by Hostens and Ramon (2005) and the results showed that EMG

amplitude decreased significantly after 1 hour of driving. Balasubramanian and

Adalarasu (2007) found that statistically significant changes in muscle activity

187

developed within only 15 min of simulated driving. Anund et al. (2008) collected

EMG data from under the chin as supplementary data to detect artifacts in the EEG

signal caused by facial muscle activity such as yawning.

Electrocardiography (ECG) is the monitoring of electrical activity related to

the hearts circulatory activity. The ECG waveform can be used to determine the

heart rate. It has been demonstrated that heart rate variability (HRV) can be

applicable for the detection of drowsiness and fatigue using the ECG power spectrum

(Tsuchida et al., 2009). ECG signals have been found to vary significantly between

alert and drowsy states (Arun et al., 2012) and can thus be used to quantify

drowsiness. Patel et al. (2011) also used the Pan-Tompkins algorithm to extract the

time series of beat to beat intervals (called the R–R intervals) out of ECG signals in

order to extract the HRV data.

Heart Rate Variability (HRV) analysis is a more recent entry into the

detection of drowsy driving (Xia et al., 2008; Patel et al., 2011; Jiao et al., 2004;

Yang et al., 2010; Mahachandra et al., 2012). Studies have shown that heart rate

(HR) varies significantly between an alert state and a drowsy state (Zhang et al.,

2014; Liang et al., 2009; Miyaji et al., 2009). Being able to monitor the heart rate

therefore can be a useful tool for drowsy driving detection. So far however, HRV has

not been proven to be as reliable a detector of driver drowsiness as earlier expected

because researchers have been regarding driver HRV signals as stationary signals

whose frequencies do not vary over time (Li and Chung, 2013). Li and Chung (2013)

188

used wavelet transformation of HRV signals to analyze them as non-stationary

signals and found out that wavelet based methods did in-fact perform better than

FFT based methods. Apart from ECG being the most obvious method of HRV

monitoring, another method of HRV monitoring involves Photoplethysmography

(PPG). PPG senses cardiovascular blood volume pulse through variations in

transmitted or reflected light (Poh, 2011). Papadelis et al. (2007) did not observe a

statistically significant alteration in HRV with driving time, nor any significant

difference in HRV between the first and the last quarters of the driving experiment.

Respiration rates have been proposed for drowsy driving detection. Ibáñez et

al. (2011) proposed inductance plethysmograph bands to monitor participant’s

respiratory index as a method of detecting drowsiness. The researchers reported a

Drowsy driving sensitivity of 83.1%.

Some of the clinical tests for drowsiness that have been used for drowsy

driving detection are the Multiple Sleep Latency Test (MSLT) (Carskadon et al.,

1986), Maintenance of Wakefulness Test (MWT) (Littner et al., 2005), and

polysomnography (PSG) (Li and Chung, 2013). Both MSLT and WMT are used to

assess the subject’s degree of daytime sleepiness. MSLT, MWT, and PSG

(Baranchuk et al., 2009) are comprehensive tests that measure EEG, EOG, EMG,

and ECG simultaneously. The combination of MWT and PSG has been studied for

drowsy driving detection (Li and Chung, 2013).

189

Limitations of Drowsy Driving Detection Technologies Based Upon

Physiological Signals

The placement of electrodes necessary for physiological signal detection is too

technical for the average daily commuter. This limitation applies to EEG, EOG,

ECG, EMG, and other related technologies. The use of EEG electrodes for drowsy

driving detection requires knowledge and location training in the International 10/20

system. EOG, ECG, and EMG devices are also obtrusive due to the requirement for

electrodes, gel, wiring, and often a method to fasten on the electrodes such as a

dedicated cap. Scalp placement of EEG electrodes requires training and effort, and

the average commuter would be required to make a suitable connection between the

scalp and electrodes with conducting gel. Although dry electrodes eliminate the need

for conducting gel, their placement still require time and effort, and might be more

involved than the average commuter would be interested in. When compared to

methods such as video-based PERCLOS and vehicle based measures including SWM,

the obtrusiveness of electrode-based methods becomes a concern. Dinges et al. (1998)

found that PERCLOS outperformed EEG approaches. This however requires further

validation in operational environments.

190

A1.21: State-of-the-Art Anti-Drowsiness Intervention Technologies

Drowsy Driving Notifications

For the development of an adequate IMU based drowsy driving detection

method as studied in this dissertation, it is important to have adequate early

warning alerts. Several researchers have proposed the use of warning signals to alert

drowsy drivers (Dingus et al., 1997, Spence and Driver, 1998). Lin et al. (2013) used

a 1750Hz tone burst at 68.5 dB to half of the subjects who had lane departure

events. Although subjects made quick compensatory responses after the alert, they

did not respond to the next deviation event any faster. Lin et al. (2009) and Spence

and Driver (1998) proposed auditory feedback to drowsy drivers. Liu (2001) proposed

visual feedback. Ho et al. (2005) suggested tactile alerts, and Liu (2001) proposed a

hybrid method. These various methods of feedback all showed that arousing feedback

considerably improved task performance (Lin et al., 2013). It was however found

that auditory feedback could sometimes failed to arouse drowsy subjects (Lin et al.,

2010). Furthermore, the EEG of the drowsy subjects sometimes showed no neural

response to auditory feedback (Lin et al 2010, Jung et al 2010). A pilot study by

Jung et al. (2010) applied machine-learning algorithms to assess the efficacy of the

arousing feedback on drowsy subjects and showed that the post-stimulus EEG

spectra could be used to estimate the effectiveness of the arousing signals with a

moderate accuracy of 61%. Zhang et al. (2014) found that drowsiness significantly

191

affected driver’s heart rate (HR), reaction time to light (RTL), systolic blood

pressure (SBP), and reaction time to sound (RTS).

Innovations in Real-Time Closed Loop Drowsy Driving Intervention

In order to make any developed method easily accessible to those who wish to

utlize it, the ability to “piggyback” the method onto a ubiquitous technology would

be of great benefit. Researchers have previously developed new technologies for

drowsy driving detection and then ported thse technologies onto portable devices

such as smartphones and Personal Digitial Assistants (PDAs).

Utilizing the inertial motion sensors which are already on board modern

portable electronics for monitoring SWM can reduce usage barriers for the novel

method. A few examples of transferring known working methods onto widely

available devices are listed below.

Smartphone Based Interventions:

Li and Chung (2013) made use of an integrated system to monitor drowsy

drivers based on HRV and to actively try to correct the situation. Included in the

integrated solution were a wireless PPG sensor which integrated a microprocessor

unit (MCU) and a Bluetooth module, a wireless transmitter, a smartphone, and a

server PC that connected to the internet. PPG sensor readings were transmitted

wirelessly via Bluetooth to the smartphone which extracted HRV data. The

smartphone in turn transmitted the HRV signals to the server PC via internet for

classification. The results were returned to the smartphone where drowsy driving

192

detection would trigger the alarm and then advice the driver of the closest coffee

shop to restore alertness. The PPG sensor was placed on the steering wheel where it

read directly from a finger resting upon the wheel using the Laxtha RP520 PPG

sensor (Laxtha, Daejeon, Korea) interfacing with the open-source LilyPad Arduino

hardware platform (SparkFun Electronics, Boulder, CO, USA).The smartphone used

for testing was the Samsung Galaxy SIII (Android 4.1.2) smartphone. It was chosen

because it was a “reliable and user-friendly Bluetooth-to-Internet gateway.” The

smartphone was also used to display the raw PPG signals and to extract 1-min HRV

time series. Results showed that arousing feedback immediately reversed the

deterioration of driving performance and also suppressed alpha and theta power EEG

in bilateral occipital areas. Classification accuracy for determining the need for

feedback was 77.8%.

Personal Digital Assistant (PDA) based method:

Chieh et al. (2005) proposed a fatigue monitoring system based around a

Personal Digital Assistant (PDA). It used digital signal differentiation and simple

information fusion techniques to detect signs of drowsiness in the EOG signal. The

authors suggested that this technology would have a detection rate of more than

80%. Theoretically, a PDA could easily then be programmed to give drowsy driver

intervention feedback.

193

Automatic speed control intervention:

Zhang and Zhang, (2006) developed an integrated approach which detects

drowsy driving and attempts to compensate for it. The algorithm involved three

steps. First, the face is located with the Haar algorithm and the eye is located with

projection. Once the eye template has been created, the eye is tracked with an

unscented Kalman filter. Finally, if the eye remains closed over 5 consecutive frames,

driver fatigue is confirmed and the vehicle’s cruise control is activated and set to

maintain a safe slow speed.

Automatic music adaptation intervention:

Liu et al. (2013b) proposed spontaneously playing refreshing music upon

detecting drowsiness in the driver’s brainwaves. The driver’s brainwaves were

analyzed for its responses to various types of music, and learned to select the

appropriate music to play based on this data. The researchers were able to classify

music as refreshers or non-refreshers based on the driver’s brainwaves at the time the

music is being played and the disappearance of drowsy brainwaves. The classification

of brainwaves and music selection using this method was experimentally proven.

This technology would be very practical for built in car use.

Yokoyama et al. (2008) demonstrated the effects of louder music on a drowsy

driver’s EEG, ECG, and video images of the drivers face as a drowsiness intervention

method. It was ascertained that louder music indeed mitigated drowsiness and

helped set back initiation time of drowsiness.

194

It needs to be further validated whether music works for both sleep

deprivation based drowsiness, as well as time-on-task based drowsiness which could

also result from monotony rather than an outright sleep deprivation.

195

A1.22: Measurement Categories of Drowsy Driving

Table A1.22 Measures of Driver Drowsiness

Category Measured Advantage Disadvantage

Subjective
KSS, SSS,

ESS

Unobtrusive,

No

equipment

needed

Propensity to

underestimate,

Not real time

Physiological
EEG, EOG,

PPG

High

accuracy

Inconvenient,

Intrusive

Behavioral

PERCLOS,

Blinking,

Yawn,

nodding

Unobtrusive

Camera

occlusions can

disrupt,

Dependent upon

lighting

Vehicle Based
SWM,

SDLP
Unobtrusive

Bad driving

habits can trigger

false positives

196

A1.23: Other researcher’s implementations of SWM

Otmani et al. (2005) made use of the built in functions of their driving

simulator to measure the mean amplitude of Steering Wheel Movements (SWM) as

well as the frequency per minute of SWM. Zhao et al. (2009) Extracted wavelet

based features from SWM which were then used to detect driver drowsiness. Steering

entropy is a form of SWM monitoring that was developed to quantify the increase in

high frequency steering corrections that occurred after periods of reduced attention

as drivers made efforts to maintain their lateral safety margins (Boer et al., 2005).

Steering entropy was used by Nakayama et al. (1999) to quantify discontinuities in

driving behaviors. Östlund et al. (2004) monitored driver performance in relation to

high frequency component of steering wheel angle. Kircher and Ahlstrom (2010)

used steering wheel reversal rate (SWRR) which measures the number of steering

wheel reversals per minute to categorize driver behaviors. Krajewski (2009) yielded

an 86.1% recognition rate in classifying driver fatigue by monitoring SWM.

197

Figure 39. Sherman et al. (1996) found that SWM was an indicator of lane

keeping activities, since SWM leads to lane shifts.

SWM can be used to predict tendency for lane exit events. The final report of

the Midwest Transportation Center’s study on SWM monitoring of driver drowsiness

found that SWM was representative of lane position, with signal peaks and valleys

coinciding in both waveforms (Sherman et al., 1996). The signals remained

synchronized until camera limitations broke the lane tracking process, a limitation of

video-based monitoring.

Although Sayed et al. (2001) were able to use an Artificial Neural Network

(ANN) to classify drowsy states with high accuracy using only SWM signals from the

vehicle steering wheel.

198

Appendix 2: iPhone Code in C, Objective C and C++

A2.1 IMU Monitor Graphical User Interface (GUI) Code

A2.1.1 imuAppDelegate.h

//

// imuAppDelegate.h

// IMUf

//

// Created by Samuel on 7/19/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import <UIKit/UIKit.h>

@interface imuAppDelegate : UIResponder

<UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

199

A2.1.2 imuAppDelegate.m

//

// imuAppDelegate.m

// IMUf

//

// Created by Samuel Lawoyin on 7/19/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import "imuAppDelegate.h"

@implementation imuAppDelegate

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 // Override point for customization after application

launch.

 return YES;

}

- (void)applicationWillResignActive:(UIApplication

*)application

{

 // Sent when the application is about to move from active

to inactive state. This can occur for certain types of

temporary interruptions (such as an incoming phone call or SMS

message) or when the user quits the application and it begins

the transition to the background state.

 // Use this method to pause ongoing tasks, disable timers,

and throttle down OpenGL ES frame rates. Games should use this

method to pause the game.

}

- (void)applicationDidEnterBackground:(UIApplication

*)application

{

 // Use this method to release shared resources, save user

data, invalidate timers, and store enough application state

information to restore your application to its current state

in case it is terminated later.

 // If your application supports background execution, this

method is called instead of applicationWillTerminate: when the

user quits.

}

- (void)applicationWillEnterForeground:(UIApplication

*)application

{

200

 // Called as part of the transition from the background to

the inactive state; here you can undo many of the changes made

on entering the background.

}

- (void)applicationDidBecomeActive:(UIApplication

*)application

{

 // Restart any tasks that were paused (or not yet started)

while the application was inactive. If the application was

previously in the background, optionally refresh the user

interface.

}

- (void)applicationWillTerminate:(UIApplication *)application

{

 // Called when the application is about to terminate. Save

data if appropriate. See also applicationDidEnterBackground:.

}

@end

201

A2.1.3 imuViewController.h

//

// imuViewController.h

// IMUa

//

// Created by Samuel Lawoyin on 7/9/14.

// Copyright (c) 2014 Samuel Lawoyin All rights reserved.

//

#import <UIKit/UIKit.h>

#import <CoreMotion/CoreMotion.h>

#import <coreText/CoreText.h>

#import <Foundation/Foundation.h>

#import <CoreLocation/CoreLocation.h>

#import <MobileCoreServices/MobileCoreServices.h>

#import <MapKit/MapKit.h>

//double attitudeYaw;

//double attitudeRoll;

//double currentFusion;

//double lastFusion;

//double currentYaw;

//double lastYaw;

//double lastVelocityZ;

//double currentVelocityZ;

//double length;

#define kRequiredAccuracy 500.0 //in meters

#define kMaxAge 10.0 //in seconds

@interface imuViewController :

UIViewController<CLLocationManagerDelegate>

//@property (nonatomic) NSMutableArray *driftArray;

@property (strong, nonatomic)IBOutlet UILabel *length;

@property (strong, nonatomic) IBOutlet UILabel *filename;

@property (strong, nonatomic)IBOutlet UILabel *accx;

@property (strong, nonatomic)IBOutlet UILabel *accy;

202

@property (strong, nonatomic)IBOutlet UILabel *accz;

@property (strong, nonatomic)IBOutlet UILabel *accAngle;

@property (strong, nonatomic)IBOutlet UILabel *currentYaw;

@property (strong, nonatomic)IBOutlet UILabel *gyroPosition;

@property (strong, nonatomic)IBOutlet UILabel *swmFusion;

@property (strong, nonatomic)IBOutlet UILabel *dataBlockSaved;

@property (strong, nonatomic)IBOutlet UILabel *recordProgress;

//Is recording ongoing or not?

@property (strong, nonatomic)IBOutlet UILabel *todaysDate;

@property (strong, nonatomic)IBOutlet UILabel *speed1label;

@property (strong, nonatomic)IBOutlet UILabel *speed2label;

/*

 @property (strong, nonatomic)IBOutlet UILabel *rotx;

 @property (strong, nonatomic)IBOutlet UILabel *roty;

 @property (strong, nonatomic)IBOutlet UILabel *rotz;

 */

@property (strong, nonatomic)IBOutlet UILabel *revolveCase;

- (IBAction)stopButton:(id)sender;

- (IBAction)startButton:(id)sender;

- (IBAction)drowsyButton:(id)sender;

@property (strong, nonatomic) CMMotionManager *motionManager;

@property(nonatomic, retain) CLLocationManager*

locationManager;

@end

@interface MapViewController:UIViewController

<MKMapViewDelegate, CLLocationManagerDelegate>

{

 MKMapView *mapView;

 CLLocationManager *locationManager;

 CLLocationSpeed speed;

203

 NSTimer *timer;

}

@property(nonatomic, retain) NSTimer*timer;

@end

@interface DataClass : NSObject

{

 NSString *accArrayFilename;

 NSString *gyroArrayFilename;

 NSString *speedArrayFilename;

 NSString *locationArrayFilename;

 NSString *drowsyArrayFilename;

 NSString *angVelArrayFilename;

 NSMutableArray *accArray;

 NSMutableArray *gyroArray;

 NSMutableArray *speedArray;

 NSMutableArray *locationArray;

 NSMutableArray *drowsyArray;

 NSMutableArray *angVelArray;

}

//global variable

@property (nonatomic, retain) NSString *accArrayFilename;

@property (nonatomic, retain) NSString *gyroArrayFilename;

@property (nonatomic, retain) NSString *drowsyArrayFilename;

@property (nonatomic, retain) NSString *speedArrayFilename;

@property (nonatomic, retain) NSString *locationArrayFilename;

@property (nonatomic, retain) NSString *angVelArrayFilename;

@property (nonatomic, retain) NSString *startTime;

+(DataClass*)getInstance;

@property (nonatomic, retain) NSMutableArray *accArray;

@property (nonatomic, retain) NSMutableArray *gyroArray;

@property (nonatomic, retain) NSMutableArray *speedArray;

@property (nonatomic, retain) NSMutableArray *locationArray;

@property (nonatomic, retain) NSMutableArray *drowsyArray;

@property (nonatomic, retain) NSMutableArray *angVelArray;

@property (nonatomic, assign) double gyroPosition;

@property (nonatomic, assign) double accAngle;

@property (nonatomic, assign) double lastGyroPosition;

@property (nonatomic, assign) double swmFusion;

@property (nonatomic, assign) double lastSwmFusion;

//@property (nonatomic, assign) double lastGyroPositionNum;

@property (nonatomic, assign) double lastX;

@property (nonatomic, assign) double lastY;

204

@property (nonatomic, assign) double lastZ;@property

(nonatomic, assign) double accelerationX;

@property (nonatomic, assign) double accelerationY;

@property (nonatomic, assign) double accelerationZ;

@property (nonatomic, assign) int revolveCase;

@property (nonatomic, assign) int recordBoolean;

@property (nonatomic, assign) int recordCount;//how many times

the stop button has been pressed for labelling data

@property (nonatomic, assign) double speed1;

@property (nonatomic, assign) double speed2;

@property (nonatomic, assign) double latitude;

@property (nonatomic, assign) double longitude;

@end

205

A2.1.4 imuViewController.m

//

// imuViewController.m

// IMUa

//

// Created by Samuel Lawoyin on 7/9/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import "imuViewController.h"

@interface imuViewController ()

@end

@implementation DataClass

@synthesize accArrayFilename;

@synthesize gyroArrayFilename;

static DataClass *instance = nil;

+(DataClass *)getInstance

{

 @synchronized(self)

 {

 if (instance==nil)

 {

 instance = [DataClass new];

 }

 }

 return instance;

}

@end

@implementation MapViewController

//@synthesize locationManager;

- (void)didReceiveMemoryWarning

{

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

@implementation imuViewController

206

CLLocationManager *locationManager;

- (void)viewDidLoad

{

 [super viewDidLoad]; // Do any additional setup after

loading the view, typically from a nib.

