
Int J Softw Tools Technol Transfer (2018) 20:195–210
https://doi.org/10.1007/s10009-017-0476-z

TACAS 2016

PRISM-games: verification and strategy synthesis for stochastic
multi-player games with multiple objectives

Marta Kwiatkowska1 · David Parker2 · Clemens Wiltsche1

Published online: 29 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract PRISM-games is a tool for modelling, verifi-
cation and strategy synthesis for stochastic multi-player
games. These allow models to incorporate both probability,
to represent uncertainty, unreliability or randomisation, and
game-theoretic aspects, for systems where different entities
have opposing objectives. Applications include autonomous
transport, security protocols, energy management systems
and many more. We provide a detailed overview of the
PRISM-games tool, including its modelling and property
specification formalisms, and its underlying architecture and
implementation. In particular, we discuss some of its key
features, which include multi-objective and compositional
approaches to verification and strategy synthesis. We also
discuss the scalability and efficiency of the tool and give an
overview of some of the case studies to which it has been
applied.

Keywords Formal verification · Quantitative verification ·
Stochastic games

1 Introduction

Automatic verification and strategy synthesis are techniques
for analysing probabilistic systems. They can be used to
produce formal guarantees with respect to quantitative prop-
erties such as safety, reliability and efficiency. For example,
they can be employed to synthesise controllers in appli-
cations such as autonomous vehicles, network protocols
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and robotic systems. These often operate in uncertain and
adverse environments, models ofwhich require both stochas-
ticity, for example, to represent noise, failures or delays, and
game-theoretic aspects, to model non-cooperative agents or
uncontrollable events.

PRISM-games is a tool for verification and strategy syn-
thesis for turn-based stochastic multi-player games, a model
in which each state is controlled by one of a set of play-
ers. That player resolves non-determinism in its states by
selecting an action to perform. The resulting behaviour, i.e.
to which state the model then evolves, is probabilistic. This
allows the model to capture both game-theoretic aspects and
stochasticity.

The crucial ingredient for reasoning about stochastic
multi-player games is strategies, which represent the choices
made by a given player, based on the execution of the
model so far. For a stochastic game comprising just one
player (in other words, a Markov decision process), we may
choose to consider the behaviour of the player to be adver-
sarial (for example, representing the malicious environment
of a security protocol). We can then verify that the model
exhibits certain formally specified properties, regardless of
the behaviour of the adversary.

Alternatively, we could assume that we are able to con-
trol the choices of the single player in this model (imagine,
for example, it represents the navigation control system in
an autonomous vehicle). In this setting, we can instead use
strategy synthesis to generate a strategy (a controller) under
which the behaviour of the game satisfies a formally specified
property.

The general case, in which there are multiple play-
ers, allows us to model situations where there are entities
with opposing objectives, for example a controller and
a malicious environment. PRISM-games provides strategy
synthesis techniques that can generate a strategy for one

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193867898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-017-0476-z&domain=pdf


196 M. Kwiatkowska et al.

player of a stochastic game such that it is guaranteed to sat-
isfy a property, regardless of the strategies employed by the
other players. Returning to the autonomous vehicle above,
we could generate a strategy for the vehicle controller which
guarantees that the probability of successfully completing
a journey is above a specified threshold, regardless of the
behaviour of other, uncontrollable aspects of the system such
as other road users.

This paper provides an overview of PRISM-games and
the strategy synthesis techniques that it provides. These fall
into two categories. The first, single-objective case, is used
to express zero-sum properties in which two opposing sets
of players aim to minimise and maximise a single objective:
either the probability of an event or the expected reward accu-
mulated before it occurs. The second, multi-objective case,
enables the exploration of trade-offs, such as between per-
formance and resource requirements. The tool also performs
computation and visualisation of the Pareto sets representing
the optimal achievable trade-offs.

We also discuss the support in PRISM-games for compo-
sitional system development. This is done through assume-
guarantee strategy synthesis, based on contracts over com-
ponent interfaces that ensure cooperation between the com-
ponents to achieve a common goal. For example, if one
component satisfies the goal B under an assumption A on
its environment (i.e. A → B), while the other component
ensures that the assumption A is satisfied, we can compose
strategies for the components into a strategy for the full sys-
tem achieving B. Multi-objective strategy synthesis, e.g. for
an implication A → B, can be conveniently employed to
realise such assume-guarantee contracts. Again, Pareto set
computation can be performed to visualise the relationship
between properties and across interfaces.

The underlying verification and strategy synthesis tech-
niques developed for PRISM-games have been published
elsewhere, in [5,7,12,14,16,44]. Existing short tool papers
focusing on the functionality added in versions 1.0 and 2.0
of PRISM-games were presented in [13] and [34], respec-
tively. This paper provides a comprehensive overview of the
full tool, including detailed examples of the modelling and
property specification and summaries of the key theory and
algorithms.We also discuss implementation details, the scal-
ability of the tool and the application domains to which it has
been applied.

Structure of the paper Section 2 provides basic details
of the underlying model of stochastic multi-player games
and explains how these can be described using the PRISM-
games modelling language. Section 3 covers the property
specification language, giving the formal syntax, semantics
and examples of the various classes of quantitative proper-
ties that are supported. Section 4 gives an overview of the
underlying algorithms used to perform verification and strat-

egy synthesis, and Sect. 5 describes the architecture of the
tool and some lower-level aspects of its implementation. Sec-
tion 6 presents some experimental results and discusses the
scalability and efficiency of PRISM-games. We conclude, in
Sects. 7, 8 and 9, with a discussion of case studies to which
the tool has been applied, a survey of related tools and some
areas of current and future work.

2 Models and modelling

We begin by explaining the underlying models used by
PRISM-games and the means by which they are specified
to the tool. We will use Dist(S) to denote the set of discrete
probability distributions over a set S.

2.1 Stochastic multi-player games

Theprimaryprobabilisticmodel supportedbyPRISM-games
is stochastic multi-player games (SMGs). These model sys-
tems whose evolution is determined by the decisions of
multiple players plus the presence of probabilistic behaviour.
We restrict our attention here to turn-based (as opposed to
concurrent) stochastic games, in which a single player con-
trols each state of the model.

Definition 1 (SMG) A stochastic multi-player game (SMG)
is a tuple G = (Π, S, (Si )i∈Π, s, A, δ, L), where:

– Π is a finite set of players,
– S is a finite set of states,
– (Si )i∈Π is a partition of S,
– s ∈ S is an initial state,
– A is a finite set of actions,
– δ : S×A → Dist(S) is a (partial) probabilistic transition
function,

– L : S → 2AP is a labelling function mapping states to
sets of atomic propositions from a set AP.

