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ABSTRACT 
 

Wide-area remote monitoring applications use cellular networks or satellite links to transfer 
sensor data to the central storage. Remote monitoring applications uses Wireless Sensor 
Networks (WSNs) to accommodate more Sensor Nodes (SNs) and for better management. 
Internet of Things (IoT) network connects the WSN with the data storage and other application 
specific services using the existing internet infrastructure. Both cellular networks, such as the 
Narrow-Band IoT (NB-IoT), and satellite links will not be suitable for point-to-point 
connections of the SNs due to their lack of coverage, high cost, and energy requirement. Low 
Power Wireless Area Network (LPWAN) is used to interconnect all the SNs and accumulate 
the data to a single point, called Gateway, before sending it to the IoT network. WSN 
implements clustering of the SNs to increase the network coverage and utilizes multiple wireless 
links between the repeater nodes (called hops) to reach the gateway at a longer distance. 
Clustered WSN can cover up to a few km using the LPWAN technologies such as Zigbee using 
multiple hops. Each Zigbee link can be from 200 m to 500 m long. Other LPWAN technologies, 
such as LoRa, can facilitate an extended range from 1km to 15km. However, the LoRa will not 
be suitable for the clustered WSN due to its long Time on Air (TOA) which will introduce data 
transmission delay and become severe with the increase of hop count. Besides, a sensor node 
will need to increase the antenna height to achieve the long-range benefit of Lora using a single 
link (hop) instead of using multiple hops to cover the same range. With the increased WSN 
coverage area, remote monitoring applications such as smart farming may require mobile sensor 
nodes. This research focuses on the challenges to overcome LoRa’s limitations (long TOA and 
antenna height) and accommodation of mobility in a high-density and wide-area WSN for future 
remote monitoring applications. Hence, this research proposes lightweight communication 
protocols and networking algorithms using LoRa to achieve mobility, energy efficiency and 
wider coverage of up to a few hundred km for the WSN. 

 
This thesis is divided into four parts. It presents two data transmission protocols for LoRa 

to achieve a higher data rate and wider network coverage, one networking algorithm for wide-
area WSN and a channel synchronization algorithm to improve the data rate of LoRa links. Part 
one presents a lightweight data transmission protocol for LoRa using a mobile data accumulator 
(called data sink) to increase the monitoring coverage area and data transmission energy 
efficiency. The proposed Lightweight Dynamic Auto Reconfigurable Protocol (LDAP) utilizes 
direct or single hop to transmit data from the SNs using one of them as the repeater node. Wide-
area remote monitoring applications such as Water Quality Monitoring (WQM) can acquire data 
from geographically distributed water resources using LDAP, and a mobile Data Sink (DS) 
mounted on an Unmanned Aerial Vehicle (UAV). The proposed LDAP can acquire data from a 
minimum of 147 SNs covering 128 km in one direction reducing the DS requirement down to 
5% comparing other WSNs using Zigbee for the same coverage area with static DS. 
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Applications like smart farming and environmental monitoring may require mobile sensor 
nodes (SN) and data sinks (DS). The WSNs for these applications will require real-time network 
management algorithms and routing protocols for the dynamic WSN with mobility that is not 
feasible using static WSN technologies. This part proposes a lightweight clustering algorithm 
for the dynamic WSN (with mobility) utilizing the proposed LDAP to form clusters in real-time 
during the data accumulation by the mobile DS. The proposed Lightweight Dynamic Clustering 
Algorithm (LDCA) can form real-time clusters consisting of mobile or stationary SNs using 
mobile DS or static GW. WSN using LoRa and LDCA increases network capacity and coverage 
area reducing the required number of DS. It also reduces clustering energy to 33% and shows 
clustering efficiency of up to 98% for single-hop clustering covering 100 SNs. 

 
LoRa is not suitable for a clustered WSN with multiple hops due to its long TOA, depending 

on the LoRa link configurations (bandwidth and spreading factor). This research proposes a 
channel synchronization algorithm to improve the data rate of the LoRa link by combining 
multiple LoRa radio channels in a single logical channel. This increased data rate will enhance 
the capacity of the clusters in the WSN supporting faster clustering with mobile sensor nodes 
and data sink. Along with the LDCA, the proposed Lightweight Synchronization Algorithm for 
Quasi-orthogonal LoRa channels (LSAQ) facilitating multi-hop data transfer increases WSN 
capacity and coverage area. This research investigates quasi-orthogonality features of LoRa in 
terms of radio channel frequency, spreading factor (SF) and bandwidth. It derived mathematical 
models to obtain the optimal LoRa parameters for parallel data transmission using multiple SFs 
and developed a synchronization algorithm for LSAQ. The proposed LSAQ achieves up to a 
46% improvement in network capacity and 58% in data rate compared with the WSN using the 
traditional LoRa Medium Access Control (MAC) layer protocols. 

 
Besides the high-density clustered WSN, remote monitoring applications like plant 

phenotyping may require transferring image or high-volume data using LoRa links. Wireless 
data transmission protocols used for high-volume data transmission using the link with a low 
data rate (like LoRa) requiring multiple packets create a significant amount of packet overload. 
Besides, the reliability of these data transmission protocols is highly dependent on 
acknowledgement (ACK) messages creating extra load on overall data transmission and hence 
reducing the application-specific effective data rate (goodput). This research proposes an 
application layer protocol to improve the goodput while transferring an image or sequential data 
over the LoRa links in the WSN. It uses dynamic acknowledgement (DACK) protocol for the 
LoRa physical layer to reduce the ACK message overhead. DACK uses end-of-transmission 
ACK messaging and transmits multiple packets as a block. It retransmits missing packets after 
receiving the ACK message at the end of multiple blocks. The goodput depends on the block 
size and the number of lossy packets that need to be retransmitted. It shows that the DACK 
LoRa can reduce the total ACK time 10 to 30 times comparing stop-wait protocol and ten times 
comparing multi-packet ACK protocol. 
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The focused wide-area WSN and mobility requires different matrices to be evaluated. The 

performance evaluation matrices used for the static WSN do not consider the mobility and the 
related parameters, such as clustering efficiency in the network and hence cannot evaluate the 
performance of the proposed wide-area WSN platform supporting mobility. Therefore, new, 
and modified performance matrices are proposed to measure dynamic performance. It can 
measure the real-time clustering performance using the mobile data sink and sensor nodes, the 
cluster size, the coverage area of the WSN and more. All required hardware and software design, 
dimensioning, and performance evaluation models are also presented. 
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1. Introduction 
 

1.1 Background 
 
1.1.1 Wireless Sensor Network 

 
Remote monitoring applications use various sensors to monitor the resources wirelessly. 

Wireless Sensor Network (WSN) connects the sensors wirelessly, acquires, transmits, and 
stores the data in a central storage using the Internet of things (IoT) through the data sinks and 
gateways. IoT provides transportation and accumulation of data to central storage for further 
processing by the user. WSN capacity and coverage are increased by clustering the sensor 
nodes. Clustering is performed by grouping the sensor nodes that are connected to one or more 
than one sensor nodes by direct wireless links. One of the sensor nodes (or a special node) in 
the cluster is elected as the Cluster Head (CH), which has direct wireless connection to all the 
cluster members and accumulates the data from them. CHs of the clusters far from the gateway 
transfer their data using another CH as the repeater. Communication between the CHs and the 
gateway through multiple repeater CHs is established by multi-hop short-range links. With the 
increase of the WSN size data routing (like in a mesh network with multiple hops) becomes 
complicated and energy inefficient, requires different types of nodes (heterogenous), complex 
routing algorithm, and becomes difficult to redesign the WSN with the addition of new nodes. 
Clustering brings controllability, scalability, and homogeneity to the network by introducing 
the hierarchical structure of the WSN [1]. It also facilitates efficient routing using multiple hops 
[2]. Clustering is evolving from simple equal clustering [3] to unequal clustering [4], 
introducing dynamic thresholding [5] and offline optimization algorithms [6]. Recent research 
works are done by proposing DS relocation [7] and their path planning [8] to increase the WSN 
capacity and coverage while keeping the network elements (SN, DS, and GW) static. 

 
1.1.2 Low Power Wireless Area Network and LoRa 
 

Low Power Wireless Area Network (LPWAN) technologies are used in a WSN for 
connectivity. Among the LPWAN, Zigbee is used for short-range links, which limits the WSN 
coverage to few kms. Cellular LPWAN technologies like Narrow Band IoT (NB-IoT) and 
satellite links [9] are used for long-range point-to-point connection for remote monitoring 
applications. However, cellular network and satellite links are not used for WSN to connect the 
SNs due to the lack of coverage, high cost and energy requirement. Remote monitoring 
applications that require low data rate can use LoRa for point-to-point and long-range 
connectivity. LoRa uses Chirp Spread Spectrum (CSS) Modulation [10] to achieve better noise 
immunity for long-range communication. The range of a LoRa link depends on its Spreading 
Factor (SF). It ranges from 1 km to 15 km depending on the SF from 7 to 12.  Its range also 
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depends on the height of the antenna and Line of Sight (LOS), and the antenna height h (in m) 
can be determined by the Fresnel zone (1) at 60% clearance, where, H is the earth curvature, d 
(in km) is the length of the link and f (in MHz) is the carrier frequency.  

 
 

ℎ = 𝐻 + 8.657*!.#$
%

   (1) 

 
 

 
LoRa is orthogonal in terms of radio channel frequency and quasi-orthogonal for some 

specific combinations of BW and SFs. LoRa’s CSS modulation technique makes it immune to 
interference. LoRa receiver can receive a signal of a very low Received Signal Strength 
Indicator (RSSI) down to -130 dB and Signal to Noise Ratio (SNR) down to -10. LoRa is also 
highly immune to the doppler effect, which can be measured [11] by comparing the symbol time 
of LoRa (Ts) and the coherence time of the doppler shift (Tc). LoRa data losses occur only for 
Ts > Tc, as shown by (2), where BW is the LoRa channel bandwidth (in KHz) and Wd is the 
angular frequency shift caused by the doppler effect. It appears that the speed of LoRa nodes 
can increase with the decrease of SF and increase of BW. The node speed can be 38 km/h using 

Figure 1-1. Wide-area wireless sensor network using LoRa and UAV with application specific 
static or mobile SN and DS. 
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SF = 12, BW = 125 KHz and 76km/h for SF = 12, BW = 250 KHz. 
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   (2) 

 
 
1.1.3 LoRa-based Wide-area WSN and challenges 

 
Wide-area remote monitoring (WARM) applications, such as environmental, agricultural, 

and Water Quality Monitoring (WQM), have the resources geographically spread over a wide 
area. These applications face the challenge of connecting with the IoT network due to little or 
no cellular network coverage, the high cost and energy requirement of satellite links. Besides, 
applications like smart farming and smart city with moving sensor nodes mounted on the 
livestock and slow-moving pedestrian or vehicles may not use the traditional WSN that uses 
static network elements and offline clustering. Figure 1-1 shows the application-specific wide-
area WSN platform using LoRa, mobile DS mounted on Unmanned Aerial Vehicle (UAV) with 
static and mobile SNs. The mobile DS (position A) acquires sensor data directly from the SNs 
or the cluster head (position C). Mobile SNs can transfer data directly to the static BS or 
gateway. 

 
Although LoRa can be used in the WSN for long-range connectivity at a low data rate, it 

must overcome some challenges [12]. A single LoRa link can cover up to 50 km with LOS. 
However, a 1km LoRa link requires an antenna height above 8 m, which is not feasible for most 
WARM applications. Multi-hop LoRa link will introduce a significant amount of delay due to 
its long TOA. Like, for a 10km link, using ten hops (each of 1km) at SF = 12 (as LoRa range 
increases with the increase of SF sacrificing data rate), the total TOA will be 36s [13]. A real-
time algorithm with this link may have a clustering phase of 720s, which is entirely impractical. 
For WSN without clustering, only 25 (15x60/36) nodes can be served by that link at a 15 min 
data acquisition interval. The existing LoRa Wide Area Network (LoRaWAN) is a media access 
protocol [14] to control channel utilization down to 1% supporting more nodes in the network. 
This may limit a clustered WSN to transferring aggregated data to the GW.  

 
 

1.1.4 Research scope and Motivation 
 
The WARM applications may lack accessibility and energy sources or storage. The use of 

mobile DS mounted on a UAV may overcome these limitations. WARM applications may also 
have mobile SNs. Considering the mobility and wide-area coverage requirements, the LoRa-
based WSN may have the following research scopes.  
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- LoRa WSN may suffer coverage problems while acquiring sensor data using mobile DS 
due to its long TOA. For the moving DS, UAV is preferable for its mobility, speed, and 
ease of recharge or refueling at the base station or charging stations of the WSN. Therefore, 
LoRa-based WSN may require a lightweight and fast data transmission protocol to acquire 
data on the fly at a reasonable speed. LoRa BW needs to be more than 250 KHz with the 
SF from 7 to 10 to meet the speed requirement of a UAV overcoming the doppler effect. 

 
- LoRa-WSN may need multiple clusters to widen its coverage. The traditional clustering 

schemes use offline optimization keeping the network static. It sometimes requires a 
heterogenous network for an extended network lifetime (defined as the time the network 
elements can transfer data to the GW). A lightweight real-time (an event-driven and on-
demand basis function) and fast clustering algorithm is required for the mobile network 
elements in the LoRa-based WSN. This algorithm may utilize RSSI and SNR of the LoRa 
link to include the environmental effect and doppler effect [15] on the radio channels. 
 

- WARM applications may require an offline (not continuous streaming) image or sequential 
data transmission. The CHs close to the GW in the clustered WSNs may require sending 
data at a higher data rate. Synchronous and parallel access of multiple LoRa channels 
utilizing its quasi-orthogonality may improve the data rate of the LoRa link without 
changing the modulation technique. Protocols with reduced overhead may improve 
goodput (effective data rate).  

 
1.2 Literature review 

 
WSN dimension and data transmission capability highly depend on the network architecture 

and the clustering algorithms. Traditional offline and dynamic threshold-based clustering are 
not suitable for the wide-area WSN using LoRa that supports mobility. Various autonomous 
vehicles such as floating boats [16], UAVs [17], and underwater vehicles [18] are used to 
introduce mobility in the wide-area WSN. Offline BS relocation [19], Fuzzy logic-based [20] 
offline super CH selection is used to communicate with the mobile DS, which may increase 
hops in a wide WSN and introduce heterogeneity. The shortest path planning for multiple 
mobile nodes using ant colony optimization [21] and an optimization solution [22] for delay 
tolerant SNs introduce mobility in the WSN. 

 
Network capacity improvement using multi-hop routing [23] may suffer a time delay for the 

long TOA of LoRa. LoRa pseudo-orthogonality is utilized to improve network capacity. Offline 
SF allocation for subnet [24] of LoRa mesh network improves network coverage. Distance-
based SF allocation using Exponential Windowing Scheme (EWS) [25] reduces co-SF 
interference and improves network capacity by improving the packet delivery rate from 18.2% 
to 55.25%. However, these algorithms are intended for static networks and require GPS-based 
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location data or RSSI-based distance calculation. Dynamic SF allocation algorithm [26] utilizes 
a link capacity-based allocation iterative process. SF superimposed signals [27] using odd SF, 
and even SF needs to maintain strict synchronization to use the MAC layer that considers all 
the packets of different SF as a single transmission packet. Cantor [28] calculates the optimized 
Packet Reception Rate (PRR) for the downlink using Wane and Wax (alternate increase and 
decrease) optimization algorithm. MIMO (Multiple-Input Multiple-Output)-LoRa [29] uses 
multiple SFs for parallel transmission to improve BER at higher SF 10, 11, and 12. 

 
In parallel with traditional Chirp Spreading, ICS (Interleaved Chirp Spreading) [30] increases 

LoRa channel capacity by 42%. Slope Shift Keying (SSK) with ICS [31] used up, down and 
interleaved up and down chirp modulation to increase the data rate to 28.6%. Time-domain 
multiplexing is used for LoRa modulation [32] to distribute the bits of a symbol among different 
SFs, that double the data rate with minor degradation of bit error rate (BER), mainly at the lower 
SF (SF=7). 
 

 
1.3 Research objective 

 
This research addresses the challenges of wide-area WSN coverage using LoRa and mobile 

nodes by developing simple data transmission protocols and lightweight networking algorithms. 
The objectives of this research are: 
 
- To develop a direct or single-hop data transfer protocol in a LoRa-based WSN for wide-

area coverage using homogenous SNs. All the SNs need to be capable of working as a 
sensor node and as a repeater node as required by the data sink. This research proposes a 
lightweight dynamic auto-reconfigurable protocol (LDAP) utilizing mobile DS mounted on 
a UAV for wide-area remote monitoring applications. 

 
- To develop a Real-time clustering algorithm for mobile SNs and DSs in a LoRa-based 

WSN. This algorithm focuses on the resource constrained SNs and is fast enough to reduce 
the total clustering time to maximize mobility in the network. 

 
- To develop a data rate improvement scheme for LoRa links. It utilizes the LoRa’s quasi-

orthogonality in Spreading Factor (SF) for parallel transmission over multiple physical 
channels. To develop a mathematical model for optimum SF selection and a 
synchronization algorithm to maximize the data rate. 

 
- To develop a dynamic acknowledgement protocol to improve data goodput for image and 

sequential data transmission over the LoRa link. It reduces the packet overhead by utilizing 
the end-of-transmission acknowledgement for a block of LoRa packets determined 
dynamically. 
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1.4 Organization of the thesis 
  

This thesis is organized in a manuscript-based style. The first chapter of the thesis presents 
the technical background, an overview, the importance, and the challenges of wide-area WSNs 
using LoRa. It also includes the motivation and research objectives with related literature. The 
main content and contribution of the thesis are included in the form of published or under-review 
manuscripts.  

 
Chapter 2 presents a data transmission protocol called LDAP for wide-area WSNs using 

LoRa and mobile data sink. It utilizes UAVs to increase the WSN coverage above 100 km. 
Considering the TOA limitation, it determines the maximum network capacity for a high-speed 
UAV carrying the data accumulator. It evaluates the performance of the proposed protocol in 
terms of coverage and mobility. 

 
The manuscript in chapter 3 describes the development of a clustering algorithm for the 

LoRa-based WSN to increase network coverage and accommodate the mobility of the SNs using 
the data transmission protocol as described in chapter 2. The algorithm focuses on the resource 
constrained SNs that will participate with the DS for cluster formation and cluster head (CH) 
election in real time. It evaluates the clustering performance by clustering time using LoRa 
compared with other LPWAN (Low Power Wireless Area Network) technologies. 

 
Chapter 4 presents a synchronization algorithm required for parallel data transmission using 

multiple LoRa physical channels. It shows the effectiveness and limitations of different 
orthogonality of LoRa, such as radio channel frequency, bandwidth, and SF. It derives the 
mathematical model from determining the perfect combination of SFs in different ways for the 
application-specific requirement in terms of network capacity, coverage, and data rate. It 
compares the performance of other LoRa data rate improvement schemes and algorithms. 

  
Chapter 5 focuses on the goodput improvement of the LoRa link to transfer image and 

sequential data reducing the packet overhead. It presents the development and performance 
analysis of an application layer protocol that utilizes dynamic acknowledgement. Finally, the 
summary of accomplishments and future research scopes are presented in chapter 6. 
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2. LDAP: Lightweight Dynamic Auto-Reconfigurable Protocol in 
an IoT-Enabled WSN for Wide-Area Remote Monitoring  
 
 
This chapter describes the proposed data transmission protocol for LoRa to enhance the 

coverage, capacity, and energy efficiency of the wireless network used for remote monitoring 
applications. Wide-area remote monitoring applications like Water Quality Monitoring (WQM) 
may require monitoring the geographically spread water resources using distributed sensor 
nodes. The cellular network or satellite link-based communication technologies may not be 
suitable to connect all these sensor nodes to the Internet of Things Network (IoT) due to its lack 
of coverage, high cost and energy requirement. Short-range Low-Power Wireless Area Network 
(LPWAN) technologies such as Zigbee may require a larger number of SNs to cover these 
distributed water resources. LoRa can be used to increase the coverage area, network capacity 
and energy efficiency. LoRa range depends on the antenna height, higher Spreading Factor (SF) 
and Line of Sight (LOS). However, antenna height and LOS may not be attained for all the 
sensor nodes due to their location and terrain. Focusing on all these challenges, this research 
proposes a data transmission protocol for a mobile data sink to acquire data while maintaining 
LOS reducing the distance between the sensor nodes and the data sink. The proposed 
Lightweight Dynamic Auto Reconfigurable Protocol (LDAP) uses mobile data sink mounted 
on Unmanned Aerial Vehicle (UAV) to extend the coverage area. The long Time on Air (TOA) 
of LoRa, which increases with higher SF may suffer the Doppler effect or reduce the speed of 
the mobile data sink. Therefore, LDAP uses lower SF decreasing the TOA and direct or single-
hop data transmission to overcome the Doppler effect achieving higher UAV speed and higher 
data rate, hence increasing monitoring area coverage. 

 

The proposed LDAP configures sensor nodes as the repeater node dynamically for single-
hop transmission. The use of the Received Signal Strength Indicator (RSSI), and Signal to Noise 
Ratio (SNR) makes LDAP immune to the environmental effect on the LoRa radio signal. This 
research derives a mathematical model to calculate the WSN capacity depending on the UAV 
speed and altitude. The experimental results and the mathematical model show a significant 
reduction (up to 80%) in the number of data sinks while using the proposed LDAP. We also 
evaluated the energy consumption of the SNs and the repeater nodes to determine the lifetime 
of the WSN using the LDAP algorithm. Data transfer performance is measured in packet drop 
while acquiring sensor data in the field using LOS and no LOS. 

 
 
The development work, analysis and findings of this chapter is reported in the below 

mentioned published journal manuscript. The student contributed to the main idea, 
implementing code, writing the original draft, evaluation and revision of the manuscript. 
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Abstract: IoT (Internet of Things)-based remote monitoring and controlling applications are 
increasing in dimensions and domains day by day. Sensor-based remote monitoring using a 
Wireless Sensor Network (WSN) becomes challenging for applications when both temporal and 
spatial data from widely spread sources are acquired in real time. In applications such as 
environmental, agricultural, and water quality monitoring, the data sources are geographically 
distributed, and have little or no cellular connectivity. These applications require long-distance 
wireless or satellite connections for IoT connectivity. Present WSNs are better suited for densely 
populated applications and require a large number of sensor nodes and base stations for wider 
coverage but at the cost of added complexity in routing and network organization. As a result, 
real time data acquisition using an IoT connected WSN is a challenge in terms of coverage, 
network lifetime, and wireless connectivity. This paper proposes a lightweight, dynamic, and 
auto-reconfigurable communication protocol (LDAP) for Wide-Area Remote Monitoring 
(WARM) applications. It has a mobile data sink for wider WSN coverage, and auto-
reconfiguration capability to cope with the dynamic network topology required for device 
mobility. The WSN coverage and lifetime are further improved by using a Long-Range (LoRa) 
wireless interface. We evaluated the performance of the proposed LDAP in the field in terms of 
the data delivery rate, Received Signal Strength (RSS), and Signal to Noise Ratio (SNR). All 
experiments were conducted in a field trial for a water quality monitoring application as a case 
study. We have used both static and mobile data sinks with static sensor nodes in an IoT-
connected environment. The experimental results show a significant reduction (up to 80%) of 
the number of data sinks while using the proposed LDAP. We also evaluated the energy 
consumption to determine the lifetime of the WSN using the LDAP algorithm. 
 
Keywords: distributed wireless sensor network; wide- area remote monitoring; lightweight 
protocol; internet of things; dynamic protocol; water quality monitoring 
 
 
2.1 Introduction 

 
Remote monitoring of various environmental parameters and resources is a major area of 

interest in the planning of future initiatives and control methods. The Internet of Things (IoT) 
and wireless technologies make it simple to accommodate a large number of sensing devices 
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and gradually extend their coverage over the monitoring area. The IoT is the extension of the 
internet from our personal computers and smartphones to various types of devices, ranging from 
wristwatches to large industrial machines. It facilitates the flow of information from these 
devices to the end-user through the internet for monitoring and controlling purposes. Wireless 
communication plays a primary role in connecting most edge devices with the IoT network, and 
the Wireless Sensor Network (WSN) connects sensors in a network to collect various physical 
parameters of different systems and accumulate them in central storage. 

 
A traditional WSN connects the sensor nodes (SNs) in a clustered network [1] with static 

network topologies using multiple base stations (BSs) or a data sink (DS) and transfers the 
sensor data using multiple repeater nodes [2] to increase the monitoring coverage area. This 
type of WSN is used mainly for densely populated sensor networks and is not suitable for wide-
area remote monitoring (WARM) applications, where both temporal and spatial data is acquired 
in real time. The clustering procedure in WSNs uses various optimization methods [3] to 
improve the energy requirement and WSN lifetime. This clustering process may not be suitable 
for the battery-powered and resource-constraint nodes that are used in remote locations with 
less accessibility. A WSN also uses multiple special nodes as a hop that retransmits the sensor 
data to the BS in order to increase the WSN coverage, and also to distribute the energy load 
over the SNs. In doing so, a WSN implements complex routing algorithms which generate extra 
processing loads for the repeater nodes and the SNs, and hence, energy consumption is 
increased. 

 
Many WARM applications, such as environmental, agricultural, and water quality 

monitoring (WQM), where the resources are geographically spread over a wide area, have little 
or no cellular data coverage, and face the challenge of connecting with the IoT network. Present 
WARM applications are implemented using (a) point-to-point or point-to-multi-point 
connectivity, mainly through satellite links [4], (b) multi-hop wireless communication for long-
distance connectivity with the BS, and (c) vehicular mobile SNs [5]. Each of these 
implementations has limitations in terms of cost, energy consumption, and real-time data 
acquisition. 

 
Water quality monitoring (WQM) is chosen in this work as a useful case for a WARM 

application. Water resources are widely distributed over the globe and requires both spatial and 
temporal monitoring. Eighty percent of our daily consumption comes from surface water [6], 
of which less than 3% is usable (97.2% of surface water is ocean water and is highly saline). 
Usable surface water mainly comes from glaciers, rivers, and lakes. A natural solvent, surface 
water carries contaminating substances while traveling on the ground surface and underground. 
Through the hydrologic cycle, where surface water travels through the air and comes back again, 
it also becomes contaminated by air pollution from urbanization [7] and other environmental 
factors [8,9]. WQM also helps the planning and management of the restoration of water 
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resources and transboundary water distribution [10]. Long-term WQM facilitates the study of 
ecological changes [11], agricultural conservation practices [12], and long-term changes in 
water quality parameters. Present WARM is mainly performed by satellite imaging [13], which 
combines in situ data acquisition with the GIS (Geographic Information System) [14]. On-site 
digital-color [15], unmanned aerial vehicle (UAV)-based hyperspectral [16], multispectral, 
thermal, and optical imaging [17] are also used. 

 
To monitor agriculture, the environment, or water resources, using sensors deployed 

remotely at the site, we need to acquire the data wirelessly using a WSN. The available wireless 
connectivity systems, such as Zigbee, BLE (Bluetooth Low Energy), and WiFi, have very short 
range [18] compared to the geographical distributions of the water resources. Long-range 
wireless connectivity based on cellular networks, such as GPRS (General Packet Radio 
Service), 3G, WiMax, LTE (Long-Term Evolution), and NB-IoT (Narrow Band-IoT), lacks 
geographical coverage of most of the water resources due to large power requirements and 
infrastructural and operational costs. On the other hand, the long-range and low-power wireless 
technologies, such as LoRa (Long-Range), Sigfox, and Ingenu, are not capable of image-based 
monitoring. Lastly, the network topology to be used for the WSN depends on the geographical 
distribution and locations of the resources and the parameter to be monitored. 