 // attitudeYaw= 0;

 // attitudeRoll=0;

 // currentFusion = 0;

 //lastFusion = 0;

 // currentYaw = 0;

 // lastYaw = 0;

 // lastVelocityZ = 0;

 // currentVelocityZ = 0;

 // revolveCase = 0;

 DataClass *obj=[DataClass getInstance];

 locationManager = [[CLLocationManager alloc] init];

 locationManager.delegate=self;

 locationManager.desiredAccuracy=kCLLocationAccuracyBest;

 [locationManager startUpdatingLocation];

 //Create a new file path for recording the drift

data/////////

 //First query for the app documents directory

 NSArray *paths =

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES);

 NSString *documentsDirectory = [paths objectAtIndex:0];

 NSString *gyroRecordCount = [NSString

stringWithFormat:@"gyro%i.dat",obj.recordCount];//What

iteration of gyroscope recording

 NSString *accRecordCount = [NSString

stringWithFormat:@"acc%i.dat",obj.recordCount];//What

iteration of accelerometer recording

 NSString *drowsyRecordCount = [NSString

stringWithFormat:@"drowsy%i.dat",obj.recordCount];//What

iteration of drowsy recording

 NSString *speedRecordCount = [NSString

stringWithFormat:@"speed%i.dat",obj.recordCount];//What

iteration of drowsy recording

207

 NSString *angVelRecordCount = [NSString

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What

iteration of drowsy recording

 NSString *locationRecordCount = [NSString

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What

iteration of drowsy recording

 //To avoid overwriting useful data, first check that the

date name does not exist.

 //Second, create the file using the queried path

 //NSString *arrayFilename = [documentsDirectory

stringByAppendingPathComponent:@"drift.dat"];

 obj.accArrayFilename = [documentsDirectory

stringByAppendingPathComponent:accRecordCount];

 obj.gyroArrayFilename = [documentsDirectory

stringByAppendingPathComponent:gyroRecordCount];

 obj.drowsyArrayFilename = [documentsDirectory

stringByAppendingPathComponent:drowsyRecordCount];

 obj.speedArrayFilename = [documentsDirectory

stringByAppendingPathComponent:speedRecordCount];

 obj.locationArrayFilename = [documentsDirectory

stringByAppendingPathComponent:locationRecordCount];

 obj.angVelArrayFilename = [documentsDirectory

stringByAppendingPathComponent:angVelRecordCount];

 self.filename.text= obj.drowsyArrayFilename; // display

save location array name

 // self.filename.text= arrayFilename; // display save

location array name

 //Make the array you reserved in .h properties file

 //self.driftArray = [[NSMutableArray alloc] init];

 obj.accArray = [[NSMutableArray alloc] init];

 obj.gyroArray = [[NSMutableArray alloc] init];

 obj.drowsyArray = [[NSMutableArray alloc] init];

 obj.speedArray = [[NSMutableArray alloc] init];

 obj.locationArray = [[NSMutableArray alloc] init];

 obj.angVelArray = [[NSMutableArray alloc] init];

208

 self.length.text= [NSString stringWithFormat:@"%@ lines of

data currently stored to:", @([obj.accArray count])]; //

display array length, gyro and acc should have same count due

to same number of iterations

 // [self.driftArray writeToFile:arrayFilename atomically:

YES];

 //DONE

 NSDate *currentTime = [NSDate date];

 NSDateFormatter *dateFormatter = [[NSDateFormatter alloc]

init];

 [dateFormatter setDateFormat:@"dd/M/yy hh:mm:ss"];

 NSString *resultString = [dateFormatter

stringFromDate:currentTime];

 self.todaysDate.text = [NSString stringWithFormat: @"%@

\ntimestamp>%f", resultString,[NSDate

timeIntervalSinceReferenceDate]];

 [UIApplication sharedApplication].idleTimerDisabled = YES;

//KEEP ALIVE

 self.motionManager = [[CMMotionManager alloc]init];

 self.motionManager.accelerometerUpdateInterval=0.01; //max

100/sec or 100Hz

 self.motionManager.gyroUpdateInterval=0.01;

 [self.motionManager

startAccelerometerUpdatesToQueue:[NSOperationQueue

currentQueue]

withHandler:^(CMAccelerometerData *accelerometerData, NSError

*error)

 {[self

outputAccelerationData:accelerometerData.acceleration];

 if(error){

 NSLog(@"%@", error);

 }

 }];

209

 [self.motionManager

startGyroUpdatesToQueue:[NSOperationQueue currentQueue]

 withHandler:^(CMGyroData

*gyroData, NSError *error)

 {[self outputRotationData:gyroData.rotationRate];

 }];

 [self.motionManager

startDeviceMotionUpdatesToQueue:[NSOperationQueue

currentQueue]

withHandler:^(CMDeviceMotion *motion, NSError *error)

 {[self processMotion:motion];

 }];

 {[self.locationManager startUpdatingLocation];};

 // {[self.startReadingLocation:;]};

}

- (void)startReadingLocation

{

 self.locationManager = [[CLLocationManager alloc] init];

 self.locationManager.delegate=self;

 self.locationManager.desiredAccuracy=20;

//kCLLocationAccuracyBest;

 [self.locationManager startUpdatingLocation];

}

-(void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation

{

 DataClass *obj=[DataClass getInstance];

 obj.speed1=newLocation.speed*2.23693629;

 obj.latitude = newLocation.coordinate.latitude;

 obj.longitude = newLocation.coordinate.longitude;

 // self.speed1label.text =[NSString

stringWithFormat:@"%f",obj.speed1];

 //Manual calculation (optional for comparison)

 if(oldLocation!=nil)

 {

210

 CLLocationDistance distanceChange=[newLocation

getDistanceFrom:oldLocation];//getDistanceFrom alternate to

distanceFromLocation

 NSTimeInterval sinceLastUpdate=[newLocation.timestamp

timeIntervalSinceDate:oldLocation.timestamp];

obj.speed2=(distanceChange/sinceLastUpdate)*2.23693629;

 // self.speed2label.text =[NSString

stringWithFormat:@"%f",obj.speed2];

 }

}

-(void)outputAccelerationData:(CMAcceleration)acceleration

//ACCELEROMETER Ax Ay Az

{

 DataClass *obj=[DataClass getInstance];

 self.accx.text = [NSString stringWithFormat:@"

%.2fg",acceleration.x];

 self.accy.text = [NSString stringWithFormat:@"

%.2fg",acceleration.y];

 self.accz.text = [NSString stringWithFormat:@"

%.2fg",acceleration.z];

 obj.lastX =obj.accelerationX;// Last X polarity

 obj.lastY =obj.accelerationY;// Last Y polarity

 obj.lastZ =obj.accelerationZ;// Last Z polarity

 obj.accelerationX = acceleration.x; //NEW are sent out to

global

 obj.accelerationY = acceleration.y; //to determine >360

turns

 obj.accelerationZ = acceleration.z; //to determine >360

turns

 //Center

 obj.accAngle =

atan2(acceleration.y,acceleration.x)*(180/M_PI);

 /* if(acceleration.x < 0) //-X VALUES ON LEFT SIDE ONLY -0

TO -180

 {

211

 obj.accAngle = -

((atan2(acceleration.x,acceleration.y)*(180/M_PI))+180);

//STANDARDIZE THE VALUES TO GYROSCOPE STANDARDS

 }

 if(acceleration.x > 0) // +X VALUES FALL ON RIGHT SIDE

ONLY +0 TO +180

 {

 obj.accAngle = 180-

(atan2(acceleration.x,acceleration.y)*(180/M_PI));//STANDARDIZ

E THE VALUES TO GYROSCOPE STANDARDS

 }*/

 //The Following code is uncommented if it is required that

rotation adjusts automatically up to 1080 degrees

 /*

 switch (obj.revolveCase)

 {

 case -2:

 {

 //Final Left 180

 obj.accAngle = -

(540+(atan2(acceleration.x,acceleration.y)*(180/M_PI)));

 }

 break;

 case -1:

 {

 //Left 360

 if(acceleration.x < 0) //-X VALUES ON LEFT SIDE

ONLY -0 TO -180

 {

 obj.accAngle = -

(540+(atan2(acceleration.x,acceleration.y)*(180/M_PI)));

//STANDARDIZE THE VALUES TO GYROSCOPE STANDARDS

 }

 if(acceleration.x > 0) // +X VALUES FALL ON RIGHT

SIDE ONLY +0 TO +180

 {

 obj.accAngle = -

(atan2(acceleration.x,acceleration.y)*(180/M_PI)+180);//STANDA

RDIZE THE VALUES TO GYROSCOPE STANDARDS

 }

 }

 break;

 case 0:

 {

 //Center

212

 if(acceleration.x < 0) //-X VALUES ON LEFT SIDE

ONLY -0 TO -180

 {

 obj.accAngle = -

((atan2(acceleration.x,acceleration.y)*(180/M_PI))+180);

//STANDARDIZE THE VALUES TO GYROSCOPE STANDARDS

 }

 if(acceleration.x > 0) // +X VALUES FALL ON RIGHT

SIDE ONLY +0 TO +180

 {

 obj.accAngle = 180-

(atan2(acceleration.x,acceleration.y)*(180/M_PI));//STANDARDIZ

E THE VALUES TO GYROSCOPE STANDARDS

 }

 }

 break;

 case 1:

 {

 //Right 360

 if(acceleration.x < 0) //-X VALUES ON LEFT SIDE

ONLY -0 TO -180

 {

 obj.accAngle = -

((atan2(acceleration.x,acceleration.y)*(180/M_PI))-180);

//STANDARDIZE THE VALUES TO GYROSCOPE STANDARDS

 }

 if(acceleration.x > 0) // +X VALUES FALL ON RIGHT

SIDE ONLY +0 TO +180

 {

 obj.accAngle = 540-

(atan2(acceleration.x,acceleration.y)*(180/M_PI));//STANDARDIZ

E THE VALUES TO GYROSCOPE STANDARDS

 }

 }

 break;

 case 2:

 {

 //Final right 180

 obj.accAngle = -(540-

atan2(acceleration.x,acceleration.y)*(180/M_PI));

 }

 break;

 default:

 break;

 }

213

 self.accAngle.text = [NSString stringWithFormat:@"

%.2f°",obj.accAngle];

 if (obj.lastX<0 && obj.lastY>0.6 && obj.lastZ < 0 &&

obj.accelerationX>0 && obj.accelerationY>0.6 &&

obj.accelerationZ<0)//LEFT TURN ACROSS DECISION POINT

 {

 obj.revolveCase--;

 }

 else if(obj.lastX>0 && obj.lastY>0.6 && obj.lastZ<0 &&

obj.accelerationX<0 && obj.accelerationY>0.6 &&

obj.accelerationZ<0)//RIGHT TURN ACROSS DECISION POINT

 {

 obj.revolveCase++;

 }

 self.revolveCase.text=[NSString stringWithFormat:@"

%.2i",obj.revolveCase];

 */

}

-(void)outputRotationData:(CMRotationRate)rotation //GYRO

ANGULAR CHANGE RATE

{

 DataClass *obj=[DataClass getInstance];

 obj.lastGyroPosition = obj.gyroPosition; //LAST GYRO

POSITION

 obj.lastSwmFusion = obj.swmFusion; //LAST SWM READING

 // gyroPosition =

(lastGyroPosition+(rotation.z*(180/M_PI)*0.01)*0.01)+(accAngle

*0.99);

 // gyroPosition =

(lastGyroPosition+(rotation.z*0.01)*(180/M_PI));

 obj.gyroPosition = -

 ((rotation.z-0.0082764553)*(180/M_PI))*0.01;

 self.gyroPosition.text = [NSString stringWithFormat:@"

%1.2f°/s",obj.gyroPosition];//PRINT TO SCREEN

 obj.swmFusion =

(obj.lastSwmFusion+((obj.lastGyroPosition+obj.gyroPosition)/2)

)*0.9 + (obj.accAngle*0.1);

214

 self.swmFusion.text= [NSString stringWithFormat:@"

%.2f°",obj.swmFusion]; //PRINT IT

 if (obj.recordBoolean==1) //If start button pressed,

record

 {

 [obj.accArray addObject:[NSString stringWithFormat:@"

%f",obj.accAngle]];//SAVE ACCELEROMETER ANGLE TO ARRAY

 [obj.gyroArray addObject:[NSString stringWithFormat:@"

%f",obj.swmFusion]];//SAVE FUSION ANGLE TO ARRAY

 [obj.speedArray addObject:[NSString

stringWithFormat:@" %f",obj.speed1]];//SAVE FUSION ANGLE TO

ARRAY

 [obj.locationArray addObject:[NSString

stringWithFormat:@" %f, %f",obj.latitude,

obj.longitude]];//SAVE LOCATION TO ARRAY

 [obj.angVelArray addObject:[NSString

stringWithFormat:@" %f",obj.gyroPosition]];//SAVE ANGULAR

VELOCITY TO ARRAY

 }

 /*

 self.rotx.text = [NSString stringWithFormat:@"

%1.2f°/s",rotation.x*(180/M_PI)];

 self.roty.text = [NSString stringWithFormat:@"

%1.2f°/s",rotation.y*(180/M_PI)];

 self.rotz.text = [NSString stringWithFormat:@"

%1.2f°/s",rotation.z*(180/M_PI)];

 */

 self.speed1label.text = [NSString stringWithFormat:@"%f

mph", obj.speed1];

 self.speed2label.text = [NSString stringWithFormat:@"%f

mph", obj.speed2];

}

-(void)processMotion:(CMDeviceMotion*)motion

{

 CMQuaternion quatYaw =

self.motionManager.deviceMotion.attitude.quaternion;

 self.currentYaw.text = [NSString stringWithFormat:@"

%0.2f°",asin(2*(quatYaw.x*quatYaw.z -

quatYaw.w*quatYaw.y))*(180/M_PI)];//quaternion yaw

}

215

- (IBAction)startButton:(id)sender

{

 DataClass *obj=[DataClass getInstance];

 if (obj.recordBoolean == 0)//start button only works if

stopped

 {

 obj.recordBoolean=1;

 self.recordProgress.text=@"Recording in Progress";

 NSDate *currentTime = [NSDate date];

 NSDateFormatter *dateFormatter = [[NSDateFormatter

alloc] init];

 [dateFormatter setDateFormat:@"dd/M/yy hh:mm:ss"];

 NSString *resultString = [dateFormatter

stringFromDate:currentTime];

 obj.startTime=[NSString stringWithFormat: @"%@ %f",

resultString,[NSDate timeIntervalSinceReferenceDate]];

 //write accelerometer and gyroscope array to file

 /*[obj.accArray writeToFile:obj.accArrayFilename

atomically: YES];

 [obj.gyroArray writeToFile:obj.gyroArrayFilename

atomically: YES];*/

 }

}

- (IBAction)stopButton:(id)sender

{

 DataClass *obj=[DataClass getInstance];

 if (obj.recordBoolean == 1) //stop button only works if

start is on, else skip it all

 {

 // accAngle= 0;

 // attitudeYaw= 0;

 // attitudeRoll=0;

 // currentFusion = 0;

 // lastFusion = 0;

 // currentYaw = 0;

 // lastYaw = 0;

 //self.recordProgress.text=obj.startTime

 ;

 //close off array with final timestamp

 /* NSDate *currentTime = [NSDate date];

216

 NSDateFormatter *dateFormatter = [[NSDateFormatter

alloc] init];

 [dateFormatter setDateFormat:@"hh-mm"];

 NSString *resultString = [dateFormatter

stringFromDate:currentTime];

 */

 obj.recordBoolean=0; //non-recording state

 NSDate *currentTime = [NSDate date];

 NSDateFormatter *dateFormatter = [[NSDateFormatter

alloc] init];

 [dateFormatter setDateFormat:@"dd/M/yy hh:mm:ss"];

 NSString *resultString = [dateFormatter

stringFromDate:currentTime];

 self.todaysDate.text = [NSString stringWithFormat:

@"%@ \ntimestamp>%f", resultString,[NSDate

timeIntervalSinceReferenceDate]];

 [obj.accArray addObject:[NSString stringWithFormat:

@"started at: %@ ended at: %@

%f",obj.startTime,resultString,[NSDate

timeIntervalSinceReferenceDate]]];

 [obj.gyroArray addObject: [NSString stringWithFormat:

@"started at: %@ ended at: %@ %f", obj.startTime,

resultString,[NSDate timeIntervalSinceReferenceDate]]];

 [obj.speedArray addObject: [NSString stringWithFormat:

@"started at: %f ended at: %@ %f", obj.speed1,

resultString,[NSDate timeIntervalSinceReferenceDate]]];

 [obj.angVelArray addObject: [NSString

stringWithFormat: @"started at: %f ended at: %@ %f",

obj.gyroPosition, resultString,[NSDate

timeIntervalSinceReferenceDate]]];

 self.recordProgress.text=@"Recording Halted!, Press

Start for New";

 obj.recordCount++; //advance the count of files stored

217

 //wont start index at 0 since it preceeds the first

write

 //*******//******RECORD PATH UPDATE HERE//*****//*****

 NSArray *paths =

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES);

 NSString *documentsDirectory = [paths

objectAtIndex:0];

 NSString *gyroRecordCount = [NSString

stringWithFormat:@"gyro%i.dat",obj.recordCount];//What

iteration of gyroscope recording

 NSString *accRecordCount = [NSString

stringWithFormat:@"acc%i.dat",obj.recordCount];//What

iteration of accelerometer recording

 NSString *drowsyRecordCount = [NSString

stringWithFormat:@"drowsy%i.dat",obj.recordCount];//What

iteration of accelerometer recording

 NSString *speedRecordCount = [NSString

stringWithFormat:@"speed%i.dat",obj.recordCount];//What

iteration of accelerometer recording

 NSString *angVelRecordCount = [NSString

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What

iteration of angular velocity recording

 NSString *locationRecordCount = [NSString

stringWithFormat:@"location%i.dat",obj.recordCount];//What

iteration of angular velocity recording

 //Second, create the fileName using the queried path

 //NSString *arrayFilename = [documentsDirectory

stringByAppendingPathComponent:@"drift.dat"];

 obj.accArrayFilename = [documentsDirectory

stringByAppendingPathComponent:accRecordCount];

 obj.gyroArrayFilename = [documentsDirectory

stringByAppendingPathComponent:gyroRecordCount];

 obj.drowsyArrayFilename = [documentsDirectory

stringByAppendingPathComponent:drowsyRecordCount];

 obj.speedArrayFilename = [documentsDirectory

stringByAppendingPathComponent:speedRecordCount];

 obj.angVelArrayFilename = [documentsDirectory

stringByAppendingPathComponent:angVelRecordCount];

 obj.locationArrayFilename = [documentsDirectory

stringByAppendingPathComponent:locationRecordCount];

218

 //*******//******END RECORD PATH UPDATE//*****//*****

 bool fileExists;//=[[NSFileManager defaultManager]

fileExistsAtPath:gyroRecordCount];

 while (fileExists=[[NSFileManager defaultManager]

fileExistsAtPath:obj.accArrayFilename]) //do this while file

already exists

 {

 obj.recordCount++; //try the next index value at

next loop go-around

 //Now re-assign everything for new go around

 gyroRecordCount = [NSString

stringWithFormat:@"gyro%i.dat",obj.recordCount];//What

iteration of gyroscope recording

 accRecordCount = [NSString

stringWithFormat:@"acc%i.dat",obj.recordCount];//What

iteration of accelerometer recording

 drowsyRecordCount = [NSString

stringWithFormat:@"drowsy%i.dat",obj.recordCount];//What

iteration of drowsy recording

 speedRecordCount = [NSString

stringWithFormat:@"speed%i.dat",obj.recordCount];//What

iteration of drowsy recording

 locationRecordCount = [NSString

stringWithFormat:@"location%i.dat",obj.recordCount];//What

iteration of location recording

 angVelRecordCount = [NSString

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What

iteration of angular velocity recording

 obj.accArrayFilename = [documentsDirectory

stringByAppendingPathComponent:accRecordCount];

 obj.gyroArrayFilename = [documentsDirectory

stringByAppendingPathComponent:gyroRecordCount];

 obj.drowsyArrayFilename = [documentsDirectory

stringByAppendingPathComponent:drowsyRecordCount];

 obj.speedArrayFilename = [documentsDirectory

stringByAppendingPathComponent:speedRecordCount];

 obj.angVelArrayFilename = [documentsDirectory

stringByAppendingPathComponent:angVelRecordCount];

 obj.locationArrayFilename = [documentsDirectory

stringByAppendingPathComponent:locationRecordCount];

