154 research outputs found

    Green internet of things using UAVs in B5G networks: A review of applications and strategies

    Get PDF
    Recently, Unmanned Aerial Vehicles (UAVs) present a promising advanced technology that can enhance people life quality and smartness of cities dramatically and increase overall economic efficiency. UAVs have attained a significant interest in supporting many applications such as surveillance, agriculture, communication, transportation, pollution monitoring, disaster management, public safety, healthcare, and environmental preservation. Industry 4.0 applications are conceived of intelligent things that can automatically and collaboratively improve beyond 5G (B5G). Therefore, the Internet of Things (IoT) is required to ensure collaboration between the vast multitude of things efficiently anywhere in real-world applications that are monitored in real-time. However, many IoT devices consume a significant amount of energy when transmitting the collected data from surrounding environments. Due to a drone's capability to fly closer to IoT, UAV technology plays a vital role in greening IoT by transmitting collected data to achieve a sustainable, reliable, eco-friendly Industry 4.0. This survey presents an overview of the techniques and strategies proposed recently to achieve green IoT using UAVs infrastructure for a reliable and sustainable smart world. This survey is different from other attempts in terms of concept, focus, and discussion. Finally, various use cases, challenges, and opportunities regarding green IoT using UAVs are presented.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847577; and a research grant from Science Foundation Ireland (SFI) under Grant Number 16 / RC / 3918 (Ireland's European Structural and Investment Funds Programmes and the European Regional Development Fund 2014-2020)

    Flying ad-hoc network application scenarios and mobility models

    Get PDF
    [EN] Flying ad-hoc networks are becoming a promising solution for different application scenarios involving unmanned aerial vehicles, like urban surveillance or search and rescue missions. However, such networks present various and very specific communication issues. As a consequence, there are several research studies focused on analyzing their performance via simulation. Correctly modeling mobility is crucial in this context and although many mobility models are already available to reproduce the behavior of mobile nodes in an ad-hoc network, most of these models cannot be used to reliably simulate the motion of unmanned aerial vehicles. In this article, we list the existing mobility models and provide guidance to understand whether they could be actually adopted depending on the specific flying ad-hoc network application scenarios, while discussing their advantages and disadvantages.Bujari, A.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P.; Palazzi, CE.; Ronzani, D. (2017). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks. 13(10):1-17. doi:10.1177/1550147717738192S117131

    Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments

    Full text link
    [ES] La introducción de soluciones tecnológicas en la agricultura permite reducir el uso de recursos y aumentar la producción de los cultivos. Además, la calidad del agua de regadío se puede monitorizar para asegurar la seguridad de los productos para el consumo humano. Sin embargo, la localización remota de la mayoría de los campos presenta un problema para proveer de cobertura inalámbrica a los nodos sensores y actuadores desplegados en los campos y los canales de agua para regadío. El trabajo presentado en esta tesis aborda el problema de habilitar la comunicación inalámbrica entre los dispositivos electrónicos desplegados para la monitorización de la calidad del agua y el campo a través de un protocolo de comunicación y arquitectura heterogéneos. La primera parte de esta tesis introduce los sistemas de agricultura de precisión (PA) y la importancia de la monitorización de la calidad del agua y el campo. Asimismo, las tecnologías que permiten la comunicación inalámbrica en sistemas PA y el uso de soluciones alternativas como el internet de las cosas bajo tierra (IoUT) y los vehículos aéreos no tripulados (UAV) se introducen también. Después, se realiza un análisis en profundidad del estado del arte respecto a los sensores para la monitorización del agua, el campo y las condiciones meteorológicas, así como sobre las tecnologías inalámbricas más empleadas en PA. Además, las tendencias actuales y los desafíos de los sistemas de internet de las cosas (IoT) para regadío, incluyendo las soluciones alternativas introducidas anteriormente, han sido abordados en detalle. A continuación, se presenta la arquitectura propuesta para el sistema, la cual incluye las áreas de interés para las actividades monitorización que incluye las áreas de los canales y el campo. A su vez, la descripción y los algoritmos de operación de los nodos sensores contemplados para cada área son proporcionados. El siguiente capítulo detalla el protocolo de comunicación heterogéneo propuesto, incluyendo los mensajes y alertas del sistema. Adicionalmente, se presenta una nueva topología de árbol para redes híbridas LoRa/WiFi multisalto. Las funcionalidades específicas adicionales concebidas para la arquitectura propuesta están descritas en el siguiente capítulo. Éstas incluyen algoritmos de agregación de datos para la topología propuesta, un esquema de las amenazas de seguridad para los sistemas PA, algoritmos de ahorro de energía y tolerancia a fallos, comunicación bajo tierra para IoUT y el uso de drones para adquisición de datos. Después, los resultados de las simulaciones para las soluciones propuestas anteriormente son presentados. Finalmente, se tratan las pruebas realizadas en entornos reales para el protocolo heterogéneo presentado, las diferentes estrategias de despliegue de los nodos empleados, el consumo energético y la función de cuantificación de fruta. Estas pruebas demuestran la validez de la arquitectura y protocolo de comunicación heterogéneos que se han propuesto.[CA] La introducció de solucions tecnològiques en l'agricultura permet reduir l'ús de recursos i augmentar la producció dels cultius. A més, la qualitat de l'aigua de regadiu es pot monitoritzar per assegurar la qualitat dels productes per al consum humà. No obstant això, la localització remota de la majoria dels camps presenta un problema per a proveir de cobertura sense fils als nodes sensors i actuadors desplegats als camps i els canals d'aigua per a regadiu. El treball presentat en aquesta tesi tracta el problema d'habilitar la comunicació sense fils entre els dispositius electrònics desplegats per a la monitorització de la qualitat de l'aigua i el camp a través d'un protocol de comunicació i arquitectura heterogenis. La primera part d'aquesta tesi introdueix els sistemes d'agricultura de precisió (PA) i la importància de la monitorització de la qualitat de l'aigua i el camp. Així mateix, també s'introdueixen les tecnologies que permeten la comunicació sense fils en sistemes PA i l'ús de solucions alternatives com l'Internet de les coses sota terra (IoUT) i els vehicles aeris no tripulats (UAV). Després, es realitza una anàlisi en profunditat de l'estat de l'art respecte als sensors per a la monitorització de l'aigua, el camp i les condicions meteorològiques, així com sobre les tecnologies sense fils més emprades en PA. S'aborden les tendències actuals i els reptes dels sistemes d'internet de les coses (IoT) per a regadiu, incloent les solucions alternatives introduïdes anteriorment. A continuació, es presenta l'arquitectura proposada per al sistema, on s'inclouen les àrees d'interès per a les activitats monitorització en els canals i el camp. Finalment, es proporciona la descripció i els algoritmes d'operació dels nodes sensors contemplats per a cada àrea. El següent capítol detalla el protocol de comunicació heterogeni proposat, així como el disseny del missatges i alertes que el sistema proposa. A més, es presenta una nova topologia d'arbre per a xarxes híbrides Lora/WiFi multi-salt. Les funcionalitats específiques addicionals concebudes per l'arquitectura proposada estan descrites en el següent capítol. Aquestes inclouen algoritmes d'agregació de dades per a la topologia proposta, un esquema de les alertes de seguretat per als sistemes PA, algoritmes d'estalvi d'energia i tolerància a fallades, comunicació per a IoUT i l'ús de drons per a adquisició de dades. Després, es presenten els resultats de les simulacions per a les solucions proposades. Finalment, es duen a terme les proves en entorns reals per al protocol heterogeni dissenyat. A més s'expliquen les diferents estratègies de desplegament dels nodes empleats, el consum energètic, així com, la funció de quantificació de fruita. Els resultats d'aquetes proves demostren la validesa de l'arquitectura i protocol de comunicació heterogenis propost en aquesta tesi.[EN] The introduction of technological solutions in agriculture allows reducing the use of resources and increasing the production of the crops. Furthermore, the quality of the water for irrigation can be monitored to ensure the safety of the produce for human consumption. However, the remote location of most fields presents a problem for providing wireless coverage to the sensing nodes and actuators deployed on the fields and the irrigation water canals. The work presented in this thesis addresses the problem of enabling wireless communication among the electronic devices deployed for water quality and field monitoring through a heterogeneous communication protocol and architecture. The first part of the dissertation introduces Precision Agriculture (PA) systems and the importance of water quality and field monitoring. In addition, the technologies that enable wireless communication in PA systems and the use of alternative solutions such as Internet of Underground Things (IoUT) and Unmanned Aerial Vehicles (UAV) are introduced as well. Then, an in-depth analysis on the state of the art regarding the sensors for water, field and meteorology monitoring and the most utilized wireless technologies in PA is performed. Furthermore, the current trends and challenges for Internet of Things (IoT) irrigation systems, including the alternate solutions previously introduced, have been discussed in detail. Then, the architecture for the proposed system is presented, which includes the areas of interest for the monitoring activities comprised of the canal and field areas. Moreover, the description and operation algorithms of the sensor nodes contemplated for each area is provided. The next chapter details the proposed heterogeneous communication protocol including the messages and alerts of the system. Additionally, a new tree topology for hybrid LoRa/WiFi multi-hop networks is presented. The specific additional functionalities intended for the proposed architecture are described in the following chapter. It includes data aggregation algorithms for the proposed topology, an overview on the security threats of PA systems, energy-saving and fault-tolerance algorithms, underground communication for IoUT, and the use of drones for data acquisition. Then, the simulation results for the solutions previously proposed are presented. Finally, the tests performed in real environments for the presented heterogeneous protocol, the different deployment strategies for the utilized nodes, the energy consumption, and a functionality for fruit quantification are discussed. These tests demonstrate the validity of the proposed heterogeneous architecture and communication protocol.García García, L. (2021). Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17422

