556 research outputs found

    Multiple classifier fusion and optimization for automatic focal cortical dysplasia detection on magnetic resonance images

    Get PDF
    In magnetic resonance (MR) images, detection of focal cortical dysplasia (FCD) lesion as a main pathological cue of epilepsy is challenging because of the variability in the presentation of FCD lesions. Existing algorithms appear to have sufficient sensitivity in detecting lesions but also generate large numbers of false-positive (FP) results. In this paper, we propose a multiple classifier fusion and optimization schemes to automatically detect FCD lesions in MR images with reduced FPs through constructing an objective function based on the F-score. Thus, the proposed scheme obtains an improved tradeoff between minimizing FPs and maximizing true positives. The optimization is achieved by incorporating the genetic algorithm into the work scheme. Hence, the contribution of weighting coefficients to different classifications can be effectively determined. The resultant optimized weightings are applied to fuse the classification results. A set of six typical FCD features and six corresponding Z-score maps are evaluated through the mean F-score from multiple classifiers for each feature. From the experimental results, the proposed scheme can automatically detect FCD lesions in 9 out of 10 patients while correctly classifying 31 healthy controls. The proposed scheme acquires a lower FP rate and a higher F-score in comparison with two state-of-the-art methods

    Detection of Epileptogenic Cortical Malformations with Surface-Based MRI Morphometry

    Get PDF
    Magnetic resonance imaging has revolutionized the detection of structural abnormalities in patients with epilepsy. However, many focal abnormalities remain undetected in routine visual inspection. Here we use an automated, surface-based method for quantifying morphometric features related to epileptogenic cortical malformations to detect abnormal cortical thickness and blurred gray-white matter boundaries. Using MRI morphometry at 3T with surface-based spherical averaging techniques that precisely align anatomical structures between individual brains, we compared single patients with known lesions to a large normal control group to detect clusters of abnormal cortical thickness, gray-white matter contrast, local gyrification, sulcal depth, jacobian distance and curvature. To assess the effects of threshold and smoothing on detection sensitivity and specificity, we systematically varied these parameters with different thresholds and smoothing levels. To test the effectiveness of the technique to detect lesions of epileptogenic character, we compared the detected structural abnormalities to expert-tracings, intracranial EEG, pathology and surgical outcome in a homogeneous patient sample. With optimal parameters and by combining thickness and GWC, the surface-based detection method identified 92% of cortical lesions (sensitivity) with few false positives (96% specificity), successfully discriminating patients from controls 94% of the time. The detected structural abnormalities were related to the seizure onset zones, abnormal histology and positive outcome in all surgical patients. However, the method failed to adequately describe lesion extent in most cases. Automated surface-based MRI morphometry, if used with optimized parameters, may be a valuable additional clinical tool to improve the detection of subtle or previously occult malformations and therefore could improve identification of patients with intractable focal epilepsy who may benefit from surgery

    Interpretable surface-based detection of focal cortical dysplasias:a Multi-centre Epilepsy Lesion Detection study

    Get PDF
    One outstanding challenge for machine learning in diagnostic biomedical imaging is algorithm interpretability. A key application is the identification of subtle epileptogenic focal cortical dysplasias (FCDs) from structural MRI. FCDs are difficult to visualize on structural MRI but are often amenable to surgical resection. We aimed to develop an open-source, interpretable, surface-based machine-learning algorithm to automatically identify FCDs on heterogeneous structural MRI data from epilepsy surgery centres worldwide. The Multi-centre Epilepsy Lesion Detection (MELD) Project collated and harmonized a retrospective MRI cohort of 1015 participants, 618 patients with focal FCD-related epilepsy and 397 controls, from 22 epilepsy centres worldwide. We created a neural network for FCD detection based on 33 surface-based features. The network was trained and cross-validated on 50% of the total cohort and tested on the remaining 50% as well as on 2 independent test sites. Multidimensional feature analysis and integrated gradient saliencies were used to interrogate network performance. Our pipeline outputs individual patient reports, which identify the location of predicted lesions, alongside their imaging features and relative saliency to the classifier. On a restricted 'gold-standard' subcohort of seizure-free patients with FCD type IIB who had T1 and fluid-attenuated inversion recovery MRI data, the MELD FCD surface-based algorithm had a sensitivity of 85%. Across the entire withheld test cohort the sensitivity was 59% and specificity was 54%. After including a border zone around lesions, to account for uncertainty around the borders of manually delineated lesion masks, the sensitivity was 67%. This multicentre, multinational study with open access protocols and code has developed a robust and interpretable machine-learning algorithm for automated detection of focal cortical dysplasias, giving physicians greater confidence in the identification of subtle MRI lesions in individuals with epilepsy