 //restart loop here

219

 }

 /*

 //zero all values for calibration

obj.lastSwmFusion=obj.swmFusion=obj.gyroPosition=obj.accAngle=

0;

 obj.recordCount++;

 */

 //write accelerometer and gyroscope array to file

 [obj.accArray writeToFile:obj.accArrayFilename

atomically: YES];

 [obj.gyroArray writeToFile:obj.gyroArrayFilename

atomically: YES];

 [obj.drowsyArray writeToFile:obj.drowsyArrayFilename

atomically: YES];

 [obj.speedArray writeToFile:obj.speedArrayFilename

atomically: YES];

 [obj.angVelArray writeToFile:obj.angVelArrayFilename

atomically: YES];

 [obj.locationArray

writeToFile:obj.locationArrayFilename atomically: YES];

 self.dataBlockSaved.text = [NSString

stringWithFormat:@"data block %i saved!", obj.recordCount];

 if ([obj.accArray count])// empty the arrays

 {

 [obj.accArray removeAllObjects];

 [obj.gyroArray removeAllObjects];

 [obj.speedArray removeAllObjects];

 [obj.locationArray removeAllObjects];

 [obj.angVelArray removeAllObjects];

 }

 if ([obj.drowsyArray count])// empty the drowsy arrays

 {

 [obj.drowsyArray removeAllObjects];

 }

 }

}

- (IBAction)drowsyButton:(id)sender

220

{

 DataClass *obj=[DataClass getInstance];

 if (obj.recordBoolean == 1)//drowsy button only works when

recording

 {

 DataClass *obj=[DataClass getInstance];

 NSDate *currentTime = [NSDate date];

 NSDateFormatter *dateFormatter = [[NSDateFormatter

alloc] init];

 [dateFormatter setDateFormat:@"dd/M/yy hh:mm:ss"];

 NSString *resultString = [dateFormatter

stringFromDate:currentTime];

 [obj.drowsyArray addObject:[NSString stringWithFormat:

@"%@ %f", resultString,[NSDate timeIntervalSinceReferenceDate]

]];//SAVE drowsy data

 }

 else self.recordProgress.text = @"Recording not started

yet!";

}

- (void)didReceiveMemoryWarning

{

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

221

A2.1.5 main.m

//

// main.m

// IM Uf

//

// Created by Samuel Lawoyin on 7/19/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import <UIKit/UIKit.h>

#import "imuAppDelegate.h"

int main(int argc, char * argv[])

{

 @autoreleasepool {

 return UIApplicationMain(argc, argv, nil, NSStringFromClass([imuAppDelegate

class]));

 }

}

222

A2.1.6 SVM for IMU-Prefix.pch

//

// Prefix header

//

// The contents of this file are implicitly included at the

beginning of every source file.

//

#import <Availability.h>

#ifndef __IPHONE_5_0

#warning "This project uses features only available in iOS SDK 5.0

and later."

#endif

#ifdef __OBJC__

 #import <UIKit/UIKit.h>

 #import <Foundation/Foundation.h>

#endif

223

A2.1.7 SVMfor IMU-Info.plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>CFBundleDevelopmentRegion</key>

 <string>en</string>

 <key>CFBundleDisplayName</key>

 <string>${PRODUCT_NAME}</string>

 <key>CFBundleExecutable</key>

 <string>${EXECUTABLE_NAME}</string>

 <key>CFBundleIdentifier</key>

 <string>sam.${PRODUCT_NAME:rfc1034identifier}</string>

 <key>CFBundleInfoDictionaryVersion</key>

 <string>6.0</string>

 <key>CFBundleName</key>

 <string>${PRODUCT_NAME}</string>

 <key>CFBundlePackageType</key>

 <string>APPL</string>

 <key>CFBundleShortVersionString</key>

 <string>1.0</string>

 <key>CFBundleSignature</key>

 <string>????</string>

 <key>CFBundleVersion</key>

 <string>1.0</string>

 <key>LSRequiresIPhoneOS</key>

 <true/>

 <key>UIMainStoryboardFile</key>

 <string>Main_iPhone</string>

 <key>UIMainStoryboardFile~ipad</key>

 <string>Main_iPad</string>

 <key>UIRequiredDeviceCapabilities</key>

 <array>

 <string>armv7</string>

 </array>

 <key>UISupportedInterfaceOrientations</key>

 <array>

 <string>UIInterfaceOrientationPortrait</string>

 <string>UIInterfaceOrientationLandscapeLeft</string>

 <string>UIInterfaceOrientationLandscapeRight</string>

 </array>

 <key>UISupportedInterfaceOrientations~ipad</key>

 <array>

 <string>UIInterfaceOrientationPortrait</string>

 <string>UIInterfaceOrientationPortraitUpsideDown</string>

 <string>UIInterfaceOrientationLandscapeLeft</string>

 <string>UIInterfaceOrientationLandscapeRight</string>

 </array>

</dict>

</plist>

224

225

A2.2 Machine Learning - Support Vector Classification Code

A2.2.1 main.m

//

// main.m

// SVM for IMU

//

// Created by Samuel Lawoyin on 7/20/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import <UIKit/UIKit.h>

#import "imuAppDelegate.h"

int main(int argc, char * argv[])

{

 @autoreleasepool {

 return UIApplicationMain(argc, argv, nil,

NSStringFromClass([imuAppDelegate class]));

 }

}

226

A2.2.2 imuAppDelegate.h

//

// imuAppDelegate.h

// SVM for IMU

//

// Created by Samuel Lawoyin on 7/20/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import <UIKit/UIKit.h>

@interface imuAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

227

A2.2.3 imuAppDelegate.m

//

// imuAppDelegate.m

// SVM for IMU

//

// Created by Samuel Lawoyin on 7/20/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import "imuAppDelegate.h"

@implementation imuAppDelegate

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 // Override point for customization after application launch.

 return YES;

}

- (void)applicationWillResignActive:(UIApplication *)application

{

 // Sent when the application is about to move from active to

inactive state. This can occur for certain types of temporary

interruptions (such as an incoming phone call or SMS message) or

when the user quits the application and it begins the transition to

the background state.

 // Use this method to pause ongoing tasks, disable timers, and

throttle down OpenGL ES frame rates. Games should use this method to

pause the game.

}

- (void)applicationDidEnterBackground:(UIApplication *)application

{

 // Use this method to release shared resources, save user data,

invalidate timers, and store enough application state information to

restore your application to its current state in case it is

terminated later.

 // If your application supports background execution, this

method is called instead of applicationWillTerminate: when the user

quits.

}

- (void)applicationWillEnterForeground:(UIApplication *)application

{

 // Called as part of the transition from the background to the

inactive state; here you can undo many of the changes made on

entering the background.

}

- (void)applicationDidBecomeActive:(UIApplication *)application

{

228

 // Restart any tasks that were paused (or not yet started) while

the application was inactive. If the application was previously in

the background, optionally refresh the user interface.

}

- (void)applicationWillTerminate:(UIApplication *)application

{

 // Called when the application is about to terminate. Save data

if appropriate. See also applicationDidEnterBackground:.

}

@end

229

A2.2.4 imuViewController.h

//

// imuViewController.h

// SVM for IMU

//

// Created by Samuel Lawoyin on 7/20/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import <UIKit/UIKit.h>

#import <CoreMotion/CoreMotion.h>

#import <coreText/CoreText.h>

#import <CoreLocation/CoreLocation.h>

#import <MobileCoreServices/MobileCoreServices.h>

#import <MapKit/MapKit.h>

//#import "svm.h"

@interface imuViewController : UIViewController

<UITextFieldDelegate>

@property (strong, nonatomic) IBOutlet UITextField *turnAve;

@property (strong, nonatomic) IBOutlet UITextField *zeroCross;

@property (strong, nonatomic) IBOutlet UITextField *swmSudden;

@property (strong, nonatomic) IBOutlet UITextField *swmSTDev;

- (IBAction)classify:(id)sender;

@property (strong, nonatomic) IBOutlet UILabel *turnAveBox;

@property (strong, nonatomic) IBOutlet UILabel *zeroCrossBox;

@property (strong, nonatomic) IBOutlet UILabel *swmSuddenBox;

@property (strong, nonatomic) IBOutlet UILabel *swmSTDevBox;

@end

@interface DataClass : NSObject

{

 NSString *inputFilename;

 NSString *accArrayFilename;

 NSString *gyroArrayFilename;

 NSString *speedArrayFilename;

 NSString *drowsyArrayFilename;

 NSMutableArray *accArray;

 NSMutableArray *gyroArray;

 NSMutableArray *speedArray;

 NSMutableArray *drowsyArray;

}

230

//global variable

@property (nonatomic, retain) NSString* turnAveString;

@property (nonatomic, retain) NSString* zeroCrossString;

@property (nonatomic, retain) NSString* swmSuddenString;

@property (nonatomic, retain) NSString* swmSTDevString;

@property (nonatomic, retain) NSString* classifyString;

@property (nonatomic, retain) NSString *classifyFilename;

@property (nonatomic, retain) NSString *classifiedOutputFilename;

@property (nonatomic, retain) NSString *modelFilename;

@property (nonatomic, retain) NSString *accArrayFilename;

@property (nonatomic, retain) NSString *gyroArrayFilename;

@property (nonatomic, retain) NSString *drowsyArrayFilename;

@property (nonatomic, retain) NSString *speedArrayFilename;

@property (nonatomic, retain) NSString *startTime;

+(DataClass*)getInstance;

@property (nonatomic, retain) NSMutableArray *accArray;

@property (nonatomic, retain) NSMutableArray *gyroArray;

@property (nonatomic, retain) NSMutableArray *speedArray;

@property (nonatomic, retain) NSMutableArray *drowsyArray;

@property (nonatomic, assign) double gyroPosition;

@property (nonatomic, assign) double accAngle;

@property (nonatomic, assign) double lastGyroPosition;

@property (nonatomic, assign) double swmFusion;

@property (nonatomic, assign) double lastSwmFusion;

//@property (nonatomic, assign) double lastGyroPositionNum;

@property (nonatomic, assign) double lastX;

@property (nonatomic, assign) double lastY;

@property (nonatomic, assign) double lastZ;@property (nonatomic,

assign) double accelerationX;

@property (nonatomic, assign) double accelerationY;

@property (nonatomic, assign) double accelerationZ;

@property (nonatomic, assign) int revolveCase;

@property (nonatomic, assign) int recordBoolean;

@property (nonatomic, assign) int recordCount;//how many times the

stop button has been pressed for labelling data

@property (nonatomic, assign) double speed1;

@property (nonatomic, assign) double speed2;

@end

231

A2.2.5 imuViewController.m

//

// imuViewController.m

// SVM for IMU

//

// Created by Samuel Lawoyin on 7/20/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import "imuViewController.h"

#include <stdio.h>

#include <ctype.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

//#include "svm.h"

#define INF HUGE_VAL

#define TAU 1e-12

#define Malloc(type,n) (type *)malloc((n)*sizeof(type))

typedef float Qfloat;

typedef signed char schar;

#ifndef min

template <class T> static inline T min(T x,T y) { return (x<y)?x:y;

}

#endif

#ifndef max

template <class T> static inline T max(T x,T y) { return (x>y)?x:y;

}

#endif

template <class T> static inline void swap(T& x, T& y) { T t=x; x=y;

y=t; }

template <class S, class T> static inline void clone(T*& dst, S*

src, int n)

{

 dst = new T[n];

 memcpy((void *)dst,(void *)src,sizeof(T)*n);

}

static inline double powi(double base, int times)

{

 double tmp = base, ret = 1.0;

 for(int t=times; t>0; t/=2)

 {

 if(t%2==1) ret*=tmp;

 tmp = tmp * tmp;

 }

 return ret;

}

@interface imuViewController ()

232

@end

@implementation DataClass

@synthesize accArrayFilename;

@synthesize gyroArrayFilename;

static DataClass *instance = nil;

+(DataClass *)getInstance

{

 @synchronized(self)

 {

 if (instance==nil)

 {

 instance = [DataClass new];

 }

 }

 return instance;

}

@end

@implementation imuViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically

from a nib.

}

 int print_null(const char *s,...) {return 0;}

static int (*info)(const char *fmt,...) = &printf;

struct svm_node *x;

int max_nr_attr = 64;

struct svm_model* model;

int predict_probability=0;

static char *line = NULL;

static int max_line_len;

// struct svm_model *submodel = svm_train(&subprob,&subparam);

struct svm_node

233

{

 int index;

 double value;

};

struct svm_problem

{

 int l;

 double *y;

 struct svm_node **x;

};

enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /*

svm_type */

enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */

struct svm_parameter

{

 int svm_type;

 int kernel_type;

 int degree; /* for poly */

 double gamma; /* for poly/rbf/sigmoid */

 double coef0; /* for poly/sigmoid */

 /* these are for training only */

 double cache_size; /* in MB */

 double eps; /* stopping criteria */

 double C; /* for C_SVC, EPSILON_SVR and NU_SVR */

 int nr_weight; /* for C_SVC */

 int *weight_label; /* for C_SVC */

 double* weight; /* for C_SVC */

 double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */

 double p; /* for EPSILON_SVR */

 int shrinking; /* use the shrinking heuristics */

 int probability; /* do probability estimates */

};

//

// svm_model

//

struct svm_model

{

 struct svm_parameter param; /* parameter */

 int nr_class; /* number of classes, = 2 in

regression/one class svm */

 int l; /* total #SV */

 struct svm_node **SV; /* SVs (SV[l]) */

 double **sv_coef; /* coefficients for SVs in decision

functions (sv_coef[k-1][l]) */

 double *rho; /* constants in decision functions

(rho[k*(k-1)/2]) */

 double *probA; /* pariwise probability information */

234

 double *probB;

 int *sv_indices; /* sv_indices[0,...,nSV-1] are values

in [1,...,num_traning_data] to indicate SVs in the training set */

 /* for classification only */

 int *label; /* label of each class (label[k]) */

 int *nSV; /* number of SVs for each class (nSV[k]) */

 /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */

 /* XXX */

 int free_sv; /* 1 if svm_model is created by

svm_load_model*/

 /* 0 if svm_model is created by svm_train */

};

FILE *input, *output;

int svm_get_svm_type(const svm_model *model)

{

 return model->param.svm_type;

}

int svm_get_nr_class(const svm_model *model)

{

 return model->nr_class;

}

- (IBAction)classify:(id)sender

{

 DataClass *obj=[DataClass getInstance];

 obj.turnAveString = self.turnAve.text; //GET

 self.turnAveBox.text= obj.turnAveString;//PRINT

 obj.zeroCrossString = self.zeroCross.text; //GET

 self.zeroCrossBox.text= obj.zeroCrossString;//PRINT

 obj.swmSuddenString = self.swmSudden.text; //GET

 self.swmSuddenBox.text= obj.swmSuddenString;//PRINT

 obj.swmSTDevString = self.swmSTDev.text; //GET

 self.swmSTDevBox.text= obj.swmSTDevString;//PRINT

 //*******//******SAVE FILE TO BE CLASSIFIED HERE//*****//*****

 NSArray *paths =

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES);

235

 NSString *documentsDirectory = [paths objectAtIndex:0];

 //Second, create the fileName using the queried path

 obj.classifyFilename = [documentsDirectory

stringByAppendingPathComponent:@"fileToClassify"];

 obj.classifiedOutputFilename = [documentsDirectory

stringByAppendingPathComponent:@"classifiedOutput"];

 obj.modelFilename = [documentsDirectory

stringByAppendingPathComponent:@"model.txt"];

 //Prepare single line of classification data

 obj.classifyString = [NSString stringWithFormat: @"1 1:%@ 2:%@

3:%@

4:%@",obj.turnAveString,obj.zeroCrossString,obj.swmSuddenString,obj.

swmSTDevString];

 //Now write to classification file

 [obj.classifyString writeToFile:obj.classifyFilename atomically:

YES];

 const char *inputChar =[obj.classifyFilename UTF8String];

//convert NSString to c char the name of the input file tobe

classified

 input = fopen(inputChar,"r");

 const char *outputChar =[obj.classifiedOutputFilename

UTF8String]; //convert NSString to c char the name of the output

file with classification results

 const char *modelfile = [obj.modelFilename UTF8String];

//convert NSString to c char the name of the model file

 if(input == NULL)

 {

 fprintf(stderr,"can't open input file %s\n",inputChar);

 exit(1);

 }

 output = fopen(outputChar,"w");

 if(output == NULL)

 {

 fprintf(stderr,"can't open output file %s\n",outputChar);

 exit(1);

 }

 if((model=svm_load_model(modelfile))==0)

 {

 fprintf(stderr,"can't open model file %s\n",modelfile);

 exit(1);

 }

236

 x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct

svm_node));

 if(predict_probability)

 {

 if(svm_check_probability_model(model)==0)

 {

 fprintf(stderr,"Model does not support probabiliy

estimates\n");

 exit(1);

 }

 }

 else

 {

 if(svm_check_probability_model(model)!=0)

 info("Model supports probability estimates, but

disabled in prediction.\n");

 }

 predict(input,output);

 svm_free_and_destroy_model(&model);

 free(x);

 free(line);

 fclose(input);

 fclose(output);

}

void predict(FILE *input, FILE *output)

{

 int correct = 0;

 int total = 0;

 double error = 0;

 double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;

 int svm_type=svm_get_svm_type(model);

 int nr_class=svm_get_nr_class(model);

 double *prob_estimates=NULL;

 int j;

 if(predict_probability)

 {

 /*if (svm_type==NU_SVR || svm_type==EPSILON_SVR)

 info("Prob. model for test data: target value =

predicted value + z,\nz: Laplace distribution e^(-

|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));*/

 //else

 //{

 int *labels=(int *) malloc(nr_class*sizeof(int));

 svm_get_labels(model,labels);

237

 prob_estimates = (double *)

malloc(nr_class*sizeof(double));

 fprintf(output,"labels");

 for(j=0;j<nr_class;j++)

 fprintf(output," %d",labels[j]);

 fprintf(output,"\n");

 free(labels);

 // }

 }

 max_line_len = 1024;

 line = (char *)malloc(max_line_len*sizeof(char));

 while(readline(input) != NULL)

 {

 int i = 0;

 double target_label, predict_label;

 char *idx, *val, *label, *endptr;

 int inst_max_index = -1; // strtol gives 0 if wrong

format, and precomputed kernel has <index> start from 0

 label = strtok(line," \t\n");

 if(label == NULL) // empty line

 exit_input_error(total+1);

 target_label = strtod(label,&endptr);

 if(endptr == label || *endptr != '\0')

 exit_input_error(total+1);

 while(1)

 {

 if(i>=max_nr_attr-1) // need one more for index = -

1

 {

 max_nr_attr *= 2;

 x = (struct svm_node *)

realloc(x,max_nr_attr*sizeof(struct svm_node));

 }

 idx = strtok(NULL,":");

 val = strtok(NULL," \t");

 if(val == NULL)

 break;

 errno = 0;

 x[i].index = (int) strtol(idx,&endptr,10);

 if(endptr == idx || errno != 0 || *endptr != '\0' ||

x[i].index <= inst_max_index)

 exit_input_error(total+1);

 else

 inst_max_index = x[i].index;

 errno = 0;

 x[i].value = strtod(val,&endptr);

238

 if(endptr == val || errno != 0 || (*endptr != '\0'

&& !isspace(*endptr)))

 exit_input_error(total+1);

 ++i;

 }

 x[i].index = -1;

 if (predict_probability && (svm_type==C_SVC ||

svm_type==NU_SVC))

