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ABSTRACT In magnetic resonance (MR) images, detection of focal cortical dysplasia (FCD) lesion as a
main pathological cue of epilepsy is challenging because of the variability in the presentation of FCD lesions.
Existing algorithms appear to have sufficient sensitivity in detecting lesions but also generate large numbers
of false-positive (FP) results. In this paper, we propose a multiple classifier fusion and optimization schemes
to automatically detect FCD lesions in MR images with reduced FPs through constructing an objective
function based on the F-score. Thus, the proposed scheme obtains an improved tradeoff between minimizing
FPs and maximizing true positives. The optimization is achieved by incorporating the genetic algorithm
into the work scheme. Hence, the contribution of weighting coefficients to different classifications can be
effectively determined. The resultant optimized weightings are applied to fuse the classification results. A set
of six typical FCD features and six corresponding Z-score maps are evaluated through the mean F-score from
multiple classifiers for each feature. From the experimental results, the proposed scheme can automatically
detect FCD lesions in 9 out of 10 patients while correctly classifying 31 healthy controls. The proposed
scheme acquires a lower FP rate and a higher F-score in comparison with two state-of-the-art methods.

INDEX TERMS Focal cortical dysplasia, magnetic resonance image, brain lesion detection, optimal
weighted multiple classifiers, genetic algorithm.

I. INTRODUCTION
Epilepsy is a cerebral disease that triggers unexpected epilep-
tic seizures, affects more than 65 million people world-
wide [1], and carries the risk of death. Neuropathological
research has identified focal cortical dysplasia (FCD), which
is a type of cerebral malformation that occurs during neocorti-
cal growth, as being closely associated with the symptoms of
approximately 30% of epileptic patients. For these patients,
resective surgery is the only curative option and has been
known to have a high success rate [1], [2]. Magnetic reso-
nance image (MRI) is always used in the pre-surgical process
for patients with epilepsy. The identification of a lesion in the

MRI has been associated with a favorable seizure outcome
after surgery [3].

FCD lesions are categorized into three types: Type I,
Type II, and Type III [4]. Type I FCD lesions are isolated
lesions, which comprise either the radial (FCD Type Ia)
or tangential (FCD Type Ib) dyslamination of the neocortex,
while the combination of both variants is classified as FCD
Type Ic [5]. In FCD type I, gray matter signal abnormali-
ties (in FLAIR and T2 weighted) are less common than in
FCD type II, while the white matter signal abnormalities (in
FLAIR, T2 weighted, and T1 weighted) occur equally in both
FCD type I and FCD type II [6]. Type II FCD lesions are
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typically extra-temporal and characterized both by architec-
tural abnormalities and dysmorphic neurons. FCD Type IIa is
characterized by dysmorphic neurons without balloon cells,
while FCD Type IIb is characterized by dysmorphic neurons
and balloon cells. FCD Type III refers to cortical lamination
abnormalities associated with hippocampal sclerosis, vascu-
lar malformations, tumors and other principal lesion [4], [7].

In MR images, the primary characteristics of FCD Type II
are the blurring of the gray matter/white matter (GM/WM)
junctions, cortical thickening, cortical hyper-intensity, and
transmantle sign [8]. Additional features include the corti-
cal curvature, atrophy/enlargement, sulcal depth, and textu-
ral changes [7]. To date, clinical FCD detection has been
conducted by radiologists. However, it is difficult and chal-
lenging to detect lesions by visual analysis because FCD
lesions can be subtle. Thus, searching for possible lesions
is inefficient and also subject to the diagnostic experience
of medical professionals [9]. FCD lesions may not be rec-
ognized because they cause extremely subtle changes in the
cortex [10].

Consequently, automatic methods to assist in lesion detec-
tion may improve the efficiency and sensitivity of FCD diag-
nosis fromMR images. In addition, detection of a FCD lesion
prior to surgery can contribute to performing a complete
resection. The main approaches are voxel-based morphom-
etry (VBM) and machine learning classifiers using voxel-
based and surface-based features.

Several VBM methods have been proposed to improve
the detectability of FCD [9], [11], [12]. Kassubek et al. [12]
developed a VBM technique based on the SPM99 software
and produced an extension image that compared the gray
matter density map with that of healthy controls to iden-
tify lesions. Kassubek’s method provides a valuable addi-
tional screening tool to highlight the abnormal gray mat-
ter arising from lesional regions. Huppertz et al. [9] also
adopted a VBM technique based on SPM99 to create junction
images. Their method highlights brain areas with blurring at
the GM/WM junctions. Bonilha et al. [11] performed VBM
analysis to detect gray-matter concentration abnormalities
and evaluate the surgical performance of dysplastic tissue
resection. Their results confirmed that most patients (10 out
of 11) with FCD lesions exhibited a statistically signifi-
cant excess of gray-matter concentration [11]. The results
obtained by these VBM methods have revealed that the
image intensity has significant value in distinguishing FCD
lesions from healthy regions. VBMmethods are promising in
terms of highlighting the abnormal gray matter and blurred
GM/WM junctions. However, the results of VBM methods
depend on the control population used in the analysis, because
VBM compares the images of patients with those of healthy
controls. Moreover, various studies have demonstrated that
the gray matter probability maps used for VBM analysis are
not affected by intrinsic neuropathological cortical changes,
owing to the lack of correlation between the graymatter prob-
ability values and the cortical neuropathological measures
in seemingly normal gray matter [7]. Additionally, simple

voxel-based comparisons have the least robustness against
noisy voxels.

Several advanced classification methods encompassing
multiple distinguishable voxel-based features have been pro-
posed to improve the performance of lesion detection. These
methods include the naïve Bayesian (NB) classifier [3], neu-
ral network (NN) classifier [13], support vector machine
(SVM) [14], and linear discriminant analysis (LDA) clas-
sifier [15]. Antel et al. [3] proposed a training-based two-
stage Bayesian classifier (TSBC) for FCD detection. In the
first stage, the classifier was trained with the computational
feature maps of cortical thickness, gradient, and relative
intensity, which have been proposed by Bernasconi et al. [8].
Additionally, the voxels were classified into lesional and
non-lesional areas. Voxels that were classified as lesional
in the first stage were reassessed during a second stage,
wherein the texture-based features computed from the gray-
level co-occurrence matrices were used to reclassify these
voxels as either lesional or GM. The TSBC method achieved
a sensitivity of 85% (17/20 lesions from 18 patients),
while flagging small false positive (FP) regions in 5 out
of 18 patients. Moreover, the specificity in healthy controls
was 100%. Loyek et al. [14] used SVM to investigate the
potential of statistical features, gray-level co-occurrence, and
gray-level run-length textures in detecting FCD lesions. Their
results revealed that those features and textures can pro-
vide promising results for identifying lesions, with a sen-
sitivity between 0.846 and 0.982 and a specificity between
0.734 and 0.922 at the voxel level across five patients. The
main weakness of these methods is either the poor specificity
(large number of FPs) both in patients and healthy con-
trols, or a high specificity at the expense of a lower sensitivity
(fewer TPs detected). Many of these methods also require
a two-stage process to eliminate the numerous identified
FP voxels [14], [15].

