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Abstract: Livestock farming is, in most cases in Europe, unsupervised, thus making it difficult to
ensure adequate control of the position of the animals for the improvement of animal welfare. In
addition, the geographical areas involved in livestock grazing usually have difficult access with
harsh orography and lack of communications infrastructure, thus the need to provide a low-power
livestock localization and monitoring system is of paramount importance, which is crucial not for a
sustainable agriculture, but also for the protection of native breeds and meats thanks to their controlled
supervision. In this context, this work presents an Internet of things (IoT)-based system integrating
low-power wide area (LPWA) technology, cloud, and virtualization services to provide real-time
livestock location monitoring. Taking into account the constraints coming from the environment in
terms of energy supply and network connectivity, our proposed system is based on a wearable device
equipped with inertial sensors, Global Positioning System (GPS) receiver, and LoRaWAN transceiver,
which can provide a satisfactory compromise between performance, cost, and energy consumption.
At first, this article provides the state-of-the-art localization techniques and technologies applied
to smart livestock. Then, we proceed to provide the hardware and firmware co-design to achieve
very low energy consumption, thus providing a significant positive impact to the battery life. The
proposed platform has been evaluated in a pilot test in the northern part of Italy, evaluating different
configurations in terms of sampling period, experimental duration, and number of devices. The
results are analyzed and discussed for packet delivery ratio, energy consumption, localization
accuracy, battery discharge measurement, and delay.

Keywords: livestock monitoring; smart agriculture; AWS architecture; cloud computing; LoRaWAN

1. Introduction

To reach the goal of having sustainable and intelligent industrial agriculture, smart
agriculture is taking advantage of the Internet of Things (IoT) paradigm, artificial intelli-
gence (AI), and Big Data, with cloud and virtualization technologies, to facilitate innovative
applications which can be achieved through the provision of service and product devel-
opment, real-time monitoring and diagnostics, processing, and distribution to consumer
experience [1,2]. At the same time, there is a growing need to improve precision farming so
as to optimize animal production and reduce approximations in the assessment of animal
health. Engineering advances and decreasing costs of the new electronic technologies have
allowed the development of many sensor-based solutions for the livestock industry [3].
These sensors are able to collect data automatically and in real time, enabling the early
detection of specific problems (e.g., production loss, poor health, and threats to wellbeing)
at group or individual level [4]. This technological approach is currently known as precision
livestock farming (PLF). Sensing solutions are implemented in PLF systems at the level of the
smallest manageable production unit, the “sensor-based individual animal” approach [5].
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However, an important criticality must be taken into consideration, especially for
supply chains operating in marginal rural areas where poor technological infrastructures
and unreliable services (electricity, telephone, and internet networks) are available in many
small ruminant farms (often located in mountainous and remote areas), reducing the devel-
opment of new local initiatives and businesses based on PLF implementation [6,7]. As a
further step of automation, sensors used in PLF systems should ideally be integrated with
processing (such as artificial intelligence functions) and storage solutions that will provide
a platform developed on a “cloud continuum” starting from the back-end of the large data
center (hyperscale service provider) and dynamically providing virtualized functions even
at the peripheral part of the network.

Over the centuries, pastoralism and transhumance (seasonal movement of livestock
between grazing areas) created a wide variety of specific cultural landscapes. In general,
especially in Europe, grazing is of particular importance for the preservation of open land-
scapes in the mountainous areas. For example, extensive grazing is considered vital for
maintaining many biodiversity-rich habitats in Europe [8]. Livestock farming is, in most
cases in Europe, unsupervised, thus making livestock localization and monitoring a rele-
vant task in smart agriculture, which is crucial for a sustainable agriculture [9].

Livestock such as sheep are free in large enclosed remote areas for most of the year,
although they are controlled periodically for veterinary control. Livestock localization
helps to ensure adequate control of the position of the animals for the improvement of
animal welfare, thus simplifying the everyday work of farmers and veterinary doctors.
In addition, the supervision of livestock enhances welfare control processes, avoiding
unnecessary casualties and allowing a more efficient reproductive process. It also provides
a better management of available pastures [10]. Location information over time provides
information about animal activity (i.e., the health status, etc.). For example, in the work
of [11,12], changes in the activity may signal diseases, and can be often detected before
emergence of clinical symptoms. Livestock localization and monitoring can be divided into
two parts, which are the livestock location monitoring and livestock behavioral/activity
monitoring [13]. This paper only focuses on the livestock location monitoring, but with the
aim of adopting the cloud services that could be easily extended to provide new solutions
in the specific domain (livestock behavioral/activity monitoring is out of the scope of
this work).

Since the emergence of Global Navigation Satellite Systems (GNSS) solutions, such
as Global Positioning System (GPS), GLONASS, or Galileo, the task of determining one’s
location has become easy and smooth. However, this comes at the expense of high en-
ergy consumption from the GNSS receivers, but with highly accurate location estimations.
There are other alternatives to GNSS for livestock localization, such as NB-IoT, LoRaWAN,
etc., where accuracy seems to be an issue. Although the alternatives present low power
consumption, these deployments are heavily dependent on the infrastructure (gateway
installation might be difficult in the remote areas). Enabling localization in an IoT system is
a trade-off between constraints, desired parameters, and functionalities of the system. This
includes the aforementioned costs and the resulting localization accuracy.

Knowing the location data in (near) real time means that the device is equipped with a
wireless transceiver. Communication technologies such as cellular communication are not
suitable due to the high power consumption of cellular receivers, which is a major draw-
back for embedded devices today. In addition, radio coverage of cellular communication
such as 3G, 4G, and 5G is not guaranteed everywhere, especially in the mountainous areas
where telecommunication service providers find these places less interesting due to low
population density, so alternate wireless communication is required. As the coverage of
telecommunication infrastructures in rural and mountainous areas is generally poor or
absent, and troubleshooting or maintenance operations are very difficult, we identified
LoRa and LoRaWAN, a low-cost, low-power technology, as the most suitable connectiv-
ity solutions, especially for monitoring and control operations. In fact, as LoRaWAN is
a low-power and long-range communication protocol—as will be further discussed in
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Section 2.1.4, it can provide connectivity over large grazing areas, also ensuring robustness
with low energy requirements.