 {

 predict_label =

svm_predict_probability(model,x,prob_estimates);

 fprintf(output,"%g",predict_label);

 for(j=0;j<nr_class;j++)

 fprintf(output," %g",prob_estimates[j]);

 fprintf(output,"\n");

 }

 //else

 //{

 predict_label = svm_predict(model,x);

 fprintf(output,"%g\n",predict_label);

 //}

 if(predict_label == target_label)

 ++correct;

 error += (predict_label-target_label)*(predict_label-

target_label);

 sump += predict_label;

 sumt += target_label;

 sumpp += predict_label*predict_label;

 sumtt += target_label*target_label;

 sumpt += predict_label*target_label;

 ++total;

 }

 if (svm_type==NU_SVR || svm_type==EPSILON_SVR)

 {

 info("Mean squared error = %g

(regression)\n",error/total);

 info("Squared correlation coefficient = %g

(regression)\n",

 ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/

 ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))

);

 }

 else

 info("Accuracy = %g%% (%d/%d) (classification)\n",

 (double)correct/total*100,correct,total);

 if(predict_probability)

 free(prob_estimates);

}

239

void svm_free_and_destroy_model(struct svm_model** model_ptr_ptr)

{

 if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)

 {

 svm_free_model_content(*model_ptr_ptr);

 free(*model_ptr_ptr);

 *model_ptr_ptr = NULL;

 }

}

 svm_model *svm_load_model(const char *model_file_name)

{

 FILE *fp = fopen(model_file_name,"rb");

 if(fp==NULL) return NULL;

 char *old_locale = strdup(setlocale(LC_ALL, NULL));

 setlocale(LC_ALL, "C");

 // read parameters

 svm_model *model = Malloc(svm_model,1);

 model->rho = NULL;

 model->probA = NULL;

 model->probB = NULL;

 model->sv_indices = NULL;

 model->label = NULL;

 model->nSV = NULL;

 // read header

 if (!read_model_header(fp, model))

 {

 fprintf(stderr, "ERROR: fscanf failed to read model\n");

 setlocale(LC_ALL, old_locale);

 free(old_locale);

 free(model->rho);

 free(model->label);

 free(model->nSV);

 free(model);

 return NULL;

 }

 // read sv_coef and SV

 int elements = 0;

 long pos = ftell(fp);

 max_line_len = 1024;

 line = Malloc(char,max_line_len);

 char *p,*endptr,*idx,*val;

 while(readline(fp)!=NULL)

 {

240

 p = strtok(line,":");

 while(1)

 {

 p = strtok(NULL,":");

 if(p == NULL)

 break;

 ++elements;

 }

 }

 elements += model->l;

 fseek(fp,pos,SEEK_SET);

 int m = model->nr_class - 1;

 int l = model->l;

 model->sv_coef = Malloc(double *,m);

 int i;

 for(i=0;i<m;i++)

 model->sv_coef[i] = Malloc(double,l);

 model->SV = Malloc(svm_node*,l);

 svm_node *x_space = NULL;

 if(l>0) x_space = Malloc(svm_node,elements);

 int j=0;

 for(i=0;i<l;i++)

 {

 readline(fp);

 model->SV[i] = &x_space[j];

 p = strtok(line, " \t");

 model->sv_coef[0][i] = strtod(p,&endptr);

 for(int k=1;k<m;k++)

 {

 p = strtok(NULL, " \t");

 model->sv_coef[k][i] = strtod(p,&endptr);

 }

 while(1)

 {

 idx = strtok(NULL, ":");

 val = strtok(NULL, " \t");

 if(val == NULL)

 break;

 x_space[j].index = (int) strtol(idx,&endptr,10);

 x_space[j].value = strtod(val,&endptr);

 ++j;

 }

 x_space[j++].index = -1;

 }

 free(line);

 setlocale(LC_ALL, old_locale);

241

 free(old_locale);

 if (ferror(fp) != 0 || fclose(fp) != 0)

 return NULL;

 model->free_sv = 1; // XXX

 return model;

}

static char* readline(FILE *input)

{

 int len;

 if(fgets(line,max_line_len,input) == NULL)

 return NULL;

 while(strrchr(line,'\n') == NULL)

 {

 max_line_len *= 2;

 line = (char *) realloc(line,max_line_len);

 len = (int) strlen(line);

 if(fgets(line+len,max_line_len-len,input) == NULL)

 break;

 }

 return line;

}

void exit_input_error(int line_num)

{

 fprintf(stderr,"Wrong input format at line %d\n", line_num);

 exit(1);

}

void svm_get_labels(const struct svm_model *model, int *label);

double svm_get_svr_probability(const struct svm_model *model);

int svm_check_probability_model(const svm_model *model)

{

 return ((model->param.svm_type == C_SVC || model->param.svm_type

== NU_SVC) &&

 model->probA!=NULL && model->probB!=NULL) ||

 ((model->param.svm_type == EPSILON_SVR || model->param.svm_type

== NU_SVR) &&

 model->probA!=NULL);

}

double svm_predict(const svm_model *model, const svm_node *x)

{

 int nr_class = model->nr_class;

242

 double *dec_values;

 if(model->param.svm_type == ONE_CLASS ||

 model->param.svm_type == EPSILON_SVR ||

 model->param.svm_type == NU_SVR)

 dec_values = Malloc(double, 1);

 else

 dec_values = Malloc(double, nr_class*(nr_class-1)/2);

 double pred_result = svm_predict_values(model, x, dec_values);

 free(dec_values);

 return pred_result;

}

double svm_predict_values(const svm_model *model, const svm_node *x,

double* dec_values)

{

 int i;

 if(model->param.svm_type == ONE_CLASS ||

 model->param.svm_type == EPSILON_SVR ||

 model->param.svm_type == NU_SVR)

 {

 double *sv_coef = model->sv_coef[0];

 double sum = 0;

 for(i=0;i<model->l;i++)

 sum += sv_coef[i] * Kernel::k_function(x,model-

>SV[i],model->param);

 sum -= model->rho[0];

 *dec_values = sum;

 if(model->param.svm_type == ONE_CLASS)

 return (sum>0)?1:-1;

 else

 return sum;

 }

 else

 {

 int nr_class = model->nr_class;

 int l = model->l;

 double *kvalue = Malloc(double,l);

 for(i=0;i<l;i++)

 kvalue[i] = Kernel::k_function(x,model->SV[i],model-

>param);

 int *start = Malloc(int,nr_class);

 start[0] = 0;

 for(i=1;i<nr_class;i++)

 start[i] = start[i-1]+model->nSV[i-1];

 int *vote = Malloc(int,nr_class);

 for(i=0;i<nr_class;i++)

 vote[i] = 0;

 int p=0;

 for(i=0;i<nr_class;i++)

243

 for(int j=i+1;j<nr_class;j++)

 {

 double sum = 0;

 int si = start[i];

 int sj = start[j];

 int ci = model->nSV[i];

 int cj = model->nSV[j];

 int k;

 double *coef1 = model->sv_coef[j-1];

 double *coef2 = model->sv_coef[i];

 for(k=0;k<ci;k++)

 sum += coef1[si+k] * kvalue[si+k];

 for(k=0;k<cj;k++)

 sum += coef2[sj+k] * kvalue[sj+k];

 sum -= model->rho[p];

 dec_values[p] = sum;

 if(dec_values[p] > 0)

 ++vote[i];

 else

 ++vote[j];

 p++;

 }

 int vote_max_idx = 0;

 for(i=1;i<nr_class;i++)

 if(vote[i] > vote[vote_max_idx])

 vote_max_idx = i;

 free(kvalue);

 free(start);

 free(vote);

 return model->label[vote_max_idx];

 }

}

static const char *kernel_type_table[]=

{

 "linear","polynomial","rbf","sigmoid","precomputed",NULL

};

double svm_predict_probability(

 const svm_model *model, const

svm_node *x, double *prob_estimates)

{

 if ((model->param.svm_type == C_SVC || model->param.svm_type

== NU_SVC) &&

 model->probA!=NULL && model->probB!=NULL)

 {

 int i;

 int nr_class = model->nr_class;

 double *dec_values = Malloc(double, nr_class*(nr_class-

1)/2);

244

 svm_predict_values(model, x, dec_values);

 double min_prob=1e-7;

 double **pairwise_prob=Malloc(double *,nr_class);

 for(i=0;i<nr_class;i++)

 pairwise_prob[i]=Malloc(double,nr_class);

 int k=0;

 for(i=0;i<nr_class;i++)

 for(int j=i+1;j<nr_class;j++)

 {

 pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],mode

l->probA[k],model->probB[k]),min_prob),1-min_prob);

 pairwise_prob[j][i]=1-pairwise_prob[i][j];

 k++;

 }

 multiclass_probability(nr_class,pairwise_prob,prob_estimates);

 int prob_max_idx = 0;

 for(i=1;i<nr_class;i++)

 if(prob_estimates[i] > prob_estimates[prob_max_idx])

 prob_max_idx = i;

 for(i=0;i<nr_class;i++)

 free(pairwise_prob[i]);

 free(dec_values);

 free(pairwise_prob);

 return model->label[prob_max_idx];

 }

 else

 return svm_predict(model, x);

}

// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng

static void multiclass_probability(int k, double **r, double *p)

{

 int t,j;

 int iter = 0, max_iter=max(100,k);

 double **Q=Malloc(double *,k);

 double *Qp=Malloc(double,k);

 double pQp, eps=0.005/k;

 for (t=0;t<k;t++)

 {

 p[t]=1.0/k; // Valid if k = 1

 Q[t]=Malloc(double,k);

 Q[t][t]=0;

 for (j=0;j<t;j++)

 {

 Q[t][t]+=r[j][t]*r[j][t];

 Q[t][j]=Q[j][t];

 }

 for (j=t+1;j<k;j++)

245

 {

 Q[t][t]+=r[j][t]*r[j][t];

 Q[t][j]=-r[j][t]*r[t][j];

 }

 }

 for (iter=0;iter<max_iter;iter++)

 {

 // stopping condition, recalculate QP,pQP for numerical

accuracy

 pQp=0;

 for (t=0;t<k;t++)

 {

 Qp[t]=0;

 for (j=0;j<k;j++)

 Qp[t]+=Q[t][j]*p[j];

 pQp+=p[t]*Qp[t];

 }

 double max_error=0;

 for (t=0;t<k;t++)

 {

 double error=fabs(Qp[t]-pQp);

 if (error>max_error)

 max_error=error;

 }

 if (max_error<eps) break;

 for (t=0;t<k;t++)

 {

 double diff=(-Qp[t]+pQp)/Q[t][t];

 p[t]+=diff;

 pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);

 for (j=0;j<k;j++)

 {

 Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);

 p[j]/=(1+diff);

 }

 }

 }

 if (iter>=max_iter)

 info("Exceeds max_iter in multiclass_prob\n");

 for(t=0;t<k;t++) free(Q[t]);

 free(Q);

 free(Qp);

}

void svm_free_model_content(svm_model* model_ptr)

{

 if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV !=

NULL)

 free((void *)(model_ptr->SV[0]));

 if(model_ptr->sv_coef)

 {

246

 for(int i=0;i<model_ptr->nr_class-1;i++)

 free(model_ptr->sv_coef[i]);

 }

 free(model_ptr->SV);

 model_ptr->SV = NULL;

 free(model_ptr->sv_coef);

 model_ptr->sv_coef = NULL;

 free(model_ptr->rho);

 model_ptr->rho = NULL;

 free(model_ptr->label);

 model_ptr->label= NULL;

 free(model_ptr->probA);

 model_ptr->probA = NULL;

 free(model_ptr->probB);

 model_ptr->probB= NULL;

 free(model_ptr->sv_indices);

 model_ptr->sv_indices = NULL;

 free(model_ptr->nSV);

 model_ptr->nSV = NULL;

}

// FSCANF helps to handle fscanf failures.

// Its do-while block avoids the ambiguity when

// if (...)

// FSCANF();

// is used

//

#define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream,

_format, _var) != 1) return false; }while(0)

bool read_model_header(FILE *fp, svm_model* model)

{

 svm_parameter& param = model->param;

 char cmd[81];

 while(1)

 {

 FSCANF(fp,"%80s",cmd);

 if(strcmp(cmd,"svm_type")==0)

 {

 FSCANF(fp,"%80s",cmd);

 int i;

 for(i=0;svm_type_table[i];i++)

 {

 if(strcmp(svm_type_table[i],cmd)==0)

 {

 param.svm_type=i;

247

 break;

 }

 }

 if(svm_type_table[i] == NULL)

 {

 fprintf(stderr,"unknown svm type.\n");

 return false;

 }

 }

 else if(strcmp(cmd,"kernel_type")==0)

 {

 FSCANF(fp,"%80s",cmd);

 int i;

 for(i=0;kernel_type_table[i];i++)

 {

 if(strcmp(kernel_type_table[i],cmd)==0)

 {

 param.kernel_type=i;

 break;

 }

 }

 if(kernel_type_table[i] == NULL)

 {

 fprintf(stderr,"unknown kernel function.\n");

 return false;

 }

 }

 else if(strcmp(cmd,"degree")==0)

 FSCANF(fp,"%d",¶m.degree);

 else if(strcmp(cmd,"gamma")==0)

 FSCANF(fp,"%lf",¶m.gamma);

 else if(strcmp(cmd,"coef0")==0)

 FSCANF(fp,"%lf",¶m.coef0);

 else if(strcmp(cmd,"nr_class")==0)

 FSCANF(fp,"%d",&model->nr_class);

 else if(strcmp(cmd,"total_sv")==0)

 FSCANF(fp,"%d",&model->l);

 else if(strcmp(cmd,"rho")==0)

 {

 int n = model->nr_class * (model->nr_class-1)/2;

 model->rho = Malloc(double,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%lf",&model->rho[i]);

 }

 else if(strcmp(cmd,"label")==0)

 {

 int n = model->nr_class;

 model->label = Malloc(int,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%d",&model->label[i]);

 }

 else if(strcmp(cmd,"probA")==0)

 {

 int n = model->nr_class * (model->nr_class-1)/2;

248

 model->probA = Malloc(double,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%lf",&model->probA[i]);

 }

 else if(strcmp(cmd,"probB")==0)

 {

 int n = model->nr_class * (model->nr_class-1)/2;

 model->probB = Malloc(double,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%lf",&model->probB[i]);

 }

 else if(strcmp(cmd,"nr_sv")==0)

 {

 int n = model->nr_class;

 model->nSV = Malloc(int,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%d",&model->nSV[i]);

 }

 else if(strcmp(cmd,"SV")==0)

 {

 while(1)

 {

 int c = getc(fp);

 if(c==EOF || c=='\n') break;

 }

 break;

 }

 else

 {

 fprintf(stderr,"unknown text in model file:

[%s]\n",cmd);

 return false;

 }

 }

 return true;

}

static double sigmoid_predict(double decision_value, double A,

double B)

{

 double fApB = decision_value*A+B;

 // 1-p used later; avoid catastrophic cancellation

 if (fApB >= 0)

 return exp(-fApB)/(1.0+exp(-fApB));

 else

 return 1.0/(1+exp(fApB)) ;

}

static const char *svm_type_table[] =

{

 "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL

};

249

//

// Kernel evaluation

//

// the static method k_function is for doing single kernel

evaluation

// the constructor of Kernel prepares to calculate the l*l kernel

matrix

// the member function get_Q is for getting one column from the Q

Matrix

//

class QMatrix {

public:

 virtual Qfloat *get_Q(int column, int len) const = 0;

 virtual double *get_QD() const = 0;

 virtual void swap_index(int i, int j) const = 0;

 virtual ~QMatrix() {}

};

class Kernel: public QMatrix {

public:

 Kernel(int l, svm_node * const * x, const svm_parameter&

param);

 virtual ~Kernel();

 static double k_function(const svm_node *x, const svm_node *y,

 const svm_parameter& param);

 virtual Qfloat *get_Q(int column, int len) const = 0;

 virtual double *get_QD() const = 0;

 virtual void swap_index(int i, int j) const // no so const...

 {

 swap(x[i],x[j]);

 if(x_square) swap(x_square[i],x_square[j]);

 }

protected:

 double (Kernel::*kernel_function)(int i, int j) const;

private:

 const svm_node **x;

 double *x_square;

 // svm_parameter

 const int kernel_type;

 const int degree;

 const double gamma;

 const double coef0;

 static double dot(const svm_node *px, const svm_node *py);

 double kernel_linear(int i, int j) const

 {

 return dot(x[i],x[j]);

 }

250

 double kernel_poly(int i, int j) const

 {

 return powi(gamma*dot(x[i],x[j])+coef0,degree);

 }

 double kernel_rbf(int i, int j) const

 {

 return exp(-gamma*(x_square[i]+x_square[j]-

2*dot(x[i],x[j])));

 }

 double kernel_sigmoid(int i, int j) const

 {

 return tanh(gamma*dot(x[i],x[j])+coef0);

 }

 double kernel_precomputed(int i, int j) const

 {

 return x[i][(int)(x[j][0].value)].value;

 }

};

Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter&

param)

:kernel_type(param.kernel_type), degree(param.degree),

gamma(param.gamma), coef0(param.coef0)

{

 switch(kernel_type)

 {

 case LINEAR:

 kernel_function = &Kernel::kernel_linear;

 break;

 case POLY:

 kernel_function = &Kernel::kernel_poly;

 break;

 case RBF:

 kernel_function = &Kernel::kernel_rbf;

 break;

 case SIGMOID:

 kernel_function = &Kernel::kernel_sigmoid;

 break;

 case PRECOMPUTED:

 kernel_function = &Kernel::kernel_precomputed;

 break;

 }

 clone(x,x_,l);

 if(kernel_type == RBF)

 {

 x_square = new double[l];

 for(int i=0;i<l;i++)

 x_square[i] = dot(x[i],x[i]);

 }

 else

 x_square = 0;

}

251

Kernel::~Kernel()

{

 delete[] x;

 delete[] x_square;

}

double Kernel::dot(const svm_node *px, const svm_node *py)

{

 double sum = 0;

 while(px->index != -1 && py->index != -1)

 {

 if(px->index == py->index)

 {

 sum += px->value * py->value;

 ++px;

 ++py;

 }

 else

 {

 if(px->index > py->index)

 ++py;

 else

 ++px;

 }

 }

 return sum;

}

double Kernel::k_function(const svm_node *x, const svm_node *y,

 const svm_parameter& param)

{

 switch(param.kernel_type)

 {

 case LINEAR:

 return dot(x,y);

 case POLY:

 return

powi(param.gamma*dot(x,y)+param.coef0,param.degree);

 case RBF:

 {

 double sum = 0;

 while(x->index != -1 && y->index !=-1)

 {

 if(x->index == y->index)

 {

 double d = x->value - y->value;

 sum += d*d;

 ++x;

 ++y;

 }

 else

 {

 if(x->index > y->index)

252

 {

 sum += y->value * y->value;

 ++y;

 }

 else

 {

 sum += x->value * x->value;

 ++x;

 }

 }

 }

 while(x->index != -1)

 {

 sum += x->value * x->value;

 ++x;

 }

 while(y->index != -1)

 {

 sum += y->value * y->value;

 ++y;

 }

 return exp(-param.gamma*sum);

 }

 case SIGMOID:

 return tanh(param.gamma*dot(x,y)+param.coef0);

 case PRECOMPUTED: //x: test (validation), y: SV

 return x[(int)(y->value)].value;

 default:

 return 0; // Unreachable

 }

}

void svm_get_labels(const svm_model *model, int* label)

{

 if (model->label != NULL)

 for(int i=0;i<model->nr_class;i++)

 label[i] = model->label[i];

}

- (void)didReceiveMemoryWarning

{

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

253

A2.2.6 SVM for IMU-Info.plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>CFBundleDevelopmentRegion</key>

 <string>en</string>

 <key>CFBundleDisplayName</key>

 <string>${PRODUCT_NAME}</string>

 <key>CFBundleExecutable</key>

 <string>${EXECUTABLE_NAME}</string>

 <key>CFBundleIdentifier</key>

 <string>sam.${PRODUCT_NAME:rfc1034identifier}</string>

 <key>CFBundleInfoDictionaryVersion</key>

 <string>6.0</string>

 <key>CFBundleName</key>

 <string>${PRODUCT_NAME}</string>

 <key>CFBundlePackageType</key>

 <string>APPL</string>

 <key>CFBundleShortVersionString</key>

 <string>1.0</string>

 <key>CFBundleSignature</key>

 <string>????</string>

 <key>CFBundleVersion</key>

 <string>1.0</string>

 <key>LSRequiresIPhoneOS</key>

 <true/>

 <key>UIMainStoryboardFile</key>

 <string>Main_iPhone</string>

 <key>UIMainStoryboardFile~ipad</key>

 <string>Main_iPad</string>

 <key>UIRequiredDeviceCapabilities</key>

 <array>

 <string>armv7</string>

 </array>

 <key>UISupportedInterfaceOrientations</key>

 <array>

 <string>UIInterfaceOrientationPortrait</string>

 <string>UIInterfaceOrientationLandscapeLeft</string>

 <string>UIInterfaceOrientationLandscapeRight</string>

 </array>

 <key>UISupportedInterfaceOrientations~ipad</key>

 <array>

 <string>UIInterfaceOrientationPortrait</string>

 <string>UIInterfaceOrientationPortraitUpsideDown</string>

 <string>UIInterfaceOrientationLandscapeLeft</string>

 <string>UIInterfaceOrientationLandscapeRight</string>

 </array>

</dict>

</plist>

254

A2.2.7 SVM for IMU-Prefix.pch

//

// Prefix header

//

// The contents of this file are implicitly included at the

beginning of every source file.