 
Therefore, considering the limitations of wireless technologies, the need for various on-site 

sensors over the widely spread resources, and the lack of accessibility, this research proposes a 
lightweight dynamic auto-reconfigurable protocol (LDAP) to facilitate the implementation of 
the sensor network for real-time and long-term WARM applications. Some sensor-based 
solutions, including the presently available WSNs used for WARM applications, are described 
in the following section, followed in Section 2.4 by the problem formulation and the detailed 
description of the proposed LDAP. Section 2.5 describes the field trial of the LDAP for a WQM 
application, followed by Section 2.6, describing the performance of the LDAP in terms of 
features and WSN implementation. Section 2.7 concludes the paper with the future scope of 
LDAP applications. 

 
 

2.2 Related Work 
 

Research work related to WSN implementation for WARM applications are studied for this 
paper. WSN coverage can be improved by using multiple hops, long-range wireless links, or by 
introducing mobility to the WSN elements, such as SNs or a DS. Multiple hops in a WSN 
require network-specific routing protocols. For a WARM application such as WQM, various 
underwater routing protocols [19] have been proposed that use multiple transmission paths, a 
layered network, the creation pf a cylindrical path, the fragmentation of the packet to multiple 
forwarder nodes, multiple mobile data sinks, and mobile repeater nodes. However, because of 
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the underwater noise, multipath delay, low bandwidth, and the limited mobility of the nodes, 
these routing protocols are not suitable for above surface WARM applications which require 
wide-area coverage. In another study, the lifetime of the WSN is improved by event-driven data 
transmission [20]. This type of WSN is ideal for a static WSN with clustering, but lacks 
coverage. Compressed sensing is proposed in [21] to reduce the total energy consumption of 
the WSN where most of the sensors are used to measure very similar parameters. This may 
suffer spatial relations of the data for a WARM application where different types of parameters 
need to be acquired. In [22] base-station relocation using various local or global optimization 
algorithms are used to achieve wider coverage and energy balance in a densely populated WSN, 
which is not capable of continuous relocation to cover large geographical areas required for 
WARM. An analysis of the relocation or positioning of a mobile DS in a pre-clustered WSN 
using various optimization algorithms is presented in [23]; however, it is only suitable for static 
and densely populated clustered WSN. 

 
LoRaWAN (LoRa Wide Area Network) is a MAC (Media Access Control) layer protocol 

[24] on the LoRa physical (LoRa-PHY) layer used to control channel access and reduce 
collision and channel congestion. The LoRaWAN protocol stack is described in Section 4.1. A 
secure device-to-device communication using the LoRaWAN-IP (Internet Protocol) gateway is 
proposed in [25] to increase security, but it also increases energy consumption by 5%. 
Therefore, it is not efficient for WARM applications in terms of power consumption and 
bandwidth requirement, since the data travels inefficiently over the node to the gateway link. 
The LoRaWAN-based ADR (Adaptive Data Rate) scheme in [26] is implemented with link-
check and acknowledgment features. This algorithm is dependent on criteria that may cause an 
unnecessary delay while establishing the links, and may also cause unseen data loss for a 
densely populated mesh network. Another option with the LoRa-PHY-based multi-hop routing 
[27] to the LoRa-IoT gateway also may suffer a time delay for a long TOA (Time On Air). It 
may not support topology-independent routing that is essential for a WSN in WARM 
applications. In [28], a WSN with the LoRa interface is implemented using a random-number-
based clustering algorithm, which is suitable for static star topology. In [29], allocation of a 
specific spreading factor for each subnet is used for a LoRa static mesh WSN to improve 
coverage efficiency. Both these algorithms [28,29], may not be suitable for a mobile DS, 
because they cause topological changes in the network. A low-power data reduction technique 
is implemented in [30], using dynamic sub-sampling to reduce LoRa traffic for an 
environmental monitoring application. Given the above drawbacks of LoRaWAN and multi-
hop transmission using LoRa-PHY, only a single-hop LoRa link was considered for WARM 
applications for the proposed LDAP. 

 
UAVs are also used to provide mobility for remote data acquisition, in which dedicated 

SNs are mounted on the UAV, or UAV-based networking is implemented. However, UAV-
based network communication suffers connection disruption, causing data loss due to its 
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frequent mobility and dynamic routing [31]. To overcome this issue, there are various routing 
protocols, such as the Ad-Hoc on-demand distance vector (AODV), dynamic source routing 
(DSR), optimized link state routing (OLSR), and geographic routing protocol (GRP) currently 
being developed [32]. An energy-efficient UAV-routing protocol for a WSN is proposed in 
[33], where the energy efficiency of the SNs and the dynamic distance with a traveling DS is 
considered to determine the shortest routing path. This type of optimization may perform better 
in a densely populated WSN and may not be suitable for a WARM application where the SNs 
are widely distributed. An UAV-WSN routing protocol is implemented in [34] based on the 
shortest total path, using multiple UAVs as agents, which is mainly suitable for a clustered 
WSN. 

 
Besides the WSN, there is some off-line or point-to-point data acquisition performed for 

WARM applications. Many mobile sensor nodes are implemented by being mounted on 
autonomous vehicles such as floating boats [35], amphibious vehicles [36], UAVs [37], and 
underwater vehicles [38]. All of these require a considerable amount of electric energy for their 
mobility. These vehicles may not be capable of traveling the long range required for a WARM 
application. Moreover, static SNs powered by a solar panel [39], wireless power transmission 
[40], and network-connected sensors using ZigBee [41] need a large number of BSs for wider 
coverage. Satellite-based wireless data transmission is used in [42] for remote locations, but it 
is cost-intensive when using a large number of SNs. Community-based learning and data 
gathering [43] using smartphone apps [44] are being studied for their cultural acceptance, 
accessibility, and cellular network coverage requirements. 

 
 

2.3 Problem Formulation 
 

The limitations of currently used WSN technologies for WARM applications are: 
 

- A satellite-based solution requires considerable power and is very expensive due to image 
data acquisition and processing. 

 

- Satellite-based sensor data acquisition is a high-cost and high-energy solution and therefore, 
is used only to acquire data from a few locations or those of concern. 

 

- Present WSN technology using a short-range wireless link, such as ZigBee or Wi-Fi, requires 
a large number of sensor nodes for extensive coverage. 

 

- A WSN with a long-range wireless link, such as LoRa and Sigfox, may reduce the sensor 
node count. However, this requires a large number of base stations, as most of the water 
resources have no or inadequate cellular coverage. This will eventually increase the cost. 

 

- A large number of sensor nodes and base stations will require complicated multi-hop data 
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routing. It is not cost effective in terms of energy cost effective or resource requirements, and 
may induce latency for some wireless technology, such as LoRa. 

 

- Finally, the lack of or poor unavailability of cellular data coverage, including the NB-IoT for 
widely distributed water resources, is a bottleneck for IoT connectivity. 

 
Along with the above technical limitations, WARM requires a considerable volume of data 

acquisition for its distributed resources and a wide range of quality parameters. This requirement 
is further intensified because of the randomness and fuzziness of acquired data [45], the spatial 
and temporal variation of the parameters [46], and its dynamics [47]. The WSN for a WARM 
application, such as WQM, also demands an IoT connectivity to utilize its cloud-based data 
processing [45] for various reporting and modeling types. Therefore, an IoT-connected WSN is 
a preferable choice for this type of WARM application.  

 
 

  
(a) (b) 

Figure 2-1. (a): Water resource distribution in Northern Saskatchewan with five different zones, 
(b): Wide Wireless Sensor Network (WSN) for water quality monitoring (WQM) for Zone 1. 
 
 
Figure 2-1(a) shows the water resource distribution in lower Northern Saskatchewan in 

Canada with five different zones based on their distribution and cellular network coverage 
availability. Table 2-1 summarizes the area covered by each zone with its IoT-WSN size 
measured by visual estimation and also shows the required number of SNs, the BS, and the 
highest number of hops using the presently available technology. The dimensions of the zones 
mentioned here is the measure of length and width. This WSN deployment is done using the 
short-range link ZigBee, commonly used for various clustered WSNs [1], and the long-range 
link LoRa, used for wide-area coverage [30]. The short-range link is of 500 m and the long-
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range link 1 km to 5 km. Figure 2-1(b) shows a probable WSN deployment in zone 1 to monitor 
almost 80% of the water resources. The rest of the zones can be distributed similarly. There are 
16 WSNs in zone 1; each one has at least one BS, and the number of SNs under every BS 
depends on the range of the wireless link used and the preferable number of hops. IoT 
connectivity can be implemented using the available cellular data network coverage close to the 
urban area and long-range point-to-point wireless links for the remote area. 

 
 

Table 2-1. WSN requirements for the water resources shown in Figure 2-1(a). LDAP: 
lightweight dynamic auto-reconfigurable protocol. 

 

Zone 
Dimension 

L × W 
(km × km) 

Number of BSs Required Number of SNs 
Required 

Number of Hops 
Required 

Energy Efficiency * 
(%) 

Short- 
Range 

[1] 

Long- 
Range 

[30] 
LDAP 

Short- 
Range 

[1] 

Long- 
Range 

[30] 
LDAP 

Short- 
Range 

[1] 

Long- 
Range 

[30] 
LDAP 

Short- 
Range 

[1] 

Long- 
Range 

[30] 
LDAP 

1 30 × 80 60 16 3 3000+ 480 480 8 5 1 94.2 95.0 99.7 
2 30 × 55 30 8 2 1000+ 150 150 5 4 1 96.5 94.7 99.3 
3 50 × 25 40 12 3 2000+ 300 300 8 5 1 94.2 94.0 99.5 
4 15 × 55 15 4 1 150+ 50 50 8 5 1 71.2 88.5 99.0 
5 10 × 25 6 2 1 100+ 25 25 5 3 1 92.9 95.4 98.0 

*Explained later in Section 2.6.3 
 

 
Figure 2-2. A Wide-Area Remote Monitoring (WARM) application focusing the WQM with dynamic 

network configuration. 
 
 

From Table 2-1, it can be seen that the WSN dimension is not directly related to the 
geographical area but to the distribution of the water resources, the technology used, the 
availability of wireless connectivity, and the network topology to be used. A large number of 
SNs increases the network topological complexity, which can be reduced using long-range SNs 
and a larger number of BSs. However, it still suffers from the network routing complexity, the 
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increased energy requirement for the repeater nodes introducing heterogeneity, and the 
requirement for various optimization algorithms [48] or a layered protocol [49]. Considering 
the above limitations and complexity of the available WSN technologies, this paper proposes a 
lightweight, dynamic, and auto-reconfigurable WSN protocol (LDAP) for the resource and 
energy-constrained SNs. This LDAP uses a homogeneous network with both static and mobile 
data sinks instead of static or relocatable base stations [23]. The improvements due to the 
proposed LDAP are also evident in Table 2-1, in terms of the number of BSs, number of hops, 
and energy efficiency of the WARM network, which will be described in the performance 
analysis section. Implementation of the proposed LDAP using an UAV where ground mobility 
is limited and the WQM application are described in Section 2.5.  
 
 
2.4 Proposed Solution 

 
Figure 2-2 shows the geographically distributed water resources with partial or no cellular 

coverage for connecting the SNs with the IoT network. Here, the WSN is based on LoRa, and 
the IoT connectivity is achieved using a LoRa-IoT gateway. It also shows different types of 
WSN topologies, where a sensor node is acting as a repeater and communicating with a mobile 
data sink under partial cellular coverage. The mobile DS is mounted on an UAV to access the 
remote SNs when other means of vehicular movement may not be possible. A mobile DS, under 
partial cellular coverage, can also act as a LoRa-IoT gateway. On the other hand, an offline 
mobile DS (position A) stores the sensor data from the water resources with no cellular coverage 
and uploads the data to the IoT server when it comes to cellular coverage (position B). While 
designing the proposed dynamic protocol and the SN's auto self-reconfigurable capability for 
WARM, our primary focus is on the following: 

 
1. Selection of wireless communication technology; and 
2. Lightweight dynamic communication protocol. 

 
 
2.4.1 Selection of Wireless Communication Technology 

 
The requirements of the wireless network are: low power and long-range wireless 

technology for the WARM-specific WSN, and other wireless technology with higher bandwidth 
and with a low-power requirement for IoT connectivity. Cellular networks are constantly in 
transition, deploying newer generation technology such as 3G to LTE, or LTE to 5G. As the 
entire service provider still to deploy 5G with NB-IoT capability, 3G or LTE is a better option 
than any other technologies to connect the WSN with the IoT network wirelessly, depending on 
the bandwidth requirement and availability. However, all cellular networks need an 
infrastructure with considerably more power compared with SNs. Depending on the WSN 
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dimensions and network topology, it may generate very little to moderate traffic for cellular data 
networks such as LTE and 3G. Moreover, to provide and maintain cellular coverage for all the 
water resources, which are mainly in rural areas for WARM, is not feasible either commercially 
or technologically due to a lack of accessibility. Therefore, we need a non-cellular wireless 
network for the WSN in some areas and the existing cellular network depending on its 
availability. 

 
Table 2-2. Low-Power Wireless Area Network technologies basic features. LoRa: Long-range. 

 
Technology Standard Data Rate (bit/s) Range (km) Required Power  

NB-IoT 3GPP Cellular 250 k Urban 8, Rural >25 Low 
LoRa Proprietary <50 k Urban 5, Rural >15 Very Low 
Sigfox Proprietary 100 Urban 10, Rural 50 Very Low 
Ingenu Proprietary 20 Urban 3, Rural 15 Very Low 
Dash7 ISO/IEC 18000–7 13 k, 55 k, 200 k 1–2 Very Low 

6LoWPAN IEEE 802.15.4 Less than 250 k <0.1 Low 
ZigBee IEEE 802.15.4 20 k, 40 k, 250 k <1 Low 
Wi-Fi IEEE 802.15.11 Up to 54 M 0.2 High 

New Wi-Fi IEEE 802.15.11ah >150 k, <7.8 M 1 Low 
 

Table 2-2 summarizes the basic features of Low-Power Wireless Area Network (LPWAN) 
technologies [50–52], such as LoRa, Sigfox, Dash7, Ingenu, ZigBee, 6LoWPAN, Bluetooth, 
and Wi-Fi. Although NB-IoT is a cellular technology, it is included in Table 2-2 as it is designed 
for IoT connectivity for SNs. Among these LPWAN technologies, LoRa was chosen for its low-
power, long-range connectivity, and performance evaluation in several recent works [51]. Table 
2-2 shows that LoRa falls in the third position in terms of range and the second position in terms 
of data-rate. However, because of the requirement of the cellular infrastructure and the related 
high operational cost of NB-IoT, LoRa can be chosen for the WSN connectivity for WARM as 
a low-cost option. Unlike LoRaWAN, LoRa-PHY can be used to achieve more flexibility to 
configure the WSN topology as star, tree, or mesh by implementing a custom network layer on 
it. Moreover, LoRaWAN supports three types (A, B, and C) [53] of channel acquisition. In 
contrast, custom channel acquisition can be achieved using the proposed layer on top of LoRa-
PHY; Figure 2-3a shows the protocol stack used with LoRa-PHY in this paper relating with the 
OSI layers. Figure 2-3b shows the LoRa-WAN stack compared with the proposed stack. The 
basic three layers are shown in this stack, which are the LoRa-PHY, proposed, and application 
layers. The proposed layer corresponds to the network, transport, and session layers of the OSI 
(Open Systems Interconnection) reference model. In the network layer, it uses the physical IDs 
of the SNs and the DS to select the logical route. In the session and transport layers, it forms the 
LoRa payload packet for the sensor data along with some headers to maintain the connectivity 
for the logical route. To keep the protocol lightweight for the SNs all these OSI layers are 
implemented together as a single function, as described in the following subsection. 
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2.4.2 Lightweight Dynamic Communication Protocol 
 

Along with the LoRa interface, the WSN coverage can be further enhanced by introducing 
a mobile DS. However, mobility in the WSN makes the topology dynamic; hence, the 
communication protocol becomes complicated, demanding more processing resources and 
energy. Therefore, a lightweight and dynamic protocol is crucial to cope with the dynamic 
topology while maintaining a long WSN lifetime. This protocol involves both the SNs and DS 
to keep the WSN homogenous (in terms of energy consumption of the SNs) and to make it 
dynamic for the mobile DS. The SN needs to have the capability to reconfigure itself for the 
different network topologies, such as star and tree topology. In the star topology, all the SNs 
will communicate directly with the DS. In the tree or mesh type, most SNs communicate with 
another SN called the repeater node (RN) which maintains the DS's connectivity. A lightweight 
algorithm for the SN is also developed to reconfigure it as an edge SN or RN dynamically, 
depending on the direct or single-hop routing requirement for the proposed LDAP. As the 
proposed LDAP is based on the LoRa-PHY layer, unlike LoRaWAN, a DS-controlled channel 
access scheme is implemented along with pre-configured addressing for the SNs. The main 
assumptions are: 
 
 

 
(a)                                                                                   (b) 

 
Figure 2-3. (a): LoRa network protocol for the WARM system, (b): LoRaWAN protocol stack. 

 
 

- Each SN and DS has its unique fixed ID; 

- All the SNs are homogeneous in terms of resource and residual energy; 

- The SN is static, and the DS is static or mobile; 
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- All SNs and the DS transmit their signals at a fixed transmit power; and 

- The mobile DS travel path is well planned prior to data acquisition. 

 
This proposed protocol is a master-initiated communication protocol to keep better 

synchronization in the WSN. Figure 2-4 shows the message format without the LoRa packet 
header. A single packet can be 12 to 256 bytes. Packet transmitter and receiver types (ST, RT) 
can be any of the DS, RN, or SN. Table 2-3 describes all the fields of the LDAP packet with 
example values. ST and RT facilitate the SN and DS to configure the WSN dynamically as a 
star or tree topology according to the WARM requirement. SQN keeps track of the link between 
the data request to data received in order to cope with the multi-node transmission, mainly in a 
tree network. PLT and EOM facilitate a multi-packet data transfer for a payload larger than 245 
bytes. A multi-packet data transfer can be implemented for offline data acquisition by the mobile 
DS or for sensor data acquisition at a very high rate, such as multiple samples for every transfer 
interval. The payload consists of the sensor data, measured parameter unit, and timestamp. It 
also includes the node ID to implement the message transfer by the repeater node. 

 
 

Tag RT RID ST SID MID SQN PLT PLL PL EOM 

Size (byte) 1 2 1 2 1 1 1 1 1 to 245 1 

 
Figure 2-4. Implemented message format of LDAP. 

 
Table 2-3. IoT-WARM Communication packet description of LDAP. 

 
Tag Full Name Values Example 
RT Receiver Type 1/2/3 1: sink, 2: RN, 3: node 
RID Receiver ID 0001 to FFFF Device ID (1 to 65535) 
ST Sender Type 1/2/3 1: sink, 2: RN, 3: node 
SID Sender ID 0001 to FFFF Device ID (1 to 65535) 
MID Message ID 1–4 1: Req., 2: Ack., 3: Data, 4: Conf., 5: Init. 
SQN Msg. seq. number 1 0–255 (binary) 
PLT Payload Type 0/1 0: last block, 1: multi-block 
PLL Payload Length 1–245 8bit data stream 
PL Payload Binary/ASCII Sensor data with date-time 

EOM End of message 0/1 0: Last packet, 1: Continuous packet  
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 2-5. Date transfer protocol (a): from the SN to DS, (b): from the SN to DS through 

the RN, (c): from the SN to RN. 
 
 

The LDAP has three phases: initialization, configuration, and routing. In the initialization 
phase, the SN configures itself automatically with the sensors connected. The parameters need 
to be acquired, including the interval for data acquisition and the node’s initial energy state. This 
configuration can also be done at the beginning of the WSN deployment or at any time required 
by using the configuration message (MID = 5). For the mobility of at DS, both configuration 
and routing phases are performed simultaneously in the data transfer request message (MID = 
1). The WARM configuration message (MID = 4) is also implemented for a fixed topology 
while using a static DS. The acknowledgment message (MID = 2) is implemented for the 
synchronization of the data transmission message (MID = 3) to enable sensor data transmission 
from the edge SN to the DS or RN, and from the RN to the DS. Figure 2-5a shows the direct 
DS to SN data transfer protocol. Figure 2-5b shows the configuration and data transmission 
from the DS to SN through the RN, and Figure 2-5c shows the data transfer protocol between 
the SN and RN. Every data transfer from the SN to DS through the RN ensures a single-hop 
data transmission to reduce data transfer energy consumption. The selection of a different SN 
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as the RN for every round of non-direct data transfer helps to maintain the energy balance in the 
WSN, thus keeping the WSN homogeneous, which is very important for dynamic network 
topology. This dynamic RN selection can be performed by proper DS travel route planning, 
using an offline optimization algorithm. 

 
 

  
 

Figure 2-6. (a) Software algorithm for the SN 
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Figure 2-6 (b) SN dynamic routing algorithm 
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Figure 2-6 (c) software algorithm for the DS. 
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An algorithm to perform LoRa wireless link configuration, packet construction, data 
processing, and synchronization functionality for the LDAP is implemented both in the SN and 
the DS. Figure 2-6 shows the software algorithms implemented in the SN and DS. In Figure 2-
6(a), the SN performs the initialization and configuration at the start, then reads the sensor and 
waits for a message from the DS for data upload to the DS. After the initialization phase, the 
DS starts communication with the SN in a loop and tries to acquire sensor data from the SN 
database, as shown in Figure 2-6(c). If no SN responds in a specific time, it requests a SN with 
the lowest RSSI (Received Signal Strength Indicator) and highest energy level to relay the 
missing SN's data. Figure 2-6(b) shows the dynamic RN implementation algorithm for the SN. 
Dimensioning of the WSN and planning the DS travel path depends on the WARM 
implementation, network configuration, and LoRa link quality described in Section 2.6.  

 
 

2.4.3 Timing Model 
 

The number of SNs covered by a mobile DS depends significantly both on the data 
acquisition interval and the LoRa Time On Air (TOA). Because LoRa uses Chirp Spread 
Spectrum (CSS) modulation, its TOA is highly dependent on the bandwidth (BW), and the 
spreading factor (SF) used, as shown in Equation (1). This equation is derived from the equation 
given in the manufacturer data sheet [54] and uses a set of nominal values for the parameters 
given in Table 2-4. It was validated using the online tool [55]. Therefore, network coverage by 
a mobile DS also depends on the BW and packet length used. The total time for data acquisition 
depends on the routing from the SN to the DS, as shown in Figure 2-5. For direct SN to DS data 
transmission, the total time TAQSN can be calculated using Equation (2). The total time of data 
transmission from the SN through the RN, TAQRN, will be the sum of several data requests, 
acknowledgement, and data transmission messages, as shown in Equation (3). 

 
 

𝑇𝑂𝐴	 = 	&20.25 + ceil 0&
2𝑃𝐿 − 𝑆𝐹 + 7

𝑆𝐹 78 	× 	57:
2"#

𝐵𝑊= (1) 

 
𝑇./)0 = 𝑇12) + 𝑇2)0 

 
(2) 

 
𝑇./10 = 𝑇12) + 𝑇.10 + 𝑇110 + 𝑇2)0 + 𝑇210 + 𝑇.2) 

 
(3) 

 
Where TRDS is the TOA of the data request message from the DS, TARN is the TOA of the 
acknowledgment message; TRRN is the TOA of the data request message from the RN; TDSN is 
the TOA of the data message from the SN; TDRN is the TOA of the data message from the RN; 
and TADS is TOA of the acknowledgment message from the DS. For simplicity, all the requests 



 41 

and acknowledgement messages are considered to generate a 16-byte LoRa payload, and the 
data transmission and retransmission messages are 256 bytes. Therefore, TRDS = TARN = TRRN = 
TADS = TOAmin, and TDSN = TDRN = TOAmax. Then equation (3) can be written as Equation (4), 
and the time can be calculated using the values given in Table 2-4. 
 
 

𝑇./10 = 4𝑇𝑂𝐴345 + 2𝑇𝑂𝐴367 = 4𝑥197.25	 + 2𝑥33.41 = 855.82𝑚𝑠 (4) 

 

𝑁$%& 	= 	ceil &
Duty	Cycle

T 	×	𝑈'( 	× 	𝑅)(7 (5) 

 
 
 

Table 2-4. LoRa parameters with their default and calculated values. 
 

Symbol Description Value 
SF Spreading Factor 7 
BW Bandwidth (KHz) 250 
CR Code Rate 1 
nPR Preamble length 8 
H Explicit Header Enable (0: enable) 1 

CRC Cyclic Redundancy Check Enable (1: enable) 0 
D Low data-rate enable (0: disable) 0 

UCH LoRa channel utilization 10% 
TOAmax Time On Air (TOA) at maximum payload size of 245 bytes 197.25 ms 
TOAmin TOA at minimum payload size of 16 bytes 33.41 ms 

 
 
The last acknowledgment message from the DS is an optional message for event-sensitive 

data transmission (hence, TADS = 0 and TAQ = 822.41 ms). The maximum number of SNs covered 
by a single DS can be calculated using Equation (5). UCH and ROH stand for wireless channel 
utilization over the whole WSN and the SN's processing overhead ratio, respectively. Given a 
data acquisition interval of 15 min and 20% processing overhead (which depends on the SN 
hardware design and is obtained from the experimental data for the implemented SN), the 
maximum number of SNs (Nmax) under one DS is found to be 142 for the given LoRa 
parameters. 

 
 

2.4.4 Energy Model 
 
The total energy consumption for a message or data transmission by the SN is the sum of 

event-specific energy consumption and calculated using Equation (6). The power and timing 
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measurements were performed during the lab experiments, as described in Section 6.3, where 
PAC, PRX, and PTX are the power requirements at active, LoRa-receive, and LoRa-transmit 
events, respectively, and TAC, TRX, and TTX are the times required for those activities. This total 
energy requirement is highly dependent on the hardware design of the SN. For complete data 
transmission using the LDAP, the total energy consumption of a SN can be given by Equation 
(7), where EA1 is the energy consumption for request and acknowledgment messages (TTX = 
TOAmin) and EA2 is the maximum energy consumption for a data transfer message (TTX = 
TOAmax). Similarly, the total energy consumption of the RN, for data transmission through it, 
can be provided by Equation (8). Therefore, the total WSN energy consumption can be 
calculated using Equation (9). The average per node energy requirement (EAV) per cycle can be 
given by Equation (10), where k is the number of data transmissions through the RN. Energy 
efficiency (η) for the proposed LDAP can be calculated using Equation (11). From this equation, 
it is shown that the energy performance of the proposed LDAP depends on the number of hop 
or repeater nodes used in the WSN. Energy consumption calculation values are given in Table 
2-5, using the experimental values of TTX. 

 
 

 
 

Figure 2-7. Data transmission from the SN to the mobile DS mounted on an unmanned aerial 
vehicle (UAV). 
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𝐸10 = 4𝐸.; + 2𝐸.( (8) 
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𝑘
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2.4.5 Mobility Model 

 
The proposed LDAP can be implemented using any type of ground or over-the-ground 

vehicle depending on the WARM applications. However, most of the WARM applications may 
require remote connectivity where the SNs are difficult to access using ground vehicles. 
Therefore, for the WARM case, an UAV-mounted DS is considered. Figure 2-7 shows an UAV-
mounted DS, which is moving from its initial position, a, to b and then to c, at a ground speed 
of VUAV, at an altitude of H, and with the LoRa link distance from the RN represented by L. The 
projected position of the DS is shown as DS` at different times (at a`, b`, and c`). The projected 
distance between the RN and the DS` is D, which is considered equal to H for optimized altitude 
vs. the wireless link coverage condition, so that D = H = 0.7 L. An UAV-mounted DS needs to 
perform two tasks; link establishment and data transfer. To keep the proposed LDAP 
lightweight, these two tasks are designed to meet the UAV speed and the LoRa TOA. According 
to the experimental setup used for the WQM case, we calculated a data transfer time through 
the repeater node (TAQRN) as 856 ms for the maximum sensor data size of 245 bytes. We can 
calculate the number of SNs data messages to be transferred using a low to medium height 
UAV, such as the Zephyr 7 [56], with the following conditions: 

 
- UAV altitude is 3.5 km for a 5 km LoRa link; 
- UAV maximum ground speed = 50 km/hr = 13.8 m/s = 833 m/min; and 
- The data transfer ratio through the repeater node = 100%. 
 