    Redes autónomas e inteligentes para la monitorización de variables ambientales

    Get PDF
    El entendimiento de nuestro entorno, ya sea urbano o natural, es un tema de constante interés en la sociedad, tanto por razones de mejora de calidad de vida como preservación ecológica. En las últimas décadas, la tecnología ha sido la principal aliada para lograr este objetivo, siendo uno de los principales contribuyentes las redes de sensores inalámbricos, o WSN por sus siglas en inglés. No obstante, sigue existiendo una fuerte necesidad de monitorización en distintas temáticas, además que los avances tecnológicos recientes permiten profundizar en el conocimiento en algunas áreas de estudio. En este sentido, este trabajo pretende evaluar la tecnología de WSN reciente con el fin de diseñar y desarrollar sistemas que aporten soluciones a problemáticas reales. Por consiguiente, con el conocimiento obtenido a partir de lo anterior, se busca también contribuir a las WSN en un sentido científico literario. Dicho lo anterior, la presente tesis realiza aportaciones en dos campos: el tecnológico y el metodológico. Desde una perspectiva técnica, se presenta la implementación de un sistema autónomo para monitorización en viviendas y un sistema de monitorización no supervisado para zonas ecológicas marinas protegidas. El primero busca cubrir una necesidad de estimación del consumo energético-térmico de los sistemas de calefacción, con el cual poder gestionar de mejor manera este recurso. Para ello se desarrolló el prototipo de un nodo sensor WiFi de bajo consumo energético, capaz de sustentar su demanda de potencia con una etapa de energy harvesting termoeléctrico. Se utilizó este enfoque para poder ofrecer una solución intuitiva con poca interacción por parte de los usuarios. Con respecto al segundo, se pretende proveer una alternativa a los sistemas de monitorización de líneas costeras, donde se busca realizar análisis de corrientes marinas superficiales y variables físicas del entorno. Para este desarrollo fue necesario que el sistema pudiese ser desplegado de la manera más sencilla posible, minimizando el impacto en el entorno dada su clasificación como parque nacional protegido. Por estos motivos se diseñó, desarrolló e implementó una red de boyas de deriva asistida por dron, donde las primeras actuaban como nodos sensores y el dron ejercía como recolector de datos remoto, utilizando un protocolo de comunicaciones inalámbrico basado en la modulación LoRa.En tema de aportaciones metodológicas, se realizó una recopilación literaria de métricas para el análisis, selección y diseño de una WSN, con el afán de definir el impacto que estas presentan en dicha labor. Esto a su vez propició el desarrollo de una propuesta de metodología aplicable a nuevas implementaciones o sistemas activos con posibles mejoras. La metodología se realizó con el objetivo de proveer una serie de directrices claras al momento de diseñar una WSN, buscando también cubrir los aspectos más relevantes de estas mismas, es decir, la parte de hardware, red y requerimientos de una aplicación. Aunado a lo anterior, se ejemplifica el uso de dicha metodología, aplicada a tres escenarios tecnológicos distintos, para demostrar la relevancia de un diseño apropiado de una WSN.<br /

    Practical Experiences of a Smart Livestock Location Monitoring System leveraging GNSS, LoRaWAN and Cloud Services.

