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Abstract—The analysis of sperm morphology remains an
essential process for diagnosis and treatment of male infertility.

In this paper, a novel framework based on image processing
is proposed to classify sperm cell images affected by noise due to
their movement. This represents a challenge, particularly because
the cells are not fixed or stained.

The proposed framework is based on Speeded-Up Robust
Features (SURF) combined with Bag of Features (BoF) models to
quantise features computed by SURF. Support Vector Machines
(SVMs) are used to classify the simplified feature vectors, ex-
tracted from sperm cell images, into normal, abnormal and non-
cell categories. The performance of this framework is compared
to a similar model where the Histogram of Oriented Gradients
(HOG) is used to extract features and SVMs is applied for their
classification.

The proposed framework allows to achieve classification results
with an average accuracy of 90% with the SURF approach
compared to 78% with the HOG approach.

Index Terms—sperm cell; morphology; classification; SURF;
HOG; bag of visual features; feature extraction

I. INTRODUCTION

Medical systems require processing of a large amount of

data. However, this poses a significant challenge to medical

professionals and makes even impossible for a human to anal-

yse this information precisely and reliably. This paper presents

an approach for the automated analysis and classification of

motile sperm cells.

Sperm cell concentration, morphology and motility esti-

mates are, among other parameters, essential for diagnosis and

treatment of male infertility according to the World Health

Organization (WHO) [1]. Nowadays, analysis of sperm cells

remains subjective, imprecise, and highly time-consuming task

[2]. A health professional, usually using a microscope, counts

and evaluates the morphology of cells following guidelines es-

tablished by the WHO [1] and based on their own experience.

Computer-Assisted Semen Analysis (CASA) systems have

been used at andrology laboratories and Assisted Reproductive

Units (ARU) world-wide in the last decades. Nevertheless,

CASA systems represent a high-cost and frequently lack for

adaptive methods able to work under a variety of conditions,

since sperm sample vary significantly.

Over the last years, a wide range of works aim to achieve

accurate and robust morphology classification of sperm cell.

These include not only human sperm cell, but also different

species [3], [4] and other biological particles: virus, bacteria,

stem cells [5] and tumour images [6].

Methods for assisted conception such as Intra-

Cytoplasmatic Sperm Injection (ICSI) and in-vitro fertilisation

(IVF) require a selection of a few sperm cells for the

fertilisation. In ICSI, for instance, an embryologist selects the

best normal-looking sperm cells under high magnification.

It has been found that morphology can be associated to

the sperm cell function including the ability for fertilisation

(based on statistical estimates only) [7], [8], [9]. Hence,

morphology measurements play an important role to select

the best sperm cells [10].

Motile sperm cells can be labelled as normal or abnormal

based on its morphology, by fulfilling the strict WHO refe-

rences [1], and their motility grade. A formal definition for

normal morphology of sperm cells is presented by Menkveld

et al. [11] and it is described as follows. The head is if length

between 3 and 5 µm and the width is between 2 and 3 µm. The

head has to contain a well-defined acrosomal region and the

sperm tail measuring 45 µm in length with a uniform width.

Also, motility of sperm cells can be affected by physical

characteristics of the seminal fluid (e.g. viscosity and pH),

sperm cell variables (e.g. sperm concentration) and the pre-

sence of debris [1]. Those conditions can produce noise and

changes in illumination when images are captured making

automated sperm cell detection difficult. In addition, we need

to consider the noise introduced by imaging devices during

the image formation process in the hardware used.

Staining procedures using compounds have been reported

improving sperm cell segmentation due to the large colour

contrast produced between live sperm cells and the background

in images. Nevertheless, staining of sperm cells have also been

reported to cause morphology alterations, specifically changes

in their head [12].