//

#import <Availability.h>

#ifndef __IPHONE_5_0

#warning "This project uses features only available in iOS SDK 5.0

and later."

#endif

#ifdef __OBJC__

 #import <UIKit/UIKit.h>

 #import <Foundation/Foundation.h>

#endif

255

A2.3 Real Time Machine Learning/Classification APP

A2.3.1 main.m

//

// main.m

// IMUf

//

// Created by Samuel Lawoyin on 7/19/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import <UIKit/UIKit.h>

#import "imuAppDelegate.h"

int main(int argc, char * argv[])

{

 @autoreleasepool {

 return UIApplicationMain(argc, argv, nil,

NSStringFromClass([imuAppDelegate class]));

 }

}

256

A2.3.2 imuViewController.m

//

// imuViewController.m

// IMUa

//

// Created by Samuel Lawoyin on 7/9/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import "imuViewController.h"

#include <stdio.h>

#include <ctype.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

//#include "svm.h"

#define INF HUGE_VAL

#define TAU 1e-12

#define Malloc(type,n) (type *)malloc((n)*sizeof(type))

typedef float Qfloat;

typedef signed char schar;

#ifndef min

template <class T> static inline T min(T x,T y) { return (x<y)?x:y;

}

#endif

#ifndef max

template <class T> static inline T max(T x,T y) { return (x>y)?x:y;

}

#endif

template <class T> static inline void swap(T& x, T& y) { T t=x; x=y;

y=t; }

template <class S, class T> static inline void clone(T*& dst, S*

src, int n)

{

 dst = new T[n];

 memcpy((void *)dst,(void *)src,sizeof(T)*n);

}

static inline double powi(double base, int times)

{

 double tmp = base, ret = 1.0;

 for(int t=times; t>0; t/=2)

 {

 if(t%2==1) ret*=tmp;

 tmp = tmp * tmp;

 }

 return ret;

}

257

@interface imuViewController ()

@end

@implementation DataClass

@synthesize accArrayFilename;

@synthesize gyroArrayFilename;

static DataClass *instance = nil;

+(DataClass *)getInstance

{

 @synchronized(self)

 {

 if (instance==nil)

 {

 instance = [DataClass new];

 }

 }

 return instance;

}

@end

@implementation MapViewController

//@synthesize locationManager;

- (void)didReceiveMemoryWarning

{

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

/*

@implementation NSArray (Stats)

-(NSNumber *) calculateStat:(NSString *) stat

{

 NSArray *args=@[[NSExpression expressionForConstantValue:self]];

 NSString *statFormatted = [stat stringByAppendingString:@":"];

 NSExpression *expression=[NSExpression

expressionForFunction:statFormatted arguments: args];

 return [expression expressionValueWithObject:nil context:nil];

}

@end*/

@implementation imuViewController

CLLocationManager *locationManager;

- (void)viewDidLoad

{

258

 [super viewDidLoad]; // Do any additional setup after loading

the view, typically from a nib.

 DataClass *obj=[DataClass getInstance];

 obj.recordBoolean=1; //RECORDING state automaticcally TRUE upon

startup

 locationManager = [[CLLocationManager alloc] init];

 locationManager.delegate=self;

 locationManager.desiredAccuracy=kCLLocationAccuracyBest;

 [locationManager startUpdatingLocation];

 NSTimer *minuteTimer = [NSTimer

scheduledTimerWithTimeInterval:60.0

 target:self

 selector:@selector(minuteTime)

 userInfo:nil

 repeats:YES];

 //Create a new file path for recording the drift data/////////

 //First query for the app documents directory

 NSArray *paths =

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES);

 NSString *documentsDirectory = [paths objectAtIndex:0];

 NSString *gyroRecordCount = [NSString

stringWithFormat:@"gyro%i.dat",obj.recordCount];//What iteration of

gyroscope recording

 NSString *accRecordCount = [NSString

stringWithFormat:@"acc%i.dat",obj.recordCount];//What iteration of

accelerometer recording

 NSString *drowsyRecordCount = [NSString

stringWithFormat:@"drowsy%i.dat",obj.recordCount];//What iteration

of drowsy recording

 NSString *speedRecordCount = [NSString

stringWithFormat:@"speed%i.dat",obj.recordCount];//What iteration of

drowsy recording

 NSString *angVelRecordCount = [NSString

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What iteration

of drowsy recording

 NSString *locationRecordCount = [NSString

stringWithFormat:@"angVel%i.dat",obj.recordCount];//What iteration

of drowsy recording

 //To avoid overwriting useful data, first check that the date

name does not exist.

 //Second, create the file using the queried path

259

 //NSString *arrayFilename = [documentsDirectory

stringByAppendingPathComponent:@"drift.dat"];

 obj.accArrayFilename = [documentsDirectory

stringByAppendingPathComponent:accRecordCount];

 obj.gyroArrayFilename = [documentsDirectory

stringByAppendingPathComponent:gyroRecordCount];

 obj.drowsyArrayFilename = [documentsDirectory

stringByAppendingPathComponent:drowsyRecordCount];

 obj.speedArrayFilename = [documentsDirectory

stringByAppendingPathComponent:speedRecordCount];

 obj.locationArrayFilename = [documentsDirectory

stringByAppendingPathComponent:locationRecordCount];

 obj.angVelArrayFilename = [documentsDirectory

stringByAppendingPathComponent:angVelRecordCount];

 self.filename.text= obj.drowsyArrayFilename; // display save

location array name

 //Make the array you reserved in .h properties file

 //self.driftArray = [[NSMutableArray alloc] init];

 obj.accArray = [[NSMutableArray alloc] init];

 obj.gyroArray = [[NSMutableArray alloc] init];

 obj.drowsyArray = [[NSMutableArray alloc] init];

 obj.speedArray = [[NSMutableArray alloc] init];

 obj.locationArray = [[NSMutableArray alloc] init];

 obj.angVelArray = [[NSMutableArray alloc] init];

 obj.floatGyroArray = [[NSMutableArray alloc] init];

 obj.floatAngVelArray = [[NSMutableArray alloc] init];

 self.length.text= [NSString stringWithFormat:@"%@ lines of data

currently stored to:", @([obj.accArray count])]; // display array

length, gyro and acc should have same count due to same number of

iterations

 // [self.driftArray writeToFile:arrayFilename atomically: YES];

 //DONE

 NSDate *currentTime = [NSDate date];

 NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];

 [dateFormatter setDateFormat:@"dd/M/yy hh:mm:ss"];

 NSString *resultString = [dateFormatter

stringFromDate:currentTime];

260

 self.todaysDate.text = [NSString stringWithFormat: @"%@

\ntimestamp>%f", resultString,[NSDate

timeIntervalSinceReferenceDate]];

 [UIApplication sharedApplication].idleTimerDisabled = YES;

//KEEP ALIVE

 self.motionManager = [[CMMotionManager alloc]init];

 self.motionManager.accelerometerUpdateInterval=0.01; //max

100/sec or 100Hz

 self.motionManager.gyroUpdateInterval=0.01;

 [self.motionManager

startAccelerometerUpdatesToQueue:[NSOperationQueue currentQueue]

withHandler:^(CMAccelerometerData *accelerometerData, NSError

*error)

 {[self outputAccelerationData:accelerometerData.acceleration];

 if(error){

 NSLog(@"%@", error);

 }

 }];

 [self.motionManager startGyroUpdatesToQueue:[NSOperationQueue

currentQueue]

 withHandler:^(CMGyroData

*gyroData, NSError *error)

 {[self outputRotationData:gyroData.rotationRate];

 }];

 [self.motionManager

startDeviceMotionUpdatesToQueue:[NSOperationQueue currentQueue]

withHandler:^(CMDeviceMotion *motion, NSError *error)

 {[self processMotion:motion];

 }];

 {[self.locationManager startUpdatingLocation];};

 // {[self.startReadingLocation:;]};

}

 int print_null(const char *s,...) {return 0;}

 static int (*info)(const char *fmt,...) = &printf;

 struct svm_node *x;

 int max_nr_attr = 64;

 struct svm_model* model;

 int predict_probability=0;

 static char *line = NULL;

261

 static int max_line_len;

 // struct svm_model *submodel =

svm_train(&subprob,&subparam);

 struct svm_node

 {

 int index;

 double value;

 };

 struct svm_problem

 {

 int l;

 double *y;

 struct svm_node **x;

 };

 enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /*

svm_type */

 enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type

*/

 struct svm_parameter

 {

 int svm_type;

 int kernel_type;

 int degree; /* for poly */

 double gamma; /* for poly/rbf/sigmoid */

 double coef0; /* for poly/sigmoid */

 /* these are for training only */

 double cache_size; /* in MB */

 double eps; /* stopping criteria */

 double C; /* for C_SVC, EPSILON_SVR and NU_SVR */

 int nr_weight; /* for C_SVC */

 int *weight_label; /* for C_SVC */

 double* weight; /* for C_SVC */

 double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */

 double p; /* for EPSILON_SVR */

 int shrinking; /* use the shrinking heuristics */

 int probability; /* do probability estimates */

 };

 //

 // svm_model

 //

 struct svm_model

 {

 struct svm_parameter param; /* parameter */

262

 int nr_class; /* number of classes, = 2 in

regression/one class svm */

 int l; /* total #SV */

 struct svm_node **SV; /* SVs (SV[l]) */

 double **sv_coef; /* coefficients for SVs in decision

functions (sv_coef[k-1][l]) */

 double *rho; /* constants in decision functions

(rho[k*(k-1)/2]) */

 double *probA; /* pariwise probability information

*/

 double *probB;

 int *sv_indices; /* sv_indices[0,...,nSV-1] are

values in [1,...,num_traning_data] to indicate SVs in the training

set */

 /* for classification only */

 int *label; /* label of each class (label[k]) */

 int *nSV; /* number of SVs for each class (nSV[k])

*/

 /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */

 /* XXX */

 int free_sv; /* 1 if svm_model is created by

svm_load_model*/

 /* 0 if svm_model is created by svm_train */

 };

 FILE *input, *output;

 int svm_get_svm_type(const svm_model *model)

 {

 return model->param.svm_type;

 }

 int svm_get_nr_class(const svm_model *model)

 {

 return model->nr_class;

 }

- (void)startReadingLocation

{

 self.locationManager = [[CLLocationManager alloc] init];

 self.locationManager.delegate=self;

 self.locationManager.desiredAccuracy=20;

//kCLLocationAccuracyBest;

 [self.locationManager startUpdatingLocation];

263

}

-(void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation

{

 DataClass *obj=[DataClass getInstance];

 obj.speed1=newLocation.speed*2.23693629;

 obj.latitude = newLocation.coordinate.latitude;

 obj.longitude = newLocation.coordinate.longitude;

 // self.speed1label.text =[NSString

stringWithFormat:@"%f",obj.speed1];

 //Manual calculation (optional for comparison)

 if(oldLocation!=nil)

 {

 CLLocationDistance distanceChange=[newLocation

getDistanceFrom:oldLocation];//getDistanceFrom alternate to

distanceFromLocation

 NSTimeInterval sinceLastUpdate=[newLocation.timestamp

timeIntervalSinceDate:oldLocation.timestamp];

 obj.speed2=(distanceChange/sinceLastUpdate)*2.23693629;

 // self.speed2label.text =[NSString

stringWithFormat:@"%f",obj.speed2];

 }

}

-(void)outputAccelerationData:(CMAcceleration)acceleration

//ACCELEROMETER Ax Ay Az

{

 DataClass *obj=[DataClass getInstance];

 self.accx.text = [NSString stringWithFormat:@"

%.2fg",acceleration.x];

 self.accy.text = [NSString stringWithFormat:@"

%.2fg",acceleration.y];

 self.accz.text = [NSString stringWithFormat:@"

%.2fg",acceleration.z];

 obj.lastX =obj.accelerationX;// Last X polarity

 obj.lastY =obj.accelerationY;// Last Y polarity

 obj.lastZ =obj.accelerationZ;// Last Z polarity

 obj.accelerationX = acceleration.x; //NEW are sent out to global

 obj.accelerationY = acceleration.y; //to determine >360 turns

 obj.accelerationZ = acceleration.z; //to determine >360 turns

 //Center

264

 obj.accAngle = atan2(acceleration.y,acceleration.x)*(180/M_PI);

}

-(void)outputRotationData:(CMRotationRate)rotation //GYRO ANGULAR

CHANGE RATE

{

 DataClass *obj=[DataClass getInstance];

 obj.lastGyroPosition = obj.gyroPosition; //LAST GYRO POSITION

 obj.lastSwmFusion = obj.swmFusion; //LAST SWM READING

 obj.gyroPosition = - ((rotation.z-

0.0082764553)*(180/M_PI))*0.01;

 // obj.gyroPosition = - ((rotation.z)*(180/M_PI))*0.01;

 self.gyroPosition.text = [NSString stringWithFormat:@"

%1.2f°/s",obj.gyroPosition];//PRINT TO SCREEN

 obj.swmFusion =

(obj.lastSwmFusion+((obj.lastGyroPosition+obj.gyroPosition)/2))*0.9

+ (obj.accAngle*0.1);

 self.swmFusion.text= [NSString stringWithFormat:@"

%.2f°",obj.swmFusion]; //PRINT IT

 if (obj.recordBoolean==1) //If start button pressed, record

 {

 [obj.gyroArray addObject:[NSString stringWithFormat:@"

%f",obj.swmFusion]];//SAVE FUSION ANGLE TO ARRAY

 [obj.speedArray addObject:[NSString stringWithFormat:@"

%f",obj.speed1]];//SAVE FUSION ANGLE TO ARRAY

 [obj.locationArray addObject:[NSString stringWithFormat:@"

%f, %f",obj.latitude, obj.longitude]];//SAVE LOCATION TO ARRAY

 [obj.angVelArray addObject:[NSString stringWithFormat:@"

%f",(obj.gyroPosition)*100]];//SAVE ANGULAR VELOCITY TO ARRAY

 }

 self.speed1label.text = [NSString stringWithFormat:@"%d mph",

(int)obj.speed1];

 self.speed2label.text = [NSString stringWithFormat:@"%f mph",

obj.speed2];

 self.angVel.text = [NSString stringWithFormat:@"%f mph",

obj.gyroPosition*100];

 //self.drowsyStatus.text= [NSString stringWithFormat:@"%d

Count", [obj.gyroArray count]];//Print alert results to alert screen

265

}

-(void)processMotion:(CMDeviceMotion*)motion

{

 CMQuaternion quatYaw =

self.motionManager.deviceMotion.attitude.quaternion;

 self.currentYaw.text = [NSString stringWithFormat:@"

%0.2f°",asin(2*(quatYaw.x*quatYaw.z -

quatYaw.w*quatYaw.y))*(180/M_PI)];//quaternion yaw

}

- (IBAction)startButton:(id)sender

{

 DataClass *obj=[DataClass getInstance];

 if (obj.recordBoolean == 0)//start button only works if stopped

 {

 obj.recordBoolean=1;

 }

}

- (void)minuteTime //Timer initiates this process once a

minute

{

 DataClass *obj=[DataClass getInstance]; //new Object instance

 //*******//******SAVE FILE TO BE CLASSIFIED ,,, RECORD PATH

UPDATE HERE//*****//*****

 NSArray *paths =

NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES);

 NSString *documentsDirectory = [paths objectAtIndex:0];

 //Second, create the fileName using the queried path

 obj.classifyFilename = [documentsDirectory

stringByAppendingPathComponent:@"fileToClassify"];

 obj.classifiedOutputFilename = [documentsDirectory

stringByAppendingPathComponent:@"classifiedOutput"];

 obj.modelFilename = [documentsDirectory

stringByAppendingPathComponent:@"model.txt"];

266

 int suddenTurns=0; //counter for number of zero crossings

 int zeroCrossings=0; //counter for number of zero crossings

 float countr=0; //counter for calculating ave angle

 float averg= 0; //counter for average turn angle

 float stDev = 0;

 int oldPositiveOrNegative = 1; // set initially as positive

//if current scan is positive or negative for determining zero xings

 int newPositiveOrNegative = 1; // set initially as positive

 int hadLowSpeed = 0;

 //**//#2

COUNT # ZERO XINGS

 //CALIBRATE / INITIALIZE

 if ([obj.gyroArray[0] floatValue] < 0) //if the first item in

array is negative, then set to negative, else leave as positive

 {

 oldPositiveOrNegative = 0;

 //self.drowsyStatus.text= [NSString stringWithFormat:@"%d

minutTime", obj.recordBoolean];//Print alert results to alert

screen

 }

 for (int e=0; e<[(obj.gyroArray) count]; e++) //iterate

through ENTIRE array, 0 to length-1

 {

 if ([obj.gyroArray[e] floatValue]< 0) // if

current value[e] is negative

 {newPositiveOrNegative = 0;} //set

position as negative

 else // if

value positive

 {newPositiveOrNegative = 1;} //set

position as positive

 if (newPositiveOrNegative != oldPositiveOrNegative) // if a

change in sign has occured

 {

 zeroCrossings++; //a zero

crossing has occured

 }

 oldPositiveOrNegative = newPositiveOrNegative; //pass

on the baton

267

 }

 //self.drowsyStatus.text= [NSString stringWithFormat:@"%d zero

crossings", zeroCrossings];//Print alert results to alert screen

 //**//#1 COUNT #

TURN Average

 for (int h=0; h<[(obj.gyroArray) count]; h++) //FIRST

RECTIFY- iterate through array, 0 to length-1

 {

 if ([obj.gyroArray[h] floatValue] < 0) // if less than zero-

Needs Signal Rectification Loop

 {

[obj.floatGyroArray addObject:[NSNumber

numberWithFloat:[obj.gyroArray[h] floatValue]*-1]];

 } //Rectify it

 else

 {

[obj.floatGyroArray addObject:[NSNumber

numberWithFloat:[obj.gyroArray[h] floatValue]]];

 }

 }

 for (int j=0; j< [(obj.floatGyroArray) count]; j++) // Count

Average

 {

 //countr=countr+[(NSNumber *) [obj.floatGyroArray

objectAtIndex:j] floatValue];

 countr=countr+[obj.floatGyroArray[j] floatValue];

 }

 averg=(countr/[(obj.floatGyroArray) count]);