    Get PDF
    Livestock farming is, in most cases in Europe, unsupervised, thus making it difficult to ensure adequate control of the position of the animals for the improvement of animal welfare. In addition, the geographical areas involved in livestock grazing usually have difficult access with harsh orography and lack of communications infrastructure, thus the need to provide a low-power livestock localization and monitoring system is of paramount importance, which is crucial not for a sustainable agriculture, but also for the protection of native breeds and meats thanks to their controlled supervision. In this context, this work presents an Internet of things (IoT)-based system integrating low-power wide area (LPWA) technology, cloud and virtualization services to provide real-time livestock location monitoring. Taking into account the constraints coming from the environment in terms of energy supply and network connectivity, our proposed system is based on a wearable device equipped with inertial sensors, Global Positioning System (GPS) receiver and LoRaWAN transceiver, which can provide a satisfactory compromise between performance, cost and energy consumption. At first, this article provides the state-of-the-art localization techniques and technologies applied to smart livestock. Then, we proceed to provide the hardware and firmware co-design to achieve very low energy consumption, thus providing a significant positive impact to the battery life. The proposed platform has been evaluated in a pilot test in the Northern part of Italy, evaluating different configurations in terms of sampling period, experimental duration and number of devices. The results are analyzed and discussed for packe delivery ratio, energy consumption, localization accuracy, battery discharge measurement and delay

    Application Protocols enabling Internet of Remote Things via Random Access Satellite Channels

    Full text link
    Nowadays, Machine-to-Machine (M2M) and Internet of Things (IoT) traffic rate is increasing at a fast pace. The use of satellites is expected to play a large role in delivering such a traffic. In this work, we investigate the use of two of the most common M2M/IoT protocols stacks on a satellite Random Access (RA) channel, based on DVB-RCS2 standard. The metric under consideration is the completion time, in order to identify the protocol stack that can provide the best performance level

    Unmanned Aerial Vehicle for Internet of Everything: Opportunities and Challenges

    Get PDF
    The recent advances in information and communication technology (ICT) have further extended Internet of Things (IoT) from the sole "things" aspect to the omnipotent role of "intelligent connection of things". Meanwhile, the concept of internet of everything (IoE) is presented as such an omnipotent extension of IoT. However, the IoE realization meets critical challenges including the restricted network coverage and the limited resource of existing network technologies. Recently, Unmanned Aerial Vehicles (UAVs) have attracted significant attentions attributed to their high mobility, low cost, and flexible deployment. Thus, UAVs may potentially overcome the challenges of IoE. This article presents a comprehensive survey on opportunities and challenges of UAV-enabled IoE. We first present three critical expectations of IoE: 1) scalability requiring a scalable network architecture with ubiquitous coverage, 2) intelligence requiring a global computing plane enabling intelligent things, 3) diversity requiring provisions of diverse applications. Thereafter, we review the enabling technologies to achieve these expectations and discuss four intrinsic constraints of IoE (i.e., coverage constraint, battery constraint, computing constraint, and security issues). We then present an overview of UAVs. We next discuss the opportunities brought by UAV to IoE. Additionally, we introduce a UAV-enabled IoE (Ue-IoE) solution by exploiting UAVs's mobility, in which we show that Ue-IoE can greatly enhance the scalability, intelligence and diversity of IoE. Finally, we outline the future directions in Ue-IoE.Comment: 21 pages, 9 figure

    An Internet of Things (IoT) based wide-area Wireless Sensor Network (WSN) platform with mobility support.