Machine learning classifiers using surface-based features
have also been shown to be useful in FCD detection.
Besson et al. [10] proposed an NN classifier for FCD detec-
tion. The classifier is driven by composite surface features
incorporating the cortical thickness, gradient, mean intensity
of intra-cortical surfaces, sulcal depth, and curvature. Their
method correctly identified 89% of the FCD lesions (17/19),
but also flagged approximately 6 FP regions per patient on
average and 2.5 FP clusters for half of the healthy controls
on average. Thesen et al. [16] carried out a detailed evalua-
tion for clusters of abnormal cortical thickness, gray-white
matter contrast, local gyrification, sulcal depth, Jacobian dis-
tance, and curvature by varying the threshold and smoothing
parameters. Their method successfully distinguished patients
with FCD, heterotopia, polymicrogyria, and encephalomala-
cia from the controls for 94% of the time. Hong et al. [15]
developed a method based on the surface features (cor-
tical thickness, sulcal depth, curvature, relative intensity,
and gradient) combined with a linear discriminant analy-
sis (SLDA) classifier to automate the detection of lesions
in MR image-negative but histologically-confirmed FCD.
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After a two-stage analysis consisting of vertex-wise classi-
fication followed by cluster-wise classification, the SLDA
method achieved sensitivity of 74% (14/19) and specificity
of 100%. Adler et al. [17] proposed novel surface features
called ‘‘doughnut’’ maps to identify FCD in a pediatric
cohort. Their method achieved a higher sensitivity (73%)
when the novel features were included, and a lower sensitivity
(59%) when only the established features such as cortical
thickness, were considered.

Although previous studies [15] have successfully detected
FCD lesions, false-positive results have often been generated
in image classification. Typically, a size threshold is used to
remove the false-positive results. However, this approach has
a high risk of erroneously labeling small subtle lesions as neg-
ative. Lesion detection provides candidate regions and alerts
the clinician to focus on those suspicious areas. Excessive
false positive results will burden the clinician by increasing
the interpretation time. Moreover, users tend to ignore a
large portion of candidate results when these systems over
abundantly generate false positive results, which leads to the
system being underused [18], [19]. Thus, the objective of this
study was to minimize the number of false positives.

Multi-classifier systems (MCS) can potentially increase
the classification specificity, and have been widely applied in
many research fields [20], [21]. MCS was initially proposed
by Chow [20] to optimize the joint decision of binary classi-
fiers using appropriately definedweights.Wozniak et al. [21]
identified several advantages of MCS, such as robustness to
small datasets (as is often the case in FCD) and the ability to
outperform the best individual classifier.

Inspired by the advantages of MCS, we propose a multi-
ple classifier fusion and optimization (MCFO) scheme for
FCD lesion detection. A genetic algorithm [22] was used to
optimize the weights of four individual classifiers and the
decision threshold by using an objective function constructed
to simultaneously maximize the true positives (TP) and the
minimize FPs via the F-score statistic. The motivation for this
study is discussed later in the text. Connected region analysis
was used to generate candidate lesions from the voxel classi-
fication results. Six features were input into the classifiers.
Typically, classification schemes focus on optimizing the
accuracy, and considers both the number of TPs and true
negatives (TN). However, the number of TN voxels is orders
of magnitude greater than the number of TP voxels. Thereby,
the efficiency of an objective function, which attempts to
optimize for greater accuracy, is reduced.

In this application, the F-score is a more suitable objective
function because it does not consider the TNs. The main
advantages of the proposed MCFO scheme are as follows:
(1) MCFO is a complete pipeline that takes the segmented
T1-weighted MR images as input and outputs the candidate
FCD lesion regions; (2) the number and type of individual
classifiers is customizable, and the framework optimizes the
contribution of each individual classifier; (3) the occurrence
of false positives is minimized by using the F-score in the
optimization of the objective function.

TABLE 1. Clinical details of the patients with Type II FCD lesions.

II. MATERIALS AND METHODS
A. IMAGES AND GROUND TRUTH
We investigated the T1-weighted MR images of 10 patients
with FCD lesions (five females and five males, with a mean
± standard deviation (SD) of 36 ± 11 years of age) and
31 healthy controls (19 females and 12 males, with mean ±
SD: 32 ± 9 years of age) [23]–[25]. The clinical details of
the patients with FCD lesions considered in this study are
presented in Table 1.

Moreover, each subject, for both the patients and healthy
controls, had one T1-weighted MR image. The images were
acquired at the Ghent University Hospital using a Siemens
3T MR scanner. The use of this data for research purposes
was approved by the Ghent University Hospital ethics com-
mittee. Sagittal slices were acquired with a repetition time
of 2530 ms, echo time of 2.58 ms, and flip angle of 7◦. The
slice thickness was 0.9 mm, and the resolution of each slice
was 0.8594 mm× 0.8594 mm. After three-dimensional (3D)
image reconstruction, each scan comprised 256× 256× 176
voxels.

We selected patients who were pre-surgically diagnosed in
the clinic using T1-weighted and FLAIR images after correla-
tion with clinical symptoms. The lesions were histopathologi-
cally confirmed after surgery. The lesional type of all patients
was FCD Type II. All of the images used in this study were
obtained before surgery. The FCD lesions were delineated by
a neuroradiologist (KD) using the active contour segmenta-
tion of the ITK-SNAP tool [26] on the axial views of the
T1-weighted with the auxiliary information of the FLAIR
MR images. The segmentations were manually adjusted as
needed. Each delineation lasted between 10 and 30 minutes,
depending on the size, extent, and complexity level of the
lesion. The delineations on the T1-weighted images were
used as the ground truth to train and test the FCD detection
algorithms.

B. PREPROCESSING
Preprocessing consists of brain extraction, intensity non-
uniformity correction, registration, and tissue segmentation.
Apart from the brain, brain extraction removes the skull
and other structures unrelated to the FCD lesions (e.g.,
the eye and neck regions). The tool created by Smith [27]
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was used to extract the brain region. The non-uniformity of
image intensity is a consequence of image acquisition and
can cause segmentation algorithms to fail or underperform.
Non-uniformity correction was conducted with the modified
expectation–maximization algorithm [28].

Spatial varieties of brain images between different subjects
can result in the irregular alignments of lesional regions and
must be preliminarily regulated before classification. Hence,
the images of all subjects were refined first by rigid and then
by experienced affine registrations [29], [30]. The T1 MR
reference image selected for registration is a widely applied
standard image obtained by the Montreal Neurological Insti-
tute and is called the MNI152 brain1 image. Registration
to a standard space is necessary for the segmentation and
computation of the Z-score maps.