Appearance of sperm cells in video sequences can change

due to the conditions at every scene captured. Variation of

illumination resulting from the flow of the seminal fluid, for

instance, can produce shades in the background. Focus drift

from the temperature gradient and mechanical vibrations in

the microscope can affect the sharpness of the elements in

the image [13], [14]. Also, the movement of sperm cells can

occur at any orientation in samples where no attracting source

is utilised. Thus, the shape and size of sperm cells can be

visually different when they move orthogonally to the camera

plane.

The framework presented is this paper integrates SURF, Bag

of Features and Support Vector Machine for the classification



of sperm cell in microscopy images based on low-level fea-

tures. The approach proposed is able to analyse images from

unstained and motile sperm cells.

The rest of this paper is organised as follows: Section

II describes foundations of Histogram of Oriented Gradi-

entes (HOG), Speed-Up Robust Features (SURF) and Bag-of-

Features (BoF) methods and some works related. In Section

III, the proposed approach is developed. Experimental results

are presented in Section IV and Section V summarises the

work.

II. RELATED WORKS

Digital image processing methods can be used to detect

and classify objects based on low-level features in microscopy

images. The approach proposed in this paper combines a set

of algorithms to extract and organise features of sperm cell

images to train a classifier. A SVM algorithm is used to

classify features from new image samples into one of the

following classes: normal-, abnormal- and non-sperm cell.

A. Histogram of Oriented Gradients

A Histogram of Oriented Gradients (HOG) was introduced

by Dalal et al. [15] for human silhouette detection. Nowadays

its use has been extended to other areas such as text and face

recognition [16], [17]. The HOG is based on the distribution of

intensities of gradients Gx and Gy of a given image. Gradient

estimates at a pixel(i, j) are given by (1) and (2).

Gx(i,j) = f (i+ 1, j)− f (i− 1, j) , (1)

Gy(i,j) = f (i, j + 1)− f (i, j − 1) (2)

where f (i, j) is the intensity value at pixel location (i, j).
Gradients can be used to estimate the local orientation θ and

magnitude H of the gradient:

θ (i, j) = arctan(Gx(i,j)/Gy(i,j)), (3)

H (i, j) =
√

G2
x(i,j) +G2

y(i,j) (4)

To compute the HOG of a given image, it is divided into

small regions termed cells. Orientation of gradients are com-

puted and the histogram of the gradients is calculated. Gradient

can be performed by filtering the image using a Sobel-based

kernel Dx = [−1 0 1] and Dy = [−1 0 1]T . The

concatenation of all histograms produces the feature vector

of the image.

A visualisation of HOG features extracted from a normal

sperm cell using a patch size of 4× 4 and 8× 8 pixel units is

shown in Figure 1.

B. Speeded-Up Robust Features

Speeded-Up Robust Features (SURF)—based on the Scale-

Invariant Feature Transform (SIFT) [18]—was introduced by

Bay et al. [19] and has been shown to be successful in object

recognition approaches [20].

Mehrotra et al. [21], for instance, use an adaptive SURF

descriptor for human iris recognition; Feulner et al. [22]

(a)

(b) (c)

Fig. 1. Visualization of HOG features: (a) Original image, (b) HOG using a
patch size of 4× 4 and (c) using a patch size of 8× 8.

employ SURF for human-body region detection in Computed

Tomography (CT) data; and, Han et al. [23] use SURF for

traffic sign recognition in colour images.

Similarly to SIFT [24], SURF analyses the spatial distribu-

tion of gradients. In addition, SURF divides the image in sub-

regions that make the method faster and less noise-sensitive

[19]. SURF is based on the Hessian matrix and relies on

its determinant to select the best response across a range of

scales. Hence, it integrates the scale-space theory introduced

by Lindeberg [25]. The Hessian matrix H (x, σ) at a location

with pixel coordinates x = (x, y) and scale σ in an image I
is given by (5).