This paper is motivated by the Smartsheep project (https://www.smartsheep.it/,
accessed on 20 October 2021) which aims at developing new biosensors in the control of
animal health and the movements of a flock in the mountain pastures. In this context,
this work presents an IoT-based localization system to provide real-time livestock location
monitoring. The system integrates ad hoc IoT devices, LPWAN technology, and cloud
computing. The ad hoc IoT device in wearable form is equipped with inertial sensors, GPS,
and LoRaWAN transceiver. The device periodically collects location and activity data and
then transmits it via the LoRaWAN gateway to the cloud system for storage, processing,
and management. This work also presents a monitoring platform for enabling the remote
monitoring and control of the IoT devices, which was carried out using virtualization tech-
nologies. In our work, we made use of Amazon Web Services (AWS), which is a scalable
cloud-based architecture for a modular IoT system.

This approach is smart as it envisions that the development of an integrated infras-
tructure was not only computing, communications, and storage capabilities that will be
integrated, but also, data moving towards the data center where cloudlets will be set
up, scaled, and torn down to process the data in a more distributed, robust, and secure
environment. This work is a starting point for the design of IoT platforms integrated with
the functions provided by the new paradigms of cloud computing, such as edge or fog
computing, integrating within the adoption of LoRaWAN and GPS a data-driven method,
aimed to save time, cost, and also improving the process of improving humans’ quality of
life in the domain.

The main contributions of this article are as follows:

1. A comprehensive state-of-the-art section is provided on the techniques and technolo-
gies used for livestock localization.

2. A description of the hardware design and the firmware used.
3. A detailed description of the design and development of the cloud-based monitoring

platform for the livestock localization system consisting of the sensors, communication
technology, and data-processing modules.

4. We discuss the results of experiments to evaluate the transmission quality of our
testbed under various scenarios.

The rest of this paper is organized as follows: Section 2 introduces the state-of-the-art
and the related works. The overall system architecture is described in Section 3. In Section 4,
we present the experimental setup and the experimental results. Section 5 presents the
discussion, and lastly, Section 6 concludes the paper with some final remarks.

2. State-of-the-Art and Related Works

In this section, we briefly discuss the state-of-the-art techniques and technologies used
in livestock localization. Next, we present the related works.

2.1. Livestock Localization

The essential features of a successful localization scheme in sheep farming are small
size, energy-efficiency management, low cost, due to the potentially high number of nodes
required for monitoring an entire herd of sheep, synchronization time, to obtain a reason-
able operation time to acquire the device’s location, appearance, to equip these devices
with the appropriate level of protection, e.g., waterproof protection, and independence
from additional hardware which can increase the costs and reduce mobility. Livestock
localization is an essential process in the IoT environment for tracking and monitoring
livestock with the help of sensor nodes. The sensor nodes collect the target information
and transfer it to the central controller for further processing. These applications demand
information about the position of the sensor node. Node localization algorithms are mainly
categorized as range-based localization and range-free localization. In the range-based
method, the node locations are estimated by considering point-to-point distance or angle

https://www.smartsheep.it/
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between the nodes with some reference, whereas the the range-free method is based on
the connectivity or pattern mapping for location approximation. In this work, we are only
focusing on range-based methods which are usually used in livestock localization. They
utilize hop distances, hop counts, and angles for a position estimate. We classify livestock
localization into its techniques and technologies. The most widely used techniques for
geolocation of wireless end devices are based on the measurement of certain parameters
(e.g., signal attenuation, signal propagation time, and angle) by other devices (e.g., the GWs)
with a known location. The taxonomy of livestock localization is illustrated in Figure 1.
The basic methods of geolocation include [14] the following:

Livestock Localization

Livestock Localization Techniques Livestock Localization Technologies

Time of Arrival (ToA)

Time Difference of Arrival (TDoA)

Angle of arrival (AoA)

Received Signal Strength (RSS)

GNSS

LoRaWAN

Sigfox

NB-IoT

Figure 1. Livestock localization taxonomy.

• Time-of-Arrival (ToA) [15,16] utilizes the signal propagation time to calculate the
distance between the transmitter and the receiver through the use of synchronized
clocks. ToA uses time stamps labeled in the transmitted signals along with the received
time to determine the distance the signal had traveled. ToA is one of the most accurate
techniques available, but a perfect synchronization between the transmitters and
receivers is important, thus also introducing complexity to the system. The key factors
that affect ToA estimation accuracy are the signal bandwidth and the sampling rate.
Low sampling rate (in time) reduces the ToA resolution as the signal may arrive
between the sampled intervals. Frequency domain super-resolution techniques are
commonly used to obtain the ToA with high resolution from the channel frequency
response. In addition, in a TOA-based localization system, devices in the network
need synchronized clocks, which require additional hardware, thus increasing the cost
of the system.

• Time-Difference-of-Arrival (TDoA) measures the difference of propagation time
between the signals in terms of their nature, such as using RF, acoustic, or ultrasonic
signals [17]. The idea is that the distance is calculated by determining the differences
in arrival time of the packet to the different receivers. This method is affected by
delay that can be experienced by the transmitted signal, as the different distances
are calculated based on the propagation times. This method sometimes controls the
problem synchronization, and also reduces complexity [18].



Sensors 2022, 22, 273 5 of 25

• Received Signal Strength Indicator (RSSI) has gained much attention in the last
years [19] due to the increasing number of IoT devices utilizing these methods for
localization. RSSI measurements are commonly used for target detection, but one
can also use them for localization without any additional sensor functionalities. RSSI
utilizes some signal propagation models, either theoretical or empirical, to translate
signal strength into distance. The received signal strength measurement is also highly
sensitive to the interference and may experience significant deviations from one
measurement to another.

• Angle-of-Arrival (AoA) is based on angle calculation of which direction the signal
is received from (i.e., sent by the node) [20]. AoA systems use an array of antennas
to determine the angle from which the signal is propagated. Triangulation is then
performed, along with the geometric angles of triangles, to determine the position
of the receiver. Using AoA techniques to estimate a position does not require time
synchronization between the measuring units, and the position can be determined
with as few as three measuring units for 3D positioning or two measuring units for
2D positioning. AoA techniques come at the price of requiring complex hardware and
must be calibrated in order to obtain an accurate position [21].

Table 1 provides the pros and cons of the discussed techniques for livestock localization.
In this section, several existing technologies which have been used to provide livestock

localization services will be presented, as well as their mode of operation. Radio communi-
cation technologies such as LoRa, Narrowband Internet of Things (NB-IoT), Sigfox, and
GNSS will be presented first, followed by other radio technologies such as Bluetooth Low
Energy (BLE) and Zigbee technology, which are meant for indoor localization services but
few works have been seen to use it for livestock localization.