In the registered images, the brain tissue is segmented
into gray matter (GM), white matter (WM), and cerebral
spinal fluid (CSF) on the basis of intensity information.
Considering the partial volume effect, the brain image is
partitioned into partial volumemaps ofGM,WM, andCSF by
using the hidden Markov random field (MRF) model and the
expectation–maximization algorithm [28], which is embed-
ded in the FSL5.0 software and named FMRIB’s Automated
Segmentation Tool (FAST).2 The value in each tissue map
indicates the proportion of a given voxel belonging to that
tissue class. The MRF beta values for the main segmentation
phase is were set to 0.1. Four iterations were carried out for
the removal of bias field. The FWHM for bias field smoothing
in FAST is 20 mm.

C. FCD FEATURE MAP COMPUTATION
The preprocessed images were utilized to compute the
six features and discriminate between the lesional and
non-lesional regions. These feature images are expressed
in the form of a feature vector defined as F =

{F1,F2,F3,F4,F5,F6}, where F1 is the cortical thickness
map, F2 is the gradient map, F3 is the relative intensity map,
F4 is the GM/WM boundary width map, F5 is the curvature,
and F6 is the sulcal depth.
The cortical thickness map (F1) is a revealing FCD feature

depicting the increase of the cortical thickness. The method
proposed by Qu et al. [25] was used to compute the cortical
thickness map. For a given voxel in the GM located at v,
the iterative local search in the neighborhood method iden-
tifies the closest voxels located in the WM and the CSF,
which are denoted by w(v) and c(v), respectively. Then the
cortical thickness at the given voxel v is computed asF1 (v) =
d (v,w(v)) + d(v, c(v)), where d is the Euclidean distance
between the two voxel positions. An increase in the cortex
thickness indicates the possible lesional regions.

The gradient map F2 describes the blurring of the GM/WM
junction. A 3D Gaussian kernel (FWHM=3 mm) was used to
calculate the gradient magnitude over the entire image [3].

1http://neuro.debian.net/pkgs/fsl-mni152-templates.html
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST

For the GM/WM junction, the lesional regions tended to
contain more blurring in comparison with the non-lesional
regions.

The relative intensity map F3 proposed in [8] is analogous
to the hyper-intensities within the lesional regions. This map
is calculated as F3 (v) = 1−

∣∣g (v)− Bg∣∣ /Bg, where g (v) is
the intensity at a given location v, and Bg is the mean intensity
value for all brains at the boundary between the GM and the
WM regions.

The GM/WMboundary width map F4 describes the broad-
ened GM/WM junction [25] and is an alternative approach
toward quantifying the blurring arising from the FCD lesion
at the GM/WM junction. In the partial volume maps of the
GM and WM, which were obtained from the preprocessed
images, all voxels with values greater than 0 and less than
(but not equal to) 1 are defined as voxels belonging to the
GM/WM boundary region. In the neighborhood method [25],
an iterative local search is also applied to estimate the width
at each voxel position within the GM/WM boundary region.
The FCD lesions are characterized by values greater than
those in non-lesional regions.Moreover, larger values suggest
the expansion of the GM/WM junction and also reflect the
blurring on the boundary, which is typically observed in
lesional regions.

The curvature feature F5 is approximated on the basis of
the GM/CSF surface [11], [31]. The curvature describes the
folding patterns of the cortex, and the FCD lesions may cause
local curvature changes [10], [15]. When the FCD lesions are
located at the bottom of a given sulcus, the lesional region is
centered at the highest curvature of its sulcal pial surface and
spread along its walls [10]. When the lesions are on the vertex
of the cortex, the curvature values are typically smaller than
those in the non-lesional cortical vertices [10]. To adopt the
curvature values in the voxel-based analysis, the calculation
was extended throughout the entire GM along the path from
the GM/CSF to the GM/WM. This path was obtained by
computing the potential map of the GM regions using the
Laplace method (Jones et al., 2000).

Finally, the sulcal depth F6 [10], [13], [31], [32] was the
shortest distance measured between the WM surface and the
boundary of the brain mask, which was derived by brain
extraction. The lesional regions tended to have greater sulcal
depth than the non-lesional regions, owing to the increase of
the cortical thickness.

D. Z-SCORE FEATURE IMAGE COMPUTATION
The computation of the Z-score map from each feature map
F yields Z = {Z1,Z2,Z3,Z4,Z5,Z6}. Each element in Z
is the Z-score map of the respective feature map in F. The
abnormal (lesional) regions are expected to have higher Z-
scores (greater deviation from healthy images) in comparison
with normal regions.

The Z-score map is created by first computing the mean
and SD within the local sliding windows of the healthy
controls. The mean model of the healthy controls for the ith
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FIGURE 1. Computation of the mean F-score to identify the best
performing maps. For each feature and Z-score map, an F-score is
computed for each of the J classifiers. Then, the mean F-score per map is
used to select the P best maps.

feature map Fi is Fµ,i (v) = 1
K ·N

∑K
k=1

(∑N
n=1 F

(k)
i (vn)

)
,

where Fµ,i (v) is the mean model of the ith feature map of all
healthy controls at voxel v. Moreover, vn is the location of
the nth neighbor voxel within a 3D local window centered
at v. N is the total number of neighbor voxels. F (k)i (vn)
is the feature value of the k th healthy control at voxel vn.
K is the total number of healthy controls. The SD model
of healthy controls for the ith feature map is FSD,i (v) =

1
·N

∑k
k=1

(√∑N
n=1

(
F (k)i (vn)− Fµ,i (v)

)2)
. The Z-score

map can be obtained by Zi (v) =
(
Fi (v)− Fµ,i (v)

)
/(

FSD,i (v)+ ε
)
, where Zi (v) is the value at voxel v on the ith

Z-score image and ε is set to 10−5.

E. FCD FEATURE AND Z-SCORE MAPS SELECTION
The selection of the best performing maps (between the FCD
feature maps F and the Z-score maps Z) is guided by the pro-
cedure shown in Fig. 1. To train the classifiers for evaluating
the maps, we combined the ground truth image and tissue
segmented images for each subject, which resulted in an
image with the labels of GM,WM, CSF, GM/WM, GM/CSF,
and the FCD lesion. Using the labeled image, we extracted the
sample values on eachmap at a spatial sampling interval of IS .
The IS for each class (FCD, GM, and GM/WM junction) was
adjustable to ensure that the total number of samples on each
image maintained a constant value denoted by SN .
For each feature, the samples were classified using multi-

ple classifiers (C =
{
C1, . . . ,Cj, . . . ,CJ

}
), and the results

were evaluated using the F-score, which is a measure of
agreement between the classification result and the ground
truth annotation of the lesion and will be introduced latter
in Eq.4. For each F or Z, the mean F-score over all classi-
fiers is computed. Then, the feature and Z-score maps are
ranked by the mean F-score. In the next step, during the
training phase, the best-performing maps (those with highest
F-scores) P are used to carry out F-score based optimization.
During the testing phase, the best maps P, which are chosen
during the training phase, are used to carry out F-score-based
classification.