H (x, σ) =

[

Lxx (x, σ) Lxy (x, σ)
Lxy (x, σ) Lyy (x, σ)

]

(5)

where Lxx (x, σ) is the second-order partial derivative
∂2

∂x2 g(α) with the image I at point x and can be estimated

by the convolution of I with a second-order derivative of a

Gaussian kernel, also known as Laplacian of Gaussian (LoG);

Lyy (x, σ) and Lxy (x, σ) can be estimated similarly. Unlike

SIFT, SURF estimates the second-order Gaussian derivatives

using box filters based on integral images.

C. Bag of Features

Bag of Features (BoF)—originally called Bag of Words

(BoW) [26]—was first introduced to natural language process-

ing, text-mining and linguistic methods. Later, BoF is adapted

and proposed by Csurka et al. [27] for visual categorisation.

BoF has been widely used. Shen et al. [28], for instance, use

BoW for classification of cells in biomedical images. Zhou

[29] and Nanni et al. [30] employ BoF to classify scenes

contained in images.

BoF aims to represent the extracted features of an image

as a histogram of the computed features by quantising the

features. The BoF model for sperm cell images classification

is summarised in the following steps:



1) Selection of features. In this paper, the SURF method

is used to extract the strongest key points representing

an image. A small region (patch) surrounding every key

point is selected to extract the image features.

2) Learning vocabulary—also termed visual codebook. In

this step, the extracted features are divided into groups

(clusters). The clustering process can be carried out by

using the K-means approach, where the centroid of a

cluster represents a visual word of the codebook [31].

3) Feature quantisation. The final step in the BoF model

is the mapping process of every feature (patch) into a

specific codeword by using a distance metric (e.g. Man-

hattan or Euclidean). Finally, quantisation of features

yields the histogram representation of the codewords.

III. THE PROPOSED FRAMEWORK FOR SPERM CELLS

CLASSIFICATION

The proposed method for sperm cell classification is sum-

marised in Figure 2 and each step is described in the following

sections.

Video sequence

Selection of frames
containing sperm-cells and other

elements in the background

Extract image samples for each class

Normal Normal-h Abormal Non sperm-cell

Feature extraction

Key-point

detection (SURF)

Feature
extraction
(SURF)

Training

Bag-of-Features +

Support-Vector-Machine (SVM)

Selection of the

strongest features

Visual word vocabulary,
clustering with K -means

(Codebook)

. . .

BoF histogram

representation per class

Train classifier (SVM)

Test

BoF histogram

representation

Similarity evaluation

Outcome

{Normal, Normal-h,

Abnormal, Non sperm-cell}

Fig. 2. Proposed framework for unstained sperm cell classification based on
SURF, Bag-of-Features and SVM classifier.

A. Template definition

Appearance of sperm cells (e.g. area and eccentricity) can

change over time due to their movement, the static position of

the observer and the representation of a 3D space onto a plane

(image). In Figure 3, for instance, a set of two normal sperm

cells along a sequence of five consecutive frames is shown.

The variation in size and brightness can be observed as sperm

cells swim. Note that sperm cells were not stained or altered

in the current work. Those visual artefacts can challenge the

methods used to automate the classification of sperm cells.

A

B
t t+1 t+2 t+3 t+4

Fig. 3. Appearance variation of two sperm cells (upper and lower row) along
consecutive video frames t ∈ [0, 1, ..., 4].

In Figure 3, a ‘halo’ surrounding sperm’s head can be

observed in some images making head’s edge difficult to

distinguish. Therefore, the variation in the sharpness of sperm-

cell’s head is considered into the definition of a normal sperm

cell in this paper.

The sperm cell images are categorised into the following

classes:

• Normal. Sperm cell matching the normal morphology

criteria and with a sharp head’s edge.

• Normal-h. Normal sperm cell with a blurred head’s edge.

• Abnormal. Sperm cell that does not meet the normal

morphology definition.

• Other. Other component in debris or uniform patch.

Figure 4 shows sperm cell examples of the classes described

above.

B. Datasets

A collection of video frames showing sperm cells and other

objects are selected to create two datasets: training and testing.