//self.drowsyStatus.text= [NSString stringWithFormat:@"%f turn ave",

averg];//Print alert results to alert screen

 //**************************************//#3 COUNT # ANGULAR

VELOCITY ABOVE 8.3DEG/SEC

 for (int f=0; f< [(obj.angVelArray) count]; f++) //FIRST

RECTIFY- iterate through array, 0 to length-1

 {

 if ([obj.angVelArray[f] floatValue] < 0) // if negative-

Signal Rectification Loop

 {

 //float y=[(NSNumber *)[obj.angVelArray objectAtIndex:f]

floatValue]*-1;

 //[obj.floatAngVelArray addObject:[NSNumber

numberWithFloat:y]]; //Rectify it

[obj.floatAngVelArray addObject:[NSNumber

numberWithFloat:[obj.angVelArray[f] floatValue]*-1]];

268

 }

 else

 {

 //float y=[(NSNumber *)[obj.angVelArray objectAtIndex:f]

floatValue];

 //[obj.floatAngVelArray addObject:[NSNumber

numberWithFloat:y]]; //Rectify it

[obj.floatAngVelArray addObject:[NSNumber

numberWithFloat:[obj.angVelArray[f] floatValue]]];

 }

 }

// self.drowsyStatus.text= [NSString stringWithFormat:@"%d sudden

turnt", [obj.floatAngVelArray count]];//Print alert results to

alert screen

 float threshold = 8.3; //8.3deg/sec

 for (int g=1; g< [obj.floatAngVelArray count]; g++) // Count

SPIKES Start at 1 so as to compare prior 0

 {

 if (([obj.floatAngVelArray[g-1] floatValue]>= threshold) &&

([obj.floatAngVelArray[g] floatValue] < threshold)) //if signal

descends below 8.3, count as 1

 {suddenTurns++;}

 }

// self.drowsyStatus.text= [NSString stringWithFormat:@"%d sudden

turnt", suddenTurns];//Print alert results to alert screen

 //**************************************//#4 STDEV SWM

 /* NSNumber *stDevTemp = [obj.gyroArray

calculateStat:@"stdev"];

 stDev=[stDevTemp floatValue];*/

 float sumSquareDiff = 0;

 for (NSNumber *number in obj.gyroArray)

 {

 float numberVal = [number floatValue];

 float difference = numberVal-averg;

 sumSquareDiff +=difference*difference;

 }

 stDev= sqrt(sumSquareDiff/([(obj.floatGyroArray) count]));

//***

//self.drowsyStatus.text= [NSString stringWithFormat:@"%f stDev",

stDev];//Print alert results to alert screen

269

 //**************************** LOW SPEED CHECK

 for (int k=0; k< [obj.speedArray count]; k++) // scan all speeds

over last minute

 {

 if ([obj.speedArray[k] floatValue]<= 30) //if speed descends

below 30mph, count as 1

 {hadLowSpeed++;}

 }

 // self.drowsyStatus.text= [NSString stringWithFormat:@"%d low

speed", hadLowSpeed];//Print alert results to alert screen

//***

 //CLEAR PRIOR FILES ///////////////////////////

 NSError *error;

 [[NSFileManager

defaultManager]removeItemAtPath:obj.classifyFilename error:&error];

 if (error)

 {

 }

 NSError *error2;

 [[NSFileManager

defaultManager]removeItemAtPath:obj.classifiedOutputFilename

error:&error2];

 if (error2)

 {

 }

 ///

 /* averg=0.005049887;

 zeroCrossings=10;

 suddenTurns=5;

 stDev=2.348442267;*/

270

 obj.turnAveString = [NSString stringWithFormat:@"%f",

averg];

 obj.zeroCrossString = [NSString stringWithFormat:@"%d",

zeroCrossings];

 obj.swmSuddenString = [NSString stringWithFormat:@"%d",

suddenTurns];

 obj.swmSTDevString = [NSString stringWithFormat:@"%f",

stDev];

 //Prepare single line of classification data

 obj.classifyString = [NSString stringWithFormat: @"1 1:%@

2:%@ 3:%@

4:%@",obj.turnAveString,obj.zeroCrossString,obj.swmSuddenString,obj.

swmSTDevString];

 //Now write to classification file

 [obj.classifyString writeToFile:obj.classifyFilename

atomically: YES];

 const char *modelfile = [obj.modelFilename UTF8String];

//convert NSString to c char the name of the model file

 const char *inputChar =[obj.classifyFilename UTF8String];

//convert NSString to c char the name of the input file tobe

classified

 const char *outputChar =[obj.classifiedOutputFilename

UTF8String]; //convert NSString to c char the name of the output

file with classification results

 input = fopen(inputChar,"r");

 if(input == NULL)

 {

 fprintf(stderr,"can't open input file %s\n",inputChar);

 exit(1);

 }

 output = fopen(outputChar,"w");

 if(output == NULL)

 {

271

 fprintf(stderr,"can't open output file

%s\n",outputChar);

 exit(1);

 }

 if((model=svm_load_model(modelfile))==0)

 {

 fprintf(stderr,"can't open model file %s\n",modelfile);

 exit(1);

 }

 x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct

svm_node));

 if(predict_probability)

 {

 if(svm_check_probability_model(model)==0)

 {

 fprintf(stderr,"Model does not support probabiliy

estimates\n");

 exit(1);

 }

 }

 else

 {

 if(svm_check_probability_model(model)!=0)

 info("Model supports probability estimates, but

disabled in prediction.\n");

 }

 // self.drowsyStatus.text= [NSString stringWithFormat:@"%@

model!", obj.modelFilename];

 //**********//MACHINE CLASSIFICATION // *************//

 predict(input,output); //Output is printed to file

"classifiedOutput"

 svm_free_and_destroy_model(&model);

 free(x);

 free(line);

 fclose(input);

 fclose(output);

 //*************//LIBSVM TTERMINATE//******************//

 NSString *svmResult = [NSString

stringWithContentsOfFile:obj.classifiedOutputFilename

encoding:NSUTF8StringEncoding error:NULL]; //Open result file and

get result

 NSInteger intSvmResult = [svmResult integerValue];

272

 // self.drowsyStatus.text= [NSString stringWithFormat:@"SVM

RESULT %d", intSvmResult];//Print alert results to alert screen

 if((intSvmResult==1) && (hadLowSpeed == 0)) // If SVM=drowsy and

car = NOT slow

 {

 self.drowsyStatus.text= [NSString stringWithFormat:@"YOU

ARE DROWSY!"];//Display Visible Drowsy Warning. drowsy if and only

if SVM=drowsy && car !=slow

 }

 if((hadLowSpeed != 0)) // REGARDLESS OF SWM OUTPUT, IF car IS

slow

 {

 self.drowsyStatus.text= [NSString

stringWithFormat:@"SUFFICIENT HIGHWAY SPEED NOT REACHED"];//Print

alert results to alert screen

 }

 if((intSvmResult==0) && (hadLowSpeed == 0)) // If SVM=ALERT and

car was not slow

 {

 self.drowsyStatus.text= [NSString

stringWithFormat:@"ALERT"];//Print alert results to alert screen

 }

 if([obj.gyroArray count])//destroy everything for now until next

minute

 {

 [obj.gyroArray removeAllObjects];

 [obj.floatGyroArray removeAllObjects];

 [obj.floatAngVelArray removeAllObjects];

 [obj.angVelArray removeAllObjects];

 [obj.locationArray removeAllObjects];

 [obj.speedArray removeAllObjects];

 }

}

 void predict(FILE *input, FILE *output)

 {

 int correct = 0;

 int total = 0;

 double error = 0;

273

 double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;

 int svm_type=svm_get_svm_type(model);

 int nr_class=svm_get_nr_class(model);

 double *prob_estimates=NULL;

 int j;

 if(predict_probability)

 {

 /*if (svm_type==NU_SVR || svm_type==EPSILON_SVR)

 info("Prob. model for test data: target value =

predicted value + z,\nz: Laplace distribution e^(-

|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));*/

 //else

 //{

 int *labels=(int *) malloc(nr_class*sizeof(int));

 svm_get_labels(model,labels);

 prob_estimates = (double *)

malloc(nr_class*sizeof(double));

 fprintf(output,"labels");

 for(j=0;j<nr_class;j++)

 fprintf(output," %d",labels[j]);

 fprintf(output,"\n");

 free(labels);

 // }

 }

 max_line_len = 1024;

 line = (char *)malloc(max_line_len*sizeof(char));

 while(readline(input) != NULL)

 {

 int i = 0;

 double target_label, predict_label;

 char *idx, *val, *label, *endptr;

 int inst_max_index = -1; // strtol gives 0 if wrong

format, and precomputed kernel has <index> start from 0

 label = strtok(line," \t\n");

 if(label == NULL) // empty line

 exit_input_error(total+1);

 target_label = strtod(label,&endptr);

 if(endptr == label || *endptr != '\0')

 exit_input_error(total+1);

 while(1)

 {

 if(i>=max_nr_attr-1) // need one more for index = -

1

 {

 max_nr_attr *= 2;

 x = (struct svm_node *)

realloc(x,max_nr_attr*sizeof(struct svm_node));

 }

274

 idx = strtok(NULL,":");

 val = strtok(NULL," \t");

 if(val == NULL)

 break;

 errno = 0;

 x[i].index = (int) strtol(idx,&endptr,10);

 if(endptr == idx || errno != 0 || *endptr != '\0' ||

x[i].index <= inst_max_index)

 exit_input_error(total+1);

 else

 inst_max_index = x[i].index;

 errno = 0;

 x[i].value = strtod(val,&endptr);

 if(endptr == val || errno != 0 || (*endptr != '\0'

&& !isspace(*endptr)))

 exit_input_error(total+1);

 ++i;

 }

 x[i].index = -1;

 if (predict_probability && (svm_type==C_SVC ||

svm_type==NU_SVC))

 {

 predict_label =

svm_predict_probability(model,x,prob_estimates);

 fprintf(output,"%g",predict_label);

 for(j=0;j<nr_class;j++)

 fprintf(output," %g",prob_estimates[j]);

 fprintf(output,"\n");

 }

 //else

 //{

 predict_label = svm_predict(model,x);

 fprintf(output,"%g\n",predict_label);

 //}

 if(predict_label == target_label)

 ++correct;

 error += (predict_label-target_label)*(predict_label-

target_label);

 sump += predict_label;

 sumt += target_label;

 sumpp += predict_label*predict_label;

 sumtt += target_label*target_label;

 sumpt += predict_label*target_label;

 ++total;

 }

 if (svm_type==NU_SVR || svm_type==EPSILON_SVR)

 {

275

 info("Mean squared error = %g

(regression)\n",error/total);

 info("Squared correlation coefficient = %g

(regression)\n",

 ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/

 ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))

);

 }

 else

 info("Accuracy = %g%% (%d/%d) (classification)\n",

 (double)correct/total*100,correct,total);

 if(predict_probability)

 free(prob_estimates);

 }

 void svm_free_and_destroy_model(struct svm_model**

model_ptr_ptr)

 {

 if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)

 {

 svm_free_model_content(*model_ptr_ptr);

 free(*model_ptr_ptr);

 *model_ptr_ptr = NULL;

 }

 }

 svm_model *svm_load_model(const char *model_file_name)

 {

 FILE *fp = fopen(model_file_name,"rb");

 if(fp==NULL) return NULL;

 char *old_locale = strdup(setlocale(LC_ALL, NULL));

 setlocale(LC_ALL, "C");

 // read parameters

 svm_model *model = Malloc(svm_model,1);

 model->rho = NULL;

 model->probA = NULL;

 model->probB = NULL;

 model->sv_indices = NULL;

 model->label = NULL;

 model->nSV = NULL;

 // read header

 if (!read_model_header(fp, model))

 {

 fprintf(stderr, "ERROR: fscanf failed to read model\n");

 setlocale(LC_ALL, old_locale);

276

 free(old_locale);

 free(model->rho);

 free(model->label);

 free(model->nSV);

 free(model);

 return NULL;

 }

 // read sv_coef and SV

 int elements = 0;

 long pos = ftell(fp);

 max_line_len = 1024;

 line = Malloc(char,max_line_len);

 char *p,*endptr,*idx,*val;

 while(readline(fp)!=NULL)

 {

 p = strtok(line,":");

 while(1)

 {

 p = strtok(NULL,":");

 if(p == NULL)

 break;

 ++elements;

 }

 }

 elements += model->l;

 fseek(fp,pos,SEEK_SET);

 int m = model->nr_class - 1;

 int l = model->l;

 model->sv_coef = Malloc(double *,m);

 int i;

 for(i=0;i<m;i++)

 model->sv_coef[i] = Malloc(double,l);

 model->SV = Malloc(svm_node*,l);

 svm_node *x_space = NULL;

 if(l>0) x_space = Malloc(svm_node,elements);

 int j=0;

 for(i=0;i<l;i++)

 {

 readline(fp);

 model->SV[i] = &x_space[j];

 p = strtok(line, " \t");

 model->sv_coef[0][i] = strtod(p,&endptr);

 for(int k=1;k<m;k++)

 {

 p = strtok(NULL, " \t");

 model->sv_coef[k][i] = strtod(p,&endptr);

277

 }

 while(1)

 {

 idx = strtok(NULL, ":");

 val = strtok(NULL, " \t");

 if(val == NULL)

 break;

 x_space[j].index = (int) strtol(idx,&endptr,10);

 x_space[j].value = strtod(val,&endptr);

 ++j;

 }

 x_space[j++].index = -1;

 }

 free(line);

 setlocale(LC_ALL, old_locale);

 free(old_locale);

 if (ferror(fp) != 0 || fclose(fp) != 0)

 return NULL;

 model->free_sv = 1; // XXX

 return model;

 }

 static char* readline(FILE *input)

 {

 int len;

 if(fgets(line,max_line_len,input) == NULL)

 return NULL;

 while(strrchr(line,'\n') == NULL)

 {

 max_line_len *= 2;

 line = (char *) realloc(line,max_line_len);

 len = (int) strlen(line);

 if(fgets(line+len,max_line_len-len,input) == NULL)

 break;

 }

 return line;

 }

 void exit_input_error(int line_num)

 {

 fprintf(stderr,"Wrong input format at line %d\n", line_num);

 exit(1);

 }

278

 void svm_get_labels(const struct svm_model *model, int *label);

 double svm_get_svr_probability(const struct svm_model *model);

 int svm_check_probability_model(const svm_model *model)

 {

 return ((model->param.svm_type == C_SVC || model-

>param.svm_type == NU_SVC) &&

 model->probA!=NULL && model->probB!=NULL) ||

 ((model->param.svm_type == EPSILON_SVR || model-

>param.svm_type == NU_SVR) &&

 model->probA!=NULL);

 }

 double svm_predict(const svm_model *model, const svm_node *x)

 {

 int nr_class = model->nr_class;

 double *dec_values;

 if(model->param.svm_type == ONE_CLASS ||

 model->param.svm_type == EPSILON_SVR ||

 model->param.svm_type == NU_SVR)

 dec_values = Malloc(double, 1);

 else

 dec_values = Malloc(double, nr_class*(nr_class-1)/2);

 double pred_result = svm_predict_values(model, x,

dec_values);

 free(dec_values);

 return pred_result;

 }

 double svm_predict_values(const svm_model *model, const svm_node

x, double dec_values)

 {

 int i;

 if(model->param.svm_type == ONE_CLASS ||

 model->param.svm_type == EPSILON_SVR ||

 model->param.svm_type == NU_SVR)

 {

 double *sv_coef = model->sv_coef[0];

 double sum = 0;

 for(i=0;i<model->l;i++)

 sum += sv_coef[i] * Kernel::k_function(x,model-

>SV[i],model->param);

 sum -= model->rho[0];

 *dec_values = sum;

 if(model->param.svm_type == ONE_CLASS)

 return (sum>0)?1:-1;

 else

 return sum;

 }

 else

279

 {

 int nr_class = model->nr_class;

 int l = model->l;

 double *kvalue = Malloc(double,l);

 for(i=0;i<l;i++)

 kvalue[i] = Kernel::k_function(x,model->SV[i],model-

>param);

 int *start = Malloc(int,nr_class);

 start[0] = 0;

 for(i=1;i<nr_class;i++)

 start[i] = start[i-1]+model->nSV[i-1];

 int *vote = Malloc(int,nr_class);

 for(i=0;i<nr_class;i++)

 vote[i] = 0;

 int p=0;

 for(i=0;i<nr_class;i++)

 for(int j=i+1;j<nr_class;j++)

 {

 double sum = 0;

 int si = start[i];

 int sj = start[j];

 int ci = model->nSV[i];

 int cj = model->nSV[j];

 int k;

 double *coef1 = model->sv_coef[j-1];

 double *coef2 = model->sv_coef[i];

 for(k=0;k<ci;k++)

 sum += coef1[si+k] * kvalue[si+k];

 for(k=0;k<cj;k++)

 sum += coef2[sj+k] * kvalue[sj+k];

 sum -= model->rho[p];

 dec_values[p] = sum;

 if(dec_values[p] > 0)

 ++vote[i];

 else

 ++vote[j];

 p++;

 }

 int vote_max_idx = 0;

 for(i=1;i<nr_class;i++)

 if(vote[i] > vote[vote_max_idx])

 vote_max_idx = i;

 free(kvalue);

 free(start);

 free(vote);

 return model->label[vote_max_idx];

280

 }

 }

 static const char *kernel_type_table[]=

 {

 "linear","polynomial","rbf","sigmoid","precomputed",NULL

 };

 double svm_predict_probability(

 const svm_model *model, const

svm_node *x, double *prob_estimates)

 {

 if ((model->param.svm_type == C_SVC || model->param.svm_type

== NU_SVC) &&

 model->probA!=NULL && model->probB!=NULL)

 {

 int i;

 int nr_class = model->nr_class;

 double *dec_values = Malloc(double, nr_class*(nr_class-

1)/2);

 svm_predict_values(model, x, dec_values);

 double min_prob=1e-7;

 double **pairwise_prob=Malloc(double *,nr_class);

 for(i=0;i<nr_class;i++)

 pairwise_prob[i]=Malloc(double,nr_class);

 int k=0;

 for(i=0;i<nr_class;i++)

 for(int j=i+1;j<nr_class;j++)

 {

pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model-

>probA[k],model->probB[k]),min_prob),1-min_prob);

 pairwise_prob[j][i]=1-pairwise_prob[i][j];

 k++;

 }

multiclass_probability(nr_class,pairwise_prob,prob_estimates);

 int prob_max_idx = 0;

 for(i=1;i<nr_class;i++)

 if(prob_estimates[i] > prob_estimates[prob_max_idx])

 prob_max_idx = i;

 for(i=0;i<nr_class;i++)

 free(pairwise_prob[i]);

 free(dec_values);

 free(pairwise_prob);

 return model->label[prob_max_idx];

 }

 else

 return svm_predict(model, x);

 }

281

 // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng

 static void multiclass_probability(int k, double **r, double *p)

 {

 int t,j;

 int iter = 0, max_iter=max(100,k);

 double **Q=Malloc(double *,k);

 double *Qp=Malloc(double,k);

 double pQp, eps=0.005/k;

 for (t=0;t<k;t++)

 {

 p[t]=1.0/k; // Valid if k = 1

 Q[t]=Malloc(double,k);

 Q[t][t]=0;

 for (j=0;j<t;j++)

 {

 Q[t][t]+=r[j][t]*r[j][t];

 Q[t][j]=Q[j][t];

 }

 for (j=t+1;j<k;j++)

 {

 Q[t][t]+=r[j][t]*r[j][t];

 Q[t][j]=-r[j][t]*r[t][j];

 }

 }

 for (iter=0;iter<max_iter;iter++)

 {

 // stopping condition, recalculate QP,pQP for numerical

accuracy

 pQp=0;

 for (t=0;t<k;t++)

 {

 Qp[t]=0;

 for (j=0;j<k;j++)

 Qp[t]+=Q[t][j]*p[j];

 pQp+=p[t]*Qp[t];

 }

 double max_error=0;

 for (t=0;t<k;t++)

 {

 double error=fabs(Qp[t]-pQp);

 if (error>max_error)

 max_error=error;

 }

 if (max_error<eps) break;

 for (t=0;t<k;t++)

 {

 double diff=(-Qp[t]+pQp)/Q[t][t];

 p[t]+=diff;

pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);

 for (j=0;j<k;j++)

 {

282

 Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);

 p[j]/=(1+diff);

 }

 }

 }

 if (iter>=max_iter)

 info("Exceeds max_iter in multiclass_prob\n");

 for(t=0;t<k;t++) free(Q[t]);

 free(Q);

 free(Qp);

 }

 void svm_free_model_content(svm_model* model_ptr)

 {

 if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV

!= NULL)

 free((void *)(model_ptr->SV[0]));

 if(model_ptr->sv_coef)

 {

 for(int i=0;i<model_ptr->nr_class-1;i++)

 free(model_ptr->sv_coef[i]);

 }

 free(model_ptr->SV);

 model_ptr->SV = NULL;

 free(model_ptr->sv_coef);

 model_ptr->sv_coef = NULL;

 free(model_ptr->rho);

 model_ptr->rho = NULL;

 free(model_ptr->label);

 model_ptr->label= NULL;

 free(model_ptr->probA);

 model_ptr->probA = NULL;

 free(model_ptr->probB);

 model_ptr->probB= NULL;

 free(model_ptr->sv_indices);

 model_ptr->sv_indices = NULL;

 free(model_ptr->nSV);

 model_ptr->nSV = NULL;

 }

 // FSCANF helps to handle fscanf failures.