With the above conditions where the minimum distance between the DS and SN (L) is very 

high compared with the distance traveled per second (or the time of TAQRN) by the UAV, the DS 
can be considered static for the period of TAQRN. As shown in Figure 2-7, when all the SNs are 
distributed at a minimum distance of 3.5 km (0.7 L) from the RN, they will communicate with 
the DS through the RN only in the worst case scenario. The DS can travel half of the SN-DS 
distance (3.5 km) in 126 seconds without losing the connection with the RN, and during this 
time it can receive data from at least 147 SNs. Table 2-1 shows that with the LDAP, the SNs 
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are much more distributed or the number of SNs within the 3.5 km range is lower than the 
number of SNs that the UAV-mounted DS can acquire data through the RN. The maximum 
number of SN density can be calculated as 56 (3.5* 480/30) for zone 1. Therefore, the UAV-
mounted mobile DS with the LDAP can easily be implemented for the WQM case as described 
in Section 2.3. Similarly, using the proposed LDAP, the mobile DS mounted on a specific UAV, 
traveling at an altitude of H (= 0.7 L), can acquire data from the number of SNs (SNUAV) which 
can be calculated using Equation (12). 
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2.4.6 WSN Dimensioning 
 
Dimensioning of a WSN mainly depends on various application-specific requirements and 

can be done using automated network dimensioning tools. Dimensioning of a widely distributed 
WSN depends on several factors, such as the number of SNs, maximum and minimum link 
distances. The data acquisition interval, the number of BSs/DSs, and, mostly, the distribution 
of the data sources from which the parameters' variability can be acquired. Given all these 
factors, using the timing model of the LDAP described in Section 4.3 and based on visual 
inspection, a WSN can be dimensioned for a given area as shown in Figure 2-1a. Table 2-1 
shows the dimension of a WSN using the LDAP, while keeping the number of SNs unchanged 
for better differentiation between them in terms of the number of BSs/DSs. For zone 4 and zone 
5, the number of SNs is very low to get the benefit of a mobile DS; hence, the WSN with a 
mobile DS is more efficient with widely distributed SNs than with the densely populated SNs. 

 
 

2.5 Field trial and Validation 
 
The field trial consists of the hardware implementation of the SNs, the WSN 

implementation in the field near the water resources, and lab experiments for SN performance 
measurement. 

 
 

2.5.1 Hardware Implementation 
 
A low-power SN is designed to implement and test the proposed LDAP using an 8-bit 

microcontroller (MCU), namely the ATMega328, with only 32 kB of ROM (Read Only 
Memory), 4 kB of RAM (Random Access Memory), and running at 16 MHz. Figure 2-8(a) 
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shows the hardware block diagram of the SN with LoRa and sensor connections. With the 
SX1276 LoRa module at 915 MHz, the MCU is capable of interfacing four analog sensors and 
four digital sensors simultaneously through the built-in ADC (Analog to Digital Converter) and 
I2C (Inter Integrated Circuit) interface, respectively. The MCU used in the SN is powered by a 
12 V to 5 V voltage converters, and the sensors connected with it also need to operate at 5 V. 
The total SN is powered by three 18,650 Li-Ion batteries, each of 6000 mAH, providing 10.8 V 
to 12 V, which can also be replaced by a 12 V lead-acid battery with a 12 V solar panel for 
external charging for lengthy remote operations. Figure 2-8b, and figure 2-8c show two SNs 
connected with a LoRa wireless module, battery, and the different types of sensors used in the 

  
(a) 

 

  
(a)                                                    (c) 

 
Figure 2-8. (a): Hardware block of SN, (b): RN with air-quality sensors, and (c): SN 

with pH and turbidity sensors. 
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field trial. The DS and LoRa-IoT gateway are implemented using a Raspberry-Pi with LoRa, 
Wi-Fi, and a dedicated LTE-Wi-Fi access point. 

 
 

  
(a) (b) 

 
Figure 2-9. Google Map view of (a): WQM field trial setup of Sensor Nodes SN1, SN2, 
SN3, and Data Sinks DS1, DS2, DS3; (b): different positions of the mobile data sinks. 

 
 

2.5.2 Experimental Setup 
 
As WQM is used here to show the performance of the proposed LDAP algorithm, we used 

different types of sensors with the SNs mainly to collect various water quality parameters such 
as pH, turbidity, and temperature, and air parameters such as temperature, pressure, and 
humidity. In Figure 2-9a, a Google map view of one field trial is shown, where three SNs (red 
dots) were installed with one static DS (red triangle) and one mobile DS; lines of different color 
show the LoRa links. In the first phase, we collected sensor data using the static DS1 from SN1, 
SN2, and SN3 directly, and then we collected data from SN1 via the SN3 as the RN using DS2 
(red lines). SN1 has no line of sight (LOS) with DS2 (the green line shows the link with no line 
of sight). In the second phase, we collected data from SN1 using a mobile DS. Figure 2-9b 
shows the map view of some positions of the mobile DS. We also measured the energy 
performance of the SNs using an energy monitoring and logging setup in the laboratory. 

 
 
 

160m
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2.6 Performance Analysis 
 
We evaluated the performance of the proposed protocol by measuring the SN's functionality 

as a RN in terms of the data delivery rate through the RN, the LoRa performance with the mobile 
DS, and the energy performance of the SN in different functional modes.  

 
 

2.6.1 Functional Performance 
 
We evaluated the functional performance of the SNs in a fully configured IoT network. We 

used seven SNs to collect data from different types of sensors and send them to the IoT server 
through two data sinks. The system was also configured to form the network in two different 
ways: star networks (SN to DS direct link) and tree networks with the DS using any one SN as 
the RN, where one SN does not have direct wireless connectivity with the DS. Data from a SN 
were acquired at three-second intervals, which is a very high rate compared to 15-min intervals; 
thus, more than 800 packets were collected during the two-day experiment. Figure 2-10a shows 
the pH and turbidity data taken from the South Saskatchewan River gathered directly from two 
different SNs to the DS and via the RN, respectively. Figure 2-10b shows the air-quality data 
received from the temperature, pressure, uncalibrated TVOC (total volatile organic compound 
measure), and humidity sensor on the river bank. Data delivery success rate between the SN 
and DS was 100%, and through the RN was 99%. 
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(b) 

 
Figure 2-10. WQM parameters (a): pH and turbidity from two different SNs, (b): 

Temperature, humidity, pressure, and uncalibrated total volatile organic compound measure 
(TVOC) from different SNs. 
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(b) 

 

    
(c) 

 
Figure 2-11. (a): Data loss at different RSSIs and SNRs, (b): RSSI and (c): SNR changes 

with the distance between the SN and DS. 
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2.6.2 Network Performance 
 
Network performance was measured in terms of RSSI (Received Signal Strength Indicator), 

SNR (Signal to Noise Ratio), and data loss from the SN received by the DS. For the WARM 
application in some remote locations using a mobile DS radio signal, the quality depends on 
various environmental parameters along with the distance between the SN and the DS. With 
varying distances, data loss is the primary performance indicator, and when measured was found 
to depend on both the RSSI and SNR. Figure 2-11a shows that data loss becomes significant 
when the RSSI goes below −95 dBm with the SNR below 0. Increasing data loss was observed 
with a decrease of the SNR and RSSI, mainly above a 1000 m distance and without a line of 
sight. Figure 2-11b, c show the relationship between the RSSI and SNR with the distance 
between the SN and DS, respectively; the line curve is for the median values, and the box graphs 
show the ranges of RSSI and SNR values at different distances. These results can also be used 
by the mobile DS to improve the data delivery rate by using a RN or by changing the transmit 
power or the travel path. 

 
 

2.6.3 Energy Performance 
 
The SN's energy performance is one of the first parameters to measure the SN’s life in the 

field and the lifetime of the WSN. The SN has three main components for measuring energy 
consumption: the MCU, the LoRa module, and the sensors. Irrespective of the components used, 
the total power consumption of the SN varies at the different events performed by the SN. These 
events mainly depend on the software algorithm and transmission time required for the protocol 
used. The events used to measure the SN's energy performance are startup-mode (the MCU is 
initializing), active mode (the MCU is running the normal functions such as housekeeping and 
sensor reading), sleep mode (the MCU is not running, and only the RTC (Real Time Clock) and 
sensor are functional), LoRa data receive mode, and LoRa transmission mode. We use a DC 
energy measuring unit and log the data to monitor the input voltage, current, and power 
consumption of the SN, at a resolution of 1 mV and 1 mA. The voltage is measured at the input 
of the sensor node as shown in Figure 2-8a and after the DC-DC converter. The DC-DC 
converter efficiency is considered to be 85% to calculate the lifetime of a node with the power 
supply used. The SN is configured to transmit data at three-second intervals to measure the 
energy consumption of the SN at different events, and the MCU operates at 16 MHz without 
any sleep mode. In the beginning, the MCU is re-started to begin the initialization event; it then 
moves to the active mode followed by the LoRa reception and transmission activities. The entire 
event’s duration and power requirement are measured using an energy meter and data logger. 
Table 2-5 summarizes the event duration, voltage, current, power, and energy consumption, 
including energy consumption for a complete cycle. In this experiment, LoRa transmission time 
is kept close to the TOAmax by using a data packet size of 165 bytes. For the field operation with 
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a data transfer interval of 15 min, the MCU can be in sleep mode most of the time other than 
when it is active, and during LoRa transmission events. In this configuration, the LoRa 
transmission channel utilization was calculated as only 0.015%, which is very low compared 
with the LoRaWAN channel utilization ratios of 0.1% and 1.0%. Therefore, using LoRaPHY 
can increase the LoRa channel capacity, and hence, can accommodate more SNs in a specific 
WSN. SN lifetime using three 18,650 Li-Ion battery of 3.6 V and 6000 mAH, can be calculated 
as 681 days, which is a rough estimate and may depend on the working temperature of the sensor 
node itself.  

 
 

Table 2-5. Event-wise energy calculation of the SN with a 3-sec cycle using the LDAP. 
 

Event Duration (mS) Voltage (V) Current (mA) Power (mW) Energy (mJ) 
Active TAC = 2,407 5.01 31 PAC = 155.31 EAC = 373.83 

LoRa Rx TRX = 336 5.01 44 PRX = 220.44 ERX = 74.07 
LoRa Tx TTX = 135 5.00 148 PTX = 740.00 ETX = 99.90 
Full cycle  2,878    547.80 
 
 
The overall energy efficiency of the WSN using the proposed LDAP can easily be 

calculated using Equation (11). One method to measure the energy efficiency of a specific WSN 
algorithm or protocol is to express it in terms of the ratio of the energy required without 
implementing that algorithm or protocol and the total WSN energy required with the algorithm 
or protocol implemented. As the energy required for the algorithm or protocol is highly 
dependent on the method of implementation (software algorithm or methodology), the energy 
efficiency of the LDAP is not comparable with other routing protocols or algorithms using their 
proposed implementation. However, a comparison in terms of the energy efficiency is shown 
in Table 2-1 based on the general concept and Equation (11), where k is calculated using the 
number of hops (h) and the data relay factor (𝜇), as shown in Equation (13). 

 
 

k =  𝜇 H>
(
(ℎ + 1)K (13) 

 
Therefore, k is highly dependent on 𝜇, which is highly dependent on the WSN topology 

used, and 𝜇 is variable over the whole WSN. It is lower for the higher hops than the lower ones. 
For a WSN with a short-range wireless link and a higher number of hops, 𝜇 will be very low. If 
the same values of 𝜇	are used for both the WSN with short-range [1] and long-range [30] 
wireless links it will have very low (50% to 70%) energy efficiency, which is not practical. To 
improve the energy efficiency of traditional WSNs, various clustering and optimization 
algorithms are implemented with the added costs of SN hardware resources and processing 



 52 

energy. Therefore, the energy efficiency shown in Table 2-1 is calculated using different values 
for 𝜇; 𝜇	 = 	0.1 for a WSN with a long-range wireless link. For a WSN with a short-range 
wireless link with hops fewer than 5, 𝜇	= 0.1, and with hops greater than 5, 𝜇	 = 	0.05. As the 
proposed LDAP is designed considering only one hop, 𝜇	 = 	0.5 is used for the WQM case. 
Even after optimization is applied to the traditional WSNs, the proposed LDAP shows an 
improvement in terms of energy efficiency.  

 
 

2.6.4 Timing Performance 
 
Timing performance of a routing protocol can be measured in terms of the time required 

for the data to be received by the DS from the SN after sending the data request message. The 
data request message has two main components: processing time (including message decoding, 
data encryption, and data packet processing) required for the specific protocol and the TOA of 
the wireless technology used. For the LoRa wireless network used with the proposed LDAP, 
the processing time (around 7 mS as measured for the prototype SN) is around 5% compared 
with the LoRa TOA (135 mS).  

 
 

2.6.5 Features and Comparison 
 
The proposed LDAP achieved the objectives of the WSN coverage in terms of the number 

of SNs and its geographical coverage, as well as meeting the long lifetime requirement. Table 
2-1 shows a significant reduction (50%) in data sinks in zone 5 with cellular coverage, and is 
significantly reduced (81%) in zone 1 with poor cellular coverage. Moreover, other main 
features of the proposed LDAP are as follows: 

 
• Unlike the UAV-mounted SNs or multi-hop static WSN, a mobile DS can increase the 

monitoring area coverage significantly. The proposed LDAP can acquire the sensor data 
using the mobile DS mounted on an UAV for most of the WARM applications where ground 
mobility may not be possible. UAV-based mobility is not possible for the SNs with short-
range wireless links [1], as described in Section 2.3, due to the required altitude of the UAV; 
hence, long-range wireless connectivity is required. Moreover, multi-hop routing used for 
the traditional WSN may not be suitable for the mobile DS due to the routing complexity of 
the dynamic network topology. 
 

• A mobile data sink is more energy efficient than a mobile sensor node, as the number of 
DSs is much lower than that of the SNs that would be required to cover the same area being 
monitored. The energy required to facilitate mobility to the SN or DS depends highly on the 
type of vehicle (or other means) used is not considered. However, for the same type of 
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mobility, a WSN using a mobile DS requires significantly lower energy compared with the 
WSN with a mobile SN. For a static SN with a static BS, there is no energy required for 
mobility; however, it may incur other costs due to the high number of BSs. Unlike image-
based data acquisition, WARM applications do not require continuous streaming and the 
SNs can store data over time. The stored data can be transmitted when a wireless link is 
established with the DS, and in this way, the SN can acquire sensor data at a rate as high as 
1-minute intervals and transmit it at 60-minute intervals using the proposed LDAP. 

 
 

Table 2-6. Features of the proposed protocol and comparison with other technologies. 
 

 Proposed 
LDAP 

Remote node 
[42] 

Vehicle-
mounted 
[35–38] 

Conventional WSN 
[39–41] 

SN type Static Static Mobile Static 
Network topology Dynamic Static star Static Star Static Star/tree 

DS type Static/mobile Static Static Static/relocatable BS 

Routing hop Direct, single 
hop Direct Direct Single/multi-hop 

Energy consumption Low Low High Medium 
Wireless interface LoRa Satellite - ZigBee and other 

Coverage 
Wider coverage 

using UAV 
mounted DS 

Small coverage 
for static SN 

Limited 
coverage using 

only mobile SNs 

Wider coverage using a 
large number of nodes 

Processing overhead Very low NA NA Moderate to High 
Deployment complexity Low Moderate Moderate Moderate to High 

Features Low cost,  
low power  

Low cost, less 
coverage High cost,  Need network planning 

or optimization 
 
 
• In terms of coverage, the number of mobile SNs is reduced compared to the static SNs; 

however, it may lose data coherence over time, which can be overcome by using static SNs 
associated with a mobile DS. 

 
• Most of the routing optimization, clustering, and cluster head election in the WSN is 

performed using the residual energy and location of the SNs to keep the energy consumption 
of the SNs uniform (using a smaller cluster size closer to the DS) over the WSN. However, 
most of these procedures do not consider the environmental impact on the wireless signal 
quality, and require high processing resources and energy for the SNs, or use heterogeneous 
nodes (special nodes with higher energy consumption and capacity). The proposed LDAP 
can select direct RN-based data transmission, based on the residual energy, RSSI, and SNR 
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of the SNs. Therefore, it is more immune to the environmental impact on the wireless signal 
quality and can maintain the energy balance among the SNs with very low energy 
consumption due to its light weight.  

 
• Moreover, most of the present cluster based WSNs use multiple hops for data transfer, which 

require maintaining a static network topology or a complex routing optimization for any 
changes of topology due to the relocation of the BS. In contrast, the proposed LDAP does 
not depend on the network topology, as it uses direct or single-hop data transmission from 
the SNs to the mobile DS.  

 
• Present WSNs require complex clustering and routing algorithms to improve the efficiency 

of overall energy consumption. The complexity and processing load of this type of algorithm 
demand an additional resource (such as a high-speed processor and extra memory), which 
introduces energy overhead and cost. It makes the deployment of the WSN complicated and 
reduces scalability. On the other hand, the proposed LDAP uses only direct and single-hop 
data transfer, which is lightweight and suitable for resource-constrained sensor nodes. In 
addition, it reduces the deployment and expansion overhead in WSN implementations.  
 
Some features of the proposed LDAP and other available technologies are summarized in 

Table 2-6. Unlike vehicle mounted mobile SNs, the LDAP uses static SNs to reduce energy 
consumption and the complexity of WSN deployment. It also helps to implement mobile DSs 
over the wide WSN, which is not used in any type of existing solutions. The use of mobile DSs 
requires support for network topology changes, which is achieved easily by avoiding multi-hop 
data transmission as done in most of the conventional WSNs. Unlike the satellite link and other 
wireless technologies such as Zigbee, the LDAP is optimized for LoRa (higher TOA than non-
CSS technologies), which makes it consumes less energy and capable of wider geographical 
coverage. 
 
 
2.7 Conclusion and Future Scope 

 
This paper has addressed the main challenge of an IoT-based WARM system, where real-

time data acquisition is required for the distributed resources. We have proposed a lightweight 
dynamic auto-reconfigurable protocol (LDAP) for the SNs using a mobile DS to increase the 
WSN coverage geographically and to maintain a long WSN lifetime. The proposed LDAP also 
focused on minimizing the number of hops for data transmission, which also reduced the routing 
complexity, and the DS-based control further reduced the processing load of the SN, thus 
increasing its lifetime. It is shown that the efficiency of the proposed protocol is highly 
dependent on the geographical distribution of the SN, and maximum benefit can be achieved 
for two-dimensional (over both the length and width of the monitoring area) SN distribution. 
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Maximum coverage and energy balance of the WSN also depend on proper path planning for 
the DS, which can be achieved offline by implementing various path optimization schemes. For 
future study, an offline or real-time path planning algorithm for the mobile DS could be 
developed to achieve the energy balance of the proposed LDAP. The coverage of the WSN for 
some applications, such as smart farming, where the sensor nodes are distributed both 
longitudinally and laterally with the direction of the moving DS, could be improved. A minimal 
clustering algorithm with a single-hop transmission could be implemented for a mobile DS. 
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3. LDCA: Lightweight Dynamic Clustering Algorithm for IoT-
Connected Wide-area WSN and Mobile Data Sink using LoRa  

 
This chapter presents the proposed networking algorithm to improve network coverage, 

capacity, and energy efficiency for the WSN with mobile sensor nodes and data sink that utilizes 
LoRa for wireless connectivity. Wireless Sensor Network (WSN) using LoRa increases network 
coverage by extending the link. Mobile data sink with the Lightweight Dynamic Auto 
Reconfigurable Protocol (LDAP), as described in the previous chapter, can further extend this 
coverage. However, the mobile data sink may require travelling through multiple paths to cover 
more area for some applications like environmental monitoring and smart farming. An 
increasing number of data sinks may reduce the travel time for every data sink, extending the 
network coverage with additional cost and energy. Clustering is performed by grouping multiple 
sensors so that all can be connected to one or more sensor nodes by direct wireless link to 
increase the WSN coverage and improve energy efficiency. In a clustered WSN, sensor nodes 
of the distant clusters send their data through another sensor node (elected as the cluster head 
using the clustering algorithm) as a repeater. Nowadays, clustering is performed offline for the 
WSN with static sensor nodes and data sink. The WSN with mobile sensor nodes or data sinks 
requires real-time clustering during (or just before) the data accumulation process performed by 
the mobile data sink. Excessive processing and data transmission activities involved in frequent 
and real-time clustering reduce the energy efficiency and hence network lifetime. Therefore, 
this research proposes a lightweight and real-time clustering algorithm to reduce clustering time 
and increase energy efficiency. It also enhances the WSN lifetime, capacity, and coverage area. 

 
The proposed Lightweight Dynamic Clustering Algorithm (LDCA) utilizes LDAP and 

performs real-time clustering before every data transfer phase to update the sensor node 
distribution in the WSN, considering the movement of the sensor nodes and data sinks. Due to 
the single-hop nature of the LDAP, LDCA creates two clusters at a time to reduce data overhead 
and clustering time. data sink initiates and controls the clustering phase. It elects two Cluster 
Heads (CHs) from the homogeneous sensor nodes based on their Received Signal Strength 
Indicator (RSSI), Signal Noise Ratio (SNR) and stored energy level. The possible maximum 
number of non-overlapped neighbor SNs are assigned to each CHs to maximize their coverage. 
Unlike other RSSI-based clustering schemes, LDCA avoids distance calculation and complex 
parameter optimization to reduce the clustering time and energy requirement, which is critical 
for the long Time on Air (TOA) of LoRa. 

 
This research also proposes new matrices to measure the performance of a real-time 

clustering algorithm that supports mobility in the WSN. Mathematical models are derived for 
real-time clustering using LoRa, memory requirement and clustering efficiency of the 
constrained sensor node and data sink for various mobility scenarios. The proposed LDCA 
reduces the energy requirement to 33% compared to static clustering by reducing the number of 
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concurrent clusters and hops. In addition, a hardware-based approach was used to validate the 
LDCA algorithm and evaluate its performance in terms of energy efficiency, packet delivery 
rate, and network lifetime.  
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Abstract—Wide-area monitoring applications of an Internet of Things (IoT) connected 
Wireless Sensor Network (WSN) consists of sensor nodes (SNs) with limited hardware and 
energy sources. The distributed nature of such a network and the difficulty of remote access 
makes it more demanding to design an energy efficient WSN. Moreover, long-range and low-
power wireless connectivity is a challenge in IoT-connected applications. Present WSN 
topologies deal mainly with fixed SNs, SN distribution, and fixed data sink (DS). The majority 
of the control layer is implemented in the lower hierarchical layer or in a virtual middle layer, 
which reduces the network lifetime due to excessive processing and data transmission activities. 
This paper proposes a real time lightweight dynamic clustering algorithm (LDCA) for a WSN 
that supports the following two scenarios with limited processing resources: (a) with mobile 
DSs and static SNs (such as, DS mounted on UAV and autonomous vehicles), and (b) with 
mobile SNs and static DSs (such as, livestock monitoring or autonomous robots in smart 
farming, and urban monitoring). The proposed algorithm is based on the Received Signal 
Strength Indicator and Signal to Noise Ratio of a LoRa (Long Range) interface and its residual 
energy. Mathematical models were derived for real-time clustering using LoRa. Memory 
requirement and clustering efficiency of the constrained SN and DS for various mobility 
scenario were evaluated. The proposed LDCA reduces the energy requirement to 33% compared 
to static clustering, by reducing the number of concurrent clusters and hops. In addition, a 
hardware-based approach was used to validate the LDCA algorithm, and evaluate its 
performance in terms of energy efficiency, packet delivery rate, and network lifetime. 

 
Index Terms— Dynamic clustering, lightweight algorithm, LoRa, Internet of Things, Wireless 
Sensor Network, mobile sink, and mobile sensor node 
 
 
3.1 Introduction 

 
Wireless sensor network (WSN) faces challenges with the increased demand for wider 

coverage area. Existing long-range wireless technologies, like LoRa or ZigBee, are yet to 
support wide-area coverage in the range of hundreds of km due to the inherent limitations of 
higher power consumption, reduced LOS (Line of Sight), and complex network topology. The 
satellite-based long-range wireless monitoring [1] is not cost effective. Therefore, there is an 
opportunity to use ground-based LoRa wireless link and UAV (unmanned aerial vehicle) [2] to 
extend the coverage area and remote accessibility. Combining these two technologies to 
improve the coverage further has technical challenges, like accessibility, low-energy 
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requirement, and network management. This paper focuses to overcome these challenges by 
proposing a real-time clustering algorithm for a LoRa based network. 

 
Unlike WSNs with short-range links, in a long-range WSN like urban monitoring or 

environment monitoring in the mountains, the sensor nodes (SNs) are often not densely 
populated and distributed along various dimensions. For this type of wide-area monitoring 
applications, SNs may need to transfer data to the data sink (DS) or base station (BS) over 
multiple hops, which is not energy efficient, and reduces the WSN lifetime. SNs in a wide-area 
WSN may lack sufficient sources of energy and have less accessibility. Therefore, a mobile DS 
mounted on the UAV can be introduced for the wide-area WSN. The advantages of using a 
UAV are that they can be refueled or recharged at the base-station or charging stations easily 
and frequently. On the other hand, applications like, smart farming with moving SNs (mounted 
on livestock) may move without any predefined path, where a fixed multi-hop topology is not 
possible. Moreover, depending on the applications, all the SNs of a WSN need to be of very low 
power, especially those run by batteries and at remote locations. Energy-efficient SNs may also 
have limited processing resources like memory and processing speed. 

 
Hierarchical designs are already proposed that utilize heterogeneous network, clustering, 

and data compression to improve energy performance, WSN lifetime, and monitoring-area 
coverage of the WSN. Clustering is achieved by grouping the SNs in a geographical area [3]. 
Each cluster has a head, called cluster head (CH), which transfers or relays the accumulated data 
to the BS or DS directly or through other CHs. Clustering is one of the basic techniques used to 
improve WSN performance. Many algorithms are used for clustering, mainly in equally or 
uniformly distributed WSNs, where the positions and number of SNs are fixed. When clustering 
is used in a static WSN, residual energy is a primary consideration. Most algorithms are based 
on a low-energy adaptive clustering hierarchy (LEACH) [4], its variants [5], or LEACH with 
minor improvements [6]. Some algorithms use other parameters, like the quality of service 
(QoS) [7], the distance between the SNs and DS, or the geographical location of the SNs [8]. 
Clustering is also implemented using a control layer in a WSN or fog computing [9] of the IoT 
framework. In [10] multiple CHs are used in a single cluster with CH rotation. Multiple hops 
are also proposed for energy balance in the WSN. 