Table 1. Pros and cons of different localization techniques.

Localization Techniques Advantages Disadvantages

ToA

1. It can provide high localization ac-
curacy.

2. It does not require fingerprinting.
3. Low attenuation.

1. It requires time synchronization
between the transmitters and re-
ceivers.

2. It might also require time stamps
and multiple antennas at the trans-
mitter and receiver.

3. Line of sight is a requisite to achieve
good accurate position.

TDoA

1. It ensures low latency and high per-
formance reliability while process-
ing thousands of received blinks.

2. It can provide high localization ac-
curacy.

3. It does not require fingerprinting.
4. It does not require clock synchro-

nization among the device and the
reference node.

5. Low attenuation.

1. It requires clock synchronization
among the reference nodes.

2. It might also require time stamps.
3. Large bandwidth is also a require-

ment.
4. Localization accuracy depends on

the signal bandwidth, sampling rate
at the receiver, and the existence of
direct line of sight between the trans-
mitters and the receiver.
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Table 1. Cont.

Localization Techniques Advantages Disadvantages

RSSI

1. It is cost-efficient.
2. It is easy to implement.
3. It is compatible with the majority of

the technologies.
4. Low hardware requirements.

1. It is very sensitive to interference,
noise, and multi-path fading.

2. It can require fingerprinting.
3. Lower accuracy.

AoA

1. It can provide high localization ac-
curacy.

2. It does not require fingerprinting.

1. It might require directional antennas
and complex hardware.

2. It is not cost-efficient.
3. It also requires complex algorithms.
4. Performance deteriorates with in-

crease in distance between the trans-
mitter and receiver.

2.1.1. NB-IoT

Narrowband Internet of Things (NB-IoT), proposed by 3rd Generation Partnership
Project (3GPP), is a variant of 4G Long Term Evolution (LTE) developed to fulfill the IoT
requirements in low data rate applications. It is also known as LTE Cat-NB1 and operates
in the licensed spectrum. It belongs to the LPWA technologies, which could work virtually
anywhere when the infrastructure is present. It supports three different modes of operation,
namely standalone operation (as a dedicated carrier), in-band operation (deployed within
an LTE wide-band system), and lastly guard-band operations (co-located with an LTE
cell) [22]. NB-IoT is also being used in many commercial agricultural solutions. The imple-
mentation of NB-IoT is only possible through telecommunication providers’ IoT services.
Therefore, it is neither cost effective, nor does it provide openness as offered by other
IoT technologies.

In the 3GPP Rel-13 and 3GPP Rel-14 of NB-IoT, localization can be achieved through
the use of enhanced cell ID (eCID) [23]. This method allows the NB-IoT user to measure
and report the enhanced Node-B’s (eNB’s) receiver–sender time difference, reference signal
received power (RSRP), and the reference signal received quality. The 3GPP Rel-14 also in-
troduced observed time difference of arrival (OTDOA), another method for determining the
user’s position. OTDOA introduces a new narrowband positioning reference signal (NPRS),
which is sent to the receiver to enhance the positioning measurement. In OTDOA, the ToA
of NPRS from a reference eNB and the neighbour eNBs are estimated. By measuring the
time difference, the user’s reference signal time difference (RSTD) can be estimated. Each
RSTD measurement restricts the user’s position to a hyperbola. The point of intersection of
several such hyperbolas give the user’s location [24]. There are still ongoing works on the
design and features of NB-IoT on how to improve the localization accuracy [25].

2.1.2. GNSS

Global Navigation Satellite Systems (GNSS) solutions, such as GPS, GLONASS, GALILEO,
and BeiDou, are the most common localization systems used for outdoor localization purposes,
such as locating and tracking humans, cars, livestock, and assets, among others [26]. GNSS
systems provide accurate location estimations compared to other technologies, especially
where the satellites are directly visible, i.e., having line of sight (LoS), but at the expense of
high energy consumption.

The working principles of any GNSS satellites are almost the same. The satellites
broadcast a very precise timing signal and data message, called navigation message, that
contains their orbital parameters. GNSS receivers receive the navigation message sent
from the relevant satellites in orbit, process the message, and estimate position velocity
and time. A minimum of four satellites are needed for estimating three-dimensional posi-
tion and time. At first, the receiver calculates its distance from each visible satellite and
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then calculates a three-dimensional position using the trilateration or multitrilateration
technique. Good accuracy can be obtained if visible satellites are broadly spaced in the
sky. The synchronization of the receiver clock and the satellite clocks are very crucial.
The satellites carry atomic clocks onboard, which makes their timing very precise [26,27].

2.1.3. Sigfox

Sigfox is an LPWAN technology, highly efficient in spectrum usage. Sigfox, an LPWAN
network operator, deploys its proprietary base stations equipped with cognitive software-
defined radios and connect them to the back-end servers using an IP-based network. It
utilizes the ultra narrow band carrier of the sub 1 GHz ISM bands and binary phase
shift keying (BPSK) modulation technique. It uses star topology, and the base station is
equipped with a cognitive software-defined radio that is connected to servers using an
IP-based network. The communication range of Sigfox is up to 45 km and 12 km in rural
and urban areas, respectively. Sigfox supports data rates of up to 250 kbps, and also uses
unlicensed spectrum (868 MHz and 902 MHz) for communications. For each end-node,
Sigfox restricts downlink communications to 4 transmissions of 8 bytes of payload, and
uplink communications to 140 transmissions of 12 bytes of payload [28]. Despite these
limitations, Sigfox provides many opportunities in smart agriculture [29]. Sigfox presents
its own localization feature, which is based on the RSSI coming from the messages sent
by a device and received by the base stations of the Sigfox infrastructure combined with
machine learning algorithms [30]. This method is calculated using regular Sigfox messages,
which is very cost-efficient with no extra hardware required, and the message payload can
be empty (less battery use) or used for regular handling. Radio choices made by Sigfox
bring specific benefits: low energy for a longer battery life, low connectivity rate, high
network capacity, long range, and resilience to interference, with the capacity to resist
jamming. Access to the service strongly depends on the Sigfox network coverage in the
dedicated territory, which is a major limitation.