The state of an SMG G is initially s, and it then evolves as
follows. In any state s, there is a non-deterministic choice
between the set of enabled actions A(s) ⊆ A, where
A(s)

def= {a ∈ A | δ(s, a) is defined}. We assume that A(s) is
non-empty for all states s, i.e. that there are no deadlock
states in the model. (This is checked and enforced by the
tool.) The choice of an action from A(s) is resolved by the
player that controls the state s, i.e. the unique player i ∈ Π

for which s ∈ Si . Once this player selects an action a ∈ A, a
transition to a successor state s′ occurs randomly, according
to the probability distribution δ(s, a), i.e. the probability that
a transition to s′ occurs from the current state s is δ(s, a)(s′).

A path through G, representing one possible execution of
the system that it models, is a (finite or infinite) sequence
of states and actions π = s0a0s1a1s2 . . ., where si ∈ S,
ai ∈ A(si ) and δ(si , ai )(si+1)>0 for all i ∈ N. We write
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FPathG,s and IPathG,s , respectively, for the set of all finite
and infinite paths ofG starting in state s and denote byFPathG
and IPathG the sets of all such paths.

To reason about the various possible ways in which the
game can behave, we use the notion of strategies, which
define the choices of actions made by players in each state,
based on the history of the game’s execution so far. Formally,
these are defined as follows.

Definition 2 (Strategy) A strategy for player i ∈ Π in SMG
G is a function σi : (SA)∗Si → Dist(A)which, for each path
λ·s ∈ FPathG where s ∈ Si , selects a probability distribution
σi (λ·s) over A(s). The set of all strategies for player i is
denoted Σi .

Various important classes of strategies can be identified,
by classifying the extent to which they use the history of the
game’s execution so far and whether or not they use ran-
domisation. For the latter, a strategy is called deterministic
(or pure) if the distribution used to select actions is always a
point distribution (i.e. selects a single action with probability
1), and randomised otherwise. Regarding the use of history
(i.e. memory), we identify the following important classes.

Definition 3 (Memoryless strategy) A strategy σi is called
memoryless if it only considers the current state when resolv-
ing non-determinism, i.e. if σi (λ·s) = σi (λ

′·s) for all paths
λ·s, λ′·s ∈ FPathG .

A finite-memory strategy has a mode, which is updated each
time a transition is taken in the game and then used to select
an action in each state.

Definition 4 (Finite-memory strategy) A finite-memory
strategy is defined by a tuple (Q, q0, σ u

i , σ s
i ) comprising:

– a finite set of modes (or memory elements) Q;
– an initial mode q0 ∈ Q;
– a mode update function σ u

i : Q×Si → Dist(Q);
– an action selection function σ s

i : Q×Si → Dist(A)

The mode q of the strategy initially takes the value q0 and
is updated according to the distribution σ u

i (q, s) for each
observed state s of the game G. At each step of the game’s
execution, if the mode is q and the current state of G is s, then
the strategy chooses an action according to the distribution
σ s
i (q, s).

In addition to the distinction mentioned above between
randomised and deterministic strategies, finite-memory
strategies are classified as deterministic memory update
strategies if the mode update function σ u

i always gives a
point distribution over modes, and stochastic memory update
strategies otherwise.

Given multiple strategies σi ∈ Σi for several players
i ∈ Π , we can combine them into a single strategy that

resolves choices in all the states controlled by those players.
For example, for strategies σ1 and σ2 for players 1 and 2, we
write σ = (σ1, σ2) to denote the combined strategy σ . For
a coalition of players C ⊆ Π , we use ΣC to denote the set
of all (combined) strategies for players in C . If a strategy σ

comprises strategies for all players of the game (sometimes
called a strategy profile), we can construct a probability space
Prσ

G over the infinite paths of G. This measure also allows us
to define the expectation E

σ
G[ρ] of a measurable function ρ

over infinite paths.WeusePrσ
G andEσ

G[ρ] to formally define a
variety of quantitative properties of a game’s behaviour under
a particular strategy, notably the probability of somemeasur-
able event, or the expected value of a reward/cost measure,
respectively.

As shown in Definition 1, states of SMGs are labelled
with atomic propositions, from some set AP. These are used
to identify particular states of interest when writing temporal
logic formulas to describe an event (see Sect. 3).We also aug-
ment SMGswith reward structures of the form r : S → R�0,
which assign non-negative, real-valued rewards to the states
of a game. These can have many different interpretations and
are, in fact, often used to capture costs rather than rewards
(for example, energy usage or elapsed time).

2.2 Subclasses of SMGs

Next, we identify some useful subclasses of stochastic multi-
player games, which may be simpler to analyse, or be
amenable to verification against a wider range of properties
than the general model.

Stochastic two-player games Firstly, we observe that, when
the cardinality of the player set Π of an SMG is 2, the SMG
is a (turn-based) stochastic two-player game [37], a widely
studied class of models, sometimes also known as 21

2 -player
games.

In practice, these suffice for modelling many real-life
scenarios in which there is a natural separation into two
competing entities (for example, defender vs. attacker in the
context of a security protocol, or controller vs. environment
in the context of a control problem). In fact, for the proper-
ties currently supported by PRISM-games, the verification of
stochastic multi-player games actually reduces to the prob-
lem of solving one or more stochastic two-player games.

Markov decision processes It is also worth noting that,
when an SMG contains only one player (or, when all but one
player has a singleton set of choices in all of their states), the
SMG is in fact aMarkov decision process (MDP), sometime
also called a 11

2 -player game. The basic problem of strategy
synthesis for MDPs has a lower time complexity than for
SMGs (polynomial, rather than NP∩ coNP), and support for
this model is already implemented in the regular version of
PRISM.

123



198 M. Kwiatkowska et al.

Stopping games When we discuss multi-objective tech-
niques for SMGs later in the paper, we will refer to two
subclasses of models for which additional property classes
are available. The first are stopping games. We call states
in an SMG from which no other state can be reached under
any strategy terminal states. A stopping game is an SMG in
which terminal states are reached with probability 1 under
any strategy.

Controllable multi-chain games The second subclass of
SMGs relevant formulti-objective properties are controllable
multi-chain games [7]. Intuitively, an SMG is controllable
multi-chain if one player (or set of players) has the ability to
control which subset of states the game eventually reaches
and remains within. The formal definition relies on a gen-
eralisation of the notion of end components for MDPs [20]
to irreducible components [7], which are strongly connected
fragments of the SMG that, once reached, will never be left.
Controllable multi-chain means that one player can, for each
irreducible component H , and starting in any state s of the
SMG, ensure that H is reached from s with probability 1.We
refer the reader to [7] for a full definition.

2.3 Modelling SMGs in PRISM-games

PRISM-games extends the existing PRISM modelling lan-
guage to provide a formalism for specifying SMGs to be
analysed by the tool. In this section, we explain the language
and illustrate it using an example.

PRISM uses a textual modelling language, originally
inspired by theReactiveModules formalismof [1], and based
on guarded command notation. A model comprises one or
more modules whose state is determined by a set of vari-
ables and whose behaviour is defined by a set of guarded
commands of the form:

[act] guard -> p1 : update1 + ... + pn : updaten;

This comprises an (optional) action label act, a guard (a
predicate over the variables of all modules in the model),
and a list of updates, with associated probabilities. Each
update updatei is a list of assignments (vj’=exprj)

which, if executed, would evaluate the expression exprj

and assign the value to variable vj. Each pi is an expression
over variables of the model which, when evaluated, gives the
probability for each update. Intuitively, when a module has
a command whose guard is satisfied in the current state, that
module can update its variables probabilistically, according
to the updates.