F. MULTIPLE CLASSIFIER FUSION AND
OPTIMIZATION (MCFO)
1) OBJECTIVE FUNCTION
The procedure of multiple classifier fusion and optimization
aims to maximize the F-score, which is the measure of the
trade-off between precision and recall and can be expressed
as Fscore = 2 × precision× recall/ (precision+ recall).
In this context, precision (also called the positive pre-
dictive value) is defined as the number of true positive
(TP) voxels divided by the total number of voxels identi-
fied as positive (TP voxels and false positive (FP) voxels)
(precision = #TP/ (#TP+ #FP)), where # indicates the num-
ber of voxels classified with that outcome. Recall (also called
sensitivity or the true positive rate (TPR)) is the percent-
age of TP voxels with respect to all voxels that are posi-
tive according to the ground truth (total number of TP and
false negative (FN) voxels) (recall = #TP/ (#TP+ #FN)).
Therefore, the F-score can be expressed as Fscore =

2 (#TP) / (2 (#TP)+ #FN+ #FP).

2) MULTIPLE CLASSIFIER FUSION
In the classification stage, each voxel is classified as lesion or
normal using the jth classifier applied to theP best performing
maps. The jth classifier gives the mth voxel a label denoted
by lj (vm). If the voxel is classified as lesional, lj (vm) =
1; otherwise lj (vm) = 0. Then, the classified labels are
evaluated by the ground truth denoted by y (vm), where y (vm)
is 1 if vm ∈ FCD; otherwise, y (vm) is 0.
For the classifier fusion, a voxel is labeled as a TP only

when the ground truth indicates that it is a lesional voxel, and
the weighted sum of the classifier labels is above the decision
threshold T . This means that TP (vm) = 1, if y (vm) = 1 and∑J

j=1 wjlj (vm) > T ; otherwise, TP (vm) = 0, where wj is
the weight of the jth classifier, and J is the total number of
classifiers. The weights are constrained to

∑J
j=1 wj = 1; 0 ≤

wj≤ 1. The labels for FN (vm) and FP (vm) are determined in
a similar manner.
To fuse the classifiers, we apply the sign function. Alter-

natively TP (vm) can be expressed as follows:

TP (vm) = y (vm) ·
h (vm)+ h2 (vm)

2
(1)

73790 VOLUME 6, 2018



X. Qu et al.: MCFO for Automatic FCD Detection on MRIs

where h (vm) = sgn
(∑J

j=1 wjlj (vm)− T
)
is the sign func-

tion. FN (vm) and FP (vm) are deduced in the same manner;
thereby, they yield the following equations:

FN (vm) = y (vm)
(
1− y (vm)

h (vm)+ h2 (vm)
2

)
(2)

FP (vm) = (1− y (vm))
h (vm)+ h2 (vm)

2
. (3)

Accordingly, the Fscore can be expanded as follows:

Fscore=
2
∑M

m=1 TP (vm)

2×
∑M

m=1TP (vm)+
∑M

m=1FN (vm)+
∑M

m=1FP (vm)
(4)

where TP (vm), FN (vm), FP (vm) depend on h (vm), and h (vm)
is computed from the classifier weightings (wj), the classified
labels by single classifiers (lj (vm)), and the decision threshold
(T ). Therefore, the multiple classifiers are fused using Equa-
tion (4).

3) MULTIPLE CLASSIFIER OPTIMIZATION
To optimize the classifiers, the object function obj

(
wj,T

)
is

formulated as follows:

obj
(
wj,T

)
= Fscore −

∣∣∣∣∑J

j=1
wj − 1

∣∣∣∣ . (5)

where 0 ≤ wj ≤ 1. To determine the optimal weights of the
multiple classifiers, the optimization is calculated as follows:

best
(
wj,T

)
= argmax(wj,T )

(
obj

(
wj,T

)
|0 ≤wj ≤ 1

)
(6)

The optimal weight wj and threshold T maximizing the func-
tion obj

(
wj,T

)
are determined by a genetic algorithm.

The genetic algorithm is implemented using the MATLAB
toolbox3 as reported by Houck et al. [22]. Considering that
the input gene of the genetic algorithm is typically one vari-
able in binary code, we encoded multiple decimal variables
into one binary code sequentially. Each decimal variable was
encoded into a binary codewith a length of LBC. The first dec-
imal variable occupies the segment between 1 and LBC of the
binary code, while the second one is spread over the segment
between LBC + 1 and 2 × LBC. Thus, the Qth variable falls
in the range of (Q− 1)× LBC + 1 to Q× LBC. Additionally,
LBC is calculated in accordance with the range of the decimal
variables [a, b] and the dispersed precision denoted by ε2 as
follows: LBC =

⌊(
log2

(
(b−a)
ε2
+ 1

))⌋
, where b c is the floor

function truncating the supplied number down to the nearest
integer. The outputs of the genetic algorithm are the optimal
parameters for the voxel-based classification and are denoted
as vbest

(
wj,T

)
and rbest

(
wj,T

)
in the regional classification.

4) CLASSIFICATION
The optimization of the voxel based classification is as fol-
lows: (1) voxels are classified as lesion or normal using the
classifiers in C; (2) the classified results are fused; (3) the

3https://github.com/estsauver/GAOT

weights are updated and the optimal voxel-based parameters
vbest

(
wj,T

)
are identified using the genetic algorithm; (4) the

voxels are re-classified as lesion when
∑J

j=1 wjlj (vm) > T ;
otherwise they are classified as normal.

Then, the voxels labeled as positive are reclassified using
the region based classification stage. First, if the voxels
labeled as positive are connected, these connected voxels are
considered as a single region. Then, the following region-
based features are computed: mean, SD, skewness, and kur-
tosis, which have also been used in [15]. The skewness
measures the asymmetry of the probability distribution of the
regional feature values relative to the mean, whereas, kurtosis
measures the features’ probability distribution peak. Finally,
the regions are classified as lesion or normal, and the region-
based parameters are updated based on the genetic algorithm
to determine the optimumparameters denoted as rbest

(
wj,T

)
.

G. EXPERIMENTAL DESIGN
The total number of neighboring voxels N for computing
the Z-score images was set to 27. The best four maps were
selected (P = 4) and the optimal P value was set exper-
imentally. The number of samples in each image (SN ) was
experimentally set to 500.

The individual classifiers C =
{
C1, . . . ,Cj, . . . ,CJ

}
used

in our experiment (J = 4) comprise the NB [33], [34], LDA,
Mahalanobis discriminant analysis (MDA), and quadratic
discriminant analysis (QDA) classifiers [35]. For the NB
classifier, we use the normal (Gaussian) function as the dis-
tribution. In LDA, a multivariate normal density was applied
to fit each class with a pooled covariance estimate. MDA uses
Mahalanobis distances to compare the distances between the
test samples and the training samples. QDA fits the multivari-
ate normal densities with the covariance estimates stratified
by the classes in the training data.

These classifiers calculate both the mean and the variance
in each class and are stable in terms of convergence. By con-
trast, the classifiers based on the SVM or NN methods may
fail to converge when the false positive rates are high. More-
over, in this particular application, the parametric estimation
of the SVM and NN methods can be overly complicated.
Therefore, the NB, LDA, MDA, and QDA classifiers were
selected as a suitable set of classifiers for FCD detection. Dur-
ing the regional classification and evaluation, regions smaller
than Rmin = 900 voxels, which is equivalent to 112.5 mm3

(0.125 mm3/voxel), were considered as noisy fragments and
were ignored.