 
All these static clustering algorithms suffer hot-spot and coverage problems due to an 

unexpected short life of some SNs near the DS, creating coverage problems for some SNs that 
use the SN as a hop. To overcome these problems and make the WSN scalable, fault-tolerant, 
and balanced, and to stabilize the network for different topologies, unequal clustering is 
proposed. This unequal clustering uses the random selection of CHs [11], the response time of 
a hello message [13], and GPS (Global Positioning System) [12] to get the location of a SN. 
The SN needs to change its transmit power to reach the BS [14], after the distance is calculated 
between the SN and BS using RSSI (Received Signal Strength Indicator) [15]. The main 
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limitations of these unequal clustering algorithms are: (1) the WSN deployment complexity of 
multi-layered clustering, (2) additional resource requirements of a fog-based virtual control 
layer, (3) higher data transmission of a software-based offline optimization for information 
gathering, and (4) a long transmit-time for WSNs during multi-hop routing or information-
gathering phase. 

 
Moreover, the SNs and DS’s mobility in a WSN results in topology changes dynamically; 

as a result, it requires a dynamic and real time clustering algorithm, which involves both the SN 
and DS. LoRa, used for the wide-area WSN, has a higher time on-air (TOA) than other LPWAN 
(Low Power Wireless Area Network) technologies. Therefore, the clustering algorithm also 
needs to be fast enough for the mobile DS and SN while maintaining the wireless link between 
the DS and the candidate CHs. Considering the dynamic requirements of a WSN in wide-area 
monitoring applications, this paper focuses on the low-power, resource-constrained, and self-
reconfigurable devices of the SNs. It also considers the mobility of the SNs and DS for wider 
coverage. The contribution of this work is as follows: 

 
1. A novel lightweight dynamic clustering algorithm (LDCA) is proposed for homogeneous 

WSN with resource-constrained SNs and a LoRa (Long Range) wireless interface, based 
on RSSI, SNR (Signal to Noise Ratio), and residual energy along with a mobile DS and 
mobile SNs. The performance of the proposed LDCA is evaluated in terms of network 
lifetime, clustering time, and hop requirement. 

 
2. A resource-constrained SN is developed for a homogeneous hierarchical wide-area 

monitoring application. The SN can reconfigure itself dynamically both as an edge node 
and a repeater node (RN) or a CH.  

 
Recent work on dynamic clustering using mobile DS and BS relocation is described in the 

next section. Section 3.3 describes the system model with mobile SNs and a mobile DS, and 
their possible applications in order to illustrate the proposed algorithm. The proposed clustering 
algorithm is described in section 3.4. The experimental results are presented in Section 3.5. 
Section 3.6 presents the performance of the LDCA and comparisons with other related work in 
terms of efficiency and other features. Section 3.7 concludes the paper with the future scope of 
LDCA applications. 

 
 

3.2 Related Work 
 
In traditional dynamic clustering, most of the algorithms use a variable threshold and CH 

rotation. These algorithms do not support a mobile DS or SNs due to changes in network 
topology in the WSN. The research based on a mobile DS has mainly focused on path planning 
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[16] of the DS through various optimization approaches. BS relocation also has been proposed 
using a predefined path for a WSN with a fixed cluster, where the member SNs elect their CHs 
based on predefined weight [17]. The DS's repositioning in a known clustered WSN may not be 
suitable for an unclustered wide WSN.  

 
The work in [18] uses a mobile DS for isolated SNs and shows how the lifetime and data 

throughput can be increased by using multiple mobile DSs. Scheduling for a mobile DS is 
proposed in [19] to support data transfer for SNs with variable sensing intervals. It focuses 
mainly on the SN's memory overflow management which can easily be done using larger local 
storage. It does not provide any CH election algorithm and may increase the DS's mobility rate 
in a wide WSN. Fuzzy logic is used in [20] for clustering and CH election, and a super CH is 
selected to communicate with the mobile DS, which may increase hops in a wide WSN and 
introduce heterogeneity. Ant colony optimization is used in [21] for the shortest path-planning 
of multiple mobile nodes, where the CHs are located in the center of the cluster, and the mobile 
DSs travel in a loop. This is suitable to minimize the travel path for a densely populated circular 
WSN. An optimization solution is proposed in [22] which considers the data transmission delay 
that a SN can tolerate. However, it does not consider the DS's travel-time from one SN to another 
SN and not the environment-dependent radio parameters like the RSSI. A multi-hop data 
transmission protocol to a mobile DS is proposed in [23], using static CHs called i-agents. 
Because all SNs and the DS need to know their absolute locations, the protocol is not suitable 
for a WSN with long-range links. Clustering based on dynamic thresholding of random numbers 
is proposed in [24] using the distance from the sink to transfer data to the BS by a moving agent. 
All the related calculations are performed by the SNs and may generate overhead. This 
algorithm is suitable for a densely populated WSN with the BS located in the center. 

 
 

3.3 System Model 
 
In addition to the mobile SNs and DS used for applications like environmental monitoring, 

water quality monitoring, and smart farming may have poor or no cellular coverage to connect 
a WSN with the IoT network, and the SNs may need to be distributed geographically over a 
wide area. On the contrary, applications like a smart city have better cellular coverage with 
densely populated sensor nodes. A mobile DS can improve wireless coverage for a widely 
distributed WSN, and a mobile SN (such as smart farming with moving livestock or a smart city 
with moving pedestrians) can be used to cover more data sources. However, the mobility of a 
DS or SNs in a WSN creates topology changes and may cause hot-spots in the WSN. Figure 3-
1 shows the application-specific WSN model that is addressed in this research by proposing a 
dynamic clustering algorithm. It shows four types of WSN applications: (1) urban monitoring 
in a smart city, (2) environmental monitoring, and (3) smart farming based on LoRa, where any 
SN can act as a CH to transfer data to the mobile DS (mounted on an UAV or any other vehicle), 
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and (4) applications where a mobile CH can transfer data to a static base station (BS). LoRa 
alternates to the cellular network in a WSN for IoT connectivity through the LoRa-IoT gateway. 
For urban monitoring with partial cellular data coverage, a static BS or a mobile DS (at position 
3) can also act as a gateway using the IP (Internet Protocol) link over the cellular data network; 
or a mobile CH can transfer data to a static BS or LoRa-IoT gateway. 

 
On the other hand, a smart farming application may not have any cellular data coverage. 

The mobile DS (position 4) collects sensor data from the moving livestock through the CH and 
uploads it to the IoT server when it comes under cellular coverage (position 5). For applications 
like environmental monitoring or water quality monitoring that may have both static and mobile 
SNs, the mobile DS may need to travel a long distance to be under cellular data coverage. 
Therefore, the mobile DS collects data from the WSN (position 1) and travels close enough to 
a static LoRa-IoT gateway (position 2) to upload the data to the IoT server.  

 
 

 
 

Figure 3-1. Wide-area monitoring applications using IoT-connected WSN with 
mobile DSs and mobile or static SNs 

 
While designing a WSN for wide-area monitoring applications, we need low-power and 

long-range wireless technology for the sensor network and a different wireless communication 
technology for IoT connectivity with higher bandwidth and less dependency on the power 
requirement. To provide and maintain cellular coverage for a widely distributed WSN, mainly 
in rural areas, is not feasible either commercially or technologically due to lack of accessibility. 
Therefore, we need a non-cellular wireless network for a widely distributed WSN in some areas 
along with the existing cellular network, depending on its availability. Among the LPWAN 
(Low Power Wide Area Network) technologies, LoRa is chosen for its low-power and long-
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range connectivity based on the performance evaluated in [25, 26]. Unlike LoRaWAN (LoRa 
Wide Area Network) and NB-IoT (Narrow Band IoT), LoRa-PHY (LoRa Physical) can be used 
to achieve more flexibility for dynamic topology configuration by implementing a custom data-
link with network layers on it. LoRaWAN supports three types (A, B, and C) [27] of channel 
acquisition, whereas custom channel acquisition can be used for the proposed LDCA. 
 
 

3.4 Proposed Algorithm 
 
Along with the changes in dynamic topology, the proposed LDCA algorithm uses LoRa for 

its low-power and long-range capabilities. However, since LoRa has longer TOA than other 
LPWAN technologies due to its narrow band-width and spreading factor [34], the time required 
for clustering operation plays an important role in the total energy of the LDCA algorithm. 
Therefore, to keep the time minimum is one key objective of the work. In addition, to maintain 
the low energy requirement, the LDCA algorithm must have an efficient data transfer scheme 
(as explained in section 3.6). For the remote SNs with energy scarcity, the LDCA considered 
the SN as a resource constrained element in terms of energy and hardware resources [28]. The 
LDCA works in real-time where, the clustering process is performed by both the DS and SNs. 
To maintain the homogeneity of the WSN, all the SNs must be capable of functioning as a CH; 
hence, a SN can reconfigure itself either as an edge SN or as a CH during the data transfer phase. 
The auto re-configurability aspect is described in subsection 3.4.3. 
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(b) 
 

Figure 3-2. WSN topology in LDCA with (a) moving SNs and static DS/BS, and 
(b) moving DSs and static (or moving) SNs 

 
 

 Therefore, while developing the algorithm for a wide-area WSN with mobile SNs and/or 
mobile DS, we establish the following conditions: 

 
1. All the SNs are homogeneous in terms of hardware resources and energy requirement, 

2. LoRa transmission power is fixed and the same for all the SNs, 

3. The DS is mobile and follows a predefined path and stop-points to keep the routing simple,  

4. SNs may have slow mobility in a WSN and will be in the DS (or CH) coverage, maintaining 
an RSSI threshold for the period of one cycle of operation, and 

 

5. All SNs have a unique physical ID over the WSN. 

 
Figure 3-2(a) shows the WSN with moving SNs and static DS/BS applicable for urban 

monitoring and start farming applications. Figure 3-2(b) shows the WSN with static SNs and 
moving DS, which is better matched for environmental monitoring or water quality monitoring 
applications. It is noticeable that a WSN with the static BS may require more BSs to cover the 
same area as covered by a WSN with mobile DS. Therefore, WSN with mobile DS is used for 
a detailed analysis and modeling of the proposed LDCA. It is also applicable for the WSN with 
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static DS/BS. Figure 3-2(b) indicates the predefined path, direction, and stop-point (using off-
line path planning tools or optimization algorithms) for the mobile DS. Thus, all the SNs are 
distributed around the DS forming two dynamic clusters with the DS’s positions. The proposed 
LDCA uses RSSI and SNR as the QOS (quality of service) parameters, not to calculate the 
distance or directions of the SNs from the DS or CHs, but to reduce the computational load for 
the SNs. However, RSSI and SNR have a relationship with the distance between the SN and 
DS, that is further explained in section 3.5. 

 
For a very short duration, the SNs can be considered static with respect to the DS forming 

two static clusters on both sides. The two CHs, shown as Z1, Z2, with CH1, CH2, and Di are the 
group of SNs that are in the communication range of the DS. R is the maximum range of LoRa 
coverage with the predefined threshold for the RSSI and SNR. To cover the maximum possible 
SNs in a period and to maintain the total time to sink sensor data through the CHs and the overall 
energy requirement of the CHs at their lowest levels, the following conditions are needed in 
order to form the clusters and to elect the CH: 

 
1. SNs within the LoRa coverage range of the elected CH will form the cluster, 

2. Only one CH will be elected on one side of the DS, 

3.  A cluster centering the DS will be avoided, 

4. No cluster will be considered with SNs on two different sides of the DS, as shown by the 
shaded area in Figure 3-2, and 

 

5. The DS has an updated local database of the SN’s unique ID, whose data are to be acquired 
for a particular geographical route. 

 
 

Table 3-1 Symbols used for the algorithm 
 

Symbol Description Unit 
Zi Cluster with the ID i  

CHi Cluster head of cluster i  
Dij Distance between SN and DS m 
Ri LoRa coverage of a CH m 
Rds LoRa coverage of the DS m 

RSSIij RSSI for a SN to DS receive dB 
SNij Sensor node with the index in cluster i  
Eij Energy utilization of a SN mJ 
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3.4.1 Clustering and CH election algorithm 
 

The proposed algorithm has three main phases, which are initialization, clustering, and data 
transmission. The initialization phase creates the CH-candidate list and elects the CH; it creates 
the neighbor list for the elected CH with maximum coverage and minimum overlap in the 
clustering phase. Table 3-1 lists the symbols used for the remaining sections of this paper, where 
I stands for the cluster-index and j stands for the node index of a cluster (different from the 
unique SN-ID that will be used in the communication protocol). 

 
 

Table 3-2 LoRa Parameters with their default values 
 

Symbol Description Value 
SF Spreading Factor 7 
BW Bandwidth (KHz) 250 
CR Code Rate 1 
nPR Preamble Length 8 
H Explicit Header Enable (0: enable) 1 

CRC Cyclic Redundancy Check Enable (1: enable) 0 
D Low Data Rate Enable (0: disable) 0 
PL Pay load (0 to 256 bytes)  

 
 

Candidate CH list creation: At the beginning of the clustering and CH election process, 
the DS will broadcast a CH election request and wait for the response from all the SNs in its 
coverage Rds. The DS will create a list of the candidate CHs based on their residual energy level, 
RSSI, and SNR, which will consist of SNs from both sides of the DS. To avoid collision of the 
SNs transmission, SNs will introduce a time delay as a multiple of the six lower bits of ID (as 
explained in the protocol sub-section) and the TOA (time on air). The TOA can be calculated 
using equation (1), derived from the manufacturer datasheet [29] and validated using the online 
calculator [30] with the LoRa parameters given in Table 3-2.  

 
 

𝑇𝑂𝐴 = M20.25 + ceil RM(?@A)*BC
)*

ST 5S M(
*+

+,
S      (1) 

 
 

For a 10-byte CH request message, the TOA will be 18.05ms. Therefore, for the 
recommended duty cycle of 2s, we can calculate the maximum number of SNs in a cluster as 

 
 

𝑁367 = ceil M2DEF	8F'HI
(	:J.

S = 64      (2) 
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For a densely populated WSN where all SNs are within the coverage of the DS, we can 
have a total of 64 SNs. For a uniform distribution of SNs, a cluster has 32 SNs on each side of 
the DS. The possibility of a collision of the SNs' transmitted messages, as shown in Figure 3-2, 
depends on the relative positions of the SNs within the coverage area Rds of the DS with a Node 
Degree (number of neighboring nodes) [8] of 6 for a widely distributed WSN. These SNs are 
considered to be at the same distance from the DS (Dij=radius of Rds/2). Therefore, if all six SNs 
have the same lower 6-bits of their ID; the possibility of data collision of their transmitted 
messages will be 

 
𝑃'KH = 6M ;

#L
S = 0.094      (3) 

 
However, this can further be reduced by reassigning the IDs of the SNs during their 

deployment.  
 

Neighbor list creation: This can be done using either an offline database stored in the DS 
or regenerating the database dynamically depending on the application. For an application with 
static SNs offline database, applications with moving SN regenerating database would be 
preferable. The choice between these two options can be made based on total memory and 
energy requirements.  

 
1) Static SN and mobile DS 

 
The offline database is an N-dimension square matrix, where N is equal to the number of 

SNs of the whole WSN or a geographical part to be covered by the moving DS. For a widely 
distributed WSN, it may grow up to 256x256 or more. The memory requirement for the 
neighbor list database can be calculated using equation (4).  

 
 

𝑀𝑒𝑚𝑜𝑟𝑦&E6E4' = 2𝑘 + MM
N
S
(
     (4) 

 
 

Where, k is the number of SNs in the WSN with 16-bit IDs. The first part of the equation 
(which is 2k) represents the memory requirement in bytes to hold the IDs of the k number of 
SNs. The second part (which is k/8) is a bitmap for a SN with other SNs having neighborhood 
relation or not (1 or 0), and the square comes for all the k number of SNs with the remaining (k-
1) number of SNs neighborhood relationship bitmap. For self-neighborhood, the specific bit is 
insignificant; however, it is stored in the memory space for linearity. Therefore, for k=256, 
memory requirement will be 1536bytes, and for the maximum value of k = 216. The memory 
requirement will be 68 Mbytes. This memory requirement can be met in a DS as implemented 
using a RaspberryPi 3B, and no memory is required in the SNs. 
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2) Mobile SN and static DS 
 

For applications with mobile SNs with static or mobile DS, a dynamic neighbor list is 
generated by the candidate CH and DS. Therefore, memory constraint SN is considered. In this 
process, the DS will send a neighbor-list update message to the SNs listed in the candidate CH 
list created in step-1. Each candidate CH will broadcast a Presence message, receives the 
response, generate a neighbor list of its own, and send it to the DS. The memory requirement in 
the candidate CHs for the dynamic neighbor list can be found using equation (5). 

 
 

𝑀𝑒𝑚𝑜𝑟𝑦H4&E = 2𝑖 + ∑ 2𝑗74
7O;    (5) 

 
 

Where, i is the number of SNs in the CH candidate list, assuming each of them has its 
cluster, and this number will be two at the end of the CH election process. The dynamic database 
will be an i.jmax matrix as follows. 
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The memory requirement for this matrix can be calculated using equation (6). 
 
 

𝑀𝑒𝑚𝑜𝑟𝑦$F5634' = 2𝑖 + 2𝑗367 + M
4
N
S MT/01

N
S    (6) 

 
 

Where, i = number of SNs in the specific CH candidate, i = 2 at the end of the CH election 
process which examines only two CHs in two clusters.  

 
 

CH election and clustering: This step's main objective is to elect only two CHs and their 
clusters with minimum overlap. After prioritizing candidate CHs based on energy, the RSSI, 
and SNR, the candidate with the maximum number of neighbors will be elected as CH1. A 
single-bit flag is used to count the neighbors in the neighbor list, and then a bitwise AND 
operation is performed to elect CH1 and CH2.  Similarly, an exclusion list is generated which 
is not in the neighbor list of the CH1 and CH2. This process can be done iteratively by choosing 
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different candidate CHs to minimize the overlap. The clustering phase needs to be done once 
before the data accumulation by the DS, and the same clustering phase will be performed for 
the next geographical location or for rotation of the CH. CH rotation can be performed using 
threshold values for one or any combination of residual energy, RSSI, and SNR of the present 
CH. Table 3-3 summarizes the CH election from 4 candidate-CHs based on their neighbor list, 
as shown in Figure 3-2(b). Here, numeric IDs are used for the SNs other than the candidate CHs 
for simplicity. In cluster 1, CH1A and CH1B are chosen as CH candidates with 7 and 5 
neighbors SNs, respectively. As CH1A has more non-overlapping SNs than CH1B, it is elected 
as the CH for cluster 1. Similarly, CH2A is chosen for cluster 2. 

 
 

Table 3-3 CH election and clustering: Candidate CHs with their neighbor list 
 

Cluster ID Candidate CH Neighbor List 
(Overlapped) 

Total SN Total non-overlapped 
SN 

1 CH1A (5) 1,2,3,4, (6, 7, CH1B) 7 4 
1 CH1B (8) 9, 10, (CH1A, 6, 7) 5 2 
2 CH2A (14) 15,16,17, 18 (CH2B, 12, 13) 7 4 
2 CH2B (11) (12, 13, CH2A) 3 0 

 
 

 
 

Figure 3-3. Implemented message format for LDCA to be used with LoRa-PHY 
 
 

3.4.2 Data transfer protocol 
 

To implement the proposed algorithm, a lightweight communication protocol over the 
LoRa-PHY is also proposed. Unlike LoRaWAN, a data sink controlled channel access scheme 
is implemented using the SN-ID. A master initiated communication protocol keeps the SN’s 
energy requirement low, avoids collision of SN transmission, and provides better 
synchronization in the WSN. Figure 3-3 shows the message format with the LoRa preamble and 
CRC (Cyclic Redundancy Check), where implicit header mode is used to reduce LoRa TOA. 
One single packet can be 12 to 256 bytes depending on the regional channel utilization limit 
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defined by the LoRa alliance. The packet transmitter and receiver types (ST, RT) can be any of 
the data sink, cluster heads, and end nodes.  

 
 

Table 3-4 IoT-WQM communication packet description 
 

Tag Full name Description and values 
RT Receiver Type 1: sink, 2: CH, 3: node 
RID Receiver ID 0-65535 
ST Sender Type 1: sink, 2: CH, 3: node 
SID Sender ID 0-65535 
MID Message ID Message and payload type 
MT Message Type 0x0 - 0x3 

0x0: Data transfer, 0x1: Command 
MSG Message 0x0 - 0xF 

0x1: Req., 0x2: Ack., 0x3: Data, 4 
PLT Payload Type  0x0 - 0x3 
SQN Msg. seq. number 0-255 
PLL Payload Length Not used (set1), For future use 

 
 

 
 

Figure 3-4. LDCA message flow during the clustering and sensor data transfer phases. 
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Table 3-4 describes all the fields of the LoRa-Packet. Receiver, Sender types facilitate the 
SNs and data sink to configure the WSN as star, tree, or cluster dynamically according to the 
WSN application requirement. SQN keeps track of the link between data requests in order to 
cope with the multi-node transmission, mainly in a mesh network. PLT facilitates data transfer 
for a LoRa packet of a payload larger than 247 bytes. The payload consists of the sensor data, 
measured parameter unit, and timestamp. It also includes the SN-ID which implements the 
message transfer by the CH. Figure 3-4 shows the simplified message flow for LDCA 
clustering, CH election, and sensor data transfer phases. The WSN shows two different types 
of SNs; the red SN is the probable CH, and the rest, with lower RSSIs (far from the DS), have 
a lower probability of being elected as the CH.  

 
 

 
 

Figure 3-5. Dynamic auto reconfiguration algorithm for SN/CH operation in data transmission phase.  
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3.4.3 SN auto reconfiguration 
 

During dynamic clustering after CH election, all SNs communicate only with the CH; 
however, the DS can request direct information from the SNs for validation if required. Both 
the SNs and CH perform their tasks depending on the DS request, and the DS can change the 
CH if required. Therefore, all the SNs must have the capability to function like a CH which 
requires a dynamic reconfiguration algorithm of the SN. Figure 3-5 shows the algorithm of SNs 
required for this dynamic activity. It does not include LoRa packet processing and transmission 
functions. 

 
 

3.4.4 Timing model 
  

This proposed algorithm is time sensitive due to its dynamic nature and CSS (Chirp Sprayed 
Spectrum) modulation used for LoRa communication. The required time for clustering and data 
acquisition by a moving DS and moving SNs is governed by the area and number of SNs to be 
covered, and the frequency of the data collection, which can be written as 

 
𝑇'H = (1 + 𝑗)𝑇; + (1 + 𝑗)𝑘𝑇( + 𝑘(𝑇U) + 2𝑇L  (7) 

 
where  T1 is for the presence message between the DS and SNs, 
 T2 is for neighbor list request messages, 
 T3 is for neighbor list update messages,  
 T4 is for the CH election confirmation message, and 
 k is the number of shortlisted SNs for the CH election 
 

As T1, T2, and T4 are the TOA of 8-byte messages, they can be replaced by TOA8. T3 
depends on the number of SNs in the coverage area of the candidate CHs. Its maximum value 
depends on the total SNs in the coverage of that DS at a particular position, which is 64 
according to Nmax as calculated in (2). Therefore, the maximum time can be calculated using 
(9), which is 3273.5ms, using only one shortlisted CH, as shown in Figure3-2. Equation (7) 
shows that the total time required for the LDCA with a set of given LoRa parameters is linearly 
dependent on the number of SNs present in the DS coverage area.  
 
 

𝑇'H = (3 + 𝑗 + 𝑘 + 𝑗𝑘)𝑇𝑂𝐴N + 𝑘. 𝑇𝑂𝐴#L    (8) 
 

𝑇'H_367 = 15.5(𝑗 + 𝑗𝑘) + 125.5𝑘 + 46.5    (9) 

= 1117.5𝑘 + 1038.5            [j=Nmax=64] 

= 3273.5	ms         [k=2] 
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Figure3-6 shows the required time for the LDCA at a given position of the DS for different 
values of k (number of candidate CHs). It also shows the lowest value of k for a different density 
of the WSN (represented by the number of SNs, here j) that should be used to populate the list 
of possible CHs, which is j/2, in order to consider at least one CH for two SNs. Therefore, 
forming less number of clusters using small values of k gives less time. For LDCA with only 
two clusters at a time can use k = 4, which is two times the number of clusters, considering the 
tradeoff between the lowest clustering time and highest number of candidate CHs at the same 
time. The goal is to achieve lower clustering time that will increase the mobility of the DS (by 
reducing flight time), and minimize the clustering energy. 

 
 

 
 

Figure 3-6. LDCA clustering time required for different densities (in terms of 
number of SNs) of the WSN and number of candidate CHs (k) 

 
 

3.4.5 Energy model 
  

The total energy required for the proposed algorithm depends mainly on the energy required 
for wireless message transmission during the clustering phase and CH election process, which 
depends clearly on the LoRa TOA directly of those operations. The total energy of the WSN 
can be expressed as 
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where, 
      Ej is the energy required for all the SNs = PTX.TJ, 

      Ek is the energy required for shortlisted SNs = PTX.Tk, 

      PTX is the power requirement for LoRa transmission, 

𝑇! = 𝑗. 𝑇" + &∑ 𝑗#$
#%" (. 𝑇&    

𝑇$ = 𝑘. 𝑇" + 𝑘. 𝑇'    

 
T1 = T2 = TOA8 and T3 are as explained in subsection 3.4.3. Therefore, from (10), the total energy 
of the network can be written as (11), where jx is the number of neighboring SNs with every 
shortlisted CH that depends on their coverage. For simplicity, the possible maximum 
neighboring SNs of every shortlisted CH is considered equal to the total number of the SNs 
under the DS coverage. At a particular position given by j, this will give the possible maximum 
energy requirement (Emax) as (12) of a WSN for the LDCA. The maximum clustering energy 
(Emax) is linearly related to the total number of SNs in the DS's coverage and the number of SNs 
in the shortlisted CHs as shown in (7). PTX is highly dependent on the hardware type used for 
the SNs; we measured it in the lab for the SNs used for this research. 
 

𝐸)0 = {(𝑗 + 𝑘 + ∑ 𝑗7M
7O; ). 𝑇𝑂𝐴N + 𝑘. 𝑇U}. 𝑃:9   (11) 

				= 𝑓{(𝑗 + 𝑘 + ∑ 𝑗7M
7O; ). 𝑇𝑂𝐴N + 𝑘. 𝑇U}    

 

𝐸367 = {(𝑗 + 𝑘 + 𝑗. 𝑘). 𝑇𝑂𝐴N + 𝑘. 𝑇U}. 𝑃:9  

											= (𝑇'H − 3. 𝑇𝑂𝐴N). 𝑃:9  

											= (𝑇'H − 46.5). 𝑃:9      (12) 
 

 
 

3.5 Experimental results 
 

We conducted both simulation-based and experimental validation of the timing and energy 
model of the proposed LDCA and evaluated its performance. The experiment consisted of 
several sensor nodes and a mobile data sink. The resource-constrained SN consisted of an 8-bit 
microcontroller (ATMega328) with 32KB of ROM, and 2KB of RAM, which ran at 16 MHz. 
Each had a LoRa-Phy module to communicate with the DS. The DS consisted of a 32-bit system 
(Raspberry pi 3) that can support a lightweight operating system like Linux to run routing and 
media conversion operations as a LoRa-IoT gateway [31]. The DS had three wireless interface 
types: LoRa to communicate with SNs, 3G (or NB-IoT), and WiFi to communicate with the IoT 
network.  
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Figure 3-7. LoRa QoS measurement using moving SN and moving DS to validate 
the use of RSSI and SNR for LDCA 

 
 

3.5.1 Validation of hypothesis 
 

The first phase of the experiment was to measure the RSSI and SNR of LoRa for a variable 
distance between the SNs and DS to validate the hypothesis used in this work to develop the 
LDCA. Figure 3-7 shows the simplified experimental setup, where the yellow “star” indicates 
a SN and the green “star” is a CH; the red “star” is the DS moving between the positions DS1 
and DS2 along the path as shown by a red line. The distance between the DS and SN varies 
from 800m to 1200m, as shown by yellow lines. After clustering, the DS received data from the 
SN through the CH. While receiving data from the SN, there was no LOS (line of sight) at some 
DS’s positions due to the geographical terrain of the test site.  
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(b)       (c) 
 

Figure 3-8. (a) Partial Packet loss at different RSSI and SNR, (b) RSSI, and (c) SNR changes at 
different distances between the SN and DS 

 
The LoRa module was configured for 20dBm transmit power, -144dB receiving sensitivity; 

other parameters are shown in Table 3-3. More than 800 packets were collected successfully in 
two different experiments. Besides monitoring the RSSI and SNR, partial (a few bytes) packet 
loss was also measured. Packet loss was found mainly above 1050m distance with an SN 
without LOS (Line of Sight), and it  was reflected in the RSSI-SNR plot using red dots, where 
SNR goes below -10 and the RSSI below -96dB as shown in Figure 3-8(a). Figure 3-8(b) and 
(c) show the RSSI and SNR values for different distances between a SN and the mobile DS, 
respectively. Although it does not give an accurate measure of the distances due to 
environmental conditions, we can still use the relations of RSSI-SNR-Distance to generate the 
candidate CH list. Multiple SNs with the same RSSI can be shortlisted based on their SNR and 
then using the neighbor list as described in section 3.6 while electing the CHs. A similar 
experiment was performed for a moving SN (shown by an orange star and an orange line in 
Figure 3-7) mounted on a ground vehicle keeping the DS static (DS2 position). Here we 
experienced some packet loss mainly at no LOS condition at a higher distance than 1200m. 