Action labels serve several purposes. First, they are used
to annotate the transitions in the SMG, i.e. they represent
the actions in the set A(s) for each state s that are chosen
by the players. Secondly, they provide a means for multiple
modules to execute their updates synchronously. More for-

Fig. 1 A PRISM-games description of a three-player SMGmodelling
3 robots navigating around a 3×2 grid
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Fig. 2 Probabilistic movement of a robot around a 3×2 grid; used for
the example model of Sect. 2.3 (see Fig. 1)

mally, this is done using a multi-way parallel composition of
processes, which is based on the definition of parallel com-
position proposed by Segala for probabilistic automata [36].
Lastly, we also use action labels to specify which parts of
the model belong to which player. This is explained below,
using an example.

Example Figure 1 shows a PRISM-games model of an SMG
representing three robots navigating a space that is divided
into a 3 × 2 grid. The grid, and the movements that can
be made around it, is shown in Fig. 2. A robot can select
a direction of movement in each grid location (north, east,
etc.) but, due to the possibility of obstacles, may with some
probability end up remaining in the same location or moving
to a different one.

The first module shown in Fig. 1 represents robot 1, whose
variable r1 gives its current grid location (using the num-
bering from Fig. 2). The guarded commands represent the
possible actions that can be taken and the resulting proba-
bilistic updates to variabler1. The second and thirdmodules,
for robots 2 and 3, are identical to the one for robot 1, except
that the states of those robots are represented by different
variables (r2 and r3), and the action labels are different
(e.g. north2 and north3, rather than north1). So, these
modules are defined using PRISM’s module renaming fea-
ture.

The actions of the robots are mostly independent; how-
ever, no two can be in location 5 simultaneously. Hence, the
update corresponding to a move into this location is written
as (r1’=(r2=5|r3=5)?r1:5), which means that r1
is updated to 5 only if r2 or r3 is not already equal to 5;
otherwise it remains unchanged.

We also comment on the use of parallel composition in
themodel. PRISM-games currently only supports turn-based
SMGs. As a simple way of ensuring this is respected for the
example model, we make the robots move in sequence, one
byone. To enforce this,wemake the action labels formodules

robot1, robot2 and robot3 disjoint and add a fourth
module sched, with a variable t denoting the robot who is
next to move and which synchronises with the appropriate
module, depending on the current value of t. This is a rel-
atively common approach in PRISM-games models where
the concurrency between parallel components is controlled
to allow it to be represented by a turn-based SMG.

The specification of the players in the SMG can be seen
near the top of Fig. 1. This defines the set of players in the
SMG, and their names, and then assigns to each one a set of
action names. This effectively associates each transition in
the SMG with a particular player. Currently, since PRISM-
games only supports turn-based games, it checks each state
to ensure that all actions from that state are associated with
the same player and then assigns the state to that player.
This approach (identifying player states via action names) is
taken in order to provide compatibility with models such as
concurrent SMGs, for whichwe plan to add support in future.

Finally, we note that the last part of the PRISM-games
model contains some straightforward definitions of labels
and rewards, which are done in the same way as for standard
PRISMmodels. Labels are used to identify states of interest,
for the purposes of property specification, and are defined
by a predicate over state variables; for this example, they are
used to identify when each robot is in a location marked as
a goal (either A or B) or a hazard in Fig. 2. There is also
a very simple reward structure time, modelling the elapse of
time, defined by assigning a fixed reward of 1 to every state.

Compositional modellingVersion 2.0 of the PRISM-games
tool added support for compositional strategy synthesis using
assume-guarantee proof rules (see Sect. 4.3 formore details).
In order to facilitate this, the modelling language also pro-
vides a specific compositional modelling approach designed
for assume-guarantee strategy synthesis. This works for
stochastic two-player games, specifically targeting controller
synthesis problemsmodelled with games where player 1 rep-
resents a controller and player 2 its environment.

It allows a game to be defined as several subsystems, each
of which comprises a set of modules, which are combined
using the normal parallel composition of PRISM-games.
Subsystems are combined using the game composition oper-
ator introduced in [6]; actions controlled by player 1 in
subsystems are also controlled by player 1 in the compo-
sition, thus enabling composition of the synthesised player
1 strategies. This allows controller synthesis problems to be
solved in a compositional fashion. For more details of this
aspect of the language, we refer the reader to [44].

3 Property specification

In order to formally specify the desired behaviour of an SMG,
we use properties. In PRISM-games, properties are speci-
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fied as temporal logic formulas. As a basis for this, we use
the core part of the existing property specification logic of
PRISM [32], which is itself based on the probabilistic tempo-
ral logic PCTL [28], extended with operators to reason about
rewards [25].

PRISM-games currently supports two main classes of
properties: (i) single-objective and (ii) multi-objective.
Although these fit within the same unified property spec-
ification language, there are different syntactic restrictions
imposed in each case, so we present the two classes sep-
arately. In the explanations that follow, we will assume
that we are specifying properties for a fixed SMG G =
(Π, S, (Si )i∈Π, s, A, δ, L). When giving examples of such
properties, we will continue to use the SMG illustrated in
the previous section, which has 3 players, robot1, robot2 and
robot3. Each label fromFig. 1 (e.g.“goal1A”) corresponds
to an atomic proposition (e.g. goal1A), which can be used in
temporal logic properties.

3.1 Single-objective properties

For single-objective properties of SMGs, we use a frag-
ment of the property specification language called rPATL
(probabilistic alternating-time temporal logic with rewards),
originally proposed in [12]. This adopts the coalition oper-
ator 〈〈·〉〉 from the logic ATL [2], used for reasoning about
strategies in non-probabilistic games, and adds the proba-
bilistic operator P from PCTL and an extension of PRISM’s
reward operator R [25]. The formal definition is as follows.

Definition 5 (rPATL syntax) The syntax of the logic rPATL
is given by the grammar

φ:: = true | a | ¬φ | φ ∧ φ | 〈〈C〉〉θ
θ :: = P�� p[ ψ ] | Rr�� x [F�φ ]
ψ :: = Xφ | φ U�k φ | φ U φ

where a∈AP , C ⊆ Π , �� ∈{<,�,�,>}, p∈Q ∩ [0, 1],
x∈Q�0, r is a reward structure, �∈{0,∞, c} and k∈N.