    Get PDF
    Wide-area remote monitoring applications use cellular networks or satellite links to transfer sensor data to the central storage. Remote monitoring applications uses Wireless Sensor Networks (WSNs) to accommodate more Sensor Nodes (SNs) and for better management. Internet of Things (IoT) network connects the WSN with the data storage and other application specific services using the existing internet infrastructure. Both cellular networks, such as the Narrow-Band IoT (NB-IoT), and satellite links will not be suitable for point-to-point connections of the SNs due to their lack of coverage, high cost, and energy requirement. Low Power Wireless Area Network (LPWAN) is used to interconnect all the SNs and accumulate the data to a single point, called Gateway, before sending it to the IoT network. WSN implements clustering of the SNs to increase the network coverage and utilizes multiple wireless links between the repeater nodes (called hops) to reach the gateway at a longer distance. Clustered WSN can cover up to a few km using the LPWAN technologies such as Zigbee using multiple hops. Each Zigbee link can be from 200 m to 500 m long. Other LPWAN technologies, such as LoRa, can facilitate an extended range from 1km to 15km. However, the LoRa will not be suitable for the clustered WSN due to its long Time on Air (TOA) which will introduce data transmission delay and become severe with the increase of hop count. Besides, a sensor node will need to increase the antenna height to achieve the long-range benefit of Lora using a single link (hop) instead of using multiple hops to cover the same range. With the increased WSN coverage area, remote monitoring applications such as smart farming may require mobile sensor nodes. This research focuses on the challenges to overcome LoRa’s limitations (long TOA and antenna height) and accommodation of mobility in a high-density and wide-area WSN for future remote monitoring applications. Hence, this research proposes lightweight communication protocols and networking algorithms using LoRa to achieve mobility, energy efficiency and wider coverage of up to a few hundred km for the WSN. This thesis is divided into four parts. It presents two data transmission protocols for LoRa to achieve a higher data rate and wider network coverage, one networking algorithm for wide-area WSN and a channel synchronization algorithm to improve the data rate of LoRa links. Part one presents a lightweight data transmission protocol for LoRa using a mobile data accumulator (called data sink) to increase the monitoring coverage area and data transmission energy efficiency. The proposed Lightweight Dynamic Auto Reconfigurable Protocol (LDAP) utilizes direct or single hop to transmit data from the SNs using one of them as the repeater node. Wide-area remote monitoring applications such as Water Quality Monitoring (WQM) can acquire data from geographically distributed water resources using LDAP, and a mobile Data Sink (DS) mounted on an Unmanned Aerial Vehicle (UAV). The proposed LDAP can acquire data from a minimum of 147 SNs covering 128 km in one direction reducing the DS requirement down to 5% comparing other WSNs using Zigbee for the same coverage area with static DS. Applications like smart farming and environmental monitoring may require mobile sensor nodes (SN) and data sinks (DS). The WSNs for these applications will require real-time network management algorithms and routing protocols for the dynamic WSN with mobility that is not feasible using static WSN technologies. This part proposes a lightweight clustering algorithm for the dynamic WSN (with mobility) utilizing the proposed LDAP to form clusters in real-time during the data accumulation by the mobile DS. The proposed Lightweight Dynamic Clustering Algorithm (LDCA) can form real-time clusters consisting of mobile or stationary SNs using mobile DS or static GW. WSN using LoRa and LDCA increases network capacity and coverage area reducing the required number of DS. It also reduces clustering energy to 33% and shows clustering efficiency of up to 98% for single-hop clustering covering 100 SNs. LoRa is not suitable for a clustered WSN with multiple hops due to its long TOA, depending on the LoRa link configurations (bandwidth and spreading factor). This research proposes a channel synchronization algorithm to improve the data rate of the LoRa link by combining multiple LoRa radio channels in a single logical channel. This increased data rate will enhance the capacity of the clusters in the WSN supporting faster clustering with mobile sensor nodes and data sink. Along with the LDCA, the proposed Lightweight Synchronization Algorithm for Quasi-orthogonal LoRa channels (LSAQ) facilitating multi-hop data transfer increases WSN capacity and coverage area. This research investigates quasi-orthogonality features of LoRa in terms of radio channel frequency, spreading factor (SF) and bandwidth. It derived mathematical models to obtain the optimal LoRa parameters for parallel data transmission using multiple SFs and developed a synchronization algorithm for LSAQ. The proposed LSAQ achieves up to a 46% improvement in network capacity and 58% in data rate compared with the WSN using the traditional LoRa Medium Access Control (MAC) layer protocols. Besides the high-density clustered WSN, remote monitoring applications like plant phenotyping may require transferring image or high-volume data using LoRa links. Wireless data transmission protocols used for high-volume data transmission using the link with a low data rate (like LoRa) requiring multiple packets create a significant amount of packet overload. Besides, the reliability of these data transmission protocols is highly dependent on acknowledgement (ACK) messages creating extra load on overall data transmission and hence reducing the application-specific effective data rate (goodput). This research proposes an application layer protocol to improve the goodput while transferring an image or sequential data over the LoRa links in the WSN. It uses dynamic acknowledgement (DACK) protocol for the LoRa physical layer to reduce the ACK message overhead. DACK uses end-of-transmission ACK messaging and transmits multiple packets as a block. It retransmits missing packets after receiving the ACK message at the end of multiple blocks. The goodput depends on the block size and the number of lossy packets that need to be retransmitted. It shows that the DACK LoRa can reduce the total ACK time 10 to 30 times comparing stop-wait protocol and ten times comparing multi-packet ACK protocol. The focused wide-area WSN and mobility requires different matrices to be evaluated. The performance evaluation matrices used for the static WSN do not consider the mobility and the related parameters, such as clustering efficiency in the network and hence cannot evaluate the performance of the proposed wide-area WSN platform supporting mobility. Therefore, new, and modified performance matrices are proposed to measure dynamic performance. It can measure the real-time clustering performance using the mobile data sink and sensor nodes, the cluster size, the coverage area of the WSN and more. All required hardware and software design, dimensioning, and performance evaluation models are also presented
    corecore