 
 

3.5.2 Energy requirement 
 

Energy requirement of the SN was measured to calculate the lifetime of the SN and to 
validate the clustering efficiency in terms of energy requirement. The SN has three main 
components measuring the energy consumption: the microcontroller (MCU), the LoRa module, 
and the sensors. Power consumption varies at different events, depending mainly on the 
algorithm and the SN or CH operation modes. The events used to measure the SN's energy were 
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sensor reading, LoRa receives, LoRa transmits, and data processing modes. A DC (direct 
current) energy logging system is connected with the SN to monitor its input voltage, current, 
and power. The data logger measured voltage and current at a resolution of 1mV and 1mA, 
respectively. Figure 3-9(a) shows the laboratory setup for this measurement. 
 
 
 

   
(a) 

 
 

 
(b) 

 
Figure 3-9. (a) Energy measurement; (b) data logger’s output showing voltage, current 

and power at different events 
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Table 3-5 Event-wise Power calculation of the SN for sensor data transfer  
 

Event Duration (mS) Voltage (V) Current (mA) Power (mW) 
Active (Sensor read) 2,407 5.01 31 155.31 
LoRa receive 336 5.01 44 220.44 
LoRa transmission 135 5.00 148 740.00 
MCU Sleep mode  5.00 4 20.00 

 
 

For the measurement, the SN performed normal sensor data transfers at three-second 
intervals. Figure 3-9(b) shows continuous measurement of the parameters (voltage, current and 
power), from which event specific values were extracted. Table 3-5 summarizes the event 
duration, voltage, current, and power consumption of those events for a complete data transfer 
cycle. 

 
 

3.6 Performance analysis 
  

Unlike other static or offline clustering algorithms, the proposed LDCA algorithm performs 
clustering before every data transfer phase. Therefore, the same performance matrices cannot 
be used to compare their performance. Some newly defined performance matrices are used to 
measure the performnace of the LDCA scheme, which are described below: 

 
 

3.6.1 Clustering time 
 

For a real-time algorithm like the proposed LDCA, clustering is formed before every data 
transmission phase. Therefore, clustering time needs to be considered for real-time clustering. 
However, most of the static clustering algorithm performs the clustering (or re-clustering) phase 
off-line one time for multiple data transfer phases. Lower clustering time will ensure higher 
mobility in the WSN. It will increase the coverage area by increasing the available time for 
traveling (for the scenarios of Figure 3-1, it is UAV flight time). For the proposed LDCA, the 
clustering time depends on the number of candidate CHs and their neighbor SN (j and k in (7)). 
Therefore, clustering time can be minimized by optimizing the value of k, which is only possible 
by keeping the number of cluster as low as possible. As explained in subsection 3.4.3, the 
dynamic cluster number is kept only two (so that k = 4 can be used) for the proposed LDCA. 
Clustering time depends mainly on message transfer time between DS-SN and CH-SN using 
the LoRa interface. As the required processing time is very low (less than 1% of the total time) 
compared to the LoRa TOA, it contributes most to the clustering time. Figure 3-6 shows the 
clustering time for different values of k as found from the simulation. TOA increases with the 
decrease of the bandwidth of the link; LoRa (with 250 KHz BW) has very high TOA compared 
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to the TOA of Zigbee (with 2MHz bandwidth) [34]. Therefore, short-range links like Zigbee 
will require less time for LDCA implementation than the LoRa links. For the same reason, the 
LDCA may also be suitable for a densely populated wide WSN with a Zigbee wireless link. 
Besides, LDCA can create more than two clusters for static BS with moving SNs, increasing 
the clustering time. It is shown in figure 3-6 that the clustering time will be around 8s to form 
three clusters using k=6. 

 
 

3.6.2 Clustering efficiency  
 
In a real-time algorithm, every data transfer phase has a clustering phase to achieve the 

maximum mobility. Since, all the SNs take an active part in this phase, the energy consumption 
should be as low as possible compared to that of the data transfer phase. The clustering phase 
in LDCA requires extra energy comparing the static clustering algorithm causing an energy 
overhead. The clustering efficiency of the LDCA depends on how little energy is required for 
the clustering phase compared to the data transfer phase. Therefore, it can be evaluated as the 
ratio of the energy required for data transfer to the total (both data transfer and clustering) energy 
consumption of the SNs, which can be calculated using (13), where  𝜖() is clustering energy 
efficiency. ET is the total energy required for a complete data transfer cycle and the clustering 
phase, and ECL is the energy required for the clustering phase. The maximum energy required 
for clustering (Emax) can be calculated using (14), derived from (12) using PTX = 0.74 Watt (= 
740mW from Table 3-5). It shows that, it is linearly dependent on the total clustering time (Tcl).  

 
 

𝜖8@ =
W2AW34
W2

           (13) 
 

𝐸367 = 0.74𝑇'H − 34.41	mJoule      (14) 
 
 
 

Table 3-6 Energy efficiency, Maximum energy consumption of a candidate CH, and WSN lifetime for 
the proposed LDCA for different values of k 

 
K 2 4 6 8 10 12 

Energy efficiency, 𝜖()(%) 99.59 99.31 99.02 98.74 98.46 98.17 
Maximum Energy, Emax (Joule) 4.77 8.08 11.39 14.69 18.00 21.31 
WSN lifetime (Cycle*) 1278 1274 1270 1266 1262 1258 
* Cycle = one clustering phase and data transfer phase 
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3.6.3 Network lifetime 
 

One way to measure the network lifetime is to count the data transfer round before the first 
SN goes out of coverage due to lack of energy. For a static or off-line algorithm, only the data 
transfer phase is considered for counting the round, as the clustering phase (being off-line) does 
not consume any energy. On the contrary, real-time clustering is performed for every data 
transferring phase that consumes energy. Therefore, a real-time clustering algorithm like the 
LDCA with high energy overhead or low clustering efficiency will reduce the network lifetime 
significantly. 

 
The lifetime of the LDCA network depends on a CH's lifetime. The lifetime of the WSN 

can be found based on the energy model, time model, and the experimental lab data, which is 
summarized in Table 3-6 along with the clustering efficiency for different lengths of the 
candidate CH (k) list.  

 
 

 
Figure 3-10. (a) WSN with long-range link, mobile DS, and LDCA (b) WSN with short-range link, 
mobile DS, without LDCA, (c) WSN with long-range link and static DS, and (d) WSN with short-

range link, and static DS. 
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3.6.4 Network topology and coverage 
 

It is the logical network connectivity used for data transfer. For static clustering, it is 
predefined (path and hops) during the clustering phase and becomes static after the clustering 
phase until re-clustering. All the data transfer phases use this static network topology; it can be 
star or tree to utilize multiple hops. However, it cannot be static for a long duration for a network 
with moving elements (here SN or DS). Therefore, every data transfer phase needs to have a 
clustering phase to define the topology. Among different topology types, star topology is used 
between the SNs and DS through only one CH for the proposed LDCA. It avoids multiple hops 
to achieve maximum mobility or to perform the clustering in the shortest possible time. 

 
Unlike most of the offline clustering, LDCA works in real time and requires only single 

hop to support any changes in the network topology. Due to the functional differences with 
other static and traditional dynamic clustering algorithms (where the DS is static), the 
performance of the proposed LDCA cannot be compared to them. However, the network 
topology can be considered in terms of the number of SNs and DSs while keeping the 
monitoring area coverage fixed. Based on DS mobility and the range of wireless link used, the 
following types of WSNs (clustered and non-clustered) are compared with the WSN (with the 
mobile DS) using the LDCA.  

 
1. WSN with long-range link, mobile DS, and LDCA,  

2. WSN with short-range link, and mobile DS, and without LDCA, 

3. WSN with long-range link and static DS, 

4. WSN with short-range link and static DS, and 

5. WSN with long-range link and mobile DS without clustering. 

 
WSNs with short-range wireless links mostly use Zigbee of 50m to 200m range. LoRa of 

1km to 5km range is used as the long-range wireless link. For this comparison, all these WSNs 
are considered homogenous. All the SNs can be elected as CHs to retransfer sensor data to the 
DS or BS. Therefore, the maximum number of hops (from the farthest SNs to the DS) can be 
used for energy calculation. Although these values are highly dependent on the SN distribution 
and the DS's relative position, a uniform distribution of SNs is assumed to keep the static DS at 
the middle of the coverage area. For the mobile DS, only a single trip is considered. Figure 3-
10 shows the network topology for different types of WSN covering the same area of 2km by 
3km. Figure 3-10(a) shows a clustered WSN with LoRa SNs that has 6 clusters (2 clusters at a 
time) and a mobile DS with the implementation of the LDCA. Figure 3-10(b) shows the WSN 
with short-range SNs and a mobile DS, as used in [15]. Figure 3-10(c) shows the LoRa WSN 
with a static DS in the middle of the coverage area, as implemented in [32]. Figure 3-10(d) 
shows a WSN similar to Figure 3-10(b) with a static DS. Solid arrows show the data 
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connectivity path, and the dotted arrows show the direction of the mobile DS travel path. The 
WSN, as implemented in [33], is not shown in this figure as there is no clustering performed.  

 
Network configuration, quantity of elements and hop used for these WSNs are summarized 

in Table 3-7. WSNs with a short-range wireless link (here Zigbee) need more SNs to achieve 
higher granularity of data and maintain the link continuity with fixed and constant transmission 
power over the network. On the other hand, the WSNs with LoRa need more SNs mainly to 
increase the granularity of the sensor data. Therefore, the LoRa-based WSNs that are mentioned 
here may not require as many SNs as in WSNs with short-range links.  
 

 
Table 3-7 Comparison of WSNs: mobile vs. Static DS, and using LoRa and short-range wireless 

link for the SNs 
 

 Static DS Mobile DS 
Clustering type Static Not used Other LDCA 
Link-type Short-range  

[21] 
Long Range 

[32] 
Long-range 

[33] 
Short-range  

[17] 
Long-range 

Number of SNs 600 300 300 600 300 
Maximum Hops (c) 10 2 1 10 1 
Rotations/clustering phase  Multiple Multiple NA Multiple 1 
Number of clusters (b) 60 6 NA 60 2 
Average cluster size 10 50 NA 10 50 
Clustering time NA NA NA Offline TCL = f(TOA) 
Mobility Static Static Static Mobile DS Mobile SN and DS 
Clustering efficiency (𝜖'5) NA NA NA NA Above 98% 
Network lifetime1 

(Rotations) 
600-1250 700-1470 1283 600-1250 1278 

Network topology Static (Star/tree) Static 
(Star/tree) 

NA Dynamic (P2P) Dynamic (Star) 

Network coverage Less than km 
(all directions) 

Few km 
(all directions) 

Above 100km  
(one direction) 

Less than km 
(all directions) 

Above 100km  
(all directions) 

Max energy per 
transmission2 

3.3 0.9 0.3* 3.3 0.3** 

1Cannot be compared with LDCA as, it use one rotation per clustering phase to achieve mobility (detailed in table 3-6), static 
clustering uses multiple hops, values are calculated/projected. 
2one mJoule per transmission per SN using the CH (hop). 

* May need multiple travel paths to cover the SN distributed laterally. 
** For more number of SNs (up to 600, same as the WSN with the short-range link) it will be 0.6Joule which is still less than 

the energy required for the traditional clustering with a static multi-hop WSN. 
 
 

3.6.5 Data transfer energy 
 
Energy requirement in the data transfer phase can be compared between different types of 

WSNs and the WSN using the LDCA. The energy used for the data transmission for a multi-
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hop link can be calculated as a.b(1+c)/2, where a is the number of SNs in a cluster, b is the 
number of clusters constructed at the same time, and c is the number of hops required to transfer 
the data from the cluster to the DS. Energy consumption for different WSN topologies is shown 
in Table 3-7. However, using the same number of SNs with LoRa will require less than 20% of 
the energy required for the WSNs with short-range links due to more hops. The WSN with the 
LDCA requires only 33% of energy required in a LoRa-based WSN with static DS. The energy 
required for the clustering procedure is not shown here as it is very low compared to the sensor 
data transmission energy.  

 
 

3.6.6 Other features and comparison 
 
In addition to the improvement of monitoring area coverage and energy performance, the 

LDCA has the following additional advantages over other clustered WSNs with or without 
mobile DS.  

 
1. In static clustering, CH rotation is a must after some data transfer phases in order to maintain 

homogeneity of the WSN, which can easily be achieved by changing the mobile DS's route 
and the stop-points for the LDCA. 

 
2. Most of the RSSI-based clustering algorithms calculate the distance between the SN and 

DS, which increases processing costs and may give erroneous values of the distance. On the 
contrary, the LDCA uses both RSSI and SNR values to elect the CH without calculating the 
distances. This reduces the processing load and provides protection from environmental 
effects on the wireless link, which is very important for wide-area applications. 

 
3. Static clustering algorithms use various offline optimization algorithms to avoid 

overlapping of a specific SN, which is done dynamically in the LDCA by updating the 
neighbor list online in the clustering phase. 

 
4. Traditional clustering algorithms may require various synchronization schemes to avoid a 

collision while receiving the message from the SNs.  However, the DS-controlled LDCA is 
inherently synchronized due to ID-specific TDMA (time divided multiple access) 
communication during the clustering phase. 

 
5. Both static and traditional dynamic (with a static DS) clustering need to be static in terms 

of the network topology. This is not required for the LDCA due to the simplicity of 
implementing only two clusters at a time and re-clustering along with the mobility of the 
DS after every data transfer phase. 
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Table 3-8 comparison of features with clustering algorithms using mobile DS or BS 
 

Features Proposed LDCA [17] [18] [19] [20] [21] [22] [23] [24] 
WSN geometry 
 
 

No need for any 
specific geometry 

Circular Circular, BS at 
the center 

Not specified Not specified Circular Not specified Not specified Circular, BS at 
the center 

DS/BS mobility 
 

Mobile DS Mobile DS Mobile DS Mobile DS Static  
BS relocation 

Some mobile SNs 
work as DS 

Mobile DS Mobile DS Static BS with 
Mobile agent 

SN mobility 
 

Mobile and Static Static only Static only Static only Static only Static only Static only Static only Static only 

DS path 
planning 
 

Offline with/without 
fixed stop-point (SP) 

Fixed circular Offline with 
fixed SP 

Fixed SP NA Not specified Not specified Not specified NA 

Clustering 
process 
 
 

Dynamic, real time 
for every rotation 

Static, one time 
for multiple 

rotation 

Static, one time 
for multiple 

rotation 

Static, one time 
for multiple 

rotation 

Dynamic, offline 
for multiple 

rotation 

Dynamic, offline 
for multiple 

rotation 

No clustering No clustering Static, offline 
for multiple 

rotation 

Processing load 
to the SN/CH 
 
 

Very low load  
for SN and CH 

High, use CH 
broadcast 

High, use CH 
broadcast 

High for DS, 
SN buffering 

and  scheduling 

DS/SN not 
involved 

DS/SN not 
involved 

NA NA DS/SN not 
involved 

Immune to 
environment 
 

Yes,  
use RSSI and SNR 

No, use static 
location 

No No No No, Use distance 
and path length 

No No, use static 
location 

No, Use 
distance 

Data Routing 
 
 
 

Single hop through 
the CH 

Multiple hops 
through DS 

Single hop 
through CH 

Single hop Multiple hops Single hop through 
CH 

Direct to DS, 
SN wait for 

DS 

Multiple hop 
through agent 

node 

Inter-cluster 
routing with 

multiple hops 

Other limitations 
 
 
 

Clustering time 
depends on LoRa 

configuration 

SN and DS 
relative position 

is static 

CH requires 
high energy 

May increase 
DS mobility 

Need super CH 
deployed manually 

CH needs to be at 
virtual center 

DS traveling 
time is not 
considered. 

May cause data 
retransmission 
due to use of 

multiple agent 
nodes 

Complex 
routing 

algorithm 

 

 
 

Besides the above advantages, other features of the proposed LDCA are compared with 
algorithms that use mobile DSs and are summarized in Table 3-8. Most of the algorithms with 
mobile DSs are for WSNs with a short-range wireless links and static SNs, and are distributed 
in a circular pattern keeping the BS or CHs in the center. Therefore, most of them are not 
suitable for widespread WSNs with irregular distributions of SNs, features which, the proposed 
LDCA is designed to handle. Other than [22], all the WSNs use star or mesh [23] topology in 
contrast to both point-to-point and star topology used by the LDCA, which permits the SNs to 
be mobile for some WSN applications like smart farming. There is no clustering used in [22] 
and [23]. The WSNs of [17-19, 24] keep the cluster static. The clustering performed in [21] 
remains fixed (hence static) during the mobility of the DS. On the other hand, the proposed 
LDCA performs clustering all through the mobility of the DS and also facilitates mobility of 
the SNs. Unlike the proposed LDCA, most of the algorithms that perform clustering use the 
SNs' physical locations or calculated distances from the DS/BS.  The average path length of the 
DS and the tolerable delay in transferring the data are considered in [21] and [22], respectively. 
Therefore, all these algorithms do not consider the ambient environmental influences on the 
radio signal as is done in the proposed LDCA using the RSSI and SNR for the clustering 
process. These algorithms perform the complicated optimization offline [19-21] or require a 
considerable amount of processing resources somewhere in the WSN involving the CHs or the 
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SNs. By contrast, the proposed LDCA requires a minimal number of SNs, as the DS performs 
most of the process during its mobility. Most of the algorithms perform ether single-hop or 
multi-hop data transfer to the mobile DS. Direct communication between the SNs and the DS 
is performed only in [19] and [21], and the proposed LDCA. As shown in Table 3-8, the 
algorithms using a mobile DS were not evaluated using the same parameters, such as the energy 
efficiency or the number of rotations vs. the WSN lifetime. However, their performances in 
terms of various features like WSN coverage, the processing load of the algorithm, dynamic 
nature, and resource requirement of the SNs are sufficient for comparison with the proposed 
LDCA, where it can be seen that the LDCA performs better than the rest.  
 
 
3.7 Conclusion 

 
This paper addresses the challenge to increase the coverage for a widely distributed WSN 

without using multiple hops among clusters that need to be connected with the IoT network, by 
proposing a lightweight dynamic clustering algorithm (LDCA). It overcomes the limitations of 
static clustering and can be implemented using resource constraint sensor nodes. The proposed 
LDCA uses residual energy, RSSI, and SNR to include the wireless quality depending on 
environmental parameters. It also use the distance between the sensor node and the DS without 
any distance calculations in the WSN. The LDCA uses single-hop data transfer from the SNs to 
the mobile DS through the CHs. The cluster size is variable up to 64 SNs with the LoRa interface 
for wide-area WSN applications. It constructs only two clusters each round, which reduces the 
load of the SN. It avoids the CH rotation which would be difficult for a wide WSN with mobile 
SNs. Unlike most of the clustering algorithms, this paper presents the memory requirement 
calculations during the clustering phase showing the feasibility of the proposed LDCA for a 
resource-constrained SN. As WSN is data-centric, simplified data transfer is a must to reduce 
the total energy consumption to increase its lifetime. The proposed LDCA can facilitate 
dynamic path planning for the DS, along with a preplanned fixed path. As a future improvement, 
the average SN memory requirement for sensor data buffering could be included for mobility 
calculations to reduce DS mobility where real-time data transmission is not required. Some 
regional separation could be included based on the data acquisition interval to improve the WSN 
lifetime by reducing the DS mobility requirement. 
 
 
3.8 References 

 
1. J. Morón-López et al., "Implementation of Smart Buoys and Satellite-Based Systems for the Remote 

Monitoring of Harmful Algae Bloom in Inland Waters," in IEEE Sensors J, vol. 21, no. 5, pp. 6990-
6997, 2021, doi: 10.1109/JSEN.2020.3040139. 

2. R. A. Nazib and S. Moh, "Energy-Efficient and Fast Data Collection in UAV-Aided Wireless 
Sensor Networks for Hilly Terrains," in IEEE Access, vol. 9, pp. 23168-23190, 2021, doi: 
10.1109/ACCESS.2021.3056701. 



 89 

3. H. Ferng and J. Chuang, "Area-partitioned clustering and cluster head rotation for wireless sensor 
networks," in 2017 Int. Conf. on Mach. Learn. and Cybern. (ICMLC), Ningbo, China, 2017, pp. 
593-598, doi: 10.1109/ICMLC.2017.8108977. 

4. W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, "An application-specific protocol 
architecture for wireless microsensor networks," IEEE Trans. on Wireless Commun., vol. 1, no. 4, 
pp. 660-670, Oct. 2002, doi: 10.1109/TWC.2002.804190. 

5. S. K. Singh, P. Kumar, and J. P. Singh, "A Survey on Successors of LEACH Protocol," IEEE 
Access, vol. 5, pp. 4298-4328, 2017, doi: 10.1109/ACCESS.2017.2666082. 

6. S. Arjunan and S. Pothula "A survey on unequal clustering protocols in Wireless Sensor Networks," 
J. of KSU- Comput. Info. Sci., vol. 31, no. 3, pp. 304-317, 2019, doi: 31. 
10.1016/j.jksuci.2017.03.006. 

7. K. Xu, Z. Zhao, Y. Luo, G. Hui, and L. Hu, "An Energy-Efficient Clustering Routing Protocol 
Based on a High-QoS Node Deployment with an Inter-Cluster Routing Mechanism in WSNs," 
Sensors, vol. 19, no. 12, pp. 2752-2774, Jun. 2019, doi: 10.3390/s19122752. 

8. A. Jorio, S. E. Fkihi, B. Elbhiri, and D. Aboutajdine, "An Energy-Efficient Clustering Routing 
Algorithm Based on Geographic Position and Residual Energy for Wireless Sensor Network", J. of 
Comput. Netw. and Commun., vol. 2015, 2015. https://doi.org/10.1155/2015/170138 

9. Z. Sun, L. Wei, C. Xu, T. Wang, Y. Nie, X. Xing, and J. Lu, "An Energy-Efficient Cross-Layer-
Sensing Clustering Method Based on Intelligent Fog Computing in WSNs," IEEE Access, vol. 7, 
pp. 144165-144177, 2019, doi: 10.1109/ACCESS.2019.2944858. 

10. Asaduzzaman and H. Y. Kong, "Energy efficient cooperative LEACH protocol for wireless sensor 
networks," J. of Commun. and Netw., vol. 12, no. 4, pp. 358-365, Aug. 2010, doi: 
10.1109/JCN.2010.6388472. 

11. J. Yu, Y. Qi, and G. Wang, "An energy-driven unequal clustering protocol for heterogeneous 
wireless sensor networks," J. Control Theory Appl. Vol. 9, pp. 133–139, Mar. 2011,  doi: 
10.1007/s11768-011-0232-y. 

12. S. Lee, H. Choe, B. Park, Y. Song, and C.K. Kim, "LUCA: an energy-efficient unequal clustering 
algorithm using location information for wireless sensor networks", Wirel. Pers. Commun, vol. 56, 
pp. 715–731, Feb. 2011, doi: 10.1007/s11277-009-9842-9. 

13. J. Yu, Y. Qi, G. Wang, Q. Guo, and X. Gu, "An energy-aware distributed unequal clustering 
protocol for wireless sensor networks", Int. J. Distrib. Sens. Networks, vol. 7, no. 1, Jul. 2011, doi: 
10.1155/2011/202145. 

14. G. Chen, C. Li, M. Ye, and J. Wu, "An unequal cluster-based routing protocol in wireless sensor 
networks", Wirel. Networks, vol. 15, pp. 193–207, Feb. 2009, doi: 10.1007/s11276-007-0035-8. 

15. E. Ever, R. Luchmun, L. Mostarda, A. Navarra, and P. Shah, "UHEED – an unequal clustering 
algorithm for wireless sensor networks", in Proceedings of the 1st International Conference on 
Sensor Networks, Sensornets 2012, Rome, Italy, Feb. 2012, [Online], Available: 
https://eprints.mdx.ac.uk/id/eprint/8481 

16. H. K. Srivastava and R. K. Dwivedi, "Energy Efficiency in Sensor Based IoT using Mobile Agents: 
A Review," in 2020 Int. Conf. Power Electron. IoT Appl. Renewable Energy and its Control 
(PARC), India, Feb. 2020, pp. 314-319, doi: 10.1109/PARC49193.2020.236617. 

17. J. Wang, Y. Gao, W. Liu, A. Kumar, and H. Kim, "Energy Efficient Routing Algorithm with Mobile 
Sink Support for Wireless Sensor Networks", MDPI Sensors, vol. 19, no. 7, p. 1494, Mar. 2019, 
doi:  10.3390/s19071494. 

18. H. A. H. Al-Behadili, S. K. A. AlWane, Y. I. A. Al-Yasir, N. O. Parchin, P. Olley, and R. A. Abd-
Alhameed, "Use of multiple mobile sinks in wireless sensor networks for large-scale areas," IET 
Wireless Sensor Systems, vol. 10, no. 4, pp. 175-180, Aug. 2020, doi: 10.1049/iet-wss.2019.0208. 

19. S. Redhu and R. M. Hegde, "Cooperative Network Model for Joint Mobile Sink Scheduling and 
Dynamic Buffer Management Using Q-Learning," IEEE Transactions on Network and Service 
Management, vol. 17, no. 3, pp. 1853-1864, Sept. 2020, doi: 10.1109/TNSM.2020.3002828. 



 90 

20. A. Verma, S. Kumar, P. R. Gautam, T. Rashid and A. Kumar, "Fuzzy Logic Based Effective 
Clustering of Homogeneous Wireless Sensor Networks for Mobile Sink," IEEE Sensors Journal, 
vol. 20, no. 10, pp. 5615-5623, 15 May15, 2020, doi: 10.1109/JSEN.2020.2969697. 

21. A. Pang, F. Chao, H. Zhou and J. Zhang, "The Method of Data Collection Based on Multiple Mobile 
Nodes for Wireless Sensor Network," IEEE Access, vol. 8, pp. 14704-14713, 2020, doi: 
10.1109/ACCESS.2020.2966652. 