A property of an SMG G expressed in rPATL is a formula
from the rule φ in the syntax above. The key operator is
〈〈C〉〉θ , where C ⊆ Π is a coalition of players from G and θ

is a quantitative objective that this set of players will aim to
satisfy. An objective θ is a single instance of either the P or R
operator: P�� p[ · ] means that the probability of some event
being satisfied should meet the bound �� p, and Rr�� x [ · ]
means that expected value of a specified reward measure
(using reward structure r )meets the bound�� x . For example,
the property:

〈〈{robot1}〉〉P�0.75[ ¬hazard1 U
�10 goal1A ]

asserts that there exists a strategy for robot1 under which,
regardless of the strategies chosen by the other players (in
this case, robot2 and robot3), the probability of reaching a
“goal A” state within 10 steps, without passing through a
“hazard” state, is at least 0.75.

In general, the form of the probabilistic operator is
P�� p[ ψ ], where the event whose probability is being
referred to is specified as a path formula ψ . As shown in
the grammar, we allow three basic types of path formulas,
taken from PCTL: Xφ (“next”: φ is true in the next state);
φ1 U�k φ2 (“bounded until”: φ2 is true within k steps and
φ1 remains true in all states until that point); and φ1 U φ2

(“until”: φ2 is eventually true and φ1 remains true in all states
until that point). As usual, we can derive other common tem-
poral operators such as F φ ≡ true U φ (eventually φ is
true) and G φ ≡ ¬F ¬φ (φ always remains true forever). An
example is:

– 〈〈{robot1, robot2}〉〉P�0.9[F (goal1B∧goal2B) ]—robots
1 and 2 have strategies which ensure that, with probabil-
ity at least 0.9, they are eventually both in a goal B state
simultaneously, regardless of the actions taken by robot
3.

The reward operator Rr�� x [F�φ ] allows us to reason about
the expected amount of reward r accumulated until φ is true,
i.e. the expected sum of rewards along a path until a state
satisfying φ is first reached. The � parameter (which takes
one of the values 0,∞ or c) is used to indicate how to treat the
situationwhere aφ-state is not reached.When this occurs, the
cumulated reward for that path is, for the three cases � = 0,
∞ or c, taken to be zero, infinite or equal to the cumulated
reward along the whole path, respectively.

These three different variants are provided because each
has its own uses depending on the nature of the reward struc-
ture being used. Consider, for example, a situation where
the goal of a player is to minimise the expected time for an
algorithm to complete. In this case, it is natural to assume
a value of infinity upon non-completion (�=∞). An alter-
native example, on the other hand, would be where we are
trying to model and analyse a distributed algorithm by inves-
tigating a reward structure that incentivises certain kinds of
behaviour, and aiming to maximise it over the lifetime of
the algorithm’s execution. Then, parameter �=0 might be
preferred to avoid favouring situations where the algorithm
does not terminate. Lastly, when modelling for example, an
algorithm’s resource consumption, we might opt to use type
�= c, to represent resources used regardless of termination.
An example of the first type would be:

– 〈〈{robot1}〉〉Rtime�10[F∞goal1A ] —it is possible for robot 1
to ensure that the expected time taken to reach goal A is
at most 10.
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Recall that the time reward structure from the example SMG
simply assigns a fixed reward of 1 to every state.

Notice also that the syntax of rPATL allows us to con-
struct Boolean combinations of propertiesφ and that, further,
instances of the 〈〈C〉〉θ operator can be nested to create more
complex formulas. Examples of each include:

– 〈〈{robot1}〉〉P�1[F goal1B ]∨ 〈〈{robot2}〉〉P�1[F goal2B ]
—at least one of robot 1 and robot 2 has a strategy to
ensure it reaches goal B with probability 1;

– 〈〈{robot1}〉〉P<0.01[F ¬〈〈{robot3}〉〉P�0.95[G ¬hazard3 ] ]
—it is possible for robot 1 to ensure that, with probabil-
ity less than 0.01, a state is reached from which robot 3
is unable to guarantee that it avoids hazard states with
probability at least 0.95.

Another useful class of properties, which are not explicitly
included in the syntax above, are numerical queries. For a
property comprising a single 〈〈C〉〉θ operator, the bound �� p
or �� x in the P or R is replaced with either “min=?” or
“max=?” and, rather than asking about the existence of a
strategy satisfying the bound, yields the optimal (minimum
or maximum) value obtainable by a strategy. Examples are:

– 〈〈{robot1}〉〉Pmax=?[G ¬hazard1 ] —what is the maxi-
mum probability with which robot 1 can guarantee that
it avoids hazard states?

– 〈〈{robot2}〉〉Rtimemin=?[F goal2A ] —what is the minimum
expected time with which robot 2 can reach goal A?

3.2 Multi-objective properties

An important class of properties, added in version 2.0 of
PRISM-games, are those which characterise the goals of a
player (or players) using multiple objectives. We continue to
use the coalition operator 〈〈C〉〉θ discussed above, but now
allow θ to be, for example, a conjunction of different objec-
tives all of which need to be satisfied. More generally, we
allow θ to be a Boolean combination of different objectives.
For this class of properties, we focus purely on reward-based
properties and consider a different range of reward objec-
tives, which we explain in more detail below. The full syntax
is as follows.

Definition 6 (Multi-objective syntax) The syntax for multi-
objective properties is given by the grammar:

φ:: = true | a | ¬φ | φ ∧ φ | 〈〈C〉〉θ
θ :: = Rr��x [C ] | Rr��x [S ] | Rr/r��x [S ] | P�1[ ψ ] |¬θ | θ∧θ

ψ :: = Rr��x [S ] | Rr/r��x [S ]

where a ∈ AP , C ⊆ Π , �� ∈ {<,�,�,>}, x ∈ Q�0 and r
is a reward structure.

As can be seen from the rule for θ , multi-objective properties
can incorporate three different types of reward objective in
the R operator and an alternative form of the P operator.
We can reason about total reward (indefinitely cumulated
rewards; Rr��x [C ]), mean payoff (long-run average reward;
Rr��x [S ]), or the long-run ratio of two rewards (Rr1/r2��x [S ]).
The P operator is used to specify almost-sure (i.e. probability
1) satisfaction objectives for mean payoff and ratio rewards.

As for the single-objective case, each individual objec-
tive is associated with a threshold �� x to be met. Objectives
are combined with the standard Boolean connectives. (Only
¬ and ∧ are shown in the grammar, but ∨ and → can be
derived in the usual fashion.) The objectives within a sin-
gle multi-objective query must be of the same type, and a
query comprising almost-sure satisfaction objectives must
take the form of a single conjunction. Multi-objective prop-
erties focus solely on expected reward properties, but note
that expected total reward properties can be used to encode
conventional probabilistic reachability.

Examples of multi-objective queries, again for the robot
navigation example of Sect. 2, are as follows:

– 〈〈{robot1}〉〉(Renergy1�e1
[C ] ∧ Rtasks1�t1

[C ]) —robot 1 has a
strategywhich ensures that both the expected total energy
consumed is at most e1 and the expected total number of
tasks completed is at least t1, regardless of the behaviour
of robots 2 and 3.

