3,898 research outputs found

    Sperm trajectories form chiral ribbons.

    Get PDF
    We report the discovery of an entirely new three-dimensional (3D) swimming pattern observed in human and horse sperms. This motion is in the form of 'chiral ribbons', where the planar swing of the sperm head occurs on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. The latter, i.e., the twisted ribbon trajectory, also defines a minimal surface, exhibiting zero mean curvature for all the points on its surface. These chiral ribbon swimming patterns cannot be represented or understood by already known patterns of sperms or other micro-swimmers. The discovery of these unique patterns is enabled by holographic on-chip imaging of >33,700 sperm trajectories at >90-140 frames/sec, which revealed that only ~1.7% of human sperms exhibit chiral ribbons, whereas it increases to ~27.3% for horse sperms. These results might shed more light onto the statistics and biophysics of various micro-swimmers' 3D motion

    A Bag of Features Based Approach for Classification of Motile Sperm Cells

    Get PDF
    The analysis of sperm morphology remains an essential process for diagnosis and treatment of male infertility. In this paper, a novel framework based on image processing is proposed to classify sperm cell images affected by noise due to their movement. This represents a challenge, articularly because the cells are not fixed or stained. The proposed framework is based on Speeded-Up Robust Features (SURF) combined with Bag of Features (BoF) models to quantise features computed by SURF. Support Vector Machines (SVMs) are used to classify the simplified feature vectors, extracted from sperm cell images, into normal, abnormal and noncell categories. The performance of this framework is compared to a similar model where the Histogram of Oriented Gradients (HOG) is used to extract features and SVMs is applied for their classification. The proposed framework allows to achieve classification results with an average accuracy of 90% with the SURF approach compared to 78% with the HOG approach

    A Preliminary Ontology for Spermatozoa Analysis

    Get PDF
    Biomedical computation has used ontologies as a foundation for building knowledge-based systems and technologies for SemanticWeb applications. However, so far they had not been utilized in andrology related domains. This paper presents a preliminary effort to provide a comprehensive ontology for classifying and managing spermatozoa samples and their phenotypic traits, in order to analyze and diagnose them. Our study is centered around the development of a Computer Asisted Sperm Analysis (CASA) system.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    A Preliminary Ontology for Spermatozoa Analysis

    Get PDF
    Biomedical computation has used ontologies as a foundation for building knowledge-based systems and technologies for SemanticWeb applications. However, so far they had not been utilized in andrology related domains. This paper presents a preliminary effort to provide a comprehensive ontology for classifying and managing spermatozoa samples and their phenotypic traits, in order to analyze and diagnose them. Our study is centered around the development of a Computer Asisted Sperm Analysis (CASA) system.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Mixture gaussian V2 based microscopic movement detection of human spermatozoa

    Get PDF
    Healthy and superior sperm is the main requirement for a woman to get pregnant. To find out how the quality of sperm is needed several checks. One of them is a sperm analysis test to see the movement of sperm objects, the analysis is observed using a microscope and calculated manually. The first step in analyzing the scheme is detecting and separating sperm objects. This research is detecting and calculating sperm movements in video data. To detect moving sperm, the background processing of sperm video data is essential for the success of the next process. This research aims to apply and compare some background subtraction algorithms to detect and count moving sperm in microscopic videos of sperm fluid, so we get a background subtraction algorithm that is suitable for the case of sperm detection and sperm count. The research methodology begins with the acquisition of sperm video data. Then, preprocessing using a Gaussian filter, background subtraction, morphological operations that produce foreground masks, and compared with moving sperm ground truth images for validation of the detection results of each background subtraction algorithm. It also shows that the system has been able to detect and count moving sperm. The test results show that the MoG (Mixture of Gaussian) V2 (2 Dimension Variable) algorithm has an f-measure value of 0.9449 and has succeeded in extracting sperm shape close to its original form and is superior compared to other methods. To conclude, the sperm analysis process can be done automatically and efficiently in terms of time

    VISEM-Tracking, a human spermatozoa tracking dataset

    Full text link
    A manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view. To obtain correct results, manual evaluation requires extensive training. Therefore, computer-assisted sperm analysis (CASA) has become increasingly used in clinics. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability in the assessment of sperm motility and kinematics. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30 seconds (comprising 29,196 frames) of wet sperm preparations with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data via methods such as self- or unsupervised learning. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning (DL) model trained on the VISEM-Tracking dataset. As a result, we show that the dataset can be used to train complex DL models to analyze spermatozoa