22. Y. Yun and Y. Xia, "Maximizing the Lifetime of Wireless Sensor Networks with Mobile Sink in 
Delay-Tolerant Applications," IEEE Transactions on Mobile Computing, vol. 9, no. 9, pp. 1308-
1318, Sept. 2010, doi: 10.1109/TMC.2010.76. 

23. J. Kim, J. In, K. Hur, J. Kim and D. Eom, "An intelligent agent-based routing structure for mobile 
sinks in WSNs," IEEE Transactions on Consumer Electronics, vol. 56, no. 4, pp. 2310-2316, Nov. 
2010, doi: 10.1109/TCE.2010.5681105. 

24. J. Wang, X. Gu, W. Liu, A. Kumar, H. Kim, and Hye-Jin. "An empower hamilton loop based data 
collection algorithm with mobile agent for WSNs", Hum. Cent. Comput. Inf. Sci., vol. 9, no. 18, 
May 2019, doi: 10.1186/s13673-019-0179-4. 

25. H. C. Lee and K.H. Ke, "Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh 
Network System-Design and Evaluation," IEEE Trans. On Instrumentation and Measurement, vol. 
67, no. 9, pp.2177-2187, Sep. 2018, doi: 10.1109/TIM.2018.2814082. 

26. W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, and J. Prévotet, "Internet of Mobile Things: 
Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs Standards and Supported Mobility," 
IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1561-1581, Apr. 2019, doi: 
10.1109/COMST.2018.2877382 

27. LoRaWAN™ 1.0.3 Specification, LoRa Alliance, Inc, 2018, Accessed: Sep. 30, 2020. [Online]. 
Available: https://lora-alliance.org/resource-hub/lorawanr-specification-v103 

28. M. N. Khan, A. Rao and S. Camtepe, "Lightweight Cryptographic Protocols for IoT Constrained 
Devices: A Survey," in IEEE Internet of Things J, early access, Sep. 24, 2020. doi: 
10.1109/JIOT.2020.3026493. 

29. Semtech SX1278, Accessed: Sep. 30, 2020. [Online]. Available:  
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1278 

30. LoRa air time calculator, Accessed: Sep. 30, 2020. [Online]. Available: 
https://www.loratools.nl/#/airtime 

31. G.M.E. Rahman, K.A. Wahid, and A. Dinh, "IoT enabled Low power and Wide range WSN 
platform for environment monitoring application", 2020 IEEE Region 10 Symposium (TENSYMP), 
Dhaka, Bangladesh, 2020, pp. 908-911, doi: 10.1109/TENSYMP50017.2020.9230959. 

32. J. M. Marais, R. Malekian, and A. M. A. Mahfouz, "Evaluating the LoRaWAN Protocol Using a 
Permanent Outdoor Testbed," IEEE Sensors, vol. 19, no. 12, pp.4726-4733, Jun. 2019, doi: 
10.1109/JSEN.2019.2900735. 

33. G. M. E. Rahman and K. A. Wahid, "LDAP: Lightweight Dynamic Auto-Reconfigurable Protocol 
in an IoT-Enabled WSN for Wide-Area Remote Monitoring." Remote Sens., vol. 12, no. 19, pp. 
3131-3151, Sep. 2020, doi: 10.3390/rs12193131. 

34. J. Cheon, H. Hwang, D. Kim, and Y. Jung, "IEEE 802.15.4 ZigBee-Based Time-of-Arrival 
Estimation for Wireless Sensor Networks." Sensors, vol. 16, no. 2, pp-203-213, Feb. 2016, doi: 
10.3390/s16020203. 

 
 
 
 
 
 



 91 

4. LSAQ-LoRa: Lightweight Synchronization Algorithm for 
Quasi-orthogonal LoRa Channels in Wide-area Wireless Sensor 
Network: 
 
 
This chapter describes the proposed channel synchronization algorithm to increase the data 

rate of a LoRa Link. Wireless Sensor Network (WSN) uses clusters as a group of sensor nodes 
to increase network coverage, capacity, and controllability. All the sensor nodes in a cluster 
communicate with the cluster head to transfer the sensor data. The CHs closer to the gateway 
carry the data from other cluster heads, which cannot reach the gateway directly. Wide-area 
WSN can utilize LoRa in a cluster for wider coverage. However, a single LoRa link may not 
provide a sufficient data rate for the cluster heads carrying high data volume. High-speed 
wireless technologies such as cellular networks, which may require more energy and cost, can 
solve this problem. This research proposes a Lightweight Synchronization Algorithm for Quasi-
orthogonal LoRa channels (LSAQ) to increase the data rate of the LoRa link. LSAQ facilitates 
synchronous transmission using multiple LoRa physical channels for a single link between two 
nodes utilizing the quasi-orthogonality nature of LoRa. 

 
At first, the quasi-orthogonality nature of LoRa is investigated for the same radio channel 

using different bandwidths, spreading factors (SF) and radio frequencies at the same transmit 
power and distance using multiple communication modules in parallel. The air interface is 
observed using a Software Defined Radio (SDR) enabled receiver. This experiment found that 
multiple channels with different radio frequencies are unsuitable for co-channel interference. 
Interference is also observed for the radio channels of the same frequencies with different 
bandwidths. Different SFs for different radio channels with the same radio frequency and 
bandwidth show better performance. They are worth investigating further for parallel 
transmission to increase the combined data rate of a logical channel (combination of multiple 
physical channels). 

 
According to the performance, a specific combination of SFs is assigned to multiple radio 

channels (called a physical channel). Time On Air (TOA) of the physical channels differs at 
different SFs. Therefore, a channel synchronization scheme is required. This research developed 
a synchronization algorithm called LSAQ for the LoRa physical channels. LSAQ can adapt the 
synchronization using different packet sizes or a different number of data packets of the same 
size for different physical channels of different SFs depending on the application requirement. 
This packet synchronization ensures maximum channel utilization achieving the maximum data 
rate improvement for the logical channel. Thus, the receiver receives the simultaneous LoRa 
packets, performs the data sequencing, error checking, and acknowledges the sender 
accordingly.  
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This research also derived mathematical models to evaluate network size and data rate 

improvement for various combinations of the SF and bandwidth used for parallel data 
transmission using LoRa physical layers. It classifies the combination of SFs for different WSN 
applications in network density and coverage area. It shows that parallel transmission using two 
physical channels with two consecutive SFs gives optimum data rate improvement.  Maximum 
data rate improvement is measured as 58% using SF = 7 and 8. Maximum network capacity 
improvement is found at 46% for the SF = 8 and 9. 

 
The development work, analysis and findings of this chapter is under review in the IEEE 

Transactions on Industrial Informatics. The student contributed to the main idea, implementing 
code, writing the original draft, and evaluating and revising the manuscript. 
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LSAQ-LoRa: Lightweight Synchronization Algorithm for Quasi-orthogonal 
LoRa Channels in Wide-area Wireless Sensor Network 

Gazi M. E. Rahman, Member, IEEE, and Khan A. Wahid, Member, IEEE 
 
 
Abstract: This paper proposes a parallel data transfer scheme utilizing the quasi-orthogonality 
feature of LoRa. The proposed Lightweight Synchronization Algorithm for Quasi-orthogonal 
channels (LSAQ) uses multiple Spreading Factors (SF) in the same radio channel to form a 
logical channel with a higher data rate. It achieves up to a 46% improvement in network capacity 
and a data rate improvement of 58% when compared with a Wireless Sensor Network (WSN) 
using LoRa Medium Access Control (MAC) layer protocols. This research validates the 
performance of LoRa orthogonality in terms of multiple Bandwidths (BW), multiple radio 
channels and multiple SFs. It presents the data packet sequencing and channel synchronization 
algorithms for the logical channel required for the LASQ scheme. It also derives a mathematical 
model to evaluate the data rate and energy performance of the proposed LSAQ.  

 
Keywords: LoRa, Synchronous transmission, Image transfer, Wide-area WSN, IoT, 
Orthogonality, Data rate. 
 
 
4.1 Introduction 

 
LoRa can be used instead of wireless technologies such as Zigbee, Sigfox, and cellular data 

communication when wider coverage [1] is required in a Wireless Sensor Network (WSN). In 
a WSN with multiple clusters and multi-hop links, the cluster head (CH) closest to the Data 
Sink (DS) or Gateway (GW) is required to transfer a large amount of data received from clusters 
far from the DS or GW. Multi-hop data transfer may be used for wide-area coverage instead of 
increasing transmission power (requires more power) for better WSN efficiency, as it increases 
the coverage area in the WSN. Internet of Things (IoT) applications involving inter Unmanned 
Aerial Vehicle (UAV) data communication [2] is not feasible using the current LPWAN due to 
its low data rate compared to Wi-Fi and 4G cellular networks. Literature shows that a higher 
Spreading Factor (SF) of LoRa may not suit applications requiring higher data rates and greater 
coverage [3]. A LoRa-based WSN may have a limited network capacity due to its high Time 
On Air (TOA) and low data rate compared to other wireless technologies. WSN applications 
such as wide-area environmental monitoring and smart farming may also require mobile nodes 
[4]. Therefore, this research is focused on the requirement of data transmission at a higher data 
rate over a LoRa link between two nodes in a WSN. Inspired by the quasi-orthogonality of 
LoRa, this paper proposes a Lightweight Synchronization Algorithm for Quasi-orthogonal 
channels (LSAQ) of LoRa in a WSN. This paper therefore: 
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1. Proposes a synchronization algorithm for multi-SF parallel transmission (called LSAQ). 
2. Practically evaluates the quasi orthogonality in SF and Radio Frequency (RF) channels 

and explores possible SF combinations for parallel transmission. 
 

3. Implements the identified SF combinations and evaluates the data rate improvement. 
 

4. Derives a mathematical model for the proposed LSAQ regarding SF allocation for parallel 
transmission, timing, data-rate, and energy performance. 

 
LoRa data transmission uses a series of symbols, much like M-ary Frequency Shift Keying 

(FSK), which is done using multiple chirps. LoRa is quasi-orthogonal in the time domain in 
terms of SF [5] for high values of M. Therefore, only some specific combinations of SF and 
Bandwidth (BW) showing different slopes in the frequency-time plane are orthogonal [6] and 
can be used for concurrent transmission. This orthogonality is limited due to inter-SF collision 
and can be overcome by proper SF selection [7]. A network with data transmission where 
multiple nodes use the same SF is limited by the Co-SF interference, which requires the Signal 
to Interfering Noise Ratio (SINR) to be higher than 6 [8]. Such a high SINR is not achievable 
for co-located LoRa modems in the parallel data transmission scheme and is avoided for parallel 
data transmission between two nodes, which is further explained in section 4.4. Besides, parallel 
transmission facilitates a higher data rate while keeping the LoRa’s Chirp Spread Spectrum 
(CSS) modulation unchanged. 

 
The following section highlights the recent research works for LoRa data rate improvement 

and its implementation for burst data transmission, followed by the proposed LSAQ in detail. 
The validation procedure performed to determine the use of LoRa quasi-orthogonality is 
described in section 4.4. Section 4.5 analyzes LSAQ’s performance and highlights its features 
compared with other similar schemes. The conclusion highlights the limitations and future 
scope of research to improve LoRa capacity and further data-rate improvements. 

 
 

4.2 Related work 

Different SF-based clustering [9] is used to increase network capacity. Asynchronous 
transmission using LoRa physical channels in a multi-hop network [10] increases network 
coverage. Inter-SF collision becomes severe with increased numbers of nodes and their distance 
from the receiver or GW [11], which can be improved with equal SF loading by allocating an 
equal number of nodes per SF. However, equal SF loading may present limitations in 
applications with higher channel utilization due to the varying Time On Air (TOA) at different 
SFs. The Pyramid [12] algorithm can detect collisions of the same SF in real-time and thus 
improve throughput of the LoRa link between two nodes. Depending on the link quality, 
dynamic selection of the SF and BW [13] can improve the packet delivery rate (PDR), where 
the connections of different PDR are divided into three modes (low, medium, and high), and 



 95 

the nodes decide the modes. Switching between any two modes first requires switching to the 
low data rate. This mode-switching requires increased control messages, which may in turn 
increase network traffic and reduce the goodput (effective data rate) of the network. 

In addition to LoRa network capacity, previous literatures improve LoRa channel capacity 
by enhancing the modulation technique. The use of Interleaved Chirp Spreading (ICS) in 
parallel with basic Chirp Spreading [14] increases the capacity by 42%. One extra bit was added 
in the LoRa symbol for ICS, which increases the capacity by 14% and 8% for SF = 7 and SF = 
12 respectively. Slope Shift Keying (SSK) with ICS [15] used up, down and interleaved up and 
down chirp modulation, which also increases data rate. It achieved a 28.6% data rate 
improvement compared with the same SF and BW of CSS LoRa. Time-domain multiplexing 
was used for LoRa modulation [16] to distribute the bits of a symbol among different SFs, that 
doubles the data rate with minor degradation of Bit Error Rate (BER), mainly at the lower SF 
(SF = 7). Any improvement in the modulation technique results in changes in the LoRa physical 
layer which may not be compatible with the basic LoRa-based network. 

Some research works proposes an enhancement of the network access techniques for the 
LoRa communication protocol. An enhancement of the network access techniques for the LoRa 
communication protocol has been propose in [17], achieving the highest data rate possible. To 
achieve this higher data rate, the SF must be higher for nodes that require less hops to reach the 
DS. This algorithm focuses on capacity-based allocation and an iterative process. Distance-
based SF allocation using Exponential Windowing Scheme (EWS) [18] reduces co-SF 
interference and improves network capacity. It uses an offline optimization algorithm for static 
nodes and achieves 18.2% to 55.25% Packet Delivery Rate (PDR) compared to similar SF 
allocation algorithms. However, data throughput decreases exponentially with the increase of 
nodes from 1k nodes to 8k nodes. It also requires Global Positioning System (GPS) based 
location data or Received Signal Strength Indicator (RSSI) based distance calculation and 
manual distance measurement. The proposed LSAQ does not require offline calculation to 
support mobility in the WSN. 

Superimposed signals in different SFs used in the LoRa GW are decoded by the 
demodulator [19] using two groups (odd and even) of SFs. All the nodes need to maintain strict 
synchronization to utilize the MAC layer that considers all the packets of different SF as a single 
transmission packet. The use of high SF also has a higher probability of collision; therefore, all 
the SFs still may not be practical. It may need node classification to maintain the SF-based 
packet distribution. 

LoRa Wireless Area Network (LoRaWAN) is an ALOHA-based media access protocol and 
suffers from a higher collision rate as the network grows, which reduces the throughput [20]. 
Hint messages used in multiple ad-hoc slot allocation [21], in addition to the LoRaWAN slots, 
helps burst data transfer and increases throughput by reducing control overhead. The use of 
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Listen Before Talk (LBT) in WSN using LoRa requires higher energy and synchronization. 
Out-of-band synchronization using Frequency Modulation Radio Data System (FM-RDS) [22] 
frees some LoRaWAN channels; however, it requires extra hardware and alternate wireless 
links. Cantor [23] is used in a LoRaWAN GW to collect network parameters from the nodes, 
calculate the optimized Packet Reception Rate (PRR), and then estimate the actual downlink 
PRR using an optimization algorithm. It uses a regression model (WW: Wane and Wax, 
alternate increase, and decrease) for a realistic PRR determination. This algorithm improves 
goodput by up to 70%. Cantor uses windowing for the Acknowledge (ACK) which performs 
better for higher SF, however it may not be optimized in a clustered WSN with mixed SFs.  

Multiple-Input Multiple-Output (MIMO)-LoRa [24] uses multiple SFs for parallel 
transmission to improve BER at higher SF such as 10, 11, and 12. It uses a precoding matrix to 
optimize the total SNR and peak transmit power to select the SFs. However, the precoding may 
cause a continuous processing load for resource constrained nodes, which can be minimized by 
synchronous multi-SF transmission in the proposed LSAQ scheme. 

 
 
4.3 Proposed Lightweight Synchronization algorithm for quasi-orthogonal 

LoRa channels (LSAQ) 
 

4.3.1 LoRa LSAQ Channel 
 

Network capacity and coverage can be improved by improving the data rate of the links 
used in the network. The proposed LSAQ focuses on the data rate of a LoRa link of the network 
by reducing the total data transmission time (Ttx) between nodes and GW (or DS) regardless of 
the application type. LSAQ utilizes LoRa’s SF-based quasi-orthogonality for parallel data 
transmission by efficiently selecting multiple SFs for the LoRa Physical (LoRa-PHY) channels. 
A LoRa physical layer frame is shown in Figure 4-1 (a) named as the LoRa physical channel. 
The LoRa-PHY channel supports a programmable Coding Rate (CR) between 1 and 4 bits for 
forward error correction to provide better interference tolerance. Therefore, the actual Bit Rate 
(BR) depends on the SF, CR and the BW. The BR is calculated using equation (1), which gives 
a maximum BR of 37.5 kbps (for BW = 500 KHz, CR = 1 and SF = 6). 
 

𝐵𝑅 = 𝑆𝐹. L
LB81

. +,
(*+

      (1) 
 

In Figure 4-1(b), two or more LoRa physical channels are grouped to transfer data in 
parallel. These channels have the same configuration of BW, RF and CR, but have different SFs 
and are synchronized to transfer the data stream. Due to the similarity of configuration and 
operation, the rest of this manuscript has named these channels as Logical Channel (LC) to 
facilitate describing the proposed LSAQ. All the pay load sizes are variable according to the 
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transceiver configuration. The payload size ranges from 1 to 255 bytes. The total number of bits 
(nPL) in the frame can be calculated using equation 2. 

 

𝑛?@ = 8 +𝑚𝑎𝑥 E0, wN?@AL)*BNB818BX
L()*A2W)

x (𝐶𝑅 + 4)F     (2) 

 
 

Where PL is payload length in bytes, CRC is 16 bits if enabled and 0 otherwise, H = 20 
when the header is enabled and 0 otherwise. DE is 2 when the low data rate optimization is 
used, otherwise it is 0. 

 

 
(a) 

 
(b) 

 

Figure 4-1. LoRa frame structure (a) Physical channel, and  
(b) logical channel used in LSAQ 

 
 

4.3.2 LoRa WSN Capacity 
 

This research considered a LoRa WSN to cover a wide area supporting mobile nodes, as 
shown in Figure 4-2. These networks consist of multiple clusters. Nodes are connected with the 
CHs using star topology, and the CHs are connected with the DS (or gateway) using star or tree 
topologies. The CHs are elected among the nodes dynamically by the DS (or upper control layer 
of the network). While maintaining homogeneity in the network, CHs do not have gateway 
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functionality. Network capacity can be evaluated considering multiple clusters with a single DS 
or GW. Data from the clusters can be transferred to the static GW through the CHs using 
multiple hops, as shown in Figure 4-2 (a) or using a mobile DS directly from each CHs, thus 
avoiding multiple hops [4] as shown in Figure 4-2 (b). For both network topologies, CHs acquire 
data from the nodes and transfer it to the GW or DS. The data transfer volume between the CHs 
and GW (or DS) depends on the network size or the number of nodes in a cluster. For a WSN 
with a static GW, considering equal clustering and only one wing of the network (i.e. all the 
clusters are aligned in one single communication line), the maximum nodes per cluster can be 
calculated using the following equation 

 
 
 

 
 

Figure 4-2. Data transfer from the nodes in a WSN using LoRa  
(a) through multiple CHs to the GW, and (b) using single CH to the mobile DS 

 
 

𝑁367 =	 z
([@6

:71(\A@)\
{      (4) 

 
 

where Ttx (in seconds) is the total TOA for a single packet data transfer considering the TOAs 
for both the data itself and other control messages such as Request (REQ) and ACK, which are 
considered to have 8 bytes; I is the required data transfer interval; L is the link length in km; 
and r is the coverage radius in km in one direction. The total number of nodes in the WSN can 
be calculated using equation (5). 
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In a WSN with mobile DS, the DS acquires data in mobility at U (km/h) speed, while 
maintaining the link with the CHs, as shown in the Figure 4-2 (b). The maximum number of 
nodes in those clusters can be calculated using equation (6). 

 
 

𝑁367 =
U#!!.@
=.:/01

     (6) 

 
The equation shows that network capacity in terms of the number of nodes is inversely 

proportional to the network coverage radius and Ttx, hence on LoRa’s TOA. Therefore, in both 
WSN topologies, the only way to increase the number of nodes in the WSN is to reduce the Ttx 
(or Tmax) by reducing the LoRa TOA. However, low TOA values can be achieved at lower SFs 
by sacrificing the LoRa range. LoRa-LSAQ can increase the data rate in a LoRa network at 
higher SFs while maintaining the WSN coverage and capacity. 

 
Table 4-1: LoRa WSN size in terms of nodes depending on SF, BW, and the data size to be transmitted. 

 
Transferred Data size (Byte) 220 51 22 

SF BW 
(KHz) 

Link 
length 
(km) 

Hop 
count 

Ttx  
(ms) 

Cluster 
size 

(Static 
GW) 

WSN 
size 

(Static 
GW) 

Cluster 
size 

(Mobile 
DS) 

Ttx  
(ms) 

Cluster 
size 

(Static 
GW) 

WSN 
size 

(Static 
GW) 

Cluster 
size 

(Mobile 
DS) 

Ttx  
(ms) 

Cluster 
size 

(Static 
GW) 

WSN 
size 

(Static 
GW) 

Cluster 
size 

(Mobile 
DS) 

7 500 2 49 121 6 300 297 58.3 12 600 617 48.1 15 750 748 

7 250 2 49 242 3 150 148 116.6 6 300 308 96.2 7 350 374 

7 125 2 49 484 1 50 74 233.2 3 150 154 192.4 3 150 187 

8 500 5 19 212.8 22 440 422 105.3 44 880 854 87.4 54 1080 1029 

8 250 5 19 425.6 11 220 211 210.6 22 440 427 174.8 27 540 514 

8 125 5 19 851.2 5 100 105 421.2 11 220 213 349.6 13 260 257 

9 500 10 9 379.6 52 520 474 190.1 105 1050 946 154.3 129 1290 1166 

9 250 10 9 759.2 26 260 237 380.2 52 520 473 308.6 64 640 583 

9 125 10 9 1518.4 13 130 118 760.4 26 260 236 617.2 32 320 291 

 
 

Table 4-1 shows the maximum possible WSN size in terms of the number of nodes 
(calculated using equation 4, 5, and 6), which depends on the SF, BW and payload size, while 
transferring data at 15 min intervals. For a static GW configuration, link length is defined based 
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on our experimental result with Line Of Sight (LOS). The mobile DS is mounted on a Zypher 
[25] UAV and moved at an average speed of 100 kmph. In both scenarios, it does not show the 
higher SFs’ (SF = 10 to 12) and lower BW’s analysis due to very high TOA, which is not 
suitable for a payload size of 240 bytes.  LoRaWAN uses a typical payload of 51 Bytes and 22 
Bytes is the minimum payload size to give the minimum TOA for the specific SF and BW. 
Figure 4-3 shows the effect of varying the WSN size (in terms of nodes or on the total 
transmission time) using 240 bytes and 51 bytes payload sizes. The lowest data transmission 
time can be achieved when the SF is at its lowest value (SF = 7), however it limits the WSN 
size due to the reduction of the link length. Therefore, lowering the SFs may not increase the 
data rate in a WSN with higher nodes or wider coverage using multiple hops giving higher total 
transmission time. WSN size for parallel transmission using multiple SFs using the proposed 
LSAQ is further explained in section 4.5. 

 

 
Figure 4-3. Cluster size dependence on the total data transmission time (Ttx) using 

different values of LoRa SF, BW and data size. 

 
4.3.3 LSAQ functions:  

 
LSAQ includes the application-specific SF selection, packet distribution (or accumulation 

in the receiver end) and synchronization among the physical channels in the LC. The following 
subsections describe the SF selection, data packetization and synchronization function. 



 101 

 
 

Table 4-2: TOA values for different BW and SF for PL = 240 bytes 
 

SF BW = 500 KHz BW = 250 KHz  
TOA 
Ratio 

% 
RDRI TOA 

(ms) 
DR 

(kbps) 
TOA 
(ms) 

DR 
(kbps) 

6 52.1 37.5 104.2 18.75  71 
7 92.2  21.870 184.4  10.935 0.583 75 
8 164.0  12.500 327.9  6.250 0.572 78 
9 292.1  7.030 584.2  3.515 0.562 80 
10 533.0  3.906 1,066.0  1.953 0.556 82 
11 963.6  2.148 1,927.2  1.074 0.550 83 
12 1804.3 1.172 3,608.6  0.586 0.546  

 

A) SF Selection: 
 

Maximum data rate of LoRa depends on the TOA, which directly depends on the BW and 
SF, as shown in equation (7) which is derived from equation (3) using CR = 1, H = 1 and DE = 
0. 

 
𝑇𝑂𝐴 = M20.25 + w(?@A)*BC

)*
x 5S M(

*+

+,
S         (7) 

 
TOA will be the lowest for all the SFs where BW is 500 KHz. Table 4-2 shows the TOAs 

for 250 KHz and 500 KHz BW when SF is varied. It indicates that the TOA with BW 250 KHz 
and SF 7 is only 20.4 ms (184.4 – 164) higher than the TOA with 500 KHz and SF 8. That gives 
a 12% improvement (reduction) of TOA between these two LoRa settings. However, this differs 
from 55% to 57% for the same BW with different SF. Data rate differences between two LoRa 
physical channels of the same BW and different SFs are compared and presented here as the 
relative data rate improvement (RDRI = 1-DRi / DRi+1). Therefore, parallel transmission using 
250 KHz and 500 KHz BW can be used for two consecutive SF values in two different logical 
channels. Parallel transmission can be achieved using multiple RF channels of the same BW 
with different SFs. Therefore, SF 7, 8, 9, and 10 can be used for channel-1 and channel-2, which 
gives eight LoRa physical channels for parallel transmission. However, it is not feasible to use 
more than two physical channels to improve the data rate and energy consumption at the same 
time. Different BW with different SFs is not used in the proposed LSAQ to avoid data loss due 
to inter LoRa channel interference (characteristic of quasi-orthogonality). 
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Figure 4-4. LoRa packet stream for synchronized burst transmission using LSAQ with 
different SFs in the same RF channel with same BW. 

 

 
Figure 4-5. LoRa packet size for synchronized parallel data transmission 

using different SF in the same RF channel with same BW. 
 
 

B) Data packetization 
 

LSAQ uses Quasi-orthogonal multiple access of LoRa using multiple SFs within a single 
LC. Synchronization within a LC is highly dependent on the TOAs of the specific SF and time 
delay due to the data processing performed by the packetization function. Figure 4-4 shows data 
packet streams with 240-byte payloads transferred over 500 KHz BW at different SF values. 
Different physical channels can transfer packets simultaneously for varying TOAs. It is noted 
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that the processing time is considered the same for all the physical channels. It is observed, 
denoted by the green dotted lines, that the packets transferred in the LoRa physical channels 
using SF 7 have better synchronization with packets transferred parallelly using SF 9 than with 
SF 8 or SF 10 while maintaining the same packet size for all the SFs. As shown in Figure 4-4, 
for a LC with two LoRa physical channels using SF 7 and SF 9, the number of synchronized 
data packets are 1 and 3 when using an equal packet size with 240-byte payloads and the LoRa 
configuration used in equation (7). Parallel transmission of unequal packet size can be done by 
keeping the TOA the same for different SFs, as shown in Figure 4-5. 