– 〈〈{robot1, robot2}〉〉(Renergy1/time�e1
[S ] ∨ Renergy2/time�e2

[S ])
—robots 1 and 2 have a combined strategywhich ensures
that either the expected long-run energy consumption rate
of robot 1 is at most e1 or it is at most e2 for robot 2,
whatever robot 3 does.

For these properties, we assume that additional reward struc-
tures energyi and tasksi (for i = 1, 2, 3) are added to the
model, which track the energy consumed by robot i and the
number of tasks that it has completed, respectively. For the
purposes of these examples, we also ignore the restrictions
imposed by PRISM-games as to whether the SMG is a stop-
ping game or controllable multi-chain game (see Sect. 4.2
for details).

In the same way that single-objective properties can be
written in a numerical form (min =? or max =?) to obtain
optimal values directly, PRISM-games allows the extraction
of Pareto sets to visualise the trade-offs between objectives
in a multi-objective query (see Sects. 4, 5 for details).

3.3 Property semantics

We conclude our discussion of the PRISM-games prop-
erty specification language with a presentation of its formal
semantics. A property φ of an SMG G (for either of the two
grammars presented above) is interpreted for a state s of G.
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Fig. 3 Semantics of the
PRISM-games property
specification language for an
SMG G

We write s |�φ to denote that φ is satisfied (i.e. is true) in
state s. The formal definition of the relation |� is shown in
Fig. 3. As can be seen, the definition also uses several auxil-
iary satisfaction relations. In particular, s, σ |� θ means that,
when the game is under the control of strategy σ , θ is satis-
fied in state s. This is used for the definition of the semantics
of the coalition operator 〈〈C〉〉θ , which requires the existence
of a (combined) strategy σ1 for all players in C such that, for
all possible strategies σ2 of the other players, s, (σ1, σ2) |� θ

holds, where (σ1, σ2) is the strategy combining the individual
strategies for all players in the game.

4 Algorithms

We now describe the implementation of PRISM-games in
more detail. In this section, we summarise the key algorithms
required for model checking and give pointers to further
information. In the next section, we will describe the overall
architecture of the tool and explain some of the low-level
implementation details.

The key algorithmic task performed by PRISM-games
is model checking of a property expressed in the logic of
Sect. 3 against an SMG constructed from a description in the
PRISM modelling language. Since the property specifica-
tion language is based on a branching-time logic (it extends
PCTL,which in turn extendsCTL), the basicmodel checking

algorithm performs a recursive traversal of the parse tree of
the logical formula to be checked and, for each subformula,
determines the set of states of the model that satisfy it.

The key operator for model checking is the coalition oper-
ator 〈〈C〉〉θ , where θ is either a single (probabilistic or reward)
objective or a Boolean combination of such objectives. In
either case, model checking essentially reduces to a strategy
synthesis problem: determining whether the set of players
C has a combined strategy that achieves the objective (or
objectives), irrespective of the strategies of the other players.

This problem always reduces to a strategy synthesis prob-
lem on a (turn-based) stochastic two-player game, in which
the first player represents the players in C and the second
player represents the others (a so-called coalition game).
Thus, themain component of the SMGmodel checking algo-
rithm is strategy synthesis for either single- ormulti-objective
queries on a stochastic two-player game.

4.1 Single-objective strategy synthesis

For single-objective strategy synthesis, determining if a
suitable strategy exists in this game reduces to computing
optimal strategies for player 1, i.e. strategies that minimise or
maximise the value of the objective. The problems of com-
puting optimal probabilities of reaching a set of states or
expected cumulative rewards in stochastic two-player games
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are known to be in the complexity class NP ∩ coNP [18].
However, in practice, we can use value iteration algorithms,
which iteratively approximate the optimal values for all states
of the model, until some specified convergence criterion is
met. This approach can be adapted to handle each of the
variants of the F� reward operators described in Sect. 3.1.
This relies on the use of graph-based precomputation algo-
rithms (e.g. to identify states fromwhich the expected reward
is infinite) and, for the case � = 0, the use of two succes-
sive instances of value iteration which compute an upper and
lower bound on the required values, respectively. The process
is described in more detail in [12].

For the cases of probabilistic reachability or until formu-
las (P�� p[F φ ] or P�� p[ φ1 U φ2 ]) and cumulative expected
reward (Rr�� x [F�φ ]), PRISM-games synthesises optimal
strategies that are both memoryless and deterministic. For
the bounded variants of reachability/until, a finite-memory
strategy is generated. In each case, the optimal strategy can
be inspected in the tool, or exported to a file for further anal-
ysis.

4.2 Multi-objective strategy synthesis

For multi-objective properties (which, again, only need to
be considered on a stochastic two-player game), PRISM-
games implements the techniques presented in [5,7,14,16].
The syntax described in Sect. 3.2 allows a variety of different
reward objectives to be used: expected total reward, expected
long-run average reward (mean payoff), expected long-run
reward ratio and almost-sure (probability 1) variants of the
latter two.

For the purposes of model checking, PRISM-games
imposes some restrictions on the classes of SMGs for which
these can be checked. For expected total rewards, gamesmust
be stopping and, for expected long-run objectives, games
must be controllable multi-chain (see Sect. 2.2 for details of
these subclasses).

At the heart of the strategy, synthesis algorithm is a uni-
fied fixpoint computation, used for all classes of properties
after appropriate transformations have been applied. In par-
ticular, Boolean combinations of expectation objectives are
converted to conjunctions by selecting appropriate weights
for the individual objectives (see [14, Theorem6] for details).

The core task is then to compute the set of achiev-
able values for a conjunction of expected reward objectives.
Assuming a conjunction of n reward objectives, with thresh-
olds x1, . . . , xn , a vector of n values is said to be achievable
if a single (player 1) strategy of the game can simultaneously
satisfy the threshold xi for each of the n reward objectives.

Strategy synthesis is again performed using a value itera-
tion style algorithm, but now computing, for each state s of
the model, a polytope PS ⊆ R

n of achievable values for that
state, rather than a single value as in the single-objective case.

In fact, the value iteration algorithm computes and stores the
Pareto set of optimal values for the polytope, i.e. the frontier
set containing achievable values that cannot be improved in
any direction without degrading another. The full polytope
is represented by its downward closure.

Since value iteration performs an approximate computa-
tion, up to a specified accuracy, the algorithm in fact con-
structs an ε-approximation of the Pareto set. Improvements
in performance can be achieved by computing successive
polytopes using in-place (i.e. Gauss–Seidel) updates, as well
as rounding the corners of the polytopes at every iteration
(where the latter comes at the cost of precision) [16].

From the results of the value iteration computation, a
succinct stochastic memory update strategy (see Sect. 2.1
for the definition) can be constructed, which achieves the
required values. Intuitively, the vertices of the polytope for
each state form thememory elements of the constructed strat-
egy and are used to track the values that need to be achieved
for each objective. As for multi-objective strategy synthe-
sis on the simpler model of MDPs [23], randomisation is
needed in the strategy to capture trade-offs between objec-
tives. See [16,44] for more information and some detailed
examples.