2.1.4. LoRa/LoRaWAN

LoRa and LoRaWAN are global de facto standards of low-power wide-area network
(LPWAN), and they are the most adopted technologies for the IoT. LoRa, the physical
layer in LoRaWAN, uses forward error correction (FEC) and a proprietary modulation
which is a variant of chirp spread spectrum (CSS) [31]. The physical channel is logically
separated by the spreading factor (SF) due to its orthogonality. The carrier frequency varies
over a designated amount of time, thus achieving low power, robustness, and long-range
communication links [32]. LoRa is defined by its main parameters (SF, bandwidth (BW),
and code rate (CR)), which are configured to adapt to the working scenario. It is worth
noting that different combinations of the aforementioned transmission parameters yield
different trade-offs with respect to the range and data rate that can be achieved, and these
combinations are also governed by regulatory constraints. A network structure based on
LoRaWAN protocol consists of four individual sections, namely, the end devices, the gate-
way, the network server, and the application server. The LoRaWAN MAC layer provides
the medium access control mechanism operating as ALOHA protocol, which enables com-
munication between multiple devices and network gateway(s). Given the features of LoRa
such as long range and low power, several agricultural applications [33–36] have been
developed where LoRaWAN has been exploited for controlling and monitoring.

RSSI for coarse positioning and TDOA for finer accuracy are the two LoRaWAN
protocol methods for geolocation [37]. The LoRa Alliance claims that using TDOA in Lo-
RaWAN has an accuracy range of 20–200 m depending on conditions, whereas in RSSI, it is
about 1000–2000 m accuracy. Janssen et al. evaluated an RSS fingerprint-based LoRaWAN
method using a random forest machine learning algorithm where they were able to obtain
an average location estimation error of 340 m [38]. Further research has to be conducted to
improve the location accuracy in LoRaWAN localization.
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Bluetooth Low Energy (BLE) and Zigbee technology are low-power, low-cost wireless
systems used in agricultural applications. BLE merged into the main Bluetooth standard
in July 2010, when Bluetooth Core Specification 4.0 included the classic Bluetooth proto-
col, Bluetooth High-Speed Protocol, and BLE [39]. BLE is designed for very low-power
applications that can run off a coin cell battery for months or even years. BLE has been
subsequently enhanced in versions of BLE 5 by addressing inadequacies via the imple-
mentation of pure mesh topology to provide enhanced network coverage, internetwork
connectivity, and improved security [40]. BLE can be compared to other wireless technolo-
gies such as 4G/5G, Wi-Fi, and LPWAN technologies with the following features. Firstly,
considering privacy, in the case of BLE, the Bluetooth facility needs to be switched on to
allow location detection. BLE allows privacy and freedom in terms of sharing data in public
compared to some wireless technology such as Wi-Fi. Secondly, in terms of speed, BLE is
better for transmitting smaller amounts of data such as sensor readings of temperature, GPS
coordinates, and acceleration details, which is ideal in the case of agricultural spectrum.
Thirdly, BLE can also be used for localization, which is usually carried out by installing a set
of proximity beacons (i.e., BLE transmitters) at known locations [19]. Receivers extract the
RSSI (which is a proxy of the distance from the transmitter) from the nearest beacons and
use these values to predict their own position. Despite the several uses of BLE-localization
in indoor environments, BLE-localization poses a lot of challenges in the industrial and
agricultural environments, especially outdoor environments, because of the harsh condi-
tions and environments. Despite these challenges, few works [41,42] have utilized BLE for
livestock localization.

Zigbee is built upon the IEEE 802.15.4 standard that is concerned with the physical and
MAC layers for low cost, low data rate, and energy-efficient personal area networks [43].
ZigBee is favorable for localization of sensors in wireless sensor networks (WSN), but it is
not readily available on the majority of the devices, hence it is not favorable for livestock
localization. Few works, such as [44,45], have utilized Zigbee technology for livestock
monitoring.

2.2. Related Works

The smart agriculture concept, with regards to localization, relates to location-aware
devices to monitor the movement of animals and raise alerts when they violate the bound-
ary of the geofence of the farm or pasture. There have been several studies on the integration
of GNSS technology with cellular communication for applications regarding livestock lo-
cation monitoring [46]. GPS technology occupies the majority of the deployment in the
literature compared to other localization technologies. This is hardly surprising given the
easy adoption and accurate location estimations compared to other technologies, especially
where the satellites are directly visible. In addition, GNSS technology has achieved a lot of
success in detecting static or dynamic unitary behaviors differentiated through changes in
path speeds: foraging or grazing, resting, and walking [47]. The authors in [48] presented
a data collection collar for vital signs of cattle on the grassland based on GPS and LoRa
technology. Similar work using GPS technology is also addressed in [49].

Livestock theft management is one of several use cases in livestock location monitoring.
To this end, researchers have proposed several systems that can be used to minimize the
chances of livestock theft. In [50], the authors proposed a system based on RFID and GPRS
technology for tagging, identification, and communication, which is supported by a cen-
tralized database system. The authors introduced an approach to identify an animal stolen
if the animal is found in a geographic location that is considered far from the registered
location of the animal. Similar work addressing livestock theft management is addressed
in [51].

Few works have addressed the use of other technologies, such as BLE and LPWAN,
for livestock location monitoring. In [41], a BLE technology with RSSI localization method
was designed for livestock location monitoring. The method introduced by the authors
provided accurate localization using a small number of reference points (anchors) and
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required limited measurements during setup. Zigbee was also used in [44], where the
authors presented a localization scheme in wireless sensor networks for cattle monitoring
applications in grazing fields, where the use of link-quality indicator-based ratiometric
vector iteration (RVI) algorithm was utilized. Similar studies utilizing Zigbee technology
for livestock monitoring have been demonstrated in [45,52]. To the best of our knowledge,
several studies on livestock location monitoring implementations use GNSS receivers
to send GPS coordinates over LPWAN, such as in LoRaWAN [53,54], NB-IoT [55], and
Sigfox [56].

Another alternative for livestock monitoring is the use of unmanned aerial vehicles
(UAVs) as described in [57–59]. Some of the application uses of UAVs do not explore the
imaging capabilities of the UAV, rather using the aircraft for different actions, and collection
of data from sensors fitted on the animals through wireless communication [60,61]. For ex-
ample, the authors in [62] combined the usage of GNSS and UAVs for livestock monitoring,
where drones were deployed to accomplish the sweep coverage of the entire pasture, and to
determine the tracking information acquired by GPS collars won by the animals. Other
uses of UAVs for livestock monitoring involve exploring images for direct visual analysis,
aiming at cattle detection [63] and determination of feeding behaviour [64]. However, there
are some limitations and technical issues when using UAVs in agriculture, especially for
livestock monitoring, such as payload and battery capacity, cost, environmental factors,
and operational factors where special permissions are needed in some countries [65]. Lastly,
in addition to the related works on livestock localization, there are several works [66–69]
that have applied AWS cloud services to agriculture.