 // Its do-while block avoids the ambiguity when

 // if (...)

 // FSCANF();

 // is used

283

 //

#define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream,

_format, _var) != 1) return false; }while(0)

 bool read_model_header(FILE *fp, svm_model* model)

 {

 svm_parameter& param = model->param;

 char cmd[81];

 while(1)

 {

 FSCANF(fp,"%80s",cmd);

 if(strcmp(cmd,"svm_type")==0)

 {

 FSCANF(fp,"%80s",cmd);

 int i;

 for(i=0;svm_type_table[i];i++)

 {

 if(strcmp(svm_type_table[i],cmd)==0)

 {

 param.svm_type=i;

 break;

 }

 }

 if(svm_type_table[i] == NULL)

 {

 fprintf(stderr,"unknown svm type.\n");

 return false;

 }

 }

 else if(strcmp(cmd,"kernel_type")==0)

 {

 FSCANF(fp,"%80s",cmd);

 int i;

 for(i=0;kernel_type_table[i];i++)

 {

 if(strcmp(kernel_type_table[i],cmd)==0)

 {

 param.kernel_type=i;

 break;

 }

 }

 if(kernel_type_table[i] == NULL)

 {

 fprintf(stderr,"unknown kernel function.\n");

 return false;

 }

 }

 else if(strcmp(cmd,"degree")==0)

 FSCANF(fp,"%d",¶m.degree);

 else if(strcmp(cmd,"gamma")==0)

 FSCANF(fp,"%lf",¶m.gamma);

 else if(strcmp(cmd,"coef0")==0)

 FSCANF(fp,"%lf",¶m.coef0);

 else if(strcmp(cmd,"nr_class")==0)

284

 FSCANF(fp,"%d",&model->nr_class);

 else if(strcmp(cmd,"total_sv")==0)

 FSCANF(fp,"%d",&model->l);

 else if(strcmp(cmd,"rho")==0)

 {

 int n = model->nr_class * (model->nr_class-1)/2;

 model->rho = Malloc(double,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%lf",&model->rho[i]);

 }

 else if(strcmp(cmd,"label")==0)

 {

 int n = model->nr_class;

 model->label = Malloc(int,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%d",&model->label[i]);

 }

 else if(strcmp(cmd,"probA")==0)

 {

 int n = model->nr_class * (model->nr_class-1)/2;

 model->probA = Malloc(double,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%lf",&model->probA[i]);

 }

 else if(strcmp(cmd,"probB")==0)

 {

 int n = model->nr_class * (model->nr_class-1)/2;

 model->probB = Malloc(double,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%lf",&model->probB[i]);

 }

 else if(strcmp(cmd,"nr_sv")==0)

 {

 int n = model->nr_class;

 model->nSV = Malloc(int,n);

 for(int i=0;i<n;i++)

 FSCANF(fp,"%d",&model->nSV[i]);

 }

 else if(strcmp(cmd,"SV")==0)

 {

 while(1)

 {

 int c = getc(fp);

 if(c==EOF || c=='\n') break;

 }

 break;

 }

 else

 {

 fprintf(stderr,"unknown text in model file:

[%s]\n",cmd);

 return false;

 }

 }

285

 return true;

 }

 static double sigmoid_predict(double decision_value, double A,

double B)

 {

 double fApB = decision_value*A+B;

 // 1-p used later; avoid catastrophic cancellation

 if (fApB >= 0)

 return exp(-fApB)/(1.0+exp(-fApB));

 else

 return 1.0/(1+exp(fApB)) ;

 }

 static const char *svm_type_table[] =

 {

 "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL

 };

 //

 // Kernel evaluation

 //

 // the static method k_function is for doing single kernel

evaluation

 // the constructor of Kernel prepares to calculate the l*l

kernel matrix

 // the member function get_Q is for getting one column from the

Q Matrix

 //

 class QMatrix {

 public:

 virtual Qfloat *get_Q(int column, int len) const = 0;

 virtual double *get_QD() const = 0;

 virtual void swap_index(int i, int j) const = 0;

 virtual ~QMatrix() {}

 };

 class Kernel: public QMatrix {

 public:

 Kernel(int l, svm_node * const * x, const svm_parameter&

param);

 virtual ~Kernel();

 static double k_function(const svm_node *x, const svm_node

*y,

 const svm_parameter& param);

 virtual Qfloat *get_Q(int column, int len) const = 0;

 virtual double *get_QD() const = 0;

 virtual void swap_index(int i, int j) const // no so

const...

 {

286

 swap(x[i],x[j]);

 if(x_square) swap(x_square[i],x_square[j]);

 }

 protected:

 double (Kernel::*kernel_function)(int i, int j) const;

 private:

 const svm_node **x;

 double *x_square;

 // svm_parameter

 const int kernel_type;

 const int degree;

 const double gamma;

 const double coef0;

 static double dot(const svm_node *px, const svm_node *py);

 double kernel_linear(int i, int j) const

 {

 return dot(x[i],x[j]);

 }

 double kernel_poly(int i, int j) const

 {

 return powi(gamma*dot(x[i],x[j])+coef0,degree);

 }

 double kernel_rbf(int i, int j) const

 {

 return exp(-gamma*(x_square[i]+x_square[j]-

2*dot(x[i],x[j])));

 }

 double kernel_sigmoid(int i, int j) const

 {

 return tanh(gamma*dot(x[i],x[j])+coef0);

 }

 double kernel_precomputed(int i, int j) const

 {

 return x[i][(int)(x[j][0].value)].value;

 }

 };

 Kernel::Kernel(int l, svm_node * const * x_, const

svm_parameter& param)

 :kernel_type(param.kernel_type), degree(param.degree),

 gamma(param.gamma), coef0(param.coef0)

 {

 switch(kernel_type)

 {

 case LINEAR:

 kernel_function = &Kernel::kernel_linear;

 break;

 case POLY:

 kernel_function = &Kernel::kernel_poly;

 break;

287

 case RBF:

 kernel_function = &Kernel::kernel_rbf;

 break;

 case SIGMOID:

 kernel_function = &Kernel::kernel_sigmoid;

 break;

 case PRECOMPUTED:

 kernel_function = &Kernel::kernel_precomputed;

 break;

 }

 clone(x,x_,l);

 if(kernel_type == RBF)

 {

 x_square = new double[l];

 for(int i=0;i<l;i++)

 x_square[i] = dot(x[i],x[i]);

 }

 else

 x_square = 0;

 }

 Kernel::~Kernel()

 {

 delete[] x;

 delete[] x_square;

 }

 double Kernel::dot(const svm_node *px, const svm_node *py)

 {

 double sum = 0;

 while(px->index != -1 && py->index != -1)

 {

 if(px->index == py->index)

 {

 sum += px->value * py->value;

 ++px;

 ++py;

 }

 else

 {

 if(px->index > py->index)

 ++py;

 else

 ++px;

 }

 }

 return sum;

 }

 double Kernel::k_function(const svm_node *x, const svm_node *y,

 const svm_parameter& param)

 {

288

 switch(param.kernel_type)

 {

 case LINEAR:

 return dot(x,y);

 case POLY:

 return

powi(param.gamma*dot(x,y)+param.coef0,param.degree);

 case RBF:

 {

 double sum = 0;

 while(x->index != -1 && y->index !=-1)

 {

 if(x->index == y->index)

 {

 double d = x->value - y->value;

 sum += d*d;

 ++x;

 ++y;

 }

 else

 {

 if(x->index > y->index)

 {

 sum += y->value * y->value;

 ++y;

 }

 else

 {

 sum += x->value * x->value;

 ++x;

 }

 }

 }

 while(x->index != -1)

 {

 sum += x->value * x->value;

 ++x;

 }

 while(y->index != -1)

 {

 sum += y->value * y->value;

 ++y;

 }

 return exp(-param.gamma*sum);

 }

 case SIGMOID:

 return tanh(param.gamma*dot(x,y)+param.coef0);

 case PRECOMPUTED: //x: test (validation), y: SV

 return x[(int)(y->value)].value;

 default:

 return 0; // Unreachable

289

 }

 }

 void svm_get_labels(const svm_model *model, int* label)

 {

 if (model->label != NULL)

 for(int i=0;i<model->nr_class;i++)

 label[i] = model->label[i];

 }

- (void)didReceiveMemoryWarning

{

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

A2.3.3 imuViewController.h

//

// imuViewController.h

// IMUa

//

// Created by Samuel Lawoyin on 7/9/14.

// Copyright (c) 2014 Samuel Lawoyin. All rights reserved.

//

#import <UIKit/UIKit.h>

#import <CoreMotion/CoreMotion.h>

#import <coreText/CoreText.h>

#import <Foundation/Foundation.h>

#import <CoreLocation/CoreLocation.h>

#import <MobileCoreServices/MobileCoreServices.h>

#import <MapKit/MapKit.h>

//double attitudeYaw;

//double attitudeRoll;

//double currentFusion;

//double lastFusion;

//double currentYaw;

290

//double lastYaw;

//double lastVelocityZ;

//double currentVelocityZ;

//double length;

#define kRequiredAccuracy 500.0 //in meters

#define kMaxAge 10.0 //in seconds

@interface imuViewController :

UIViewController<CLLocationManagerDelegate>

//@property (nonatomic) NSMutableArray *driftArray;

@property (strong, nonatomic)IBOutlet UILabel *length;

@property (strong, nonatomic) IBOutlet UILabel *filename;

@property (strong, nonatomic)IBOutlet UILabel *accx;

@property (strong, nonatomic)IBOutlet UILabel *accy;

@property (strong, nonatomic)IBOutlet UILabel *accz;

@property (strong, nonatomic)IBOutlet UILabel *accAngle;

@property (strong, nonatomic)IBOutlet UILabel *angVel;

@property (strong, nonatomic)IBOutlet UILabel *currentYaw;

@property (strong, nonatomic)IBOutlet UILabel *gyroPosition;

@property (strong, nonatomic)IBOutlet UILabel *swmFusion;

@property (strong, nonatomic)IBOutlet UILabel *dataBlockSaved;

@property (strong, nonatomic)IBOutlet UILabel *recordProgress; //Is

recording ongoing or not?

@property (strong, nonatomic)IBOutlet UILabel *todaysDate;

@property (strong, nonatomic)IBOutlet UILabel *speed1label;

@property (strong, nonatomic)IBOutlet UILabel *speed2label;

@property (strong, nonatomic)IBOutlet UILabel *drowsyStatus;

@property (strong, nonatomic)IBOutlet UILabel *revolveCase;

291

- (IBAction)stopButton:(id)sender;

- (IBAction)startButton:(id)sender;

- (IBAction)drowsyButton:(id)sender;

@property (strong, nonatomic) CMMotionManager *motionManager;

@property(nonatomic, retain) CLLocationManager* locationManager;

@end

@interface MapViewController:UIViewController <MKMapViewDelegate,

CLLocationManagerDelegate>

{

 MKMapView *mapView;

 CLLocationManager *locationManager;

 CLLocationSpeed speed;

 NSTimer *timer;

}

@property(nonatomic, retain) NSTimer*timer;

@end

/*

@interface NSArray (Stats)

- (NSNumber *)calculateStat:(NSString *)stat;

@end*/

@interface DataClass : NSObject

{

 NSMutableArray *floatGyroArray;

 NSMutableArray *floatAngVelArray;

 NSString *accArrayFilename;

 NSString *gyroArrayFilename;

 NSString *speedArrayFilename;

 NSString *locationArrayFilename;

 NSString *drowsyArrayFilename;

 NSString *angVelArrayFilename;

 NSMutableArray *accArray;

 NSMutableArray *gyroArray;

 NSMutableArray *speedArray;

 NSMutableArray *locationArray;

 NSMutableArray *drowsyArray;

 NSMutableArray *angVelArray;

} //global variable

292

@property (nonatomic, retain) NSString* turnAveString;

@property (nonatomic, retain) NSString* zeroCrossString;

@property (nonatomic, retain) NSString* swmSuddenString;

@property (nonatomic, retain) NSString* swmSTDevString;

@property (nonatomic, retain) NSString* classifyString;

@property (nonatomic, retain) NSString *classifyFilename;

@property (nonatomic, retain) NSString *classifiedOutputFilename;

@property (nonatomic, retain) NSString *modelFilename;

@property (nonatomic, retain) NSString *accArrayFilename;

@property (nonatomic, retain) NSString *gyroArrayFilename;

@property (nonatomic, retain) NSString *drowsyArrayFilename;

@property (nonatomic, retain) NSString *speedArrayFilename;

@property (nonatomic, retain) NSString *locationArrayFilename;

@property (nonatomic, retain) NSString *angVelArrayFilename;

@property (nonatomic, retain) NSString *startTime;

+(DataClass*)getInstance;

@property (nonatomic, retain) NSMutableArray *accArray;

@property (nonatomic, retain) NSMutableArray *gyroArray;

@property (nonatomic, retain) NSMutableArray *speedArray;

@property (nonatomic, retain) NSMutableArray *locationArray;

@property (nonatomic, retain) NSMutableArray *drowsyArray;

@property (nonatomic, retain) NSMutableArray *angVelArray;

@property (nonatomic, retain) NSMutableArray *floatGyroArray;

@property (nonatomic, retain) NSMutableArray *floatAngVelArray;

@property (nonatomic, assign) double gyroPosition;

@property (nonatomic, assign) double accAngle;

@property (nonatomic, assign) double lastGyroPosition;

@property (nonatomic, assign) double swmFusion;

@property (nonatomic, assign) double lastSwmFusion;

//@property (nonatomic, assign) double lastGyroPositionNum;

@property (nonatomic, assign) double lastX;

@property (nonatomic, assign) double lastY;

@property (nonatomic, assign) double lastZ;@property (nonatomic,

assign) double accelerationX;

@property (nonatomic, assign) double accelerationY;

@property (nonatomic, assign) double accelerationZ;

@property (nonatomic, assign) int revolveCase;

@property (nonatomic, assign) int recordBoolean;

@property (nonatomic, assign) int recordCount;//how many times the

stop button has been pressed for labelling data

@property (nonatomic, assign) double speed1;

293

@property (nonatomic, assign) double speed2;

@property (nonatomic, assign) double latitude;

@property (nonatomic, assign) double longitude;

@end

294

Appendix 3: A tacticle method for drowsy driver feedback - circuitry

295

Appendix 4: Sample of Participant Data

Participant 1 data

SSS KSS ESS PVT

Baseline Initial Before Experiment 2 3 11 0.27

first drive

4 6 14 0.27

second drive

4 6 18 0.27

third drive

5 8 20 0.27

forth drive

5 8 21 0.28

180 data points (180 minutes, 1 count per period listed left to right on each row)

Average Amplitude of turns (degrees)