In a similar fashion to the handling of numerical queries
for single-objective properties, PRISM-games can also pro-
vide direct access to the Pareto set for a multi-objective
property. In practice, these are visualised by selecting two-
dimensional slices of the full set (see Sect. 5 and Fig. 5 for
an example).

4.3 Compositional strategy synthesis

Finally, we discuss the functionality in PRISM-games for
compositional strategy synthesis techniques. Building upon
assume-guarantee verification rules for probabilistic automata
(i.e. games with only a single player), proposed in [33], sup-
port is provided for assume-guarantee strategy synthesis in
stochastic two-player games [6,7].

Given a system G composed of subsystems G1, G2, . . ., a
designer supplies respective local property specifications ϕ1,
ϕ2, . . . via the construct comp(ϕ1, ϕ2, ...). By synthe-
sising local strategies σi forGi satisfyingϕi , a global strategy
σ can be constructed for G. Using assume-guarantee rules,
one can then derive a global property ϕ for G that is sat-
isfied by σ . The rules require fairness conditions, and we
write G, σ |�u ϕ if the player 1 strategy σ satisfies ϕ against
all unconditionally fair player 2 strategies. For example, the
rule:

G1, σ1 |�u ϕA G2, σ2 |�u ϕA → ϕG

(G1 ‖ G2), (σ1 ‖ σ2) |�u ϕG
(Asym)
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Fig. 4 Pareto sets generated by PRISM-games for compositional strategy synthesis (see Sect. 4.3)

states that player 1 wins with strategy σ1 ‖ σ2 for ϕG in the
top-level system if σ2 in G2 achieves ϕG under the contract
ϕA → ϕG , and σ1 in G1 satisfies ϕA.

The tool compositionally computes a Pareto set for the
property ϕ of the top-level system, which is an under-
approximation of the Pareto set computed directly on the
monolithic system. For a target in the compositional Pareto
set, the targets for the local property specifications ϕi can
be derived, so that the local strategies can be synthesised.
Figure 4 shows an example, with the property specifications
given beneath each of the generated Pareto sets, using ratio
reward objectives and 4 reward structures r1, r2, r3 and c.
The rightmost image shows the compositional Pareto set P ′.
The global target is (v2,v3) = ( 34 ,

9
8 ), and the local targets

can be seen to be consistent with v1 = 1
4 .

5 Architecture and implementation

PRISM-games is implemented primarily in Java. The tool is
open source, currently released under the GPL, and is avail-
able from the PRISM-games website:

http://www.prismmodelchecker.org/games/

which also includes documentation, examples and related
publications, as well as links to resources shared with
PRISM, such as the support and discussion forums. The
source code can also be accessed and browsed from the
PRISM project’s GitHub page:

https://github.com/prismmodelchecker

This site also hosts resources such as the benchmark and
regression test suites, which are currently being extended
with SMG model checking examples.

5.1 Architecture

PRISM-games is an extension of PRISM and so shares and
extends the same basic architecture as well as various com-
ponents from the original tool. This includes:

– Parsers for the modelling language and property speci-
fication languages, which are extended to support games
and the new strategy synthesis properties.

– The discrete-event simulator, used for manual or auto-
matic model exploration, which now supports SMGs, as
well as the new notions of two-player parallel composi-
tion for assume-guarantee strategy synthesis.

Like its parent tool, the functionality within PRISM-games
can be accessed in a variety of ways:

– The command-line interface, which is well suited for
automated verification runs, long-running tasks or remote
invocation.

– The graphical user interface (GUI), which provides
editors for models and properties, graph plotting func-
tionality and a simulator. Notable new features in theGUI
include the ability to explore synthesised game strate-
gies in the simulator, the possibility to apply a generated
strategy to a game model and then perform further model
checking, and the ability to visualise Pareto sets from
multi-objective strategy synthesis. Screenshots illustrat-
ing the first and third of these can be found in Fig. 5.

– The application programming interface (API), which
provides direct programmatic access (in Java) to the
underlying model checking engine used by both the
command-line and graphical user interfaces.

5.2 Data structures

We now give some details of the key data structures needed
to implement model checking of SMGs and the operations
needed to manipulate them. Further details can be found
in [44].

Games and strategies The current implementation of model
checkingwithin PRISM-games uses explicit-state data struc-
tures, building upon PRISM’s existing “explicit” engine
which is written in Java.
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Fig. 5 Screenshots of the PRISM-games graphical user interface. Left:
a synthesised strategy for an SMG being manually explored in the sim-
ulator. Right: visualisation of a Pareto set from multi-objective strategy

synthesis (here, a propertywith three objectives is displayed graphically
by projecting the Pareto set onto the second and third objectives)

Stochastic multi-player games are represented using
sparse matrix data structures. For the purposes of perform-
ing strategy synthesis (which is primarily based on value
iteration), the sparse matrices are equipped with various
matrix-vector multiplication algorithms, which form the
most expensive part of the solution process.

In order to support compositional modelling and verifica-
tion, PRISM-games adds support to the data structures for
combining SMGs using the notion of parallel composition
from [6], described in Sect. 2.3. This includes various aux-
iliary steps, including an (optional) compatibility check and
normal form transformation.

Strategies are also implemented in an explicit-state fash-
ion. Memoryless strategies are represented as vectors and
stochastic memory update strategies as maps encoding the
next choice and memory update functions. For composi-
tional verification within the assume-guarantee framework,
the synthesised strategies are not explicitly composed, but the
individual strategies are stored separately. When simulating
a composed game under a composed strategy, the memory
update is performed at each step only for the strategies cor-
responding to the involved components.

Polytopes For single-objective SMG model checking, the
core numerical computation techniques compute a single
value (e.g. a probability or expected reward value) for each
state of the SMG. These are mostly performed using fixpoint
approximations over state-indexed vectors of floating point
numbers. However, for multi-objective model checking, we
need to compute sets of achievable objective values for each
state, which can be done by associating each state with a
convex, closed polytope.

Polytope representation and manipulation is done using
the Parma Polyhedra Library (PPL) [4]. In particular, this

provides support for performing the set-theoretic operations
of convex union and intersection. The PPL library rep-
resents each polytope by both its vertices and the set of
bounding hyperplanes, called the Motzkin double descrip-
tion method [4]. The vertex representation also allows for
rays, which we use for downward closure operations: a ray
is a vector y such that, for any point x in a polytope X , any
point x + α · y is also in X , for any α > 0.

Both representations are equally expressive, but differ in
how efficient operations are performed: intersection of poly-
topes ismore efficient using hyperplanes (by taking the union
of the bounding hyperplanes); convex union is more efficient
using the vertices (by taking the union of the vertices). PPL
automatically performs transformations between the repre-
sentations and can minimise the representation size. This
representation of the polytopes is symbolic in the sense that
we represent a polytope, an infinite set of points, by a finite
set of vertices and hyperplanes.