The genetic algorithm parameters were set as follows:
the population number was 50, the maximum generation
was 100, the mutation method was a binary mutation with
a probability of 0.05, the crossover method was a simple
single-point crossover, and the crossover probability was 0.6.
We determined the population and generation values empir-
ically, as shown in Fig. 2. The population values between
10 and 200 and the generation values between 10 and
200 were tested. Equation 6, which includes the F-score,
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FIGURE 2. Performance of genetic algorithm parameters: population and
generation. Each line corresponds to a trial that consists of one
generation value. Equation 6, which includes F-score, is used as the
measure of fitness.

was used as the measure of fitness. For the population,
the fitness value stabilized between 0.70 and 0.75 starting
at a population of 50. Although larger population values
could be used, we chose the value of 50 because the perfor-
mance achieved with this value was satisfactory. We selected
100 as the generation value, because it guarantees conver-
gence without introducing an unnecessary computational
cost. If the generation value is too small, the fitness function
may be unable to successfully converge; if it is too large,
the method will become time consuming. These experiments
were conducted on a subset of the voxels in the image
data. Therefore, the fitness values in Fig. 2 were larger
than the F-score values, as will be presented in the Results
section.

Considering the limited number of images in our dataset,
the training and test images were evaluated with a leave-
one-out cross validation strategy for all three algorithms. The
classification results were evaluated at two levels. At the
voxel level, the mean and SD of the following metrics were
computed (equations given in Table 2): false positive rate
(FPR), TPR (recall or sensitivity), precision (Pre), F-score,
and accuracy (Acc). Because the review of a set of candidate
FCD regions (instead of individual voxels) bymedical experts
is more efficient, we also evaluated the results at the regional
level. A region is computed as a set of connected voxels and
has a size greater than Rmin. For each patient, we reported that
the lesion is detected when a region has at least one voxel
overlapping with the ground truth region. The additional
regions identified as positive do not contain a lesion and are
false-positive regions.

H. IMPLEMENTATION OF PROPOSED METHOD, TSBC
AND SLDA
The implementation of the proposed MCFO method and
the features of the TSBC [3] and SLDA [15] can be found
on Github website https://github.com/XiaoxiaQu/MRI-FCD-
detection. For comparison with existing methods, the TSBC

TABLE 2. The metrics applied for evaluation in this study.

and SLDA were re-implemented according to the procedures
and parameters reported in [3] and [14].

To implement the TSBCmethod based on tissue segmented
images, we computed the cortical thickness, gradient, relative
intensity, and gray-level co-occurrence matrix (GLCM) tex-
tures in terms of volume. In the GLCM, the radius of the local
windowwas set to 6, and the gray level was set to 32. The first
stage Bayesian classifier used the cortical thickness, gradient,
and relative intensity to classify the voxel into lesional and
non-lesional. The voxels classified as lesional were then re-
classified according to the GLCM textures using second stage
Bayesian classifier.

For comparison with the SLDA methods in the same
manner as TSBC, we also implemented the SLDA in the
volume level, and not in the surface level. Although the SLDA
method applies surface based features, some surface features
were originally computed in terms of volume. Then, these
features were mapped onto the cortical surface. To imple-
ment the SLDA method, we computed the features of the
cortical thickness, sulcal depth, gradient, relative intensity in
volume, and the surface level curvature. The curvature was
then mapped into volume space for further classification. The
LDA classification method was implemented in MATLAB
R2014b using the classify function.

I. EVALUATION OF IMAGES BY EXPERTS
To compare the automated method with the classification
carried out by experts, two radiologist from the Beijing Ton-
gren Hospital of the Capital Medical University examined the
T1 and FLAIR images. We included the data of 10 patients
and 10 healthy controls. The two radiologists were blind to
the ground truth. We considered that radiologists typically
view T1, T2, and T2-FLAIR MRIs manually. However, this
study mainly focused on T1 images. We designed two exper-
iments. In the first experiment, the radiologists performed
the diagnosis by only examining the T1 images, whereas in
the second experiment, they performance the diagnosis by
examining both T1 and FLAIR.

III. EXPERIMENTAL RESULTS
A. RESULTS OF FCD FEATURE AND Z-SCORE MAPS
All six feature maps and their corresponding Z-score maps
are shown in Fig. 3 for a sample FCD patient. The mean
feature maps of the healthy controls are also presented for
comparison. Image A is an example T1-weighted MR image
of a patient, wherein the FCD lesion is indicated with a red
arrow. Image B is the T1-weighted MR image of a healthy
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FIGURE 3. Experimental results of feature and Z-score maps for one patient and mean feature maps for healthy controls.
(A) is the preprocessed T1-weighted MR image of the patient with lesional region, as indicated by a red arrow. Feature maps
(F1−6) are computed from (A) and are as follows: cortical thickness map (F1, mm), gradient map (F2, arbitrary unit), relative
intensity map (F3, arbitrary unit), gray/white matter boundary width map (F4, mm), curvature (F5, arbitrary unit) and sulcal
depth (F6, mm). Z-score maps (Z1−6) of the patient correspond to the feature maps (F1−6). An example slice from a healthy
control is shown in (B), and corresponds to approximately the same slice as (A). The mean feature maps across all healthy
controls are shown as in mF1−6.

control, and the images on the right side of image B are the
mean feature maps of the healthy controls. The six feature
maps of (A) shown for the patient are as follows: cortical
thickness (F1), gradient (F2), relative intensity (F3), GM/WM
boundary width (F4), curvature (F5), and sulcal depth (F6).
In comparison with the healthy regions, the lesional regions
had higher cortical thickness values, higher GM/WM bound-
arywidth, higher relative intensity and sulcal depth, and lower
gradient values. The curvature values in the lesional region
depend on its location: that is, the lesional regions had higher
curvature values in the vertex of the cortex and lower values in
the sulci, in comparison with the corresponding non-lesional
region in the healthy controls. In the mean feature maps,
the value of each voxel was computed by averaging the voxel
values at the same location of the healthy controls. Therefore,
these maps appear to be much smoother than the maps of an
individual.

B. RESULTS OF FEATURE MAP EVALUATION
The four best performing maps in our experiment, as iden-
tified by the largest mean F-score (shown in Fig. 4), were
the cortical thickness map (F1), GM/WM boundary width
map (F4), Z-score map of cortical thickness (Z1), and Z-
score map of the GM/WM boundary width (Z4). Subse-
quently, these four maps were used to train and test the
MCFO classification scheme. The Z-score maps Z1 and Z4
performed better than the corresponding feature maps F1
and F4. However, for the other four FCD features, the Z-
score maps performed worse than the corresponding feature

FIGURE 4. Evaluation results from the FCD feature and Z-score map
selection (S4). The feature maps are cortical thickness map (F1), gradient
map (F2), relative intensity map (F3), gray/white matter boundary width
map (F4), curvatures (F5) and sulcal depth (F6). The Z1−6 are the
corresponding Z-score image of F1−6. An F-score per map was computed
for each of the four classifiers, in which the black circles indicate the
mean F-score over all classifiers. Maps F1, F4, Z1 and Z4 had the highest
average performance (indicated by a ∗).

maps. Overall, the relative intensity (F3) and curvature (F5)
features and their corresponding Z-score maps had the lowest
F-scores.