In summary, whilst the surveyed studies are focusing on the performance of GNSS
technology for livestock localization, more studies on practical implementations of using
GNSS and LPWAN technology need to be carried out on livestock localization. Such
experimental implementations over a period of time are needed to provide an insight on
accuracy and energy consumption. Table 2 presents a brief summary of the deployments
for livestock localization.

Table 2. A summary of related works.

Ref. Target Animal Localization
Technologies

Localization
Method

Cloud
Infrastructure

Nature of
Research

[41] Cow BLE RSSI NS Performance
Analysis

[44] Cattle Zigbee ratiometric vector
iteration (RVI) NS Performance

Analysis

[45] Cattle Zigbee NS NS Use Case Analysis

[53] Cattle GPS + LoRaWAN NS Yes Laboratory and
Field Tests

[54] Cattle GPS + LoRa RSSI No Performance
Analysis

[55] Cattle NB-IoT NS Yes Performance
Analysis

[13] Sheep NS RSSI Yes Performance
Analysis

[70] Goat GPS + Bluetooth,
LTE NS NS NS
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Table 2. Cont.

Ref. Target Animal Localization
Technologies

Localization
Method

Cloud
Infrastructure

Nature of
Research

[56] Cattle GPS + Sigfox NS NS Performance
Analysis

[46] Cattle GPS + GSM NS No Statistical Analysis

[52] Cattle Zigbee ToA No Experimental
Analysis

[48] Cattle GPS + LoRa NS No Field tests

[61,62] Cattle & Sheep GPS + UAV NS No Simulation tests

NS: Not specified.

3. System Architecture

In this section, the overall system architecture is presented (see Figure 2). Next,
the mode of operation of the device and the system infrastructure are also described.

Wearable

(Animal Sensors)

Processing 

Computational Platform

Storage

User

User Interface

LoRa 

Gateway

Satellite

Figure 2. System architecture.

3.1. Device Description

The end device is built around an STM32L072 [71], a 32-bit ARM Cortex® M0+ core,
which combines a 192 KB flash memory with read-while-write capabilities, 6 kB EEPROM,
20 kB SRAM, general purpose I/O lines, and peripheral communication interfaces (USART,
I2C, SPI bus). It also features a GPS positioning module and an LoRa transceiver able
to transmit using FSK and LoRa modulations for communication purposes. The end
device embeds an sx1276 module supported by LoRaWAN and also integrates a nine-axis
accelerometer (three-axis gyroscope, three-axis accelerometer, and three-axis magnetometer)
necessary to provide information about accelerations in all three directions and rotations
around each axis. The hardware block diagram is shown in Figure 3. The LoRaWAN
transceiver was configured as a device of class A, which is necessary to ensure minimum
energy consumption of the device. To transmit, process, and store the information retrieved
from the devices, we used a proxy software that collects and transmits this information via
LoRa first to the LoRaWAN gateway, and then to the back-end system.
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192KB Flash

20KB RAM

6KB EEPROM

(137MHz -1020MHz)

SX1276

STM32L0 MCU

(NEO-6M-0-001)

UBlox

GNSS

UART

Power 

Conditioning 

9-axis Accelerometer 

Sensor

I2C SPI

LoRaWAN

I/O

UART

Figure 3. Hardware block diagram.

3.2. Mode of Operation

In this work, we configure the device to adapt to the detected motion of the device to
improve the energy efficiency. At power on, the device works with the last-used settings.
The settings (physical layer parameters, role, etc.) are stored in the non-volatile flash
memory and reloaded at power-up. The device supports both ATP/OTAA methods to
communicate to the LoRaWAN network. In our case, the device is configured with the
OTAA registration keys, where the device will repeatedly try to join the LoRaWAN network
until the join process is successful. Once the join process is successful, the device starts
collecting data retrieved from the sensors to the LoRaWAN network.

In the data collection phase, the device will try to obtain the location information
(i.e., latitude, longitude, altitude, hdop) from the satellite in a periodic manner. Other
information retrieved from the sensors, such as battery, accelerometer, etc., are collated
with the location information to be forwarded to the LoRaWAN gateway. If the location
information is not determined within X seconds (configurable), the location information
field is set to 0x00, while other information, such as the battery status, enters the uplink
phase. In the uplink phase, the device sends all the messages retrieved from the sensors to
the LoRaWAN network in a periodic manner. Once the messages are sent, the device enters
into a sleep state to save power. Depending on how much time has passed since the last
physical movement of the device, which is determined by the motion sensor of the device,
the device enters different sleep states. The states are the active sleep phase and the passive
sleep phase.

In the active sleep phase, the device uploads its information to the LoRaWAN network,
then enters the sleep state to conserve energy. The frequency at which the device wakes up
in the active sleep phase (active mode) can be configured using a cron expression. In our
application, typical values are between 10 min or 15 min. When the device is in the active
sleep phase, the device will not be triggered to gather more location information through
motion, but the movement of the device will still be registered to keep the device in the
active mode. In the passive sleep state, if no motion is detected for a long amount of time,
the device enters a passive sleep state, but the device will be activated through movement.
Typical values for the cron in the passive sleep phase in our application are between 90 min
or 120 min. If no physical movement is detected at the end of the long time cron, the device
sends the last-used location information along with other information to the LoRaWAN
network, whereas if a physical movement is detected by the internal motion sensor during
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this phase, the device immediately wakes up and switches to active mode. A summary of
the operating logic of the device is presented with the simplified state machine diagram in
Figure 4.

Config

Load previous 

settings from 

EEPROM 

Edit settings?

fail

Power 

on

OTAA ABP

Join 

Request?

Selected Role

success

Joined 

Data Collection Phase

Positioning status

Acceleration & track 

rotation status 

Battery

Active Sleep 

Phase

Passive Sleep 

Phase

Short time 

cron
Long time 

cron

Uplink 

Phase

No recent movement 

Recent movement 

Figure 4. State machine diagram of the device.

