362 research outputs found

    Obtaining deep learning models for automatic classification of leukocytes

    Get PDF
    In this work, the authors classify leukocyte images using the neural network architectures that won the annual ILSVRC competition. The classification of leukocytes is made using pretrained networks and the same networks trained from scratch in order to select the ones that achieve the best performance for the intended task. The categories used are eosinophils, lymphocytes, monocytes, and neutrophils. The analysis of the results takes into account the amount of training required, the regularization techniques used, the training time, and the accuracy in image classification. The best classification results, on the order of 98%, suggest that it is possible, considering a competent preprocessing, to train a network like the DenseNet with 169 or 201 layers, in about 100 epochs, to classify leukocytes in microscopy images.info:eu-repo/semantics/publishedVersio

    A Review on Classification of White Blood Cells Using Machine Learning Models

    Full text link
    The machine learning (ML) and deep learning (DL) models contribute to exceptional medical image analysis improvement. The models enhance the prediction and improve the accuracy by prediction and classification. It helps the hematologist to diagnose the blood cancer and brain tumor based on calculations and facts. This review focuses on an in-depth analysis of modern techniques applied in the domain of medical image analysis of white blood cell classification. For this review, the methodologies are discussed that have used blood smear images, magnetic resonance imaging (MRI), X-rays, and similar medical imaging domains. The main impact of this review is to present a detailed analysis of machine learning techniques applied for the classification of white blood cells (WBCs). This analysis provides valuable insight, such as the most widely used techniques and best-performing white blood cell classification methods. It was found that in recent decades researchers have been using ML and DL for white blood cell classification, but there are still some challenges. 1) Availability of the dataset is the main challenge, and it could be resolved using data augmentation techniques. 2) Medical training of researchers is recommended to help them understand the structure of white blood cells and select appropriate classification models. 3) Advanced DL networks such as Generative Adversarial Networks, R-CNN, Fast R-CNN, and faster R-CNN can also be used in future techniques.Comment: 23 page

    Deep Learning System for the Automatic Classification of Normal and Dysplastic Peripheral Blood Cells as a Support Tool for the Diagnosis

    Get PDF
    [eng] Clinical pathologists identify visually many morphological features to characterize the different normal cells, as well as the abnormal cell types whose presence in peripheral blood is the evidence of serious diseases. Disadvantages of visual morphological analysis are that it is time consuming, needs expertise to perform an objective review of the smears and is prone to inter-observer variability. Also, most of the morphological descriptions are given in qualitative terms and there is a lack of quantitative measures. The general objective of this thesis is the automatic recognition of normal and dysplastic cells circulating in blood in myelodysplastic syndromes using convolutional neural networks and digital image processing techniques. In order to accomplish this objective, this work starts with the design and development of a Mysql database to store information and images from patients and the development of a first classifier of four groups of cells, using convolutional neural networks as feature extractors. Then, a high- quality dataset of around 17,000 images of normal blood cells is compiled and used for the development of a recognition system of eight groups of blood cells. In this work, we compare two transfer learning approaches to find the best to classify the different cell types. In the second part of the thesis, a new convolutional neural network model for the diagnosis of myelodysplastic syndromes is developed. This model was validated by means of a proof of concept. It is considered among the first models that have been built for diagnosis support. The final work of the thesis is the integration of two convolutional networks in a modular system for the automatic classification of normal and abnormal cells. The methodology and models developed constitute a step forward to the implementation of a modular system to recognize automatically all cell types in a real setup in the laboratory.[spa] Los especialistas de laboratorio identifican visualmente muchas características morfológicas para identificar las diferentes células normales, así como los tipos de células anormales, cuya presencia en sangre periférica es evidencia de enfermedades graves. Algunas de las desventajas del análisis morfológico visual incluyen que toma mucho tiempo, necesita experiencia para realizar una revisión objetiva de los frotis y es propenso a la variabilidad entre observadores. Además, la mayoría de las descripciones morfológicas se proporcionan en términos cualitativos. Debido a lo expuesto anteriormente, es necesario establecer medidas cuantitativas. El objetivo general de esta tesis es el reconocimiento automático de células normales y células displásicas circulantes en sangre en síndromes mielodisplásicos mediante redes neuronales convolucionales y técnicas de procesamiento digital de imágenes. Para lograr este objetivo, este trabajo comenzó con el diseño y desarrollo de una base de datos Mysql para almacenar información e imágenes de pacientes y el desarrollo de un primer clasificador de cuatro grupos de células, utilizando redes neuronales convolucionales como extractores de características. Luego, se compila un conjunto de datos de alta calidad de alrededor de 17.000 imágenes de células sanguíneas normales y se utiliza para el desarrollo de un sistema de reconocimiento de ocho grupos de células sanguíneas. En este trabajo, comparamos dos enfoques de aprendizaje por transferencia para encontrar el mejor para clasificar los diferentes tipos de células. En la segunda parte de la tesis se desarrolla un nuevo modelo de red neuronal convolucional para el diagnóstico de síndromes mielodisplásicos. Este modelo fue validado mediante prueba de concepto. Se considera uno de los primeros modelos que se han construido para apoyar el diagnóstico. El trabajo final de la tesis es la integración de dos redes convolucionales en un sistema modular para la clasificación automática de células normales y anormales. La metodología y los modelos desarrollados constituyen un paso adelante hacia la implementación de un sistema modular para reconocer automáticamente todos los tipos de células en una configuración real en el laboratorio