The Z1,4 maps performed better than the Z3,5 maps accord-
ing to the evaluation results presented in Fig. 4, and the
images are shown in Fig. 5. After comparing F1,4,3,5 with
the mF1,4,3,5, the lesions in Z1 and Z4 were visible. However,
the lesions in the Z3 and Z5 were not visible because they had
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FIGURE 5. Illustration of enlarged lesional region on feature maps.
F1,4 and Z1,4 outperform F3,5 and Z3,5. F1,4,3,5 are compared with the
healthy mF1,4,3,5 maps, giving Z1,4,3,5, respectively.

similar values to the non-lesional regions. The two features
that were identified as the most dominant in our experiment
were the thickness of the gray matter (F1), which is typically
increased in the lesional areas, and the width between the gray
and the white matter (F4), which is also thicker in the lesional
regions. The lesional regions in F1 and F4 had higher values
than both of the non-lesional regions in F1 and F4, and mF1
and mF4. Therefore, the smooth mean value in the mF1 and
mF4 did not decrease the contrast between the lesional and
non-lesional regions.
The lesional region in F3 was visually different from the

non-lesional regions, as shown in Fig.5. However, the val-
ues in the lesional region are not unique. Along the entire
GM/WM boundary, the values of 1 were observed to be the
same as those in the lesional region. Thus, in the F3 of the
healthy control’ images, all of the GM/WMboundary regions
also had values close to 1. Thus, the mF3 map also had high
values in the regionswherein theGM/WMboundary accumu-
lated from different healthy controls. When comparing F3 to
mF3, the structural changes in the lesional region in F3 could
not be distinguished from those of the non-lesional region
in Z3.

In F5, the differences between the lesional and non-
lesional regions were not obvious. Although curvature has
been applied to FCD detection in [10], [15], and [16], it has
also been reported that the curvature performs worse than
the other features [16]. This is probably caused by the fact
that the cortex has a complex shape and does not have not
locally constant curvature values. The convolved cortex of the

FIGURE 6. The optimal parameter values (threshold T and weights
w1-w4) from F-score based optimization (step S5a) for each training trial.
A total of 41 trials (the first 10 are FCD patients, followed by 31 healthy
cases) were conducted with a leave-one-out validation scheme. The top
plot shows the result of voxel-based classification and the bottom one of
region-based classification.

different subjects is not necessarily the same in the healthy
controls, but only approximately similar.

C. COMPARISONS OF CLASSIFICATION ALGORITHMS
The optimal parameters vbest

(
wj,T

)
and rbest

(
wj,T

)
of the

MCFO scheme, which result from the training phase, are
shown in Fig. 6. A total of 41 trials for each parameter are
shown, because 41 images (10 patients and 31 healthy con-
trols) were evaluated according to a leave-one-out validation
scheme. Among the four classifiers, the weight of classifier
1 (w1) was the largest, which suggests that NB outperformed
LDA, QDA, and MDA. The wj values were smaller than T ,
which suggests that a combination of multiple classifiers can
outperform a single classifier.

D. COMPARISON OF FCD DETECTION ALGORITHMS
Three FCD detection algorithms were evaluated, namely,
TSBC, SLDA, and the proposed MCFO scheme. From the
voxel-based evaluation, which is summarized in Table 3,
MCFO had a similar or better performance in comparison
with SLDA, and both outperformed TSBC. The results of
the regional analysis, which are presented in Table 4 and
graphically in Fig. 7, revealed the same trends; that is MCFO
and SLDA identified the lesion in 9 out of 10 patients,
whereas, TSBC identified the lesion in 8 out of 10 patients
and generated more FP regions in comparison with MCFO
and SLDA. Figs. 8 and 9 present the detection results for the
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TABLE 3. Evaluation of FCD detection algorithms using voxel-based analysis. Results are for patient images only. The values are mean (±SD).

FIGURE 7. Graphical representation of Table 4: evaluation results of FCD detection algorithms that use region-based
analysis. For each patient, the top plot shows the number of FP regions detected, and the bottom plot shows whether
the lesion (TP region) was detected.

four patients and vividly illustrate the benefits of the lower
false-positive results.

The voxel-based evaluation (Table 3) revealed various
interesting trends. First, all three methods had an accuracy
of 0.94 or higher, although this could be a misleading metric
because the number of TN voxels was significantly higher
than the number of the TP, FP, and FN voxels. Therefore,
the precision, recall, and F-score were more informative.
TSBC underperformed based on all three metrics. MCFO
achieved a better F-score and higher precision in comparison
with SLDA, although it achieved a lower TPR than SLDA.
However, because MCFO was able to detect the same lesions
as those detected by SLDA at the regional level (Table 4),
the lower TPR, in terms of detected voxels, suggests that
MCFO is more conservative in identifying the lesion bound-
aries. This phenomenon can also be observed in Figs. 8 and 9.
The lesion boundaries identified by the MCFO were slightly
smaller than those identified by the SLDA and the ground
truth.

The benefit of MCFO can be seen in the high precision and
low FPR values presented in Table 3, and the low number of
FP regions presented in Table 4 and Fig. 7. The number of FP
regions per patient from MCFO, SLDA and TSBC was 8.6,
15.8, and 31.7, respectively. MCFO produced the fewest FP
results both in terms of voxels and in terms of regions, which
is beneficial to clinicians who need to evaluate each candidate
FCD region. In other words, the proposed scheme is more

TABLE 4. Evaluation of FCD detection algorithms using region-based
analysis.

likely to recognize non-lesional regions as genuinely nor-
mal brain tissue, in comparison with the other two methods.
Specifically, the precision of MCFO was approximately 82%
and 43% higher, on average, in comparison with TSBC and
SLDA, respectively, whereas its FPRwas 88% and 70% lower
than the others, respectively. In 7 out of 10 patient images,
MCFO produced the fewest FP regions (between 2 and 11 in
total). In the other three patient images, MCFO identified
between 1 and 11 more FP regions than SLDA, which is still
much less than TSBC.