3.3. System Infrastructure

There is a need to use cloud solutions to ensure a reliable and secure infrastructure that
supports automatic scaling of resources according to the system needs. The use of cloud
services leads to increased scalability, availability, reliability, agility, and security, among
others, where there is a huge advantage of moving the IT infrastructure to specialized
cloud providers [72]. We made use of AWS as the cloud infrastructure due to its numerous
services provided for IoT applications [73]. AWS is one of the five major solutions with
the largest market share alongside equivalent IoT platforms from Microsoft, Cisco, Google,
and IBM [74].

AWS Cloud contains many groups of services, including IoT Core, IoT Core for Lo-
RaWAN, compute, storage, databases, network, management, application, analytics, and
others. The system infrastructure and the services used in our Smartsheep system are
illustrated in Figure 5. The IoT devices and the LoRaWAN gateway used in the Smartsheep
system are registered in the AWS IoT Core to connect to the AWS cloud, without developing
or operating an LoRaWAN Network Server (LNS). In order for the IoT devices developed
for the Smartsheep to interact with the AWS cloud services, an IoT rule is needed. The IoT
rule has so many functions, such as filtering data coming from the IoT devices, sending
the LoRaWAN messages to the AWS Lambda to decode the payload, sending LoRaWAN
messages to the database channel, analytics channel, etc.
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SmartSheep in the pasture
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Figure 5. Smartsheep system infrastructure and communication flow.
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Our application can be implemented in various deployment scenarios. In our case, two
different deployment scenarios were devised to better analyze the resource consumption
of our application when using cloud-based IoT services, as shown in Figure 5. In the first
deployment scenario, AWS infrastructure was used in the entirety of the implementation.
The raw messages gathered by the sensors are sent to AWS lambda to decode the messages
using the rule function. The decoded messages with other information are archived into
a channel, which stores all data from a certain MQTT topic. The MQTT protocol was
created especially for low latency and small-sized packets characteristic of IoT devices.
Messages from the channel can be redirected by the IoT Core to AWS IoT Analytics by
means of user-defined rules. The dataset is imported into AWS QuickSight for graphical
representation. Furthermore, the messages from the IoT Core, decoded by the AWS lambda
layer, are written by the lambda function as measures into the Amazon Timestream table
(telemetry and metadata). Amazon Timestream is a fast, scalable, and serverless time series
database for IoT applications. The data from the Amazon Timestream are displayed in
Grafana. The main advantage of using this deployment scenario is that the serverless
infrastructure is managed entirely by AWS and, as such, this solution requires the least
time and effort to be deployed.

In the second deployment scenario, the data gathered from the devices registered
on AWS IoT core for LoRaWAN were sent to InfluxDB and Grafana containers, which
store and display data for each device. The docker containers, which contain InfluxDB,
Grafana, and other applications, are installed on a local server. The monitoring dashboard
provided by InfluxDB and Grafana offers a useful insight to drive the experiment without
high maintenance cost.

4. Results
4.1. Experimental Testbed and Configurations

We conducted a pilot test to assess the effectiveness of the Smartsheep location mon-
itoring system. The test environment is located at the pasture area of the Department of
Veterinary Sciences, Grugliasco, University of Turin, Italy, as shown in Figure 6. The ap-
proximate area where the flock of sheep were localized is approximately 700 m2. The flock
of sheep grazed freely throughout the experimental test. All sheep selected for each ex-
periment carried an end-device collar for localization, as shown in Figure 6. The devices
transmit information (latitude, longitude, battery, etc.) via LoRa to the LoRaWAN gateway,
and then to the back-end system for visualization. The activity is transmitted from the
devices to the LoRaWAN gateway in a periodic manner. We make use of a commercial
gateway embedded with LoRa capabilities placed on top of a building at a height of 40 m,
as shown in Figure 6. The LoRaWAN gateway is connected to an ADSL router that provides
connectivity with the Internet and finally to the AWS network. BW and CR were kept
constant for our field experiment (125 kHz, 4/5) while SF was varied between (7, 8, 9, 10, 11,
12) when the adaptive data rate (ADR) was disabled. To study the message frequency in the
Smartsheep LoRaWAN network, we considered three communication schemes: sending
packets every 5, 10, and 15 min. Ten end devices were considered for the pilot test. This is
necessary to evaluate the performance of the battery discharge on the time activity of the
devices. Figure 7 shows an image of a flock of sheep grazing in a field during the pilot test.



Sensors 2022, 22, 273 15 of 25

Figure 6. LoRaWAN gateway and the sheep area.

Figure 7. A flock of sheep grazing in a field.

4.2. Convergence Time

In this subsection, we evaluate the performance of the LoRaWAN network with respect
to convergence time. LoRaWAN networks can operate with or without the ADR. The ADR
is a component that controls the performance of the LoRaWAN network by modifying the
data rate parameter (i.e., spreading factor) based on current wireless conditions. This is
important to reduce the overall energy consumption, and it increases the overall delivery
ratio with the correct selection of transmission parameters, as demonstrated in [75,76].
In our work, we implemented the ADR technique presented in the LoRaWAN specifications.
In Figure 8, we present the convergence time of the Smartsheep LoRaWAN network when
the ADR is enabled/disabled. The LoRaWAN MAC layer has an optional ADR mechanism,
if enabled, to ensure the end devices modify the chosen data rate based on the recent
traffic conditions. The network server makes better decisions when more packets flow into
the network. In this experiment, a total of 14 days evaluation is considered to assess the
performance of the LoRaWAN network when the ADR is enabled/disabled at the network
server. We consider 10 end devices that send their activity every 15 min to the LoRaWAN
network. From the figure, we can observe that when the ADR is disabled, the delivery
ratio tends to remain stable due to fewer changes in the network operation, whereas when
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the ADR is enabled, there are instabilities in certain metrics, such as delivery ratio. As the
packets in the network increase in the ADR-enabled mechanism, the network server tends
to have more data to make better decisions, thus making the metrics (i.e., delivery ratio)
stabilize and converge as the communication time increases. The metrics can be considered
more stable in the ADR-disabled mechanism compared to the ADR-enabled mechanism in
a short time period, but as the number of days increases, both mechanisms tend to be stable.
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Figure 8. Convergence time.