    MalformaçÔes do desenvolvimento cortical: conceitos atuais e revisão de neuro-imagem avançada

    Get PDF
    Malformations of cortical development (MCD) result from disruptions in the complex process of the human brain cortex formation and are highly associated to severe epilepsy, neurodevelopmental delay and motor dysfunction. Nowadays, magnetic resonance imaging (MRI) is the cornerstone of the work-up of patients with epilepsy and modern advanced imaging techniques have improved not only our ability to detect and characterize cortical malformations, but also in identifying associated functional abnormalities that are far beyond the structural visualized lesions. Herein, we address the most currently used classifications of MCD and make a concise review of the embryological process of cortical development. Our main goal is to summarize recent advances and new trends in diagnostic imaging techniques concerning MCD. Thereafter, follows a brief discussion of specific disorders and their radiological features.As malformaçÔes do desenvolvimento cortical (MDC) resultam de distĂșrbios no complexo processo do desenvolvimento do cĂłrtex cerebral humano e estĂŁo comumente associadas a epilepsia severa e disfunçÔes neuropsicomotoras. Atualmente, as imagens por ressonĂąncia magnĂ©tica (RM) sĂŁo a pedra angular no manejo de pacientes com epilepsia e modernas tĂ©cnicas avançadas de imagem melhoraram nĂŁo sĂł a nossa capacidade de detectar e caracterizar as malformaçÔes corticais, mas tambĂ©m levaram ao reconhecimento de anomalias funcionais associadas que estĂŁo muito alĂ©m das lesĂ”es estruturais visibilizadas. Abordaremos as classificaçÔes mais utilizadas de MDC e revisaremos a embriologia do desenvolvimento cortical. Nosso principal objetivo Ă© destacar os avanços recentes e as novas tendĂȘncias em tĂ©cnicas de diagnĂłstico por imagens relacionadas Ă s MDC. Em seguida, faremos uma breve discussĂŁo sobre alguns transtornos especĂ­ficos e suas caracterĂ­sticas radiolĂłgicas.FAPESPCNP

    Planning stereoelectroencephalography using automated lesion detection: Retrospective feasibility study

    Get PDF
    OBJECTIVE: This retrospective, cross-sectional study evaluated the feasibility and potential benefits of incorporating deep-learning on structural magnetic resonance imaging (MRI) into planning stereoelectroencephalography (sEEG) implantation in pediatric patients with diagnostically complex drug-resistant epilepsy. This study aimed to assess the degree of colocalization between automated lesion detection and the seizure onset zone (SOZ) as assessed by sEEG. METHODS: A neural network classifier was applied to cortical features from MRI data from three cohorts. (1) The network was trained and cross-validated using 34 patients with visible focal cortical dysplasias (FCDs). (2) Specificity was assessed in 20 pediatric healthy controls. (3) Feasibility of incorporation into sEEG implantation plans was evaluated in 34 sEEG patients. Coordinates of sEEG contacts were coregistered with classifier-predicted lesions. sEEG contacts in seizure onset and irritative tissue were identified by clinical neurophysiologists. A distance of <10 mm between SOZ contacts and classifier-predicted lesions was considered colocalization. RESULTS: In patients with radiologically defined lesions, classifier sensitivity was 74% (25/34 lesions detected). No clusters were detected in the controls (specificity = 100%). Of the total 34 sEEG patients, 21 patients had a focal cortical SOZ, of whom eight were histopathologically confirmed as having an FCD. The algorithm correctly detected seven of eight of these FCDs (86%). In patients with histopathologically heterogeneous focal cortical lesions, there was colocalization between classifier output and SOZ contacts in 62%. In three patients, the electroclinical profile was indicative of focal epilepsy, but no SOZ was localized on sEEG. In these patients, the classifier identified additional abnormalities that had not been implanted. SIGNIFICANCE: There was a high degree of colocalization between automated lesion detection and sEEG. We have created a framework for incorporation of deep-learning-based MRI lesion detection into sEEG implantation planning. Our findings support the prospective evaluation of automated MRI analysis to plan optimal electrode trajectories

    Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning

    Get PDF
    Objective Focal cortical dysplasia (FCD) is a major pathology in patients undergoing surgical resection to treat pharmacoresistant epilepsy. Magnetic resonance imaging (MRI) postprocessing methods may provide essential help for detection of FCD. In this study, we utilized surface‐based MRI morphometry and machine learning for automated lesion detection in a mixed cohort of patients with FCD type II from 3 different epilepsy centers. Methods Sixty‐one patients with pharmacoresistant epilepsy and histologically proven FCD type II were included in the study. The patients had been evaluated at 3 different epilepsy centers using 3 different MRI scanners. T1‐volumetric sequence was used for postprocessing. A normal database was constructed with 120 healthy controls. We also included 35 healthy test controls and 15 disease test controls with histologically confirmed hippocampal sclerosis to assess specificity. Features were calculated and incorporated into a nonlinear neural network classifier, which was trained to identify lesional cluster. We optimized the threshold of the output probability map from the classifier by performing receiver operating characteristic (ROC) analyses. Success of detection was defined by overlap between the final cluster and the manual labeling. Performance was evaluated using k‐fold cross‐validation. Results The threshold of 0.9 showed optimal sensitivity of 73.7% and specificity of 90.0%. The area under the curve for the ROC analysis was 0.75, which suggests a discriminative classifier. Sensitivity and specificity were not significantly different for patients from different centers, suggesting robustness of performance. Correct detection rate was significantly lower in patients with initially normal MRI than patients with unequivocally positive MRI. Subgroup analysis showed the size of the training group and normal control database impacted classifier performance. Significance Automated surface‐based MRI morphometry equipped with machine learning showed robust performance across cohorts from different centers and scanners. The proposed method may be a valuable tool to improve FCD detection in presurgical evaluation for patients with pharmacoresistant epilepsy

    Clinical Value of Machine Learning in the Automated Detection of Focal Cortical Dysplasia Using Quantitative Multimodal Surface-Based Features

    Get PDF
    Objective: To automatically detect focal cortical dysplasia (FCD) lesion by combining quantitative multimodal surface-based features with machine learning and to assess its clinical value.Methods: Neuroimaging data and clinical information for 74 participants (40 with histologically proven FCD type II) was retrospectively included. The morphology, intensity and function-based features characterizing FCD lesions were calculated vertex-wise on each cortical surface and fed to an artificial neural network. The classifier performance was quantitatively and qualitatively assessed by performing statistical analysis and conventional visual analysis.Results: The accuracy, sensitivity, specificity of the neural network classifier based on multimodal surface-based features were 70.5%, 70.0%, and 69.9%, respectively, which outperformed the unimodal classifier. There was no significant difference in the detection rate of FCD subtypes (Pearson’s Chi-Square = 0.001, p = 0.970). Cohen’s kappa score between automated detection outcomes and post-surgical resection region was 0.385 (considered as fair).Conclusion: Automated machine learning with multimodal surface features can provide objective and intelligent detection of FCD lesion in pre-surgical evaluation and can assist the surgical strategy. Furthermore, the optimal parameters, appropriate surface features and efficient algorithm are worth exploring