The qualitative comparison of twomethods for FCD detec-
tion (TSBC and SLDA) and the proposed MCFO method are
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FIGURE 8. Images are the classification results of patients 1 (P1) and 8 (P8). Rows are the preprocessed images
(A), ground truth with lesional region indicated in red (B), classification results by TSBC (C), voxel-based
classification results of SLDA (D), region-based classification of SLDA (E), voxel-based classification results of
MCFO (F), and region-based classification of MCFO (G). Columns 1-3 and 5-7 represent the axial, sagittal, and
coronal views of the images; regions in red indicate possible lesions. Columns 4 and 8 represent the volumetric
views of the regions identified as positive voxels.

presented in Fig. 8. For a qualitative comparison, the two
existing methods of FCD detection (TSBC and SLDA) were
reproduced to process the datasets used in this study. For
brevity, the patient numbers 1 (P1) and 8 (P8) are plotted in
Fig. 8 to illustrate the different levels of positive voxel detec-
tion. The ground truth [row (B)] is referenced to compare the
final classified results of TSBC (row C), SLDA (row E) and
MCFO (row G).

In the two-dimensional illustration (columns 1-3, and
5-7) shown in Fig. 8, close matches were observed between
the lesion regions that were correctly identified as positive
voxels by all methods (rows C, E, G) and the ground truth
(row B). Additionally, we observed that the regional healthy
cortices were misinterpreted as positive voxels, and were thus
regarded as false-positive results. For example, as shown in
the lower right corner of Fig. 8 (C, E, G)6, all methods falsely
identified the healthy region near the bottom of the brain
tissue as positive.

For the 3D illustrations, the results of the proposed method
shown in Fig. 8(G)4,8 reproduced an approximately identi-
cal shape of the lesion as the ground truth (Fig. 8(B)4,8),
where the false-positive regions weremuch less than those for
TSBC (Fig. 8(C)4,8) and SLDA (Fig. 8(E)4,8). This finding is

supported by the following observations: 1) for P1, the voxel-
based FPR of the TSBC, SLDA, and MCFO was 0.0965,
0.0343 and 0.0072, respectively; 2) for P8, the voxel-based
FPR by TSBC, SLDA, and MCFO was 0.0616, 0.0203 and
0.0088, respectively. Even if the lesion in P8 was half the size
of P1, the proposedMCFO also produced fewer false-positive
results over TSBC and SLDA, which evidently validates the
capability of the MCFO scheme in terms of false-positive
minimization. The 3D illustrations also reveal that the final
results of all methods included false positives and true posi-
tives (yellow TP+FP in columns 4 and 8).

The regional classification of SLDA (Fig.8(E)4,8) and
MCFO (Fig.8(G)4,8) both effectively reduced the false-
positive results obtained by the voxel-based classification
(Fig.8(D, F)4,8). Therefore, the regional classification results
were considered as the final results of SLDA and MCFO
(Fig. 9). After re-labeling the noise and tiny fragmental
region (which was smaller than Rmin) as negative, no region
was classified as lesional by the SLDA and MCFO in the
images of 31 healthy controls. For the TSBC method, nei-
ther the standard pre-surgical evaluation nor the classifier
were successful in identifying lesions in healthy control
subjects [3].
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FIGURE 9. Example region-based output from the three FCD detection
algorithms superimposed upon an example 2D slice from three patients.
The first row is the ground truth image with the FCD lesion indicated by
the yellow arrow. Rows 2-4 are the classified images from SLDA, TSBC
and the proposed MCFO, respectively, as superimposed on the GM
segmentation. Yellow and red arrows indicate the true- and false-positive
regions found by the algorithms, respectively. These examples show the
benefit of MCFO that fewer FP regions are generated.

E. RESULTS OF EXPERTS’ EVALUATIONS
When only T1 images were used, one radiologist named
J. Guo (with 14 years of work experience) correctly iden-
tified 2/10 patients (true positive) and incorrectly identified
1/10 healthy controls (false positive) as positive. Another
radiologist Q. Wang (with 4 years of work experience) cor-
rectly identified 3/10 patients (true positive) and incorrectly
identified 4/10 healthy controls as positive (false positive).
By combining with T1 and FLAIR, J. Guo found lesions
for 8/10 patients (true positives) and for 4/10 healthy con-
trols (false positives), while Q. Wang found lesions for
9/10 patients (true positives) and for 6/10 healthy controls
(false positive). For Patient 04, both radiologists failed to find
the lesional location in T1 images, because the lesion was
very small and there were no visual features on the images.

The following conclusions are drawn from these results:
the FCD structure features in the T1 images are difficult to
be identify with a naked eye; the FCD features in FLAIR
lack specificity, and healthy controls also have similar hyper-
intensity; automatedmethod could help improve the detection
of FCD structural changes in T1.

IV. DISCUSSION
Our study demonstrates that the proposed MCFO frame-
work is a promising tool for automatically detecting FCD
lesions, because it achieves the same or better detection per-
formance as two state-of-the-art FCD detectors (SLDA and
TSBC), while generating fewer FP candidate lesional regions.

The proposed framework could identify more patients with
pharmacoresistant epilepsy suffering from FCD, who could
benefit from surgical treatment. Although the diagnosis of
FCD, and consequently the decision to conduct epilepsy
surgery, can never rely on a single diagnostic tool [12],
theMCFOmethod could serve as an additional screening tool
by providing the candidate positive regions in the location
of possible dysplasia. Considering that the diagnosing doctor
must evaluate each candidate positive region, the generation
of fewer false positive results can save time and increase the
doctors’ diagnostic efficiency.

In this study, we propose the use of the F-score to construct
the objective function, which considers only the number
of TP, FN, and FP voxels, in the objective function. This
concept is contrary to the accuracy metric typically used
in classification, which includes the number of TN voxels.
In our FCD dataset, the number of TN voxels is on average
30 times greater than all other voxel classes, which renders
accuracy useless as an optimization function. Likewise, when
evaluating the detection results, the accuracy metric is not
sufficiently informative. The use of the F-score as the objec-
tive function also minimizes the number of FPs, and such
a minimization is an essential step toward the objective of
reducing the doctors’ workload.

The proposed method is based on an optimized multiple
classifier model, in contrast to previous attempts that have
relied on single classifiers. The selected approach combines
the strengths of different classifiers in one framework [21].
The results of the comparison between the proposed MCFO
and existing methods (SLDA and TSBC) revealed that the
combination of multiple classifiers improves the performance
of FCD detection in comparison with the performance of a
single classifier.

The classification scheme proposed in this study relies
both on feature maps and their corresponding Z-score maps.
Although the feature maps measure the difference between
the lesional and non-lesional regions within the images of
one person (intra-subject), the Z-score maps measure the
variation in comparison with healthy controls (inter-subject).
Originally, we hypothesized that the Z-score maps would
result in better lesion detection in comparison the feature
maps. However, not all features had higher performing
Z-score images:

1) Human brain structures are complex and aligning the
brain structures of different individuals is difficult.

2) Comparing the brains of different subjects is chal-
lenging. The FCD lesions are related to abnormal structural
changes and local intensity changes. If a region in the feature
map is markedly different from the same region for healthy
controls, then, the probability of classifying the region as
positive is higher. However, the brain structures of different
subjects are inherently or naturally different.