4.3. Delivery Ratio

This subsection presents the results from the experimental field test regarding the
packet delivery ratio (PDR). PDR is calculated as the number of packets received by the
gateway to the total number of packets sent, with a value of 1 implying 100% success
and a value of 0 implying no success at all. The result is shown in Figure 9. We consider
three communication schemes: sending packets every 5, 10, and 15 min, and the test was
performed for a 7-day period for both ADR-enabled scheme and ADR-disabled scheme.
We can draw the following remarks: For a small number of nodes, which is relatively the
situation we considered in this experiment, LoRa networks with ADR disabled achieve a
better delivery ratio than those with ADR enabled. This situation can be explained in the
following context: a small number of nodes implies a less-saturated spectrum and limited
possible collisions. Under these circumstances, network ordering can be optional when
deploying these networks in small areas.

LoRa networks achieve a better delivery ratio with an activity of 15 min as compared
to 10 min and 5 min for both ADR-enabled and ADR-disabled schemes. When varying the
sampling interval, all curves show a standard behavior corresponding to their interval: sam-
pling at 5 min, which denotes more messages, implies a lower delivery ratio, as more nodes
are transmitting simultaneously and occupy the same channel. Nonetheless, the results for
both schemes are over 82.5%, which is expected for a network with these characteristics.
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Figure 9. Average delivery ratio at the network server. (a) ADR disabled; (b) ADR enabled.

4.4. Energy Consumption

This subsection presents the assessment of the energy consumption for end devices
obtained via field experiments by varying the packet frequency. The field test experiment
was performed for a 7-day period for both ADR-enabled scheme and ADR-disabled scheme,
where the results are shown in Figure 10a,b. It is essential to note that the energy consump-
tion shown in the figures corresponds to the average energy consumption for the nodes in
the network in millijoule (mJ).

It can be seen from Figure 10a that the energy consumption in the ADR-disabled
scheme is almost invariant for the days considered when varying the sampling intervals.
In the ADR-enabled scheme, the energy consumption of the devices performed better than
the ADR-disabled scheme. We observe that when the ADR-enabled networks are consid-
ered, as shown in Figure 10b, the effect of transmission control is noticeable. When frequent
transmissions occur in a network, this is the most energy-efficient scenario. The results
show a substantial energy reduction when operating in the ADR scheme, especially when
frequent communication from end devices to the network server is very frequent (every
5 min interval).
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Figure 10. Energy consumption: (a) ADR disabled; (b) ADR enabled.
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4.5. Battery Discharge Measurement

We present, in Figure 11, the battery discharge of the devices over a 14-day period with
respect to the sampling intervals of 5 min, 10 min, and 15 min in an ADR-enabled scheme.
Six devices are evaluated and divided into three different categories, with each category
sending its information at different sampling intervals, as shown in Table 3. The full
discharge test was performed on a fully charged battery. From the figure, we observe that
sampling at 15 min reduces the discharge rate as compared to 5 min and 10 min. In addition,
the battery lasted for all devices operating at different sampling times during the 14-day
experiment. The device software is configured in such a way that when the battery level
drops beyond 2.8 V, the GPS module will not be able to obtain a GPS fix. Based on this
observation, the GPS modules of the devices transmitting at 5 min intervals are disabled
at day 10 of the 14-day period. To minimize the energy consumption, the end device’s
software is designed to enter low-power modes whenever there are no active functions, as
described in Section 3.2.

Table 3. Sampling intervals.

End Devices Sampling Interval

Sheep-1 5 minSheep-2

Sheep-3 10 minSheep-4

Sheep-5 15 minSheep-6
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Sheep-1 at 5 mins

Sheep-2 at 5 mins

Sheep-3 at 10 mins

Sheep-4 at 10 mins

Sheep-5 at 15 mins

Sheep-6 at 15 mins

Figure 11. Battery discharge measurement.

4.6. Localization Accuracy

The accuracy findings of the flock of sheep through GPS are shown in this subsection.
Each device obtains the location data from the satellite in a periodic manner. In our
experiment, we set the sampling period for all devices to be 5 min. Table 4 presents the
results of a 7-day field test. MD represents the device’s maximum distance from the sheep
area’s perimeter. The average distance (AD) is denoted as the mean distance of all Sheep-i
outside of the sheep area, while out of bounds (OB) is defined as the percentage of sheep
that are located outside of the sheep area. We can make the following observations: In a
7-day experiment, the percentage of sheep outside of the sheep area sampling at 5 min was
quite low, showing good accuracy. This answer, however, does not offer the exact position
of the flock of sheep, but rather the general area of where the flock of sheep is located.
Furthermore, outside of the sheep region, the flock of sheep has an average distance of
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less than 5 m from the boundary, demonstrating the accuracy of the localization procedure.
Lastly, we also notice that Sheep-8 achieved the maximum distance of 14.2 m from the
boundary, indicating some discrepancies in the localization process. This could be due to a
shorter mission life to retrieve a reliable valid GPS signal, resulting in out-of-bounds signals.

Table 4. Location accuracy.

Sheep-I AD (m) MD (m) OB (Percentage)

Sheep-1 3.5 5.4 3.16
Sheep-2 4.98 7.6 1.32
Sheep-3 2.1 3.2 0.82
Sheep-4 0.32 0.32 0.056
Sheep-5 0.85 1.1 0.12
Sheep-6 2.7 3.9 1.82
Sheep-7 4.78 14.2 2.52
Sheep-8 1.5 1.5 0.64
Sheep-9 3.4 5.4 1.64
Sheep-10 2.52 4.3 0.76

4.7. Average Delay

In this subsection, we demonstrate the average delay for different payload sizes while
varying the SF. The average delay per received uplink packet is calculated by dividing the
total delay of all the received uplink packets by the number of received uplink packets.
The delay of one uplink packet is the time from when the uplink packet is first transmitted
until it is successfully received at the LoRaWAN gateway and becomes available to the
network server. We consider three payload sizes: (a) 10 bytes, (b) 15 bytes, and (c) 25 bytes.
These payload sizes are chosen based on the information we want to send, and also
following the maximum allowed payload size of 51 bytes according to the specification
when using slow transmissions with SF 12. We consider 10 end devices sending their
uplink packets to the network with a 15 min sampling interval for a duration of 7 days. Our
results in Figure 12 show an average delay of 10 bytes per payload packet, which increases
from 322 ms at SF7 up to 1575 ms at SF12. While the values at SF7 to SF11 for the different
payload sizes are comparatively low, we observe a considerably spread at SF12, resulting in
a delay of up to 1956 ms for a payload size of 25 bytes. Our results follow the relationship
between the time on air (ToA) and the SF. For higher SF, the impact of the payload size on
ToA increases.
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Figure 12. Average delay.
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4.8. Collisions

In this subsection, we analyze and comment on the number of perceived collisions
concerning the gateway. The result in Figure 13 shows the collisions at the gateway when
considering three different sampling intervals in a 7-day period. Although the number
of nodes is relatively small, we were still able to observe some collisions at the network
server when varying the packet frequency. The experimental results show that there is a
noticeable reduction in collisions when the sampling interval is 15 min, compared to the
high packet frequency (every 5 min). When the packet frequency is low (every 15 min), this
mechanism helps in providing a better energy usage, a higher reception throughput, and
fewer collisions.
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Figure 13. Collisions perceived by LoRa gateway.

