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Abstract 
The Internet-of-Things (IoT) domain will be one of 

the most important domains of research in the coming 
decades. Paradigms continue to emerge that can employ 
self-organization to capitalize on the sheer number and 
variety of devices in the market. In this paper, we 
combine the use of stochastic multiplayer games 
(SMGs) and negotiation within two collective adaptive 
systems of drones tasked with locating and surveilling 
intelligence caches. We assess the use of an ordinary 
least squares (OLS) regression model that is trained on 
the SMG’s output. The SMG is augmented to 
incorporate the OLS model to evaluate integration 
configurations during negotiation. The augmented SMG 
is compared to the base SMG where drones always 
integrate. Our results show that the incorporation of the 
OLS model improves the expected performance of the 
drones while significantly reducing the number of failed 
surveillance tasks which result in the loss of drones. 

1. Introduction 

Paradigms continue to emerge [1,2] that capitalize 
on the unique benefits that Internet-of-Things (IoT) 
devices have to offer as well as the sheer number of 
devices available. One such paradigm is the use of 
swarm applications [2], which takes advantage of the 
number and relatively low manufacturing cost of IoT 
devices and drones. As the ability to implement 
collective systems improves, developers will be able to 
incorporate more complex functionality into these 
systems to achieve greater compliance with a pre-
defined set of system requirements. These collective 
adaptive systems [3] can operate as a large swarm or as 
smaller, more specialized teams through the exercise of 
self-organization [2,4,5]. To permit dynamic team 
compositions, collective adaptive systems require the 
ability to define and evaluate a specification of self-
organization, which we refer to as an integration 
configuration. Integration configurations specify the 

intended functionality that each member of the team will 
exercise, the inputs required for the intended 
functionality to be executed, and the expected 
performance of the intended functionality given its 
inputs. Devices can specify and agree upon an 
integration configuration via a mutually known 
negotiation protocol [5,6]. 

The use of automated, trust-based negotiation 
protocols [5,6,7] has been investigated for service 
composition [8] and mobile ad hoc networks (MANets) 
[9]. Some approaches [6] use static rules to establish 
trust between devices and then accept or reject 
integration depending on whether trust is established. 
This is inadequate when a device has other functional 
requirements that can be undermined by constraints 
imposed during negotiation and integration [3]. In prior 
work [5], we extend trust-based negotiation to devices 
[10] that can determine what conditions comply with or 
undermine their own requirements. We introduce the 
concept of situational goals as goals that can only be 
met via negotiation and integration. 

In this paper, we extend prior work [3,5] to an 
intelligence, surveillance, and reconnaissance (ISR) 
scenario [12] involving two collective adaptive systems 
of drones. These systems must work together to recon a 
large map for intel caches and organize themselves into 
a two-drone team to attempt a surveillance task 
whenever an intel cache has been identified. To 
facilitate self-organization, we apply a negotiation 
protocol [5] to permit negotiation between collective 
systems via an intermediary. The negotiation protocol 
requires that each individual drone be capable of 
evaluating integration configurations at runtime. We 
demonstrate how stochastic modeling and regression 
can be combined to evaluate configurations at runtime. 

A primary challenge to deploying IoT devices or 
drones within a safety-critical domain is that low power 
devices must accommodate foreseen and foreseeable 
sources of uncertainty [11] present in their application 
domain. This challenge can be met by incorporating 
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stochastic modeling, which can model sources of 
uncertainty present in the system or environment as 
random variables [3]. We employ the use of a stochastic 
multiplayer game (SMG) [13,14,15] that models an 
individual drone and its environment as its players. 
SMGs are intended for use as a tool to evaluate 
behaviors and adaptations at design time. 

An ordinary least squares (OLS) regression [16] 
model is trained on the output of the SMG for the ISR 
scenario. The trained model is utilized by the drones to 
evaluate integration configurations at runtime with little 
to no overhead. To demonstrate the efficacy of the OLS 
model, the SMG is augmented to use the OLS model to 
evaluate configurations during negotiation. The results 
demonstrate that the use of an OLS model to evaluate 
configurations improves a drone’s expected 
performance with respect to their requirements while 
significantly reducing the expected number of failed 
surveillance tasks, and subsequently reducing the 
destruction of drones in the field and the loss of intel. 

2. Background 

The use of automated, trust-based negotiation has 
been investigated in service composition both through 
internet-based web-services [8] and in MANets [9]. 
Unlike internet-based webservices, services employed 
over a MANet or service-oriented ad hoc network [17] 
can experience periods of unavailability as devices lose 
power, suffer intolerable network conditions, or move 
away from one another. Due to these sources of 
uncertainty [11], as well as others that threaten the 
reliability of an integration over an ad hoc network, it is 
necessary to justify the application of an integration 
configuration given the requirements of all participating 
parties [3,17]. To that end, researchers have investigated 
assessing configurations based on pre-defined metrics 
[6,17]. 