 
 

C) Synchronization 
 

Synchronous access in an LC can be maintained in two ways. First, by distributing the data 
packets equally in the channels. Second, by using data packets of different sizes over the LoRa 
physical channels to maintain equal channel utilization based on the parameters provided by the 
data packetization function. The synchronization function assigns specific sequence numbers 
for the segmented data packets sent over the LoRa physical channels to facilitate packet loss 
detection and data block construction at the receiver end. Figure 4-6 shows the synchronization 
functions for an LC consisting of only two LoRa physical channels with SF1 and SF2 and the 
same BW. The calling function provides the LoRa BW and SF index as m and n respectively, 
where m varies from 1 to 3 for different BW used among 125 KHz, 250 KHz and 500 KHz, and 
n varies from 0 to 6 for different SF values from 6 to 12. For the transmission of equal packet 
size (q1 = q2), the synchronization function calculates the number of packets, r, to be sent using 
the physical channel having lower TOA, at the same time one packet of the same size is sent 
using the other physical channel (that has higher TOA). As an example, for a LC with two 
physical channels with SF1 = 7 (m1=1) and SF2 = 9 (m2 = 3) and the same BW (n1 = n2), r will 
be 3. For unequal packet size (q1 ¹ q2), which is provided by the data packetization function, r 
will be 1. 
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Figure 4-6. LSAQ packet synchronization algorithm for different SFs 
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Figure 4-7. TOA variation with the change of BW and SF values to determine the 

value of a and b 
 
 

4.3.4 Mathematical Model: 
 

A) LSAQ Data Rate 
 

The actual data rate for LSAQ depends on the equivalent or total TOA for the parallel LoRa 
physical channels, which can be represented by the following equation 

 
 

𝑇𝑂𝐴EKE6H = } }𝑇𝑂𝐴3,5

]

5O!

U

3O;

 
 

												= } }𝑇𝑂𝐴!(𝛼A5𝛽A3)
]
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U

3O;

 
 

(8) 

 
 

TOA0 is the TOA at SF 6 for a specific BW. Table 4-2 shows that the TOA is lowest at SF 6 
for a specific BW. The increment of the TOA for other SF is represented by a. The TOA 
increment for the same SF at different BW is represented by b. For multiple LoRa physical 
channels with the same BW and SF, equation (8) can be written as equation (9), where k 
represents the number of duplicities of the LoRa physical channels. 
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]

5O!

U
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(9) 

 
 

Figure 4-6 shows the variation of TOA for different SF and BW, from which we can 
determine the value of a and b, which vary for different SF and BW. However, it varies only 
by 10%. Therefore, an approximation is used where a = 0.56 (a = f(TOAi, TOAi-1) and b = 0.5 
(b = 0.5(SF-6)). 

 
Burst data transmission using the LSAQ requires multiple LoRa packets to be transmitted 

sequentially, as shown in Figure 4-4. This packet sequence can transmit a data stream in 
multiple time slots, as done in TDMA, due to the TOAs at different SFs. The number of packets 
for a burst transmission may also induce further underutilization. This utilization can be 
maximized using odd or even SF values for the stream of data packets, which corresponds to 
either SF 7 and SF  9 and SF 8 and SF 10 being paired together. However, it depends on the 
data processing and the bus communication time which is found similar for all SFs. Therefore, 
odd or even paired SFs may not be the best choice for maximum resource utilization. 

 
𝑇E7 = 𝑇𝑂𝐴E7 + 𝑇D (10) 
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𝜑 = 1 −
𝑇𝑂𝐴5 − 𝑢

𝑇E7
≈ 1 −

𝑇𝑂𝐴; − 𝑢
𝑇E7

  
(13) 
 

𝐷𝑅@)./ = (1 − 𝜑)
𝑃𝐿
𝑇E7

  
(14) 

 
For the burst transmission of multiple LoRa packets, the total burst transmission time (Ttx) 

includes the total TOA and the processing time (Tu), as shown in equation (10). However, the 
number of packets (F) that need to be transferred will differ for different SF. Considering the 
same processing time for all the SFs, TOAtx and Tu can be rewritten as equations (11) and (12). 
From Figure 4-4, it can be shown that the synchronization loss will be lowest when the TOA is 
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the minimum time required for a packet, which is TOAn - u, and that the transmission time 
utilization can be expressed by equation (13). The lowest TOA occurs for the lowest SF used, 
which is 7 for n = 1. Therefore, the synchronization loss can be minimized by using the smallest 
SF possible and then transmitting the largest packet possible using the same SF. The effective 
data rate of LSAQ can be calculated using equation (14), using PL as the payload size in bits 
and Ttx as time in seconds. 

 
B) Energy Model 

 
The total energy requirement can be determined by calculating the total energy required for 

a logical channel from the energy required for the associated LoRa physical channels (specific 
SF and BW) and the energy required for the processing of burst data. Equation (15) shows the 
total energy requirement for burst data transmission where Ptx is the LoRa transmission power 
and Pu is the processing power. The power required for the LoRa transceiver is same for all BW 
and SF with the same transmission power. Therefore, Ptx is replaced with the power required 
(P0) at SF 7 and BW 500 KHz. Energy efficiency for the burst transmission can be calculated 
using equation (16).  

 
𝐸 = 𝑃E7(𝑇𝑂𝐴E7) + 𝑃D𝑇D 
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𝜂 =
𝑃E7𝑇𝑂𝐴E7

𝑃E7𝑇𝑂𝐴E7 + 𝑃D𝑇D
  

(16) 
 
 

4.4 Experimental setup and validation  
 

The implementation of LSAQ assumes that multiple SFs are used in the same RF channel 
with the same BW, which is not assigned for any other link at the same time in the network to 
avoid co-channel interference. Unlike the GW LoRa modems, available LoRa transceivers at 
the time of writing this paper do not support multiple simultaneous transmissions or receptions. 
Therefore, the node has multiple LoRa transceivers connected and controlled by a single 
processor to avoid process-sharing complexity. Here, in a clustered WSN, the nodes can be the 
CHs that accumulate data from the sensor nodes (SN) of a cluster at a lower data rate using the 
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LoRa physical channel and transfer data to the DS or GW using a LC. Figure 4-8 shows the 
functional (hardware and software) blocks of the of the LSAQ nodes with multiple LoRa 
transceiver modules used for the LSAQ implementation. All the transceivers are connected 
using the same type of digital bus and are configured to have the same digital bus speed and 
LoRa parameters (BW, CR, DE, and H), except for SF as mentioned in equation (3). The 
transferred data volume is measured in bytes. Three experiments were performed to validate 
this research. 

 

 
 

Figure 4-8. Functional blocks of a LSAQ node. 

 

 
Figure 4-9. LoRa parallel data transfer experimental setup. 

 
 

1) Parallel transmission using multiple radio channels with the same BW and same SF, 

2) Parallel transmission using the same radio channel with different BWs and the same SF, and  

3) Parallel transmission using the same radio channel with the same BW and different SFs. 
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While varying the experimental parameters as required during the experiment, the 
remaining LoRa parameters were kept constant throughout the experiment. We used two LoRa 
transmitters simultaneously and monitored the radio spectrum using a Software Defined Radio 
(SDR) based spectrum analyzer. The data quality, RSSI and SNR of the transmitted signal were 
monitored using a LoRa receiver configured for specific SF, BW, and radio channels. The 
experimental setup is shown in Figure 4-9. 

 
 

 Table 4-3: LoRa packet processing time and loss measured for the parallel transmission scheme 
 

Tx_SF TX_SW 
delay (ms) 

Packet 
loss (%) 

Average Tx 
time (ms) 

Data processing 
time (ms) 

7 <5 50 113 10 
7 >5 0 113 10 
7 10 0 117 10 
8 5 0 188 10 
9 5 0 312 10 
10 5 0 577 20 
11 5 0 1038 10 
12 5 2 1935 44 

 
 

4.4.1 Data processing time  
 

Before performing the parallel transmission, the minimum data processing time was 
measured at BW 500 KHz for different SFs. Table 4-3 shows the experimental SF values used, 
processing time, packet transmission time and packet loss. It was seen that a software delay of 
less than 5 ms caused intra-channel packet loss as high as 50%. Data packet processing required 
10 ms to 44 ms depending on the SF used. This processing time was highest for SF 12. It also 
notably had a 2% packet loss with a 5 ms software delay. 

 
 

4.4.2 Transmission of multiple parallel radio channels  
 

Inter radio channel interference was monitored to determine the best radio channels for 
parallel data transmission.  In this experiment, the receiver was configured with SF 7, BW 250 
KHz and the radio channel frequency equal to 916 MHz. The transmitter was configured with 
different radio channel frequencies ranging from 900 MHz to 940 MHz; BWs of 125 KHz, 250 
KHz and 500 KHz; and SF values from 7 to 12. The radio channel was monitored using a 
spectrum analyzer, which showed more than one reflected channel other than the transmitted 
channel. This caused interference for the configured radio channel. Figure 4-10 shows a 
reflected radio channel at 915.4 MHz for the transmitted signal using a 916 MHz radio channel 



 110 

with BW 250 KHz and SF 7. Although the reflected channel’s signal level was poor compared 
to the actual channel, the receiver configured for the reflected channel received 5% to 10% of 
the packets with 20% data loss. Therefore, it was determined that multiple physical channels 
with different radio frequencies could not be used for parallel transmission.  

 
 

 

 

Figure 4-10. Different LoRa bandwidth and channel interference: The reflected radio channel 
(915.4 MHz) monitored for inter channel interference. Data loss for LoRa parallel data 

transmission using two different BWs (BW 250 KHz and 500 KHz) with same SF (7) and radio 
channel frequency (916 Mhz). 
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Figure 4-11. Parallel SF transmission without loss: LoRa parallel data transmission using different SF 
(SF 7 and SF 8) with the same BW 250 kHz and radio channel frequency (916 MHz), showing no 

significant data loss. 
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Figure 4-12. Parallel SF transmission with data loss: LoRa parallel data transfer using different SF (SF 
7 and SF 12) with the same BW 250 KHz and radio channel frequency (916 MHz), showing some data 

loss due to inter SF interference in the physical channel with SF 7. 
 
 

4.4.3 Transmission of multiple parallel bandwidths  
 

In this experiment, one transmitter was configured to transmit 240 bytes of data using the 
916 MHz radio channel with BW 250 KHz and SF 7. Another transmitter was configured to 
transfer a 10-byte LoRa packet using the 916 MHz radio channel with SF 7 and the BWs 125 
KHz, 250 KHz, and 500 KHz. The receiver was configured using the 916 MHz radio channel 
with BW 250 KHz and SF 7. Figure 4-10 shows the parallel transmission of different BWs with 
the same SF and radio channel. The receiver received the data from the transmitter of a similar 
configuration (916 MHz, BW 250 KHz, and SF 7). However, the transmitted data with a BW 
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of 500 KHz causes noise that affects the LoRa physical channel with a 250 KHz BW, resulting 
in a SINR decrease from 10 to 1.25. We also observed a few bits of data loss in 20% of the 
overlapped data packets, denoted by green circles in Figure 4-10. Therefore, physical channels 
of different BW could not be used for parallel transmission (due to the quasi-orthogonality 
property of LoRa).  

 
 

4.4.4 Transmission of multiple parallel SFs  
 

In this experiment, two transmitters were configured with different SFs. One was 
configured with SF 7 and BW 250 KHz to send 240 bytes using the 916 MHz radio channel. 
Another module was configured for different SFs from 8 to 12, fixing the BW at 250 KHz, and 
transmitting only 10 bytes of data using the same radio channel. No data loss was observed for 
the parallel transmission using SF 7 and SFs from 8 to 11. The noise level was increased during 
the parallel transmission; hence the SINR went down to -2.5 from 10 for SF 7 and 8, as shown 
in Figure 4-11. However, no data loss was found for the SF combination. Data loss was found 
with the combination of SF 7 and SF 12 where the SINR was below 1.25 for SF 7 and 2.5 for 
SF 12 as shown in the Figure 4-12. This may result from inter-SF interference due to the longer 
overlapping duration of the two transmission channels with their TOAs of 198 ms and 660 ms 
respectively. Therefore, long-duration overlapping should be avoided during parallel 
transmission by choosing the SFs as close as possible or reducing the packet size for the LoRa 
physical channels with higher SF in the logical channel of different SFs. 

 
 

4.5 Performance analysis 
 

The proposed LSAQ overcame the bottleneck problem that limited the network capacity, 
coverage, and data rate. Figure 4-13 shows that parallel transmission using SF 7 and SF 8 can 
increase network capacity compared to WSNs using multiple SFs asynchronously as done in 
SF-based clustering [7]. LSAQ increases WSN capacity by 10% for densely populated urban 
applications and by 44% for urban WSNs with wider coverage. Similarly, LSAQ can increase 
network capacity by 46% for the WSNs that transfer large packets (up to 240-byte packets). 
Table 4-4 summarizes the application specific LSAQ performance in terms of network capacity, 
considering a data transfer interval of 15 min using a BW of 500 KHz. It shows a decrease in 
network capacity for densely populated WSN with SF 7 and 9 due to their longer TOA 
difference than SF 7 and 8 or SF 8 and 9. On the other hand, a decrease in network capacity is 
shown for using the SF 7 in the combination due to reduced coverage compared to SF 8 and 9.  
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Table 4-4: LSAQ network capacity for application specific WSN  
 

WSN  
application 

Data packet 
size 

LSAQ 
implementation 

Network 
size 

% 
Improvement 

Densely populated 
urban WSN 

51 Bytes SF=7 & 8 1150 10% 
SF=8 & 9 1660 44% 
SF=7 & 9 810      Decrease 

Wide-area WSN 240 Bytes SF=7 & 8 500      Decrease 
SF=8 & 9 760 46% 
SF=7 & 9 400     Decrease 

 
 

 
 

Figure 4-13. WSN size (with Static GW) dependence on different SF used for BW = 500 
KHz and with 240B and 51B payload. 
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Figure 4-14. Data-rate improvement using LSAQ based parallel data transfer using 
various SF combination. 

 

Figure 4-14 shows the LSAQ data-rate improvement efficiency compared with the LoRa 
physical channels based on a BW of 500 KHz and payload size of 240 bytes. It shows a reduced 
data rate using certain channels due to the synchronization loss of LSAQ. Combining two lower 
SFs (such as SF 7 and 8) gives a higher data rate than combining two higher SFs (such as SF 8 
and 9). As described earlier, the selection of SF combinations also depends on the application. 
A combination of more than two SFs such as 7, 8 and 9 may give a data rate of 37.11 kb/s, 
which is 21% higher than that of using only SF 7 and 8. Similarly, combining one more SF (SF 
10) with the three SFs may give a 10% increase in the data rate. This gain in data rate by 
combining more than two LoRa modems may not be feasible for lightweight nodes that require 
synchronization.  

 
Besides improving network capacity and data rate, LSAQ has the following advantages over 

the LoRa capacity improvement schemes available during performing this research: 
 

1) LSAQ utilizes the current LoRa CSS modulation technique to facilitate easy hardware 
implementation before any single-chip solution is available. It will also help facilitate the 
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LoRa network’s adoption of the proposed scheme by adding one extra LoRa modem on 
each node. Using multiple LoRa modules may increase the node cost until the 
implementation of a multi-SF transmitter in a single chip solution is commercialized. 
 

2) LSAQ is backward compatible. The network capacity of LoRa WSNs can easily be 
increased by adding one extra LoRa modem and implementing LSAQ in the CHs or in the 
repeater nodes.  
 

3) Since the increased data rate of LSAQ decreases the TOA of a LoRa network, it can be used 
in WSNs with both static and moving DSs or GWs. Therefore, it will further increase the 
coverage area of the WSN. 
 

4) The software stack of the proposed LSAQ is designed to be lightweight, targeting resource 
constrained nodes. Therefore, it can be easily implemented in low-end nodes with only a 
few kilobytes of program memory and less than a kilobyte of data memory. 

 
Table 4-5 compares the proposed LSAQ with the other LoRa capacity improvement 

schemes, that utilizes improvement in modulation and in LoRa physical channels.  ICS-CSS 
and SSK-ICS improved LoRa capacity by changing the basic CSS modulation. Therefore, it 
will not be readily applicable until chip-level implementations are available. Due to the change 
in modulation, these schemes may not be compatible with basic LoRa-based applications. 
Moreover, these changes in the modulation technique may increase the network capacity by up 
to 42% compared to the 46% improvement achieved by the proposed LSAQ. TDM-LoRa 
modulation doubled the data rate increasing the BER at lower SF (SF 7), whereas LSAQ 
improves up to 58% data rate using the SF 7 and 8. 

 
The network access protocol proposed by [17] used multiple SFs in different clusters to 

equalize the transmission time. The CH closest to the GW may suffer from the bottleneck 
problem if it is assigned high SF values. As it is an application layer improvement on top of 
LoRaWAN MAC layer, its implementation will be simpler than LSAQ as it uses its own MAC 
layer while needing extra LoRa modules for parallel transmission. 

 
Cantor [23] and EWS [18] aided the LoRaWAN MAC by improving the Packet Reception 

Rate (PRR) or PDR. Cantor proposed a parametric optimization algorithm that may cause higher 
control traffic in the network. Although it increases the goodput by up to 70%, the EWS may 
suffer from a higher collision rate due to miscalculation of the distance at poor RSSI. Unlike 
CSMA, used in LoRaWAN, LSAQ avoids the collision by using LBT and multiple SFs, instead 
of RF channels, for parallel transmission. However, the Cantor and Negative ACK 
implementation may not require any hardware changes depending on the processing and energy 
requirements. 
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The MIMO-LoRa [24] can receive multiple signals with different SFs parallelly transmitted 
by the same nodes based on SINR and transmission power optimization without any 
synchronization. This is unlike LSAQ, which requires synchronization within the same node, 
thus requiring a complex algorithm. Moreover, it is not suitable for low SFs like the proposed 
LSAQ. However, LSAQ may not be suitable for higher SFs due to higher inter-SF interference. 
As a non-LoRaWAN protocol, it may not support the WSNs built on LoRaWAN.  
 

Table 4-5: Comparison of the proposed LSAQ with other LoRa capacity improvement schemes. 
 
 ICS-CSS 

[14] 
SSK-ICS  

[15] 
TDM-Lora 

[16] 
 

[17] 
EWS  
[18] 

Cantor  
[23] 

MIMO-
LoRa [24] 

LSAQ 

Technique  Modulation Modulation Modulation Dynamic SF 
Allocation 

Optimization 
algorithm  

Optimization 
algorithm 

Application 
layer 

protocol 

Selection and 
Synchronization 

algorithm 
LoRa 
orthogonality 

Similar to 
basic CSS 

Similar to  
basic CSS 

Quasi-
orthogonal 

in radio 
channel 

Similar to  
basic CSS 

SF 
orthogonality 

Similar to basic 
CSS 

SF 
orthogonality 

SF  
orthogonality 

Performance 
improvement 

42% DR 
gain with 

3.39% 
increase of 

bit error rate 
(BER) 

28.6% DR 
improvement 
for the same 
SF and BW 

Doubled the 
DR, 

increased 
BER at 

lower SF 
(SF=7) 

62.8% DR 
improvement 
at SF = 7, for 

multi-hop WSN 

18.2% to 
55.25% DR 

improvement 
comparing 
other SF 

allocation 
algorithm 

 

70% DR 
improvement 

in terms of 
good put. 

Improved 
10% to 50% 
DR at SNR 
less than 10 

58% (SF = 7, 8), 
33% (SF = 7, 9) 

DR improvement 
10% (SF = 7, 8), 

44% to 46% (SF = 
8, 9) Network 

capacity 
improvement 

Compatibility Not compatible to LoRa-Phy Compatible with LoRaWAN-MAC Not 
compatible 

with 
LoRaWAN 

Hardware (HW) 
compatible to  

LoR-Phy module, 
not to LoRaWAN 

MAC 
Implementation Need HW redesign No HW redesign requires, need SW 

implementation 
May need 
HW redesign 

No HW redesign, 
and simple SW 
implementation 

required. 
Limitations Not compatible with the  

basic LoRa network due to  
change in modulation technique 

Bottleneck 
issue for the 

node closer to 
the GW for 
multi hop 

network, due to 
use of high SFs 

Require 
location date 
from GPS or 

calculated 
from RSSI. 

Calculation and 
control 

message 
overhead for 

the 
optimization 

algorithm 

Performs 
better at 

higher SFs 
(10, 11, 12) 

Not suitable for 
combination 

of high SF (12) 
with low SF (7). 

Advantages May not impact the implementation of 
available LoRaWAN. 

Support for 
LoRaWAN 

Increased 
network size. 

Compatible 
with 

LoRaWAN 

Increased 
network 
coverage 

area 

Lightweight, wide 
area WSN, and 

support for WSN 
with mobility 

 
 
4.6 Conclusion 

 
This paper addressed the challenges of the low data rate and high TOA of LoRa, which 

limits the WSN capacity in terms of the number of nodes and coverage area where multi-hop 
data transmission is required. LoRa GWs support the parallel reception of multiple SFs, and 
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some media access protocols utilize this capability to increase the WSN capacity. This can 
further be enhanced through parallel transmission from a node or CH using multiple SFs, as 
proposed by LSAQ. In this research, we investigated the possible means of parallel transmission 
in a LoRa network while focusing only on the SF in order to overcome the RF channel related 
interferences utilizing the quasi-orthogonality of LoRa. The analysis presented in this paper 
may help the future researcher to overcome LoRa’s limitations with regards to parallel 
transmission and to potentially achieve further improvements using LoRa channels in parallel. 
The use of more than two SFs in parallel by one node, using the same RF-channel and BW, can 
be further investigated by introducing an optimization algorithm for the synchronization 
process. The proposed LSAQ was implemented using multiple LoRa modules due to the 
unavailability of multi-channel LoRa transmitter ICs, which can be replaced using a single IC 
solution as used in the LoRa GWs. LoRa WSN capacity can be improved by extending the 
LSAQ scheme to implement inter-node synchronization for alternate SF-group allocation 
among the nodes. Therefore, LSAQ may further increase LoRa’s capacity to use in different 
WSN applications without changing the CSS modulation techniques. 
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5. DACK-LoRa: Dynamic Acknowledgement Protocol for 
Sequential and Image Data Transfer using LoRa in Wide-Area 
Wireless Sensor Network 

 
This chapter presents the proposed data transmission protocol to improve the effective 

data rate (goodput) while transferring image and sequential data using the LoRa link. Long-
distance image and sequential data transmission may not be possible using high-speed wireless 
technologies such as cellular networks for their coverage limitation and cost. Wide-area 
Wireless Sensor Network (WSN) applications also have energy and resource constraints to use 
energy-hungry wireless technologies to serve the purpose. Low-power wireless technologies 
such as LoRa can meet the distance requirement with a low data rate. Acknowledgement (ACK) 
message overhead of the protocols used for image and sequential data transmission worsens the 
effective data rate. This research proposes a lightweight data transmission protocol named 
Dynamic Acknowledgement (DACK) for the LoRa physical links to increase the data goodput 
by reducing the ACK message overhead.  

 
Data transmission protocols use Stop-Wait or End-of-Block ACK messages to ensure 

lossless data transmission. Image and sequential data transmission requiring multiple packets 
suffer packet overhead. Various image segmentation and packetization schemes are used to 
reduce image data size and packet overhead. We investigated both these schemes to measure 
their performance in terms of goodput. The proposed DACK protocol generates an ACK 
message dynamically when it receives one or more lossy packets. The receiver sends the DACK 
message with the indexes of the packets containing missing data, and the transmitter retransmits 
only those missing packets accordingly. Therefore, DACK protocol reduces the total ACK 
message over the complete image and sequential data transmission period improving goodput 
compared with other protocols. A mathematical model is derived for DACK and other protocols 
to measure and compare their performance by measuring the total time of ACK messages used 
for transmitting the same image data. We found DACK-LoRa protocol reduces the total ACK 
message duration 10 to 30 times than the Stop-Wait and End-of-block ACK schemes. 
 

The development work, analysis and findings of this chapter will be submitted to an 
international conference for possible publication. The student contributed to the main idea, 
implementing code, writing the original draft, and evaluating and revising the manuscript. 
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DACK-LoRa: Dynamic Acknowledgement Protocol for Sequential and 
Image Data Transfer using LoRa in Wide-Area Wireless Sensor Network 

Gazi M. E. Rahman, Member, IEEE, and Khan A. Wahid, Senior Member, IEEE 
 
 

Abstract: Wide-area Wireless Sensor Networks with multiple hops and massive Internet of 
Things applications may require transferring high-volume data or image at a regular and longer 
interval. Cellular network and satellite-based data communication may not be feasible due to 
higher energy requirements and low radio resource utilization or high cost. On the other hand, 
Low Power Wide Area Network technologies including LoRa are not capable of high-volume 
sequential data or image transfer due to their low data rate. Therefore, modified LoRa 
modulation techniques and multiple sinks or gateways with parallel operation are proposed to 
improve LoRa channel capacity. This research proposes a dynamic acknowledgement (DACK) 
protocol to improve LoRa channel’s goodput for sequential data or image transmission by 
reducing the packet overhead. DACK-LoRa demonstrated a 10 to 30 times reduction of 
acknowledgement overhead comparing the End of Block Acknowledgement protocols. 

 
Keywords: LoRa, image transfer, Long-range, wide-area monitoring, WSN, communication 
protocol 
 
 
5.1 Introduction 

 
Application-specific long-distance images and accumulated sensor data in a wide-area 

Wireless Sensor Network (WSN) with Internet of Things (IoT) connectivity can be transferred 
using cellular networks [1]. Satellite-based imaging [2] is used for wide-area remote sensing 
applications. However, both these technologies may not be feasible technically due to high 
energy requirements and underutilization of the resources (radio links) or high cost of operation. 
Low Power Wide Area Network (LPWAN) technologies such as Zigbee [3] and high-speed 
technologies such as Wi-Fi may not be suitable for their short range [4]. Among the low power 
and long-range technologies, LoRa provides a better data rate (up to 37.5kbps) than SigFox. 
Therefore, LoRa can be used to transfer image or sequential data at a range from 1km to 15km 
with Line of Sight (LOS) [5]. This speed and range may not be sufficient for real-time image or 
sequential data transmission. However, applications like root architecture imaging [6] may 
transfer the offline image over the LoRa link. 

 
Previous research achieved 100% packet delivery rate up to 4km sending 13.5kB data [7] 

in 67s for a long-distance image transmission. Online voice and offline image data [8] of 20.3 
KB were transferred in 169ms. Cluster head close to the Base Station (BS) in a wide-area WSN 
with multiple clusters accumulates data from the remote clusters. This accumulated data may 
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be sent sequentially [9] to the Base Station (BS) utilizing the LoRa link. Offline firmware update 
of the remote sensor node [10] is done over the LoRa physical link using multiple processors. 

 
Beside the low data rate, LoRa has high Time on Air (TOA) comparing other LPWAN 

communication technologies, which increases the total transmission time. Longer range 
requires higher Spreading Factor (SF) with the cost of higher TOA. Alternatively, multiple hops 
using lower SF, may reduce the TOA of one hop, however, will increase the total end to end 
TOA as a multiple of the number of hops. Use of LoRa Wide Area Network (LoRaWAN) 
protocol further increases this time due to the limit of 1 % duty cycle to accommodate more 
nodes in the network.  

 
Addressing these challenges, improvement of the data transmission protocol over the LoRa 

physical layer is focused on in this research. LoRa physical layer transfers data using a 256-
byte packet, including all required access control and application layer overhead. Effective data 
rate or application-specific goodput depends on the LoRa physical layer payload or application 
layer's data size. This overhead may not impact the throughput for the single packet data 
transfer. However, for sequential transmission of high-volume data or image data, reduction of 
packet overhead may increase the goodput. Reduction of acknowledgement (ACK) messages 
while transferring data packets can improve goodput. This research proposes an application 
layer protocol that generates Dynamic Acknowledgement (DACK) messages for the missing or 
lossy data packets to improve the goodput for sequential data and image transmission over the 
LoRa physical layer. Major contributions of this research are- 

 
- Development of an application layer protocol to send the uncompressed image or sequential 

data over the LoRa link, 
 

- Development of algorithms for image data segmentation, construction, error checking and 
ACK message generation, and 

 

- Development of the mathematical model to measure the improvement by determining the 
total ACK transmission time. 