    Sperm quality, semen production, and fertility in young Norwegian Red bulls

    Get PDF
    Ved bruk av genomisk seleksjon i storfeavlen blir eliteokser selektert basert på deres estimerte genomiske avlsverdier i stedet for ved avkomsgransking. Oksene er derfor yngre når de blir tatt i bruk i sædproduksjon enn tidligere. Hovedmålet med denne avhandlingen var å identifisere nye indikatorer for når sædproduksjonen er i gang hos unge Norsk Rødt Fe okser, og som kan måles i løpet av testperioden og gi informasjon om oksenes potensielle fremtidige sædproduksjon, aksept for semin-stasjonen samt fruktbarhet i felt. I Artikkel 1 ble flowcytometri og Computer-Aided Sperm Analysis brukt til å analysere ulike spermiekvalitetsparametere i ejakulater fra 65 okser i alderen 9-13 måneder. Sædprøver ble utsatt for stresstester og kryokonservering. Oksene ble klassifisert i tre grupper med ulik respons på spermie-stresstester. Ved å benytte spermie-stresstester, kryokonservering og morfologianalyse tidlig i testperioden, kan en få verdifull innsikt i når oksene er tilstrekkelig utviklet for sædproduksjon. Med denne tilnærmingen vil en kunne ta i bruk yngre okser i sæduttak og -produksjon, og dermed bidra til redusert generasjonsintervall og økt genetisk framgang. I Artikkel 2 ble det fokusert på å undersøke potensialet til insulin-like factor 3 som en biomarkør for å predikere når sædproduksjonen starter hos unge Norsk Rødt Fe okser. Det ble tatt blodprøver og samtidig utført målinger av skrotumomkrets på 142 okser på fire tidspunkt mellom 2 og 12 måneders alder. Studien hadde som mål å belyse sammenhenger mellom nivået av insulin-like factor 3, skrotumomkrets og ulike sædparametere. Det ble funnet en positiv korrelasjon mellom insulin-like factor 3 og skrotumomkretsen, men det ble ikke funnet signifikante sammenhenger mellom skrotumomkretsen og sædparametere. På grunn av betydelige individuelle variasjoner i den undersøkte norske okse-populasjonen, er insulin-like factor 3 foreløpig ikke en egnet biomarkør til å kunne predikere når sædproduksjonen starter hos denne rasen. I Artikkel 3 presenteres en automatisert metode for å måle skrotumomkretsen hos Norsk Rødt Fe okser ved hjelp av 3D-bilder og konvolusjonelle nevrale nettverk. 3D-bilder ble tatt samtidig som manuelle målinger av skrotumomkretsen ble utført på oksene, noe som ble gjentatt ved ulike aldere. Studien sammenlignet de manuelle og automatiserte målingene oppnådd ved semantisk segmentering. Det ble vist at de automatiserte målingene av skrotumomkretsen ga tilsvarende resultater som de manuelle målingene. Gjennomsnittlig prediksjonsfeil varierte med oksenes alder og kvaliteten på 3D-bildene. Denne nye målemetoden har potensiale til å kunne implementeres i breeding soundness evaluation ved testings- og seminstasjoner, og kan gi en rask og effektiv vurdering av skrotumomkretsen.Abstract. With the application of genomic selection in dairy cattle breeding, the choice of elite sires is based on their estimated genomic breeding values instead of progeny testing. Consequently, bulls are introduced into semen production at a younger age than previously. The main aim of this thesis was to identify novel early indicators of sperm production onset and maturity status of young Norwegian Red bulls during their performance test period, to provide insight into their potential future semen production, acceptance for the AI station, and field fertility. In Paper 1, flow cytometry and computer-aided sperm analysis were used to analyse various sperm quality parameters in ejaculates collected from 65 bulls aged 9-13 months. Semen samples were subjected to stress tests and cryopreservation. The bulls were classified into three clusters with different responses to sperm stress tests. By incorporating sperm stress tests, cryopreservation, and early morphology analysis, valuable insights into the maturity of bulls for sperm production could be gained. This approach would allow for the integration of younger bulls into semen collection, facilitating reduced generation interval and increased genetic gain. The focus in Paper 2 is on investigating the potential of insulin-like factor 3 as a biomarker for predicting the onset of sperm production in young Norwegian Red bulls. Blood samples and scrotal circumference measurements were collected from 142 bulls at four time-points between 2 and 12 months of age. The aim of the study was to determine the relationship between insulin-like factor 3, scrotal circumference, and semen characteristics. While a positive correlation was found between insulin-like factor 3 and scrotal circumference, no significant correlations were observed between scrotal circumference and semen characteristics. Due to the substantial interindividual variability in the Norwegian Red bull population, insulin-like factor 3 is currently not a reliable biomarker for predicting the onset of sperm production in this breed. In Paper 3 an automated method for measuring scrotal circumference of Norwegian Red bulls using 3D images and convolutional neural networks is presented. 3D images were captured, and manual scrotal circumference measurements made of bulls at different ages. The study compared the manual and automated measurements obtained through semantic segmentation. The results showed that the automated scrotal circumference measurements were similar to manual measurements. Mean prediction error varied depending on bull age and image quality. This novel measurement method has the potential to be implemented in bull breeding soundness evaluations at performance test stations and semen collection centers, providing a fast and efficient approach for assessing scrotal circumference.publishedVersio

    Towards semen quality assessment using neural networks

    Get PDF
    corecore