Weighted Minkowski sum One operation required by
PRISM-games for manipulating polytopes, but not directly
supported by the PPL library, is the weighted Minkowski
sum. This is one of the core operations used during the itera-
tive approximation of Pareto sets for multi-objective strategy
synthesis, with the weights corresponding to the probabili-
ties attached to outgoing transitions from each state of the
SMG. Given sets X,Y ⊆ R

n , their Minkowski sum is the
set X + Y

def= {x + y | x ∈ X ∧ y ∈ Y }; given also a
weight α ∈ [0, 1] their weighted Minkowski sum is the set
αX + (1 − α)Y

def= {αx + (1 − α)y | x ∈ X ∧ y ∈ Y }.
We implement this operation using PPL’s vertex represen-

tation, which we explain here for two polytopes P1 and P2.
Let Pi

def= {x ∈ R
n | ∃y ∈ R

mi
�0 . Viy = x ∧ 1T y = 1} for

i ∈ {1, 2}, where Vi is an n×mi matrix defining the vertices
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Fig. 6 Illustrating the
computation of the weighted
Minkowski sum. P1 is shifted
from the origin by x3 = − 1

1−α
,

P2 is shifted from the origin by
x3 = 1

α

x2

x1

x3

P1

P2

α × P1 + (1− α)× P2

of the polytope. The idea behind computing their weighted
Minkowski sum is the following. First, lift the space todimen-
sion n + 1 and place P1 and P2 at a distance of − 1

1−α
and 1

α

from the origin, respectively. Their convex hull, shown with
dashed lines in Fig. 6, can then be computed as:
{
x ∈ R

n+1 | ∃y ∈ R
m1+m2+1·

[
V1 V2

1T /α −1T /(1 − α)

]
y = x ∧ 1T y = 1

}
.

Constraining this polytope to xn+1 = 0,weget1T y1 = α and
11y2 = 1−α, and hencewe defineαz1 = y1 and (1−α)z2 =
y2, so that x = αV1z1 + (1−α)V2z2 and 1T z1 = 1T z2 = 1.
This corresponds to computing theweightedMinkowski sum
α × P1 + (1−α)× P2, as illustrated by the hatched polytope
in Fig. 6. Computing the convex hull and constraining to
xn+1 = 0 are supported by PPL. This method extends to
more than two polytopes in a similar fashion by introducing
an extra dimension per polytope [30]. For more details and
examples of the operation, see [44, Sec.s 6.2 and 7.2].

Note that the weighted Minkowski sum is the most com-
putationally expensive operation that we have to implement,
as the number of vertices of the polytope αP1 + (1−α)P2 is
O(|P1|·|P2|); seeTheorem4.1.1 of [43]. In contrast, the num-
ber of vertices of the polytopes P1 ∩ P2 and conv(P1 ∪ P2)
is O(|P1| + |P2|) in both cases. The performance of our
synthesis algorithms is therefore dependent on the outgoing
branching degree of the states.

6 Experimental results

Next, we present some experimental results for a selection
of models analysed with PRISM-games, in order to give
an illustration of the scalability of the tool. Although the
property specification language presented in Sect. 3 allows
multiple coalition operators 〈〈C〉〉θ to be combined, either
using Boolean combinations or nesting of subformulas, in
practice, most queries are single instances of the operator so
we restrict our attention to such properties. We discuss the

cases of single-objective and multi-objective queries sepa-
rately, since the techniques used to check them are quite
different.

First, Table 1 shows statistics for a selection of mod-
els and the time taken to check various single-objective
properties. The models are taken from three case studies:
team-form (team formation protocols) [15], mdsm (micro-
grid demand-side management) [12,38] and investor (future
markets investor) [35]. Each case study has a parameter that
can be varied to yield increasingly large models. (Details can
be found in the references cited above.) The table shows the
number of players andmodel size (number of states) for each
one.

Again, we focus our attention on the kinds of objectives
used most frequently in practice, which refer to either the
probability of reaching a set of target states, or the expected
reward accumulated before reaching it. For the latter, we
show two of the three possible variants. Times are pre-
sented for performing strategy synthesis in each case using
a 2.80GHz PC with 32GB RAM. Since this process reduces
to the analysis of a stochastic two-player game, the num-
ber of players in the original SMG has no impact on the
solution time. Instead, the model size is the key factor. We
observe that, for a given example, the time for strategy syn-
thesis increases roughly linearly with the increase in state
space size. This is as expected since these properties are
checked using an iterative numerical method, each itera-
tion of which performs an operation for each state of the
model.

PRISM-games is able to work with games of up to
approximately 6 million states in these examples, which
is comparable to the situation for similar models such as
MDPs when using the “explicit” model checking engine
on which PRISM-games is based. Future work will adapt
PRISM’s symbolic model checking engines, which can pro-
vide increased scalability in some cases, to SMGs.

Table 2 shows statistics for multi-objective strategy syn-
thesis. The models are taken from four case studies: uav
(human-in-the-loop UAV mission planning) [24], driving
(autonomous urban driving) [16], power (aircraft power dis-
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Table 1 A selection of
experimental results for
single-objective strategy
synthesis queries

Case study [parameters] SMG statistics Strategy synthesis

Players States Property type Time (s)

team-form [N ] 3 3 12, 475 〈〈C〉〉Pmax=?[F φ ] 0.2

4 4 96, 665 0.9

5 5 907, 993 11

mdsm [N ] 5 5 743, 904 〈〈C〉〉Rmax=?
r [F∞φ ] 62

6 6 2, 384, 369 222

7 7 6, 241, 312 1055

investor [vmax] 10 2 10, 868 〈〈C〉〉Rmax=?
r [Fcφ ] 0.7

100 2 750, 893 122

200 2 2, 931, 643 821

Table 2 A selection of experimental results for multi-objective/compositional strategy synthesis queries

Case study SMG statistics Strategy synthesis

Components States Num. obj.s Objective types Accuracy Time (s)

uav 1 6,251 2 Exp. total, Pareto 0.1 652

uav 1 6,251 2 Exp. total, Pareto 0.01 871

driving [charlton] 1 501 3 Exp. total 0.001 2603

driving [islip] 1 1,527 3 Exp. total 0.001 1968

power [d=0] 2 7,296/7,296 3/3 Almost-sure ratio 0.01 586/484

power [d=1] 2 24,744/24,744 3/3 Almost-sure ratio 0.01 3325/2377

temp 3 1,478/1,740/1,478 3/2/3 Exp. ratio 0.05 829/69/734

temp 3 1,478/1,740/1,478 3/2/3 Exp. ratio 0.01 860/92/2480

tribution) [5] and temp (temperature control) [44]; the first
three are discussed in the next section.

The case studies do not all have parameters to scale the
models, as in Table 1, but we show two variants of driv-
ing (using maps for two villages), and for power, we vary
the switch delays d. The last two case studies are used for
compositional (assume-guarantee) strategy synthesis. We do
not focus on that aspect here, but simply use it as a source of
multi-objective queries. The table shows the number of com-
ponents (subsystems), and sizes/times are given for each one,
separated by slashes in the table entries. We omit the number
of players since this is 2 in all cases.