Image patches containing a single sperm cell are selected

for the different classes defined. The patches are manually

selected to include the possible variates that can be found in

practice (e.g. orientation and morphology of sperm cells and

other objects in the background). The testing dataset is used to

validate and measure the performance of the method proposed.

C. Feature extraction

The SURF [19] method is used to detect key points from

the images. SURF selects the most representative pixels based

in low-level features—using the Hessian matrix. Even though

SURF is invariant to rotation, sperm cell samples at different

orientations are used to consider the pixellation effect when

capturing the images. For every key point, the SURF features



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Sperm cell samples from the four categories defined: (a),(b) normal;
(c) normal-h; (d)-(f) abnormal; (g)-(i) other components in debris.

are computed using a region of m × n pixels encompassing

the key point location yielding to the initial feature vector.

D. Training

1) Selection of the strongest features: The number of fea-

tures is reduced by selecting the minimal number of features

n found across the four classes. The SURF method is used

to choose the n strongest features from each image. Thus, the

same number of features for each image across all classes can

be transferred to the training process of a classifier.

2) Bag-of-Features (BoF): Processing large SURF vectors

can represent a high computational cost. Hence, the BoF

model is employed to reduce the feature representation of the

images. The aim of BoF is creating a codebook—also termed

Visual Word Vocabulary—by transforming feature vectors into

visual words. In order to do so, the SURF feature vectors

are clustered by using K-means. The number of clusters K

defines the codebook size and the centroids of clusters define

the words.

Thus, each feature of the SURF vectors is assigned to

one word. This can be represented by a histogram where

the x−axis represents the words and y−axis the number of

features mapped to the words (see Figure 5). The BoF method

is repeated to produce the histogram of BoF for each of the

four classes defined. The resulting BoF model is used to train

the classifier.

3) Training of a Support Vector Machine (SVM) classifier:

A multi-class Support Vector Machine (SVM) classifier is

trained with the BoF model obtained. SVMs are inherently

binary classifiers. Thus, an approach is set-up to define the

class for a new entry. A ‘one-to-one’ model is used to define

the outcome based on the most voted class by the binary

classifiers. The trained SVM model is used to process BoF

histograms instances from the training dataset.
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Fig. 5. Normalised BoF histogram using SURF features from a non-cell
sample image. (a) Original image, (b) BoF histogram using 500 words.

E. Test

For each image in the testing dataset, the BoF histogram

is computed as follows: Using the BoF model—codebook, a

histogram is computed by mapping every SURF feature to a

word in the codebook. The distance l2 − norm is used to

estimate the closest distance between a feature and the words

in the codebook. The resulting histogram is normalised and

classified by the SVM model which eventually measures the

similarity to the class models obtained in the training process.

IV. EXPERIMENTS AND RESULTS

A. Experimental Set-up

Sperm samples used for this research are obtained from

donors at the Academic Unit of Reproductive and Develop-

mental Medicine (AURDM) of the University of Sheffield in

the UK. All of donors provided explicit consent to use their

samples for research purposes only. The sperm samples were

not prepared or pre-processes (diluted, stained or altered to

re-orientate their direction.)

Microscopy video sequences are recorded at a rate of 10

frames per second producing 8-bit colour images of 2040 x

1086 pixels in size. Sperm cell samples for both, training

and testing, are extracted from frames which were selected

by using a random function. A full dataset—images of all

classes—is formed by: 235 images labelled as normal; 235

normal-h; 235 abnormal; and, 235 images containing other

objects considered as non-cell.

The labelling process is based on the WHO guidelines and

the visual appearance of the sperm cell images. The images

ranged from 60 × 60 to 70 × 85 pixels in size and are

compressed into JPEG (Joint Photographic Experts Group)

format.

In this paper, 235 images are used for each class. This

process aims to make a fear comparison between the number

of features for each class in the training process.

The full dataset is divided into two datasets: 30% of the

images were used for training and 70% for testing.