Wang et al. [17] develop CATrust to establish the 
trustworthiness of a device based on context information 
gathered from the environment. Dragoni et al. [6] define 
the SxT negotiation framework to establish trust 
between devices based on pre-defined security policies. 
Both these authors consider domains where it is 
necessary to establish trust between devices because 
they are unknown to one another and may not perform 
reliably. Other authors have investigated the reliability 
of devices based on a pre-established history [18,19] or 
reputation [20]. In our scenario, the conditions that 
determine the reliability of a drone’s involvement in an 
integration change frequently and must be consistently 
reassessed. As such, the history or reputation of a 
drone’s performance is irrelevant. 

In prior work [5], we extend the SxT negotiation 
framework by augmenting the defined message types to 

use assessment procedures rather than pre-defined 
security policies. For our current scenario, drones are 
deployed by the same organization but are threatened by 
adversarial elements that aim to destroy the drones. As 
such, drones must assess the efficacy of an integration 
configuration given the risk of being destroyed should 
they be challenged by adversaries. We seek to 
incorporate stochastic modeling [3,13,14,15] into the 
negotiation process to determine if a configuration 
should be permitted given both the risk of involvement 
in an integration and the efficacy of the integrated 
parties with respect to their task. 

Camara et al. [14] propose the use of SMGs [15] to 
model safety-critical applications that possess sources 
of uncertainty. In prior work [3], we investigate the use 
of SMGs to evaluate the relationship between design 
constraints and system performance. By utilizing an 
SMG, we can evaluate an integration configuration with 
respect to a drone’s expected performance while 
including goals that are negatively impacted by 
integration. 

Similar efforts frame the evaluation of an 
integration as a multi-objective optimization problem 
[21]. These problems typically require the application of 
exponential algorithms. Although these algorithms 
could be employed at design time, there is no guarantee 
that the results would cover all possible instances of the 
scenario since the conditions necessary to solve the 
multi-objective optimization problem consistently 
change and their values may not be fully known. 
Another approach is to use heuristics to reduce the 
complexity of the solution to linear time [20]. However, 
in a safety-critical domain, heuristics must adequately 
reflect device requirements, and we must consider that 
the only viable complexity may be constant time. 

Researchers have investigated the use of regression 
models to evaluate a device’s performance [22,23]. Li et 
al. [22] apply an autoregression model to historical 
observations to produce a model of device performance 
over time. Venkataraman et al. [23] propose a regression 
model to learn the weights associated with device 
quality-of-service attributes, where each attribute is 
assessed individually using Bayesian inference. In this 
paper, we demonstrate how OLS regression can be 
applied to the output of an SMG to produce a model that 
can evaluate an integration configuration at runtime. 

3. Defining the stochastic multiplayer game 

In this section, we introduce the scenario and the 
drone requirements. We define an SMG based on the 
scenario, into which negotiation is incorporated as an 
action. 
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3.1. Scenario 

We describe a safety-critical scenario [12] 
involving two collective adaptive systems of drones that 
participate in an ISR mission. Both systems are 
deployed by the same organization and are assumed to 
possess the means required to authenticate all drones 
and communicate between one another using encrypted 
channels. The possibility that adversaries might 
intercept drone communications, identify that a drone is 
communicating, or act as a malicious imposter is 
considered outside the scope of this paper. The intended 
use of negotiation is not to establish trust per se but to 
select an integration configuration that can be reliably 
met by the negotiating parties and to improve the 
expected performance of the drones with respect to the 
scenario’s grading criteria. 

3.1.1. Game specification. The target scenario is 
implemented in Java and has been made available to us 
through the RASSim Docker [12]. A collection of 200 
drones has been tasked with conducting an ISR mission. 
The mission is to survey a target amount of intel 
(measured in intel units) within a one-hour period. The 
available intel units are partitioned across a set of 65 
intel caches. Caches are stagnant, but 15 of the 65 caches 
will not be available at the start of the scenario. Rather, 
these 15 caches will randomly ‘pop up’ at some point 
during the mission. These 15 ‘pop up’ caches are each 
worth 70 units. 25 of the other caches are worth 20 units 
and the remaining 25 caches are worth 10 units. To 
collect intel units from an intel cache, drones must work 
together in a specialized team to perform a surveillance 
task. The number and location of intel caches, the 
distribution of intel units, and the details of the ‘pop up’ 
caches are all unknown to the drones prior to the start of 
the mission. 