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    A survey on automated detection and classification of acute leukemia and WBCs in microscopic blood cells

    Full text link
    Leukemia (blood cancer) is an unusual spread of White Blood Cells or Leukocytes (WBCs) in the bone marrow and blood. Pathologists can diagnose leukemia by looking at a person's blood sample under a microscope. They identify and categorize leukemia by counting various blood cells and morphological features. This technique is time-consuming for the prediction of leukemia. The pathologist's professional skills and experiences may be affecting this procedure, too. In computer vision, traditional machine learning and deep learning techniques are practical roadmaps that increase the accuracy and speed in diagnosing and classifying medical images such as microscopic blood cells. This paper provides a comprehensive analysis of the detection and classification of acute leukemia and WBCs in the microscopic blood cells. First, we have divided the previous works into six categories based on the output of the models. Then, we describe various steps of detection and classification of acute leukemia and WBCs, including Data Augmentation, Preprocessing, Segmentation, Feature Extraction, Feature Selection (Reduction), Classification, and focus on classification step in the methods. Finally, we divide automated detection and classification of acute leukemia and WBCs into three categories, including traditional, Deep Neural Network (DNN), and mixture (traditional and DNN) methods based on the type of classifier in the classification step and analyze them. The results of this study show that in the diagnosis and classification of acute leukemia and WBCs, the Support Vector Machine (SVM) classifier in traditional machine learning models and Convolutional Neural Network (CNN) classifier in deep learning models have widely employed. The performance metrics of the models that use these classifiers compared to the others model are higher

    Analysis and automated classification of images of blood cells to diagnose acute lymphoblastic leukemia

    Get PDF
    Analysis of white blood cells from blood can help to detect Acute Lymphoblastic Leukemia, a potentially fatal blood cancer if left untreated. The morphological analysis of blood cells images is typically performed manually by an expert; however, this method has numerous drawbacks, including slow analysis, low precision, and the results depend on the operator’s skill. We have developed and present here an automated method for the identification and classification of white blood cells using microscopic images of peripheral blood smears. Once the image has been obtained, we propose describing it using brightness, contrast, and micro-contour orientation histograms. Each of these descriptions provides a coding of the image, which in turn provides n parameters. The extracted characteristics are presented to an encoder’s input. The encoder generates a high-dimensional binary output vector, which is presented to the input of the neural classifier. This paper presents the performance of one classifier, the Random Threshold Classifier. The classifier’s output is the recognized class, which is either a healthy cell or an Acute Lymphoblastic Leukemia-affected cell. As shown below, the proposed neural Random Threshold Classifier achieved a recognition rate of 98.3 % when the data has partitioned on 80 % training set and 20 % testing set for. Our system of image recognition is evaluated using the public dataset of peripheral blood samples from Acute Lymphoblastic Leukemia Image Database. It is important to mention that our system could be implemented as a computational tool for detection of other diseases, where blood cells undergo alterations, such as Covid-1