 
The following section describes the technical background of LoRa followed by the 

highlights of the recent research works on image transmission algorithms and protocol 
improvement. Section 5.4 describes the proposed DACK-LoRa in detail, followed by the field 
trial result and performance analysis for the in-situ root imaging as a use case. The conclusion 
highlights the limitations and future scope of research to improve the LoRa capacity for image 
transmission applications in the WSN. 
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5.2 Technical background 
 

5.2.1 LoRa Modulation 
 
LoRa uses Chirp Spread Spectrum (CSS) modulation at various Industrial, Scientific, and 

Medical (ISM) bands such as 169 MHz, 433 MHz (Asia), 868 MHz (Europe) and 915 MHz 
(North America). Most of the LoRa transceivers support a programmable SF from 7 to 12. LoRa 
supports a programmable Coding Rate (CR) between 1 and 4 bits for forward error correction 
to provide better interference tolerance. Therefore, the actual Bit Rate (BR) depends on the SF, 
CR and the channel Band Width (BW), which is calculated using (1). The maximum BR of 
21.87 kbps can be achieved for BW= 500KHZ, CR = 1 and SF = 7.  

 
 

𝐵𝑅 = 𝑆𝐹. L
LB81

. +,
(*+

    (1) 
 
 

5.2.2 Range of LoRa link 
 
LoRa supports an adjustable transmission power from -4 dBm to +20 dBm. The receiver 

sensitivity varies from -120 dB to -136 dB, and it performs better [11] at higher SF and lower 
BW (-136 dB at SF = 12 and BW = 125 KHz). The range of LoRa link depends on the LOS and 
the antenna height. Antenna height (h in m), and distance (d in km) between the transmitter and 
receiver can be calculated using the Fresnel Zone equation shown in (2), considering a 60% 
Fresnel clearance. Where He is earth curvature, and f (in GHz) is the LoRa carrier frequency. It 
gives an antenna height of 7m for a 1 km link range ignoring the earth curvature. 
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Figure 5-1. LoRa physical channel 
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5.2.3 Data frame of a LoRa physical channel 
 
A LoRa data frame consists of two mandatory blocks called the Preamble and Payload, 

along with two optional blocks for the Header and Cyclic Redundancy Check (CRC) of payload, 
as shown in figure 5-1. All the block sizes are variable according to the transceiver 
configuration. The payload size ranges from 1 to 255 bytes. The total number of bits (nPL) in 
the frame can be calculated using (3). 

 

𝑛?@ = 8 +𝑚𝑎𝑥 E0, wN?@AL)*BNB818BX
L()*A2W)

x (𝐶𝑅 + 4)F          (3) 

 
Where PL is payload length in bytes, CRC is 16 bits if enabled and 0 otherwise, H = 20 when 
the header is enabled and 0 otherwise. DE is 2 when the low data rate optimization is used, 
otherwise it is 0.  

 
 

5.2.4 LoRa versus other LPWAN technologies 
 

Other LPWAN technologies such as Narrow Band IoT (NBIoT), IEEE 802.15.4 and Sigfox 
can be compared with LoRa for remote monitoring and image transfer applications. NBIoT is 
deployed in the Long-Term Evolution (LTE) cellular network and provide two different data 
rates for NB-1 (26 kbps) and NB-2 (127 Kbps). NBIoT does not have coverage in the rural area 
due to high establishment cost and requires more power than LoRa. IEEE 802.15.4 provides the 
physical and Media Access Control (MAC) layer support for Zigbee, WirelessHART, MiWi, 
6LoWPAN, Thread and SNAP. It can provide up to 256 Kbps data rate and up to 1km range 
with full LOS. IEEE 802.15.4 require comparatively higher power than LoRa for the same 
coverage range. Sigfox is a proprietary technology that uses the ISM band. It provides a 100-
bps data rate with a range from 10 km (urban coverage) to 50km (rural coverage) and permits 
only 140 messages per day for each node. Comparing with these LPWAN technologies, LoRa 
requires very low energy for a data rate of up to 37kbps. It has better immunity to interference 
and higher receiver sensitivity which is required for long range coverage. 

 
 

5.2.5 LoRa network protocol 
 

LoRa networking protocols such as LoRaWAN assigns the channels in time and frequency 
domains to accommodate more nodes in the network. Other than resource allocation, it also 
maintains and controls the connectivity between the SNs and the Gate Way (GW). We can 
increase goodput by reducing the control overhead of the protocol. Various modified 
LoRAWAN protocols utilize Slotted ALOHA, Non-Persistence Carrier-Sense Multiple Access 
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(NP-CSMA), and scheduled Media Access Control (MAC) to expand the network size [12]. 
Protocols with out-of-band synchronization also bring similar improvements. However, data-
rate can be further improved to accommodate high-volume data transfer through a LoRa link. 

 
 

5.3 Related work: 
 

Wireless Image transmission over the LPWAN technologies utilizes various image 
preprocessing to reduce the bandwidth requirement. Webp+Base64 compresses JPG image [13] 
of 20.03 kB to 5.51 kB, which reduces the number of LoRa packets from 81 to 23. However, 
the reduction of transmission time from 47.7 s to 25.7 s is not according to the reduction of the 
total packet count. Resource (dynamic memory) limitation may require extra time while 
processing the image during transmission. Besides, a high processing load and time require high 
energy. Channel Activity Detection (CAD) mechanism with CSMA [14] is used to assign a 
LoRa physical channel for lossy grayscale image transmission. CAD sends image when a free 
channel is detected. Otherwise, the processor must wait for a minimum one-tenth of the 
maximum TOA (calculated for the LoRa channel used), which was found around 1 s. This wait 
time may further increase the image transmission time and may not be suitable for lossless 
image transmission. Compression and Image Recovery Algorithm (CIRA) [15] first compresses 
YUV420 image of 320x240 size and replaces the 680-byte JPG header by a single byte index 
to reduce the total image file size. Unlike z-scanning method used in JPG, it divides the image 
into 12 sections before compression to limit the data losses in a smaller data packet. The 
segmented image data is sent to the CIRA server over the LoRaWAN where the header-less 
decompression method is used to reconstruct the image. If the CIRA detects any packet loss, 
the server sends request to the node for retransmission. The image is segmented to send only 
the differential block [16] over LoRa to reduce the data volume. The captured 160x160x8-bit 
grayscale image is divided into 256 segments of 10x10x8-bit images. In the beginning all the 
segments are sent with their index number adding the Cyclic Redundancy Check (CRC) at the 
end of the segments. Next time only the differential segment is sent to reduce the data volume. 
This process is highly application-specific and may not be energy efficient for a resource 
constrained node to run the dissimilarity detection process. 

 
Protocol specific improvements are done to avoid the image preprocessing load at the node. 

Multiple SFs [17] are used to send an image parallelly. The transmitting node with the lowest 
SF distributes the image to the other nodes in different data block size according to their SFs. 
Then all the transmitters resend the image parallelly for the receivers of same SFs using pear to 
pear topology. All the receivers resend the received packet to the receiver with the lowest SF to 
reconstruct the image. Total image transmission time was reduced from 48s to 26s for a JPG 
image of 200x150 pixels. Therefore, it could not reduce the transmission time (54% using three 
LoRa channels) as expected due to the re transmissions of the same image. It also shows low 
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Packet Receive Success Rate (PSR) for the higher SFs, which may further be reduced for bigger 
image size. Different SFs are used in different time slots [18] to send the segmented images. 
Multi-Packet LoRa (MPLR) and channel reservation [19] are used to speed up image transfer 
over LoRaWAN instead of Stop-Wait and ALOHA. The receiver sends ACK and the index of 
the missing packets after receiving a fixed number of packets instead of sending ACK after 
every packet. It reduces the collision rate and transmission time by 26% over the ALOHA 
protocol. This research focuses on the protocol improvement to facilitate both image and 
sequential data transmission without changing the WSN configuration, LoRa modulation 
technique, and changing the image file format. 

 
 

5.4 The proposed DACK-LoRa protocol 
 

ACK messages can be used to reduce data loss for wireless data transmission. As shown in 
Figure 5-1, LoRa physical packet consists of 255 bytes payload, including the application-
specific overhead. The actual useable application-specific data is measured in terms of goodput. 
However, an ACK message sent for the same type of data (such as an image) transmitted over 
multiple LoRa packets, may reduce the goodput.  

 
The proposed DACK-LoRa protocol focuses on the reduction of the ACK message while 

transferring image or sequential data using the LoRa physical channel to improve the channel 
goodput. Figure 5-2(a) shows the DACK-LoRa packet structure, figure 5-2(b) shows the 
different types of ACK packets and figure 5-2(c) shows all possible values for every fields in 
the packet.  
 

Tag RID SID MID SQN PL CRC 
Size (byte) 2 2 1 1 0-248 2 

(a) 
 

Message Packet 
Length 
(byte) 

Hex value 

ACK  
(Stop wait) 

10 XXXX-YYYY-02-HH-F00F-ZZZZ 

ACK  
(ETA) 

40 XXXX-YYYY-02-HH 
(32-byte segment bitmap)-ZZZZ 

ACK (Dynamic) 10 XXXX-YYYY-02-HH- 
(F segment bitmap F)-ZZZZ 

Image data segment 1 256 YYYY-XXXX-03-01-  
(Image raw data) -ZZZZ 

(b) 



 127 

 
Tag Full name Value (Hex) 

RID Receiver ID 0001-FFFF 
SID Transmitter ID 0001-FFFF 
MID Message ID 00-FF 
SQN Sequence number 00-FF 
PL Pay load Any hex 
CRC Cyclic redundancy check 16-bit CRC 

(c) 
 

Figure 5-2. LoRa physical packet (a) structure, (b) message and (c) tag detail. 
 
 

 (a) 
 

(b) 
 

(c) 
 

Figure 5-3. Sequential data transfer for multiple LoRa packets using a) Stop-Weight,  
b) multi-packet acknowledgement and c) dynamic acknowledgement protocols. 
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LoRa TOA (ACK)
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The Stop-Wait transmitter waits until receiving an ACK from the receiver. The End-of-
Transmission protocol sends an ACK message at the end of receiving the last packet. This type 
of ACK may include a list of missing packet’s sequence numbers. The MPLR sends ACK after 
a fixed number of packets called block of image data. ACK messages for the blocks that do not 
have any missing packet may cause message overhead reducing goodput. Dynamic ACK is sent 
after receiving the last packet or after receiving any lossy packet. This type of ACK message 
contains the sequence number of the lossy packets. This research proposes a modified version 
of MPLR protocol by sending the ACK once at the end of the transmission or after receiving a 
predefined number of packets for sequential data with the sequence number(s) of the missing 
packet(s). Therefore, only the packets with missing data are resent according to the ACK 
message. 

 
We evaluated DACK-LoRa’s performance in terms of transmission time. In the sensor 

node, the LoRa module is connected with a low-power MCU using high-speed bus. Therefore, 
the total image transmission time depends on LoRa TOA, CPU processing time, and ACK delay 
time (TACK). Figure 5-3 shows and message flow and the time required for a complete image 
transmission using three different protocols. As shown in figure 5-3(a), the sensor node waits 
for ACK from the sink after transmitting every LoRa packet. Figure 5.3(b) shows the message 
flow for MPLR that sends ACK after a block of multiple LoRa packets. Figure 5-3(c) shows 
the message flow for the proposed DACK-LoRa. It uses the End of Transmission ACK (ETA) 
scheme and sends only one ACK after receiving the last LoRa packet. 

 
We can calculate the total time of transmission for these three protocols using equations (4) 

to (6) and can validate the result with the actual time taken by the implemented system. 
 

𝑇& = (𝑇4 + 𝑇)𝑁? + (𝑇.) + 𝑇^)𝑁? + (𝑇4 + 𝑇)𝑁?@       (4) 

𝑇_ = (𝑇4 + 𝑇)𝑁? + (𝑇._ + 𝑇^)𝑁+ + (𝑇4 + 𝑇)𝑁?@     (5) 

𝑇W = (𝑇4 + 𝑇)𝑁? + (𝑇.W + 𝑇^) + (𝑇4 + 𝑇)𝑁?@           (6) 

 
TS : Total time for Stop-wait protocol 
TM : Total time for MPLR protocol 
TE : Total time for ETA protocol  
Ti : TOA of LoRa image packet 

T : SW Processing time for image packet transfer 
T` : SW Processing time for ACK packet transfer 
TAS : TOA of ACK for stop-wait protocol 
TAM : TOA of ACK for MPLR protocol 
TAE : TOA of ACK for ETA protocol  
NP : Number of LoRa image packet 
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NPL : Number of image packet loss 
NB : Number of block for MPLR protocol (= NP/PB) 
PB : Number of LoRa packet per block 
 
 

𝑇& − 𝑇_ = (𝑇.) + 𝑇^)𝑁? − (𝑇._ + 𝑇^)𝑁+     (7) 

𝑇_ − 𝑇W = (𝑇._ + 𝑇^)𝑁+ − (𝑇.W + 𝑇^)         (8) 

 
Time differences between the protocols calculated using (7) and (8) depend on the TOA of 

the ACK packets, which is directly related to the packet construction of that protocol. TOA 
itself depends on different LoRa configurations, NB selection and the software processing time. 
These three parameters are evaluated in the performance evaluation sections.  
 
 
5.5 Field trial and performance evaluation 

 
Field trial was performed using the SoilCam [6] as the imaging device. Figure 5-4 shows 

the functional blocks of the trial setup. The SoilCam generates a 150 Dots Per Inch (DPI) root 
image of 20cmx50cm. One image consists of 180 snaps of 118x158x8-bit grayscale bitmap 
images. Every snap generates 18kB data. The transmitting controller acquires images from the 
camera and sends the data to the LoRa modem. The LoRa-IoT gateway receives the data, checks 
for missing or lossy packets after receiving the last packet of a snap and sends ACK with the 
packet index to be resent by the transmitter.  

 

 
Figure 5-4. Functional blocks of the DACK-LoRa trial setup 
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LoRa TOA can be calculated for the number of image packet (Np) sent and number of lossy 
packets (NPL) using equation (3), derived from SX1276 datasheet [11] for the LoRa parameters 
shown in Table 5-1. The required TOAs for the image file sent over LoRa at different SF and 
BW configurations are shown in Table 5-2. 

 
 

𝑇𝑂𝐴 = (*+

+,
(4.25 + 𝑁? + 𝑁?@)    (9) 

 
 

Table 5-1: LoRa parameters used for DACK-LoRa protocol. 
 

Parameters Values 
Image file size 9kB, 18kB, 28kB 

SF 7, 8, 9, 10, 11 
BW 125 KHz, 250 KHz, 500 KHz 
CR 1 

CRC 0 
D 0 
H 0 
PB 10-40 

nPR 8 symbols 
 
 

Table 5-2: Image file size and calculated TOA using DAck-LoRa protocol. 
 

LoRa Parameters TOA (Sec) 
BW SF 9 kB 18 kB 28 kB 

500 KHz 7 3.75 7.5 11.64 
 8 6.62 13.24 20.56 
 9 11.88 23.76 36.88 
 10 21.42 42.84 66.52 
 11 38.95 77.90 120.95 
250 KHz 7 7.50 14.99 23.28 
 8 13.24 26.48 41.11 
 9 23.76 47.51 73.77 
 10 42.84 85.68 133.04 
125 KHz 7 14.99 29.98 46.55 
 8 26.48 52.96 82.23 
 9 47.51 95.02 147.54 

 
For TOA of the ACK message, we need to consider the packet construction based on the 
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length of the payload. Such as, ACK of Stop-Wait protocol needs 8 bytes for pay-load header 
and only 1 byte for the status (loos or no-loss) of the received image packet. ACK of MPLR 
needs 8 bytes for pay-load header and 2 to 16 bytes for the bitmap of the packet received 
depending on the number of packets transferred in a block (PB). ACK of ETA protocol needs 8 
bytes for pay load header and more than 2 to 16 bytes for the bitmap of the packet received 
depending on the image size. DACK-LoRa uses ETA for every snaps. The processing time 
shown in (7) and (8) includes the data transfer time from memory to the LoRa buffer and other 
fixed (or dynamic) software delay. These processing times are very negligible due to the high 
bus speed and processer speed of the controller. The fixed/dynamic software delay depends on 
the algorithm used. So, neglecting these times, (7) and (8) can be written as- 
 

𝑇& − 𝑇_ = 𝑇.)𝑁? + 𝑇._𝑁+      (9) 

𝑇_ − 𝑇W = 𝑇._𝑁+ + 𝑇.W      (10) 

 
Figure 5-5 shows the total ACK time required for Stop-Wait, MPLR (with block size 10 

bytes and 40 bytes) and DACK-LoRa using ETA. ACK time for MPLR using 10-byte block 
size is almost 10 times lower than the ACK time required for Stop-Wait protocol, which is 30 
times lower using 40-byte blocks. DACK-LoRa requires the lowest ACK time which is 5 to 10 
times lower than the MPLR. Our trial data using 18 kB image file also shown the same 
differences among the protocols. However, total image transfer time was 1.5 to 2.2 times of the 
calculated transfer time depending on the processor and the software algorithm used.  

 

 
 

Figure 5-5. Performance comparison of DACK-LoRa with MPLR and Stop-Wait 
protocols in terms of total ACK time. 
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5.6 Conclusion 
 
The proposed DACK-LoRa is evaluated using the application-specific grayscale data 

without any compression to observe the packet loss in detail. Reconstruction of the JPG image 
with a minimum packet loss was not possible. However, the use of header less JPG images as 
used in CIRA can improve the goodput of DACK-LoRa by reducing the total image size. An 
application like SoilCam requires offline image data at one to three days intervals. Practical data 
and mathematical calculations show that complete SoilCam data can be sent within 13 to 20 
minutes, which may reduce the cost involving the manual data collection process. 
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6. Conclusion and Future Direction 
 

6.1 Summary and conclusion  
 
This research shows that LoRa may not be suitable for wide-area and high-density WSNs 

needing a higher data rate. WSN using LoRa physical layer can increase the network coverage 
by applying a LoRa-specific clustering algorithm and multi-hop data transmission protocol. 
Higher data rate and mobility are also required for some wide-area WSN applications using 
LoRa, which are yet to be addressed. Present WSN protocols and clustering algorithms are 
intended for short-range wireless technology with static SNs. The clustering and routing 
algorithms require high processing resources, energy and are mostly offline, which is better 
suitable for a heterogeneous WSN. However, heterogeneous WSNs may require extra resources 
and energy to manage the network for a wide-area and densely populated WSN with mobility. 
Therefore, this research focused on the lightweight clustering algorithms, using efficient data 
transmission protocol for the homogenous WSN with mobility utilizing the long-range 
capability of LoRa. The present data transmission protocol used for LoRa is unsuitable for 
transmitting data from the clusters to the DS over a multi-hop data link due to its long TOA 
compared to other wireless technologies like Zigbee. Therefore, this research also focuses on 
lightweight data transmission protocol for LoRa to support the multi-hop WSN for wider 
coverage. 

 
The proposed LDAP focuses on efficient data transmission of the wide-area WSN 

introducing mobile DS in a LoRa network. It considered direct and single-hop data transfer 
using homogenous SNs to maximize the coverage area for a mobile DS mounted on the UAV 
by minimizing the data acquisition time. The SN used in this protocol can act as a SN and a 
repeater node (RN) dynamically as requested by the DS to extend the coverage area. The 
mathematical model can dimension the WSN size and determine the energy efficiency and 
coverage area. The energy model shows that the energy efficiency of an LDAP-based WSN is 
highly dependent on the amount of data transmission through the RN. Energy efficiency can be 
increased by reducing the data transmission through RN; however, it may reduce the coverage 
area. The mobility model shows that a mobile DS mounted on a Zypher 7 UAV can accumulate 
data from at least 147 SNs. Therefore, a minimum distance of 3.5km between the SNs can cover 
up to 128 km in the direction of the UAV movement and 15 km laterally at 50% data 
transmission using the RN. Besides the energy efficiency and WSN coverage, the proposed 
LDAP can reduce the requirement of DS by up to 81%. It can facilitate remote data acquisition 
without satellite-based communication and reduce costs. However, using single-hop data 
transmission, a mobile DS may require travelling multiple paths to cover more area laterally. 
Only six mobile DS can acquire data from a WSN with 1000 SNs covering an area of 12,800km2 
(128 km x 100 km) utilizing the LDAP and proper path planning for the DS. 
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The proposed LDCA focuses on the mobility of the SNs in a densely populated, wide-area 
WSN. Unlike the static and offline clustering algorithms, it performs clustering in real time to 
deal with the ad-hoc nature of a wide-area WSN along with mobility. This clustering algorithm 
is light enough to be processed using the resource constrained SNs and the DS. The LDCA uses 
RSSI and SNR of the LoRa link between the SNs and DS along with the residual energy of the 
SNs to include the environmental effect on the RF channels dynamically and avoid the 
complicated distance calculation. It uses the LDAP as a single-hop data transmission protocol 
between the SNs and DS through the CH. This research derives the mathematical models to 
dimension the WSN capacity and timing model to determine the WSN coverage. The 
mathematical models can also calculate the clustering algorithm's resource requirement and 
energy efficiency. The field trial validates using RSSI and SNR as clustering parameters that 
can be used without calculating the distance between the SNs and DS. Experimental data is used 
to calculate the energy requirement for the clustering algorithms and hence the clustering 
efficiency of the proposed LDCA. It shows that the energy efficiency of LDCA is highly 
dependent on the LoRa TOA and the total clustering time. On the other hand, total clustering 
time highly depends on the number of candidate CH. Therefore, the clustering efficiency needs 
to be optimized using the presented mathematical models. It achieves up to 99.59% clustering 
efficiency and 98.17% for a densely populated WSN. The cluster size calculated is 64 SNs using 
single-hop routing to minimize the clustering energy and time requirements. This research 
shows that the proposed LDCA and mobile DS can provide wider coverage and network density 
using a smaller number of hops and DS (or base station). Using LDCA, two mobile DS can 
acquire data from a WSN of 600 SNs, forming only two clusters dynamically, compared to 60 
clusters required for a WSN with short-range wireless technology like Zigbee and at least 6 
clusters using LoRa. Hence, LDCA is better suited for a dynamic WSN with mobile SNs. 
Similarly, LDCA can provide three times wider coverage using the same number of mobile DS 
compared to the WSN with static DS. 

 
Multi-hop routing can improve the WSN coverage and capacity. Besides single hop routing 

and clustering using mobile DS, this research proposes a synchronization algorithm for parallel 
data transmission using multiple LoRa channels to achieve a higher data rate. A higher data rate 
may facilitate multi-hop routing in the WSN. This research investigates the quasi-orthogonality 
features of LoRa and evaluates the possibility of parallel data transmission between two nodes 
in terms of interference and data rate. Although LoRa is orthogonal in the RF channels, 
experimental data shows significant co-channel interference, which may not be suitable for 
long-range parallel data transmission. On the other hand, parallel data transmission using 
different SF can be used due to LoRa’s quasi-orthogonality nature in SF. This parallel data 
transmission using different SFs in the same RF channel requires proper synchronization to 
maintain SINR for a long-range LoRa link. The proposed LSAQ utilizes the existing LoRa 
modems without changing the modulation technique for easy implementation and to maintain 
compatibility with the existing LoRa network. However, single-chip modems with parallel 
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transmission capability can be developed to facilitate long-range data transmission between the 
CHs and the DS using LSAQ in a multi-hop WSN. According to the mathematical models of 
LSAQ, the selection of SF for parallel transmission depends on the link range, and the data rate 
can be improved from 71% to 83% between two sets of consecutive SFs. An optimized selection 
of SFs can increase the WSN capacity by 10% in a densely populated network and up to 44% 
for a less populated WSN that requires wider coverage using multiple clusters and hops. 

 
Continuous data transmission using LoRa may suffer inferior goodput due to its small 

packet size. This is further worsened by frequent ACK messages for long-range links with low 
RSSI or SNR. This research focuses on the transmission of dynamic ACK messages after 
receiving a data block of multiple packets that may have missing data to improve the overall 
goodput. The proposed DACK protocol shows that the goodput highly depends on the number 
of packets sent in every block. The ACK message consists of a bitmap presentation of the 
missing data packets. The overhead of the ACK message also contributes to the overall goodput. 
Therefore, an optimum block size must be determined to maximize the goodput for a specific 
data volume. DACK and other ACK messaging schemes are evaluated for different data 
volumes and different block sizes. DACK shows significant improvement in goodput compared 
to Stop-Wait and MPLR for larger block sizes. 

 
 

6.2 Future research direction  
 
The proposed protocols and algorithms focused on LoRa WSN coverage, capacity, 

mobility, and data rate without changing the LoRa physical layer or modulation scheme. The 
future scope of research and improvement are described below. 

 
Energy efficiency and network coverage of the WSN with mobile DS highly depend on 

efficient data acquisition at the minimum travel time. Traditional offline path planning may not 
support mobility in the WSN. Real-time lightweight path planning for the LDAP can further 
increase the network capacity and coverage area of a LoRa WSN, introducing mobility for the 
SNs. Dynamic data buffering can reduce the data acquisition cycle hence increasing network 
lifetime for the WSN, which can further increase WSN coverage by reducing the travel time of 
the mobile DS. The use of multi-hop data transfer with mobile DS can increase the WSN lateral 
coverage area and the lifetime of the overall WSN. A real-time multi-hop routing algorithm and 
DS path planning can be developed to accommodate data efficiently. 

 
The proposed LDCA can further be improved by utilizing more than two dynamic clusters 

simultaneously. An optimization algorithm can be introduced to reduce data transmission 
during the clustering phase. The use of multi-hop data transmission during the clustering and 
transmission phases may reduce clustering time, data acquisition time and travel time for the 
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mobile DS. The performance of LDCA highly depends on proper stop points to reduce 
overlapping SNs among the clusters. The offline stop points determination algorithm is 
unsuitable due to the mobility of the SNs. Lightweight real-time stop points determination 
algorithm can be introduced. LDCA performs the clustering phase before every data 
transmission phase to accommodate most of the mobile SNs. Artificial Intelligence (AI) based 
reclustering algorithm can reduce the number of clustering phases, increasing WSN lifetime. 
The SNs and the DS perform LDCA without involving the higher control layers to reduce 
control data flow over the LoRa links or use gateways in a WSN with mobility. WSN lifetime 
can be improved by reducing clustering overload. WSN virtualization can be introduced along 
with LDCA to further reduce clustering control data flow in the WSN, where the SNs may 
perform the clustering without involving the DS. This will further reduce the travel requirement 
of the mobile DS and increase the mobility of the SNs. 

 
Performance analysis of various dynamic clustering algorithms is mainly done using 

mathematical models. However, the performance matrices used for the static WSNs may not be 
suitable for the WSNs with mobility. Existing simulation tools such as NS-3 and Cupcarbon 
that supports mobility can be used to evaluate clustering algorithms with mobility. 

 
Synchronous transmission using different SFs used in LSAQ can be extended among the 

nodes or end devices for different LCs using different sets of SFs to accommodate more nodes 
in a WSN. Similarly, synchronous SF-based clustering can be used instead of asynchronous SF-
based clustering algorithms. AI-based dynamic SF selection for LSAQ can be used to increase 
channel utilization for the densely populated WSN without increasing base stations. The 
performance of DACK-LoRa can be further improved by introducing efficient image data 
segmentation and headless packetization. 
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