The final column shows the time required for strategy
synthesis, using the same hardware as above. In addition to
considering different models, we also vary the accuracy with
which Pareto curves are approximated. For multi-objective
strategy synthesis, we observe that performance depends on
multiple factors. Again, model size affects the time (see, e.g.
the power example), but the number of objectives also has a
significant impact (see, e.g. the temp example) and increasing
the solution accuracy also results in longer runtimes.

7 Case studies

PRISM-games has been under development since 2012 and
has since then been successfully deployed tomodel and anal-
yse systems across a wide range of application domains.
In this section, we survey some representative examples.
Further details of several of the examples can be found in
[38,40,42,44], and an up-to-date list of case studies is main-
tained at the tool web site [45].

Microgrid demand-side management [38] The exam-
ple models a decentralised energy management protocol for
smart grids that draw energy from a variety of sources. The
system consists of a set of households, where each household
follows a simple probabilistic protocol to execute a load if the
current energy cost is below a pre-agreed limit, and otherwise
it only executes the load with a pre-agreed probability. The
energy cost to execute a load for a single time unit is the num-
ber of loads currently being executed in the grid. The analysis
of the protocol with respect to the expected load per cost
unit for a household, formulated as a single-objective total
reward property, exposed a protocol weakness. The weak-
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ness was then corrected by disincentivising non-cooperative
behaviour.

Human-in-the-loop UAV mission planning [24] This
case study concerns autonomous unmanned aerial vehicles
(UAV) performing road network surveillance and reacting to
inputs from a human operator. The UAV performs most of
the piloting functions, such as selecting the waypoints and
flying the route. The human operator performs tasks such as
steering the onboard sensor to capture imagery of targets,
but may also pick a road for the UAV at waypoints. The opti-
mal UAV piloting strategy depends on mission objectives,
e.g. safety, reachability, coverage and operator characteris-
tics, i.e. workload, proficiency and fatigue. The main focus
of the case study is on studying a multi-objective property to
analyse the trade-off between the mission completion time
and the number of visits to restricted operating zones, which
have been investigated by computing Pareto sets.

Autonomous urban driving [16] An SMG model of an
autonomous car is developed, which considers the car driv-
ing through an urban environment and reacting to hazards
such as pedestrians, obstacles and traffic jams. The car not
only decides on the reactions to hazards, which are adver-
sarial, but also chooses the roads to take in order to reach a
target location. The presence and probability of hazards are
based on statistical information for the road. Through multi-
objective strategy synthesis, strategies with optimal trade-off
between the probability of reaching the target location, the
probability of avoiding accidents and the overall quality of
roads on the route are identified.

Aircraft power distribution [5] An aircraft electrical
power network is considered, where power is to be routed
from generators to buses through controllable switches. The
generators can exhibit failures and switches have delays. The
systemconsists of several components, each containingbuses
and generators, and the components can deliver power to each
other. The network is modelled as a composition of stochas-
tic games, one for each component. These components are
physically separated for reliability and hence allow limited
interaction and communication. Compositional strategy syn-
thesis is applied tofind strategieswith good trade-off between
uptime of buses and failure rate. By employing stochastic-
ity, we can faithfully encode the reliability specifications in
quantitative fashion, thus improving over previous results.
The property is modelled as a conjunction of ratio reward
properties.

Self-adaptive software architectures [10,26]
Self-adaptive software automatically adapts its structure and
behaviour according to changing requirements and quan-
titative goals. Several self-adaptive software architectures,
such as adaptive industrial middleware used to monitor
and manage sensor networks in renewable energy produc-
tion plants, have been modelled as stochastic games and
analysed. Both single- and multi-objective verification of

multi-player stochastic games has been applied to evaluate
their resilience properties and synthesise proactive adapta-
tion policies.

DNS bandwidth amplification attack [22] The Domain
Name System (DNS) is an Internet-wide hierarchical nam-
ing system for assigning IP addresses to domain names,
and any disruption of the service can lead to serious con-
sequences. A notable threat to DNS, namely the bandwidth
amplification attack, where an attacker attempts to flood a
victim DNS server with malicious traffic, is modelled as a
stochastic game. Verification and strategy synthesis is used
to analyse and generate countermeasures to defend against
the attack.

Attack–defence scenarios in RFID goods management
system [3] This case study considers complex attack–
defence scenarios, such as an RFID goods management sys-
tem, translating attack–defence trees to two-player stochas-
tic games. Probabilistic verification is then employed to
check security properties of the attack–defence scenar-
ios and to synthesise strategies for attackers or defenders
which guarantee or optimise some quantitative property.
The properties considered include single-objective proper-
ties such as the probability of a successful attack or the
incurred cost, as well as their multi-objective combina-
tions.

8 Related tools

There are a variety of probabilistic model checking tools cur-
rently available. PRISM-games builds upon components of
the PRISM [32] tool, as discussed in Sect. 5. Other general-
purpose probabilistic model checkers include MRMC [31],
STORM [21], the Modest Toolset [29], iscasMc [27] and
PAT [39]. However, none of these provide support for
stochastic games.

Other tools exist for the analysis of gamemodels, but have
a different focus to PRISM-games. For stochastic games,
there is support for qualitative verification in GIST [11]
and partial support in the general-purpose game solver
GAVS+ [17], but there are no tools for multi-objective or
compositional analysis.

Analysis of Nash equilibria can be performed with
EAGLE [41] or PRALINE [9], but only for non-stochastic
games. Lastly, Uppaal Stratego [19] performs strategy syn-
thesis against quantitative properties, but with a focus on
real-time systems.

We also mention that multi-objective probabilistic veri-
fication, one of the key features of PRISM-games, is also
available elsewhere for simpler models, notably Markov
decision processes. This is supported by general-purpose
model checkers, such as PRISM [32] and STORM [21], and
the more specialised tool MultiGain [8].

123



PRISM-games: verification and strategy synthesis for stochastic multi-player games with. . . 209

9 Conclusions and future work

PRISM-games is a tool for verification and strategy synthesis
of stochastic multi-player games. It incorporates an array of
techniques to support the generation of strategies specified
by a wide range of formally specified quantitative proper-
ties, including single-objective and multi-objective variants.
In this paper, we have provided an overview of the tool, from
both a user perspective and in terms of the underlying imple-
mentation.

Various extensions are under development or planned for
the future. Firstly, support for awider range of temporal prop-
erties, specified in linear temporal logic (LTL), is in progress.
Secondly, symbolic implementations of model checking
are being added, to complement the current explicit-state
version. Initially, this builds upon the existing symbolic tech-
niques implemented in PRISM for other probabilisticmodels
using binary decision diagrams (BDDs) and multi-terminal
BDDs.

Future work will investigate verification and strategy
synthesis techniques for alternative game-theoretic solu-
tion concepts such as Nash equilibria and wider classes of
stochastic games, such as concurrent variants and games
operating under partial observability.
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