    iMAGING: a novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope

    Get PDF
    Artificial intelligence; Malaria diagnosis; Robotized microscopeInteligencia artificial; Diagnóstico de malaria; Microscopio robotizadoIntel·ligència artificial; Diagnòstic de malària; Microscopi robotitzatIntroduction: Malaria is one of the most prevalent infectious diseases in sub-Saharan Africa, with 247 million cases reported worldwide in 2021 according to the World Health Organization. Optical microscopy remains the gold standard technique for malaria diagnosis, however, it requires expertise, is time-consuming and difficult to reproduce. Therefore, new diagnostic techniques based on digital image analysis using artificial intelligence tools can improve diagnosis and help automate it. Methods: In this study, a dataset of 2571 labeled thick blood smear images were created. YOLOv5x, Faster R-CNN, SSD, and RetinaNet object detection neural networks were trained on the same dataset to evaluate their performance in Plasmodium parasite detection. Attention modules were applied and compared with YOLOv5x results. To automate the entire diagnostic process, a prototype of 3D-printed pieces was designed for the robotization of conventional optical microscopy, capable of auto-focusing the sample and tracking the entire slide. Results: Comparative analysis yielded a performance for YOLOv5x on a test set of 92.10% precision, 93.50% recall, 92.79% F-score, and 94.40% mAP0.5 for leukocyte, early and mature Plasmodium trophozoites overall detection. F-score values of each category were 99.0% for leukocytes, 88.6% for early trophozoites and 87.3% for mature trophozoites detection. Attention modules performance show non-significant statistical differences when compared to YOLOv5x original trained model. The predictive models were integrated into a smartphone-computer application for the purpose of image-based diagnostics in the laboratory. The system can perform a fully automated diagnosis by the auto-focus and X-Y movements of the robotized microscope, the CNN models trained for digital image analysis, and the smartphone device. The new prototype would determine whether a Giemsa-stained thick blood smear sample is positive/negative for Plasmodium infection and its parasite levels. The whole system was integrated into the iMAGING smartphone application. Conclusion: The coalescence of the fully-automated system via auto-focus and slide movements and the autonomous detection of Plasmodium parasites in digital images with a smartphone software and AI algorithms confers the prototype the optimal features to join the global effort against malaria, neglected tropical diseases and other infectious diseases.The project is funded by the Microbiology Department of Vall d’Hebron University Hospital, the Cooperation Centre of the Universitat Politècnica de Catalunya (CCD-UPC), and the Probitas Foundation

    A deep learning pproach for the morphological recognition of reactive lymphocytes in patients with COVID-19 infection

    Get PDF
    Laboratory medicine plays a fundamental role in the detection, diagnosis and management of COVID-19 infection. Recent observations of the morphology of cells circulating in blood found the presence of particular reactive lymphocytes (COVID-19 RL) in some of the infected patients and demonstrated that it was an indicator of a better prognosis of the disease. Visual morphological analysis is time consuming, requires smear review by expert clinical pathologists, and is prone to subjectivity. This paper presents a convolutional neural network system designed for automatic recognition of COVID-19 RL. It is based on the Xception71 structure and is trained using images of blood cells from real infected patients. An experimental study is carried out with a group of 92 individuals. The input for the system is a set of images selected by the clinical pathologist from the blood smear of a patient. The output is the prediction whether the patient belongs to the group associated with better prognosis of the disease. A threshold is obtained for the classification system to predict that the smear belongs to this group. With this threshold, the experimental test shows excellent performance metrics: 98.3% sensitivity and precision, 97.1% specificity, and 97.8% accuracy. The system does not require costly calculations and can potentially be integrated into clinical practice to assist clinical pathologists in a more objective smear review for early prognosis.Peer ReviewedPostprint (published version

    Convolution Neural Network Models for Acute Leukemia Diagnosis

    Get PDF
    Acute leukemia is a cancer-related to a bone marrow abnormality. It is more common in children and young adults. This type of leukemia generates unusual cell growth in a short period, requiring a quick start of treatment. Acute Lymphoid Leukemia (ALL) and Acute Myeloid Leukemia (AML) are the main responsible for deaths caused by this cancer. The classification of these two leukemia types on blood slide images is a vital process of and automatic system that can assist doctors in the selection of appropriate treatment. This work presents a convolutional neural networks (CNNs) architecture capable of differentiating blood slides with ALL, AML and Healthy Blood Slides (HBS). The experiments were performed using 16 datasets with 2,415 images, and the accuracy of 97.18% and a precision of 97.23% were achieved. The proposed model results were compared with the results obtained by the state of the art methods, including also based on CNNs. (c) 2020 IEEE
    corecore