28 research outputs found

    Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algorithm

    Full text link
    Simple stochastic games can be solved by value iteration (VI), which yields a sequence of under-approximations of the value of the game. This sequence is guaranteed to converge to the value only in the limit. Since no stopping criterion is known, this technique does not provide any guarantees on its results. We provide the first stopping criterion for VI on simple stochastic games. It is achieved by additionally computing a convergent sequence of over-approximations of the value, relying on an analysis of the game graph. Consequently, VI becomes an anytime algorithm returning the approximation of the value and the current error bound. As another consequence, we can provide a simulation-based asynchronous VI algorithm, which yields the same guarantees, but without necessarily exploring the whole game graph.Comment: CAV201

    Permissive Controller Synthesis for Probabilistic Systems

    Get PDF
    We propose novel controller synthesis techniques for probabilistic systems modelled using stochastic two-player games: one player acts as a controller, the second represents its environment, and probability is used to capture uncertainty arising due to, for example, unreliable sensors or faulty system components. Our aim is to generate robust controllers that are resilient to unexpected system changes at runtime, and flexible enough to be adapted if additional constraints need to be imposed. We develop a permissive controller synthesis framework, which generates multi-strategies for the controller, offering a choice of control actions to take at each time step. We formalise the notion of permissivity using penalties, which are incurred each time a possible control action is disallowed by a multi-strategy. Permissive controller synthesis aims to generate a multi-strategy that minimises these penalties, whilst guaranteeing the satisfaction of a specified system property. We establish several key results about the optimality of multi-strategies and the complexity of synthesising them. Then, we develop methods to perform permissive controller synthesis using mixed integer linear programming and illustrate their effectiveness on a selection of case studies

    A computationally grounded, weighted doxastic logic

    Get PDF
    Modelling, reasoning and verifying complex situations involving a system of agents is crucial in all phases of the development of a number of safety-critical systems. In particular, it is of fundamental importance to have tools and techniques to reason about the doxastic and epistemic states of agents, to make sure that the agents behave as intended. In this paper we introduce a computationally grounded logic called COGWED and we present two types of semantics that support a range of practical situations. We provide model checking algorithms, complexity characterisations and a prototype implementation. We validate our proposal against a case study from the avionic domain: we assess and verify the situational awareness of pilots flying an aircraft with several automated components in off-nominal conditions

    Improving the Expected Performance of Self-Organization in a Collective Adaptive System of Drones using Stochastic Multiplayer Games

    Get PDF
    The Internet-of-Things (IoT) domain will be one of the most important domains of research in the coming decades. Paradigms continue to emerge that can employ self-organization to capitalize on the sheer number and variety of devices in the market. In this paper, we combine the use of stochastic multiplayer games (SMGs) and negotiation within two collective adaptive systems of drones tasked with locating and surveilling intelligence caches. We assess the use of an ordinary least squares (OLS) regression model that is trained on the SMG’s output. The SMG is augmented to incorporate the OLS model to evaluate integration configurations during negotiation. The augmented SMG is compared to the base SMG where drones always integrate. Our results show that the incorporation of the OLS model improves the expected performance of the drones while significantly reducing the number of failed surveillance tasks which result in the loss of drones

    Engineering Trustworthy Self-Adaptive Software with Dynamic Assurance Cases

    Get PDF
    Building on concepts drawn from control theory, self-adaptive software handles environmental and internal uncertainties by dynamically adjusting its architecture and parameters in response to events such as workload changes and component failures. Self-adaptive software is increasingly expected to meet strict functional and non-functional requirements in applications from areas as diverse as manufacturing, healthcare and finance. To address this need, we introduce a methodology for the systematic ENgineering of TRUstworthy Self-adaptive sofTware (ENTRUST). ENTRUST uses a combination of (1) design-time and runtime modelling and verification, and (2) industry-adopted assurance processes to develop trustworthy self-adaptive software and assurance cases arguing the suitability of the software for its intended application. To evaluate the effectiveness of our methodology, we present a tool-supported instance of ENTRUST and its use to develop proof-of-concept self-adaptive software for embedded and service-based systems from the oceanic monitoring and e-finance domains, respectively. The experimental results show that ENTRUST can be used to engineer self-adaptive software systems in different application domains and to generate dynamic assurance cases for these systems

    PRISM-games: verification and strategy synthesis for stochastic multi-player games with multiple objectives

    Get PDF
    PRISM-games is a tool for modelling, verification and strategy synthesis for stochastic multi-player games. These allow models to incorporate both probability, to represent uncertainty, unreliability or randomisation, and game-theoretic aspects, for systems where different entities have opposing objectives. Applications include autonomous transport, security protocols, energy management systems and many more. We provide a detailed overview of the PRISM-games tool, including its modelling and property specification formalisms, and its underlying architecture and implementation. In particular, we discuss some of its key features, which include multi-objective and compositional approaches to verification and strategy synthesis. We also discuss the scalability and efficiency of the tool and give an overview of some of the case studies to which it has been applied

    PRISM-games:Verification and Strategy Synthesis for Stochastic Multi-player Games with Multiple Objectives

    Get PDF
    PRISM-games is a tool for modelling, verification and strategy synthesis for stochastic multi-player games. These allow models to incorporate both probability, to represent uncertainty, unreliability or randomisation, and game-theoretic aspects, for systems where different entities have opposing objectives. Applications include autonomous transport, security protocols, energy management systems and many more. We provide a detailed overview of the PRISM-games tool, including its modelling and property specification formalisms, and its underlying architecture and implementation. In particular, we discuss some of its key features, which include multi-objective and compositional approaches to verification and strategy synthesis. We also discuss the scalability and efficiency of the tool and give an overview of some of the case studies to which it has been applied
    corecore