By sacrificing small parts of the lesional region, the pro-
posedMCFO achieved a greater reduction of FPR in compar-
ison with TSBC and SLDA (Table 3). The TPR was equal to
the percentage overlap (coverage) between the lesional mask
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in ground truth and the detected region. The MCFO detected
more FCD than TSBC (0.4500 for MCFO and 0.3933 for
TSBC), and slightly less than SLDA (0.5374 for SLDA),
as presented in Table 3. However, the FPRwasmuch less than
that of SLDA (0.0064 forMCFO and 0.0212 for SLDA).With
regarded to lesional detection, there is a trade-off between the
coverage rate and false positive.

The proposed MCFO achieved an improvement in most
of the subjects, but not all subjects (Fig.7). For 7/10 patients
(Patient 01, 02, 03, 07, 08, 09, and 10), the proposed MCFO
had a lower number of FP regions than TSBC and SLDA.
For the 3/10 patients (Patient 04, 05, and 06), the proposed
MCFO had a higher number of FP regions in comparison
with SLDA. The high FP rate occurred because of the fol-
lowing reasons: 1) the FCD lesional region can be very tiny
(500 mm3 for Patient 04), and the features of these miniscule
lesional regions are similar to those of non-lesional regions.
For example, the cortical thickness value in the miniscule
lesional region may be 5 mm, and this value could also
appear in a non-lesional region for all subjects. Therefore,
to capture the features of these miniscule lesional regions,
the classifiers inevitably misclassified the non-lesional region
as lesional. Thus, more effective features must be identified in
future work. 2) The variation of lesional size is large (ranges
from 500 mm3 to 23670 mm3), which leads to the training
datasets not being able to effectively model the features of
the test datasets. By increasing the number of datasets and
analyses, the FCD in different size levels may further reduce
the number of FP regions. 3) The registration accuracy also
affects the FP results. To model the changes of patients rela-
tive to the healthy controls, the computation of the z-score of
feature images crosses different subjects, and the inter-subject
variability of the human brain affects the comparison of the
obtained results.

To mirror the clinical context, we conducted a regional
assessment of the classification results, in addition to per-
forming analysis at the voxel level. By contrast, the overall
volumes of the identified lesions were, on average, smaller
with MCFO, as suggested by the lower number of TP vox-
els identified per lesion. This observation suggests that our
method is as effective as SLDA, and better than TSBC,
at identifying the true lesional regions. Considering that our
ground truth was determined by a single neuroradiologist,
any manual segmentation errors could have affected the
voxel-based operations (training and evaluation). However,
the primary objective of FCD algorithms is to improve detec-
tion and visualization of FCD lesions, and not to perform
surgical planning (electroencephalography is preferred for
this purpose). Therefore, the imperfect delineation of the
FCD boundary in MRI by the automated methods may be
acceptable. The final clinical decisions will be taken by a
multidisciplinary team, including a neuroradiologist, and will
not be solely based on an algorithm.

Moreover, it may be unfair for a radiologist to examine
the images without information regarding clinical symptoms,
history of diseases, and demographic data (age and sex),

because radiologists typically diagnose diseases by using
images and other information related to the suspected disease.
In the future, if machine learning classifiers make decisions
using MRI images along with other important information
such as clinical symptoms, this method will become more
practical.

This study relied only on T1-weighted images for FCD
detection, and did not consider FLAIR. The primary reason
for this is that the gray matter and white matter had good con-
trast on the T1-weighted images, and this rendered themmore
suitable for capturing the structural changes in the lesional
region of the gray and white matter. However, multimodal
image analysis has considerable potential for improving the
detection performance of the FCD lesions. Gill et al. [36]
enhanced the co-occurring FLAIR hyperintensity and the
T1 hypointensity occurring at the junction between the gray
and white matter, and correctly identified 34/41 lesions and
35/38 controls. Adler et al. [17] combined the features of the
T1 images and FLAIR images, and achieved a sensitivity
of 73% for FCD detection in a pediatric cohort. The lesional
features may do not appear in the same location in T1 and
FLAIR. For example, the increased cortical thickness feature
of T1 is within the cortex, whereas the FLAIR hyperintensity
could extend from the cortex to the brain region near the
ventricle. Surface-based detection could solve the problem of
non-overlapping from multimodal features, because it maps
all features on the cortical surface. However, surface-based
detection cannot fully delineate the lesions, but voxel-based
detection can. Generally, surface-based detection has good
potential for FCD detection using a multimodal MRI.

The dataset used in this study was limited in terms of data
quantity. Therefore, leave-one-out cross validation was used
to evaluate the results (each image was used as a test image,
and training was carried out using the rest of the images). The
low prevalence of FCD hinders the development of a suffi-
ciently large local testing dataset. Therefore, we attempted to
find publicly available MRI datasets containing FCD lesions.
To our knowledge, only one dataset of epilepsy patients4 is
available for public research, and only three cases in that
dataset contain FCD lesions. However, these patients are
infants, whose brain tissue is immature; therefore, these brain
images are unsuitable for use within the scope of this study.
Kini et al. [7] have cited the lack of public FCD datasets as a
significant problem in FCD research.

A limited dataset cannot represent all varieties of type II
FCD, and affects the classification parameters and the valida-
tion methods. For example, the naïve Bayesian classifier uses
the feature value distributions, when the number of datasets
increases, and the feature distribution may tend to provide
a better representation of type II FCD. A large number of
datasets can be randomly separated into training and testing
data, while a limited dataset cannot be separated and must be
analyzed using leave-one-out validation. Additionally, if the

4http://eeg.pl/epi
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number of dataset is large, a deep-learning method is also a
promising option.

V. CONCLUSIONS
In this study, an MCFO scheme is proposed to reduce the
number of false positives during the detection of FCD lesions.
The proposed method fuses the outputs from multiple clas-
sifiers to rank and select candidate lesional features. These
features are identified by using a constructed object function,
which maximizes the F-score of lesion detection. A genetic
algorithm yields the optimal weightings of multiple clas-
sifiers, and achieves a marked reduction in the number of
detected false positives. The proposed scheme achieved a
9/10 subject-wise lesion recognition rate, with a much lower
quantity of false-positive regions in comparison with those of
TSBC and SLDA.

In this study, the multiple classifier strategy explored a
finer framework for the automation of neuropathological
diagnosis. The reduced number of false positive candidate
lesions, along with the high true-positive recognition rate,
can reduce the time needed for doctors to identify a true
lesion amongst the positive results provided by an automated
detection method.

LIST OF ACRONYMS
FCD focal cortical dysplasia
MR magnetic resonance
FP false-positive
TP true positives
TN true negative
FN false-negative
SD standard deviation
MCFO multiple classifier fusion and optimization
GM/WM gray matter/white matter
CSF cerebral spinal fluid
FLAIR fluid attenuated inversion recovery
VBM voxel-based morphometry
NB naïve Bayesian
NN neural network
SVM support vector machine
TSBC two-stage Bayesian classifier
SLDA surface features combined with a linear

discriminant analysis
MCS Multi-classifier systems
FAST FMRIB’s Automated Segmentation Tool
MDA mahalanobis discriminant analysis
QDA quadratic discriminant analysis
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