B. Performance evaluation

The parameters of the implemented methods are chosen

accordingly. The 95% of the strongest SURF features are used

to choose a reduced number of features which are used by the



BoF method. A K=2325 is used in the K-means clustering

process to create a BoF model which is passed to an SVM

classifier—based on a K(K1)/2 kernel—for training.

The performance obtained with the framework proposed

reached an average accuracy of 90%. The average accuracy

is defined as the mean between the accuracy of each class, in

this case, it is given by the sum of the values along the major

diagonal divided by the number of classes, 4. The confusion

matrix of the proposed classification method is presented in

Table I. Elements along the major diagonal represent the

accuracy of the classifier.

TABLE I
CONFUSION MATRIX FOR TESTED CELLS USING SURF

Abnormal Non-Cell Normal Normal-h

Abnormal 0.87 0.11 0.02 0

Non-Cell 0.02 0.97 0 0.02

Normal 0.06 0 0.87 0.06

Normal-h 0 0.05 0.06 0.89

The confusion matrix relies on the four possible outcomes

given a classifier and an instance—image patch. If the image

patch, e.g. normal sperm cell, is classified correctly, it is

counted as a true positive (TP). If it is wrongly classified, e.g.

if the normal sperm cell is labelled as normal-h, abnormal

or non sperm cell, it is counted as a false negative (FN). If

the image patch is a negative instance, e.g. containing any of

the other three classes: normal-h, abnormal or non sperm cell,

and it is classified as negative—non normal sperm cell, it is

counted as true negative (TN). If the same negative instance

is classified as positive—normal sperm cell, it is counted as

false positive (FP).

The confusion matrix can be used to calculate common met-

rics to measure the performance of the classifier as described

below.

The accuracy (Ac) is characterized by (6) and measures the

degree of correct classification [32].

Ac =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
. (6)

where the positives (P) are determined by FN and TP, and the

negatives (N) are determined by TN and FP.

The precision of a measurement is the degree of repeatabil-

ity of a measurement and it is calculated by (7).

Pre =
TP

TP + FP
(7)

Recall or sensitivity is also known as the true positive rate

(TPR). It measures the proportion of TP which are correctly

identified as positives [32]. The recall (Rec) is given by (8).

Rec =
TP

P
=

TP

TP + FN
. (8)

The F-measure metric is derived from the precision and

recall estimates as a ratio between two effectiveness measures

[33]. It is calculated by (9).

F −measure = 2×
Pre×Rec

Pre+Rec
(9)

The results from this performance measures are summarised

in Figure 6.
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Fig. 6. Performance of the proposed classification method based on SURF,
BoF and SVMs.

The performance of the framework proposed is compared to

an approach based on HOG combined with SVM, where HOG

is used to extract feature vectors directly from images. The

confusion matrix of a classification based on HOG features

alone is shown in Table II.

TABLE II
CONFUSION MATRIX FOR TESTED CELLS USING HOG

Abnormal Non-Cell Normal Normal-h

Abnormal 0.75 0.01 0.01 0.05

Non-Cell 0.05 0.81 0 0.14

Normal 0.10 0.10 0.75 0.05

Normal-h 0.05 0 0.15 0.80

The average accuracy overall classes reached the 78%.

Performance metrics estimates are summarised in Figure 7.
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Fig. 7. Performance of a comparative classification method based on HOG
and SVMs.

V. SUMMARY

In this paper, we propose a fast and efficient framework

for sperm cells classification. Our approach combines the Bag

of Features model where SURF features have been clustered

using K-means into a visual words.



This paper proposes a reliable approach to analyse the large

amount of data generated from the SURF feature extraction.

The analysis comprises the selection of the most representative

features that best describe each of the four classes defined in

this work for the classification of new instances.

The best performance is obtained when we define a voca-

bulary size equal to 2325 keeping 95% of strongest features

for the codebook.

The proposed framework allows achieving an average clas-

sification accuracy of 90% outperforming a similar approach

based on HOG for feature extraction which has shown 78%
average classification accuracy.
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