5. Discussion

The main goal of this field test is the presentation of GPS for localization and using
LoRaWAN for control and monitoring. Modern telecommunications are aimed to provide
solutions that are carefully tailored to the specific requirements of the domain. The moti-
vations of our real trial were related to the possibility to control a flock of sheep while also
providing appropriate warning to the companies that typically leave hundreds of animals
grazing. The collected data will be processed in the cloud to extract relevant information
related to the behavior of a single sheep and the flock itself. Many aspects were covered
in this interdisciplinary collaboration that was designed not just as a demo, but as a field
test, as well as highlighting the specific requirements that qualified the challenge of this
future service aimed at improving the quality of life of the operators in the domain and of
the animals themselves, considering situations such as car crushes, train accidents, etc.

An LoRaWAN coverage of one of Italy’s most important veterinary campuses was
achieved, along with the establishment of a platform that will be extended with future
services enabled on the same infrastructure. Many issues, such as the frequency of data
acquisition, event-driven (for example, based on accelerations or chance of position) or
periodic transmission of data, setup of LoRaWAN parameters, localization precision, power
consumption, asset management, ease of use on field by the operating staff, coverage, and
lifetime, were considered in the framework of this real experience, starting with a limited
number of devices to better maintain control of the many different aspects ranging from
periodic recharging of the devices to the visualization of the data. The experience also gave
some relevant feedback on the adoption of LoRaWAN in this application domain.

Field tests show that the average PDR in both ADR-enabled and ADR-disabled
schemes was over 82.5%, which is efficient when considering a network with these char-
acteristics. From the results given, we can conclude that ADR-disabled networks behave
better than ADR-enabled networks with a small number of end devices when considering
the packet delivery ratio. We also observe, based on the results, that the use of ADR in
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LoRa networks has a noticeably positive impact on the energy consumption of the devices
in the network, but comes at the cost of the slow convergence of the ADR-enabled scheme
to adapt to the changing link conditions, requiring days to converge to energy-efficient
communication state. The importance of the ADR mechanism for dynamic and scalable
LoRa networks was demonstrated in our research. Despite the fact that the number of
nodes required to fully explore the potentials of ADR is quite minimal, our investigations
revealed certain variations when ADR is enabled. Our future research will try to expand
the pilot study of a small-scale scenario to a larger network with hundreds of nodes, several
gateways, and kilometers of areas covered, demonstrating the impact of ADR on scaling
and deployment capacity.

When compared to cellular connectivity, the usage of LoRa for communication con-
sumes less energy. With minimum infrastructure, our experimental results show great
coverage of the site area. For low data rate demands such as location reports, LoRaWAN
configurations have been shown to be cheaper and more convenient than deploying cellular
repeaters. Even if the requirements include motion reports with the accelerometer data, our
system proves reliable at the expense of extra battery life and bandwidth usage. LoRaWAN
also ensures reduced radio-frequency radiation to the animals, which means less heating
due to SAR (specific absorption rate). Such power is completely safe, as described in [77].
Other LPWAN technologies, such as Sigfox, use a similar amount of energy, but duty
policies allow just 144 messages per day, which is not sufficient when sending messages
every 5 min. Two-way satellite communications’ main drawback is associated with power
consumption and operation costs (which is quite high if we are sending movement data),
and other wireless technologies, such as Zigbee, are not adequate due to higher power
consumption, higher difficulties in the management and setup of the infrastructure, and
increased problems with respect to scalability.

A lesson learned from this work is regarding the methodology to follow for the design
and development of the hardware and software components for the location monitoring
system of our livestock in real time. One decade ago, Langendoen et al. [78] wrote a foun-
dational paper listing everything that went wrong in a precision agricultural deployment
similar to our use case, which includes board failure, unreliable network communication,
high power consumption, etc. In our deployment, low-power devices for IoT applications
have substantially evolved and have radically changed the suitability of embedded devices
on the field in around one decade. However, although IoT technology has successfully
transitioned from the academic to the commercial world, when uncommon use cases are
considered, the development and deployment of applications still require accurate cus-
tomization and complex integration activities, also giving the possibility to detail some of
the specific requirements in the domain.

6. Conclusions

This paper has presented a solution for dealing with this problem of lack of established
communication infrastructures for controlling the movements of animals from extensive
livestock farms. This study describes the development of a Smartsheep location monitoring
system based on integration of ad hoc IoT devices, LoRaWAN technology, and cloud
computing. The developed system consists of three main parts: (i) the ad hoc IoT device
in the form of a wearable that is equipped with inertial sensors, GPS, and an LoRaWAN
transceiver to transmit data retrieved from the sensors to the LoRaWAN network, (ii) an
LoRaWAN-based communication network that collects data retrieved from the sensors
and transmits it to the cloud, and (iii), the cloud solution that ensures a reliable, robust,
and secure infrastructure that supports automatic scaling of resources according to the
system needs.

To experimentally evaluate the location monitoring system, the system was deployed
in the northern part of Italy as a pilot study, evaluating its performance in terms of the
network reliability, location accuracy, battery discharge measurement, energy consumption,
and delay. Based on the results, the synergy between LoRaWAN technology and GPS
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technology provided a satisfactory compromise between accuracy, reliability, and energy
consumption. In addition, ADR-enabled schemes were compared with ADR-disabled
schemes, showing the effect of ADR on energy consumption and packet delivery ratio. This
study presented a method to locate and monitor livestock in extensive farming, which also
includes the necessity to track the movement of the animals to evaluate their impact on
the plant biodiversity, as well as the intention to virtually reduce the distance between the
animals and the shepherds.

This work, motivated by the Smartsheep project, will conduct future tests that can
be carried out in the mountainous pastures and at a large scale to study the impact of the
environment (in terms of high temperature, air humidity, pressure, rainfall, etc.) on the
LoRa performance, and propose a suitable propagation model for mountainous pastures
from the obtained results.
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