    Detection of covert lesions in focal epilepsy using computational analysis of multimodal magnetic resonance imaging data

    Get PDF
    Objective: To compare the location of suspect lesions detected by computational analysis of multimodal magnetic resonance imaging data with areas of seizure onset, early propagation, and interictal epileptiform discharges (IEDs) identified with stereoelectroencephalography (SEEG) in a cohort of patients with medically refractory focal epilepsy and radiologically normal magnetic resonance imaging (MRI) scans. Methods: We developed a method of lesion detection using computational analysis of multimodal MRI data in a cohort of 62 control subjects, and 42 patients with focal epilepsy and MRI-visible lesions. We then applied it to detect covert lesions in 27 focal epilepsy patients with radiologically normal MRI scans, comparing our findings with the areas of seizure onset, early propagation, and IEDs identified at SEEG. Results: Seizure-onset zones (SoZs) were identified at SEEG in 18 of the 27 patients (67%) with radiologically normal MRI scans. In 11 of these 18 cases (61%), concordant abnormalities were detected by our method. In the remaining seven cases, either early seizure propagation or IEDs were observed within the abnormalities detected, or there were additional areas of imaging abnormalities found by our method that were not sampled at SEEG. In one of the nine patients (11%) in whom SEEG was inconclusive, an abnormality, which may have been involved in seizures, was identified by our method and was not sampled at SEEG. Significance: Computational analysis of multimodal MRI data revealed covert abnormalities in the majority of patients with refractory focal epilepsy and radiologically normal MRI that co-located with SEEG defined zones of seizure onset. The method could help identify areas that should be targeted with SEEG when considering epilepsy surgery

    Histological Quantification in Temporal Lobe Epilepsy

    Get PDF
    Approximately 30 percent of epilepsy patients suïŹ€er from refractory temporal lobe epilepsy which is commonly treated with resection of the epileptogenic tissue. However, surgical treatment presents many challenges in locating the epileptogenic focus and thus not all patients become seizure-free following surgery. Advances in techniques can lead to improved localization of the epileptogenic zone and may be validated by correlating MRI with neuropathology of the excised cortical tissue. Focal cortical dysplasias are a neuropathological group of cortical malformations that are often found in cases of refractory epilepsy, however, they are subtle and diïŹƒcult to quantify. The purpose of this research is to employ histology image analysis techniques to better characterize these abnormalities at the neuronal and laminar level, allowing for correlative MRI-histology studies and improved lesion detection in medically intractable TLE

    Detección de displasias corticales asistida mediante métodos semiautomåticos de espesor cortical

    Get PDF
     Objetivo: Evaluar la detección de displasias corticales utilizando un método semiautomá- tico de cuantificación morfométrica basado en superficie mediante la localización de zonas con espesor cortical anormal. Materiales y métodos: Se seleccionó un grupo de pacientes remitidos por diagnóstico de epilepsia refractaria para la detección de lesiones cerebrales. El espesor cortical se midió utilizando algoritmos automáticos de morfometría basado en superficie de imágenes de resonancia magnética en cada uno de los pacientes, los cuales fueron comparados con un grupo control de sujetos sanos pareados por edad. Resultados: Se realizó la cuantificación de espesor cortical en 4 de los 5 pacientes selec- cionados. Se encontraron áreas de engrosamiento cortical en las zonas de displasia cortical conocidas que se relacionaron con las zonas detectadas previamente por el radiólogo en la secuencia FLAIR de cada paciente. Se hallaron diferencias en los mapas de espesor cortical de cada paciente respecto al grupo control. Conclusión: La cuantificación morfométrica de espesor cortical es una técnica que promete ser de utilidad como asistencia computarizada al diagnóstico de las displasias corticales
    • 

    corecore