0.000280812 0.007171409 0.010067143 0.00649348 0.010441967 0.009119134

 0.007534325 0.011547997 0.010271313 0.010743189 0.012463837 0.012157309

 0.010327285 0.012629501 0.008819203 0.011007639 0.015164728 0.013285446

 0.012864678 0.011062628 0.010760606 0.00994421 0.010457376 0.006590593

 0.010852695 0.012984876 0.00878779 0.008158092 0.009020682 0.004928419

 0.008256759 0.010766339 0.008850569 0.006259508 0.008828981 0.008995828

 0.01153712 0.006294309 0.00976532 0.009902117 0.010472073 0.010524873

 0.009481093 0.009845928 0.008279115 0.004259769 0.008926953 0.004921678

 0.010187143 0.011367961 0.014695077 0.009068412 0.00584406 0.005627621

 0.010150949 0.00419871 0.005668273 0.010585075 0.009667418 0.006738601

 0.010622917 0.0099526 0.009808069 0.008903924 0.00782724 0.011623016

 0.009198203 0.01017617 0.010080684 0.008115251 0.010539548 0.010281187

 0.011369006 0.010345049 0.00467495 0.003167076 0.005049887 0.0110785

 0.012184155 0.008027859 0.011422439 0.009001709 0.012740754 0.000363112

 0.004301716 0.004315007 0.007499447 0.006122332 0.008185631 0.003591489

 0.004259769 0.008926953 0.004921678 0.010187143 0.011367961 0.014695077

 0.009068412 0.00584406 0.005627621 0.010150949 0.00419871 0.005668273

 0.010585075 0.009667418 0.006738601 0.010622917 0.0099526 0.009808069

 0.008903924 0.00782724 0.011623016 0.009198203 0.01017617 0.010080684

 0.008115251 0.010539548 0.010281187 0.011369006 0.010345049 0.00467495

 0.003167076 0.005049887 0.0110785 0.012184155 0.008027859 0.011422439

 0.009001709 0.012740754 0.000363112 0.004301716 0.004315007 0.007499447

 0.006122332 0.008185631 0.003591489 0.004259769 0.008926953 0.004921678

 0.010187143 0.011367961 0.014695077 0.009068412 0.00584406 0.005627621

 0.010150949 0.00419871 0.005668273 0.010585075 0.009667418 0.006738601

 0.010622917 0.0099526 0.009808069 0.008903924 0.00782724 0.011623016

 0.009198203 0.01017617 0.010080684 0.008115251 0.010539548 0.010281187

 0.011369006 0.010345049 0.00467495 0.003167076 0.005049887 0.0110785

 0.012184155 0.008027859 0.011422439 0.009001709 0.012740754 0.000363112

 0.004301716 0.004315007 0.007499447 0.006122332 0.008185631 0.003591489

SWM zero crossings

1 7 10 11 10 7 12 9 8 8 12 9

 7 18 7 9 12 11 12 9 9 9 8 5

 12 10 9 8 10 6 13 9 7 12 11 9

 9 6 11 9 14 23 6 14 25 6 10 11

 8 13 16 7 12 15 8 4 10 12 7 5

296

 8 8 8 12 8 11 6 8 12 6 9 8

 10 10 11 35 10 11 10 8 11 7 11 8

 7 1 8 4 7 7 6 10 11 8 13 16

 7 12 15 8 4 10 12 7 5 8 8 8

 12 8 11 6 8 12 6 9 8 10 10 11

 35 10 11 10 8 11 7 11 8 7 1 8

 4 7 7 6 10 11 8 13 16 7 12 15

 8 4 10 12 7 5 8 8 8 12 8 11

 6 8 12 6 9 8 10 10 11 35 10 11

 10 8 11 7 11 8 7 1 8 4 7 7

Number of SWM sudden turns

0 0 1 0 2 0 0 0 0 1 2 4

 0 3 0 0 2 0 0 0 3 7 8 0

 0 0 0 0 0 0 0 0 0 0 0 6

 5 0 0 0 5 4 0 6 4 5 0 0

 6 0 6 3 0 0 0 0 0 4 8 0

 8 5 0 0 0 9 0 10 7 0 4 3

 5 5 4 0 5 7 9 0 13 6 8 0

 0 0 5 0 0 0 5 0 0 6 0 6

 3 0 0 0 0 0 4 8 0 8 5 0

 0 0 9 0 10 7 0 4 3 5 5 4

 0 5 7 9 0 13 6 8 0 0 0 5

 0 0 0 5 0 0 6 0 6 3 0 0

 0 0 0 4 8 0 8 5 0 0 0 9

 0 10 7 0 4 3 5 5 4 0 5 7

 9 0 13 6 8 0 0 0 5 0 0 0

Standard Deviation of SWM

0.118864026 3.044220696 3.24054051 2.837454901 3.404645159 3.179812825

 3.260556946 4.035925128 3.704374668 3.417743277 3.964736717 3.795744524

 3.487387985 4.025134497 3.404674083 3.597012231 4.183075725 3.76114105

 3.693504778 3.24995211 3.565207827 3.190534997 3.88676365 3.338769324

 3.58691166 4.022038722 3.090326911 3.346036848 3.323865322 2.678479674

 3.171092407 3.760746991 3.489000769 2.781534092 3.323552126 3.438817332

 3.914760469 2.770705301 3.645399238 3.442671716 3.274305839 3.515156857

 3.486218137 3.289275769 2.700402906 1.913857093 3.515709489 1.763286662

 3.686896434 3.335503304 3.976918789 3.611051373 2.350681657 3.166085093

 3.869745525 2.888246934 2.40197961 3.774146257 3.364470193 2.857039305

 3.815350382 3.72989643 3.543732278 3.441625972 3.713334412 3.340712802

 3.819549575 3.361689601 3.347642281 3.384112229 3.69940388 3.691987618

 3.50308916 3.651145244 1.667748516 2.538707861 2.348442267 3.6779574

 3.827910265 3.077765142 3.709149755 3.727026494 3.505196448 0.218063058

 2.60696266 2.041668762 3.81013391 3.009254512 3.413257141 1.89987185

 1.913857093 3.515709489 1.763286662 3.686896434 3.335503304 3.976918789

 3.611051373 2.350681657 3.166085093 3.869745525 2.888246934 2.40197961

 3.774146257 3.364470193 2.857039305 3.815350382 3.72989643 3.543732278

 3.441625972 3.713334412 3.340712802 3.819549575 3.361689601 3.347642281

 3.384112229 3.69940388 3.691987618 3.50308916 3.651145244 1.667748516

 2.538707861 2.348442267 3.6779574 3.827910265 3.077765142 3.709149755

 3.727026494 3.505196448 0.218063058 2.60696266 2.041668762 3.81013391

 3.009254512 3.413257141 1.89987185 1.913857093 3.515709489 1.763286662

 3.686896434 3.335503304 3.976918789 3.611051373 2.350681657 3.166085093

 3.869745525 2.888246934 2.40197961 3.774146257 3.364470193 2.857039305

297

 3.815350382 3.72989643 3.543732278 3.441625972 3.713334412 3.340712802

 3.819549575 3.361689601 3.347642281 3.384112229 3.69940388 3.691987618

 3.50308916 3.651145244 1.667748516 2.538707861 2.348442267 3.6779574

 3.827910265 3.077765142 3.709149755 3.727026494 3.505196448 0.218063058

 2.60696266 2.041668762 3.81013391 3.009254512 3.413257141 1.89987185

EEG - Average power of theta activity at position Fz

2.74834E-06 2.26541E-06 2.23827E-06 2.0824E-06 2.17584E-06 2.2189E-06

 2.28478E-06 2.0686E-06 2.06786E-06 1.88574E-06 1.91133E-06 2.0869E-06

 2.01369E-06 1.97226E-06 1.95416E-06 1.95427E-06 1.98915E-06 1.91282E-06

 1.94053E-06 1.95995E-06 2.12609E-06 1.83529E-06 1.92844E-06 2.22769E-06

 2.10758E-06 2.17981E-06 2.52351E-06 2.18264E-06 2.08731E-06 2.33484E-06

 1.9154E-06 2.16735E-06 2.23965E-06 2.31848E-06 2.20633E-06 2.4652E-06

 2.18614E-06 2.11507E-06 2.16236E-06 1.99988E-06 2.32584E-06 2.61759E-06

 2.29772E-06 2.65666E-06 2.64125E-06 3.15E-06 2.00E-06 2.20E-06 1.82E-06 2.21E-06

 2.00E-06 1.89E-06 2.17E-06 2.08E-06 1.90E-06 2.18E-06 1.96E-06 2.43E-06 2.26E-06 2.20E-06 2.15E-06

 2.21E-06 2.13E-06 1.93E-06 2.14E-06 2.13E-06 1.95E-06 2.38E-06 2.33E-06 2.20E-06 2.03E-06 2.02E-06

 2.25E-06 2.08E-06 2.70E-06 2.51E-06 2.62E-06 2.29E-06 2.25E-06 2.11E-06 2.24E-06 2.17E-06 2.46E-06

 2.41E-06 2.20E-06 2.34E-06 2.44E-06 2.15E-06 2.46E-06 2.37E-06 3.15E-06 2.00E-06 2.20E-06 1.82E-06

 2.21E-06 2.00E-06 1.89E-06 2.17E-06 2.08E-06 1.90E-06 2.18E-06 1.96E-06 2.43E-06 2.26E-06 2.20E-06

 2.15E-06 2.21E-06 2.13E-06 1.93E-06 2.14E-06 2.13E-06 1.95E-06 2.38E-06 2.33E-06 2.20E-06 2.03E-06

 2.02E-06 2.25E-06 2.08E-06 2.70E-06 2.51E-06 2.62E-06 2.29E-06 2.25E-06 2.11E-06 2.24E-06 2.17E-06

 2.46E-06 2.41E-06 2.20E-06 2.34E-06 2.44E-06 2.15E-06 2.46E-06 2.37E-06 3.15E-06 2.00E-06 2.20E-06

 1.82E-06 2.21E-06 2.00E-06 1.89E-06 2.17E-06 2.08E-06 1.90E-06 2.18E-06 1.96E-06 2.43E-06 2.26E-06

 2.20E-06 2.15E-06 2.21E-06 2.13E-06 1.93E-06 2.14E-06 2.13E-06 1.95E-06 2.38E-06 2.33E-06 2.20E-06

 2.03E-06 2.02E-06 2.25E-06 2.08E-06 2.70E-06 2.51E-06 2.62E-06 2.29E-06 2.25E-06 2.11E-06 2.24E-06

 2.17E-06 2.46E-06 2.41E-06 2.20E-06 2.34E-06 2.44E-06 2.15E-06 2.46E-06 2.37E-06

EEG - Average power of alpha wave activity at position Oz

1.46689E-06 1.19313E-06 1.13356E-06 1.09233E-06 1.15897E-06 1.14856E-06

 1.16853E-06 1.06386E-06 1.1591E-06 1.11338E-06 1.06035E-06 1.17613E-06

 1.07113E-06 1.15167E-06 1.10939E-06 1.13412E-06 1.13693E-06 1.11186E-06

 1.04881E-06 1.09776E-06 1.15977E-06 1.09627E-06 1.16215E-06 1.12923E-06

 1.1111E-06 1.17606E-06 1.21548E-06 1.27134E-06 1.11685E-06 1.21074E-06

 1.15336E-06 1.14761E-06 1.12809E-06 1.22033E-06 1.13542E-06 1.11814E-06

 1.19445E-06 1.21888E-06 1.18092E-06 1.16111E-06 1.19713E-06 1.19994E-06

 1.14158E-06 1.14047E-06 1.14913E-06 1.57E-06 1.10E-06 1.13E-06 1.05E-06 1.14E-06

 1.06E-06 1.13E-06 1.18E-06 1.12E-06 1.09E-06 1.18E-06 1.17E-06 1.17E-06 1.20E-06 1.25E-06 1.18E-06

 1.13E-06 1.22E-06 1.12E-06 1.17E-06 1.21E-06 1.16E-06 1.20E-06 1.24E-06 1.24E-06 1.20E-06 1.17E-06

 1.12E-06 1.20E-06 1.20E-06 1.13E-06 1.18E-06 1.13E-06 1.14E-06 1.21E-06 1.28E-06 1.15E-06 1.13E-06

 1.07E-06 1.06E-06 1.25E-06 1.18E-06 1.21E-06 1.13E-06 1.21E-06 1.57E-06 1.10E-06 1.13E-06 1.05E-06

 1.14E-06 1.06E-06 1.13E-06 1.18E-06 1.12E-06 1.09E-06 1.18E-06 1.17E-06 1.17E-06 1.20E-06 1.25E-06

 1.18E-06 1.13E-06 1.22E-06 1.12E-06 1.17E-06 1.21E-06 1.16E-06 1.20E-06 1.24E-06 1.24E-06 1.20E-06

 1.17E-06 1.12E-06 1.20E-06 1.20E-06 1.13E-06 1.18E-06 1.13E-06 1.14E-06 1.21E-06 1.28E-06 1.15E-06

 1.13E-06 1.07E-06 1.06E-06 1.25E-06 1.18E-06 1.21E-06 1.13E-06 1.21E-06 1.57E-06 1.10E-06 1.13E-06

 1.05E-06 1.14E-06 1.06E-06 1.13E-06 1.18E-06 1.12E-06 1.09E-06 1.18E-06 1.17E-06 1.17E-06 1.20E-06

 1.25E-06 1.18E-06 1.13E-06 1.22E-06 1.12E-06 1.17E-06 1.21E-06 1.16E-06 1.20E-06 1.24E-06 1.24E-06

 1.20E-06 1.17E-06 1.12E-06 1.20E-06 1.20E-06 1.13E-06 1.18E-06 1.13E-06 1.14E-06 1.21E-06 1.28E-06

 1.15E-06 1.13E-06 1.07E-06 1.06E-06 1.25E-06 1.18E-06 1.21E-06 1.13E-06 1.21E-06

Number of blinks

21 9 8 9 11 9 10 10 6 8 7 10

 9 10 9 11 9 11 11 12 11 8 11 15

 13 12 19 15 11 14 11 12 16 13 15 18

298

 15 13 13 10 13 10 18 22 21 18 8 11

 10 11 11 8 13 12 8 15 12 14 17 12

 13 11 10 11 14 12 9 18 17 15 9 12

 15 13 23 18 22 17 18 14 17 16 22 18

 14 14 19 13 18 21 18 8 11 10 11 11

 8 13 12 8 15 12 14 17 12 13 11 10

 11 14 12 9 18 17 15 9 12 15 13 23

 18 22 17 18 14 17 16 22 18 14 14 19

 13 18 21 18 8 11 10 11 11 8 13 12

 8 15 12 14 17 12 13 11 10 11 14 12

 9 18 17 15 9 12 15 13 23 18 22 17

 18 14 17 16 22 18 14 14 19 13 18 21

Average HEOG speed

2.49063E-06 1.09541E-06 1.01453E-06 9.42585E-07 9.928E-07 1.10561E-06

 9.4884E-07 8.21843E-07 1.02601E-06 8.75142E-07 7.55186E-07 1.10241E-06

 8.83289E-07 9.28699E-07 8.54622E-07 8.45961E-07 8.87907E-07 8.62482E-07

 7.66913E-07 9.11784E-07 9.07779E-07 7.23898E-07 7.78674E-07 1.11071E-06

 8.79705E-07 9.01038E-07 1.50876E-06 1.30872E-06 1.08286E-06 1.29308E-06

 9.69247E-07 9.24294E-07 9.3736E-07 1.40971E-06 1.13396E-06 9.58139E-07

 9.86942E-07 1.22072E-06 1.21744E-06 1.15155E-06 1.23061E-06 2.26662E-06

 1.34464E-06 1.37548E-06 1.50603E-06 3.58E-06 8.45E-07 1.02E-06

 6.55E-07 1.01E-06 7.51E-07 9.68E-07 1.19E-06 1.28E-06 9.04E-07 1.60E-06 1.17E-06 1.60E-06 1.19E-06

 9.99E-07 1.08E-06 1.19E-06 9.33E-07 8.70E-07 1.26E-06 1.19E-06 1.06E-06 1.39E-06 1.36E-06 1.22E-06

 1.32E-06 1.05E-06 9.67E-07 8.37E-07 2.00E-06 1.49E-06 1.55E-06 1.38E-06 1.31E-06 1.26E-06 1.42E-06

 1.01E-06 1.15E-06 7.42E-07 9.87E-07 1.38E-06 1.08E-06 1.14E-06 1.63E-06 1.73E-06 3.58E-06 8.45E-07

 1.02E-06 6.55E-07 1.01E-06 7.51E-07 9.68E-07 1.19E-06 1.28E-06 9.04E-07 1.60E-06 1.17E-06 1.60E-06

 1.19E-06 9.99E-07 1.08E-06 1.19E-06 9.33E-07 8.70E-07 1.26E-06 1.19E-06 1.06E-06 1.39E-06 1.36E-06

 1.22E-06 1.32E-06 1.05E-06 9.67E-07 8.37E-07 2.00E-06 1.49E-06 1.55E-06 1.38E-06 1.31E-06 1.26E-06

 1.42E-06 1.01E-06 1.15E-06 7.42E-07 9.87E-07 1.38E-06 1.08E-06 1.14E-06 1.63E-06 1.73E-06 3.58E-06

 8.45E-07 1.02E-06 6.55E-07 1.01E-06 7.51E-07 9.68E-07 1.19E-06 1.28E-06 9.04E-07 1.60E-06 1.17E-06

 1.60E-06 1.19E-06 9.99E-07 1.08E-06 1.19E-06 9.33E-07 8.70E-07 1.26E-06 1.19E-06 1.06E-06 1.39E-06

 1.36E-06 1.22E-06 1.32E-06 1.05E-06 9.67E-07 8.37E-07 2.00E-06 1.49E-06 1.55E-06 1.38E-06 1.31E-06

 1.26E-06 1.42E-06 1.01E-06 1.15E-06 7.42E-07 9.87E-07 1.38E-06 1.08E-06 1.14E-06 1.63E-06 1.73E-06

PERCLOS80 score

1.44 0.534 0.468 0.522 0.63 0.51 0.57 0.63 0.39 0.462 0.396

 0.672 0.54 0.624 0.582 0.852 0.546 0.726 0.75 0.714 0.696 0.486

 0.702 1.194 0.876 0.72 1.194 0.96 0.732 0.852 0.672 0.768 1.032 0.87

 0.978 1.296 0.882 0.858 0.774 0.606 0.768 0.57 1.11 1.296 1.254 1.05

 0.516 0.744 0.684 0.69 0.702 0.54 0.81 0.738 0.504 1.008 0.768 0.9

 1.11 0.75 0.84 0.702 0.606 0.696 0.93 0.762 0.552 1.122 1.05

 0.942 0.576 0.756 0.924 0.84 1.572 1.092 1.344 0.99 1.098 0.822

 1.038 0.912 1.26 1.08 0.804 0.834 1.128 0.744 1.176 1.452 1.05

 0.516 0.744 0.684 0.69 0.702 0.54 0.81 0.738 0.504 1.008 0.768 0.9

 1.11 0.75 0.84 0.702 0.606 0.696 0.93 0.762 0.552 1.122 1.05

 0.942 0.576 0.756 0.924 0.84 1.572 1.092 1.344 0.99 1.098 0.822

 1.038 0.912 1.26 1.08 0.804 0.834 1.128 0.744 1.176 1.452 1.05

 0.516 0.744 0.684 0.69 0.702 0.54 0.81 0.738 0.504 1.008 0.768 0.9

 1.11 0.75 0.84 0.702 0.606 0.696 0.93 0.762 0.552 1.122 1.05

 0.942 0.576 0.756 0.924 0.84 1.572 1.092 1.344 0.99 1.098 0.822

 1.038 0.912 1.26 1.08 0.804 0.834 1.128 0.744 1.176 1.452

299

Standard Deviation of Lane Position

0.244135953 0.254415465 0.202616248 0.213256451 0.207874622 0.185437759

 0.2839469 0.296691536 0.327227866 0.283340048 0.291570427 0.319056863

 0.370108203 0.306655963 0.28143299 0.249147938 0.272025083 0.228679147

 0.239159548 0.326434257 0.285994816 0.325984576 0.292325934 0.190720176

 0.269530006 0.251986374 0.187110151 0.249189138 0.336418488 0.247927125

 0.290124624 0.244703473 0.274791472 0.120382201 0.287121572 0.332422591

 0.322815326 0.168153519 0.258264802 0.200965443 0.282922507 0.238738354

 0.30449268 0.250672898 0.288363607 0.274104252 0.210927352 0.226750224

 0.180684256 0.281415073 0.188129246 0.268675728 0.191425723 0.272267634

 0.328834403 0.181219585 0.418464958 0.313355544 0.30489154 0.263465504

 0.230374727 0.242689417 0.281976534 0.325757183 0.33300871 0.325442335

 0.378423431 0.294514065 0.292007147 0.336601278 0.34530727 0.273131056

 0.281139994 0.322199538 0.081337278 0.249212902 0.252757763 0.371338349

 0.290366494 0.319998857 0.253581358 0.405266755 0.247898618 0.106040727

 0.376642275 0.183263685 0.324103009 0.233140001 0.331524265 0.307465227

 0.231241731 0.295145803 0.274120707 0.206412894 0.242189998 0.349266588

 0.344340421 0.268693838 0.258253169 0.248110244 0.311640962 0.205582927

 0.122687015 0.282564832 0.323723122 0.340429196 0.377866275 0.292239576

 0.177896588 0.209660985 0.234813256 0.086717784 0.188262501 0.160042777

 0.334177826 0.343064632 0.388996199 0.318927454 0.320366694 0.368601773

 0.270902265 0.297143069 0.339365791 0.354769566 0.356275098 0.332088581

 0.450861661 0.254735071 0.344724446 0.425679498 0.365373514 0.290869693

 0.057501196 0.390136663 0.190567435 0.293811955 0.289408218 0.295675118

 0.329167325 0.257593193 0.315519698 0.224877536 0.086273217 0.353267197

 0.169733881 0.35196003 0.51352937 0.443489561 0.371333297 0.283976259

 0.10135882 0.436137246 0.499606893 0.277621153 0.230591677 0.17133126

 0.096639104 0.352799578 0.290184627 0.255584102 0.376252673 0.456840174

 0.315998137 0.333936591 0.379948548 0.338146657 0.278192323 0.174353504

 0.266442698 0.31344649 0.261764314 0.133585511 0.364225423 0.370206274

 0.313921632 0.275168049 0.380384007 0.462662352 0.395326252 0.438724337

36 data points (180 minutes)

Lane exit event

0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0

ECG Heart Rate Variability (HRV) - Inter Beat Interval (IBI) RR interval mean (ms)

936.7385 917.045 937.2923 912.6667 918.8675 934.7669

 932.2018 896.8235 909.8443 940.7927 972.4921 1.00E+03

 963.4206 998.1165 1.03E+03 994.2387 973.0633 1.02E+03

 1.06E+03 1.04E+03 972.7961 999.7874 974.0388 1.03E+03

 1.05E+03 1.05E+03 975.7013 942.0725 937.8795 941.2952

 975.4313 955.4312 965.2384 974.8025 981.0377 978.3009

	Virginia Commonwealth University
	VCU Scholars Compass
	2014

	Novel technologies for the detection and mitigation of drowsy driving
	Samuel Lawoyin
	Downloaded from

	tmp.1418450497.pdf.K1F65