The scenario also includes adversaries that protect 
the caches. Adversaries are mobile but must remain 
within a set distance of the cache they are protecting. 
Only adversaries can destroy drones. Drones must work 
in teams to both inhibit adversaries and survey intel 
simultaneously. Adversaries are slightly less capable 
than the drones. They have a smaller radius of vision, a 
smaller max speed, and are unable to attack drones 
while being inhibited. A drone can only inhibit one 
adversary at a time. As the number of adversaries at an 
intel cache increases, so too must the number of drones 
assigned to the surveillance task. This can be handled 
using multiple instances of negotiation that operate in 
parallel. For this paper, we use one adversary per intel 
cache. The number and distribution of adversaries are 
unknown to the drones. 

Drones begin the scenario at homebase, which is 
located at just outside the corner of the map. The map is 

a 25x25 square grid that represents a 256 km2 area. Prior 
to the scenario, the 200 drones are partitioned into 
surveillance drones and wingmen. Surveillance drones 
have an intel sensor that can survey intel at a rate of one 
intel unit per second. Only surveillance drones can 
survey intel. Wingmen have electronic countermeasures 
that can inhibit adversaries. At the start of the scenario, 
drones recon the map searching for intel caches. All 
drones have visual sensors to identify intel caches, 
measure the size of a cache in terms of intel units, and 
identify adversaries. 

When a drone discovers an intel cache, they report 
the location and size of the cache to homebase. Unless 
destroyed, all drones can communicate with homebase 
and vice versa. After reporting an intel cache, a 
surveillance task is generated. Surveillance tasks require 
one surveillance drone to survey the intel and one 
wingman to inhibit the adversary. The drone that 
discovers the intel cache is the first team member. The 
second team member is assigned from the opposite type 
of drone scattered throughout the map. If a surveillance 
task is successful, then all the cache’s intel units are 
collected, and the drones resume reconnaissance. 
Otherwise, both drones are destroyed by the adversary 
and their intel with them. The mission ends when the 
drones have surveyed the target number of intel units or 
when the mission timer expires. The mission timer is 
one hour, and we allocate 5 seconds per turn, so the total 
length of the mission is 720 turns. 

In this paper, we use a partition of 100 surveillance 
drones and 100 wingmen. Each drone is assigned 
quadrants to recon. Quadrants are selected using a quad-
tree construction defined in prior work [12] and are 
assigned to drones alternating between surveillance 
drones and wingmen. We ensure that every surveillance 
drone has at least one neighboring quadrant that 
contains a wingman and vice versa. It does not 
guarantee that a surveillance task will be completed by 
the closest drones but provides a consistent distribution 
of drones at a variety of distances throughout the map. 
This simplifies the process of modeling the distance 
required for a surveillance drone or wingman to reach 
the location of a surveillance task. 

3.1.2. Drone requirements. Once the mission ends, 
drones are graded based on three criteria. Table I 
provides the relative weights and descriptions of the 
criteria. The relative weight is the maximum number of 
points awarded to the drones in each criterion, and the 
description states how points are awarded. According to 
the grading criteria, drones are awarded a maximum of 
30 points based on the percentage of intel caches that 
they identify regardless of whether they survey its intel. 
They are awarded a maximum of 25 points based on the 
percentage of intel units that they survey, and a 
maximum of 15 points based on the percentage of 
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drones that survive. Drones only survive if they are not 
destroyed by an adversary and return to homebase 
before the mission expires. Each criterion awards partial 
credit linearly with respect to how well the drones 
perform. For example, if the drones only identify half of 
the intel caches, then they are awarded 15 out of the 30 
points for the first criterion. 
 
Table I: Grading criteria for the ISR scenario. 

Relative Weight Description 
30 % of identified intel caches 
25 % of intel surveyed 
15 % of drones that survive 

 
The three criteria for the scenario are encoded into 

a set of requirements for the drones. The first 
requirement states that drones should maximize the 
number of intel caches that they identify, which is the 
first criterion of the scenario. The second requirement 
states that drones should maximize the number of intel 
units that they survey, which is the second criterion of 
the scenario. The third requirement, a safety 
requirement, states that drones should return to 
homebase by the end of the mission, which is the third 
criterion of the scenario. The last requirement is a 
situational goal that states that all drones should 
participate in surveillance tasks. This requirement 
indirectly stipulates that each drone should report intel 
caches and negotiate since a drone can only participate 
in surveillance tasks if it negotiates and is assigned to 
the task. By stating this requirement as a situational 
goal, a drone may terminate or reject negotiation if 
participating in a surveillance task would be more 
detrimental to its other requirements than it is beneficial 
to participate in the task. For example, a surveillance 
task could award too few intel units at too high a risk to 
the drone’s survival. 

DRONE.1: The drone should MAXIMIZE the number 
of intel caches that it identifies. 
DRONE.2: The drone should MAXIMIZE the number 
of intel units that it surveys. 
DRONE.3: The drone should return to homebase 
before the mission timer expires. 
Situational DRONE.4: The drone should participate 
in surveillance tasks. 

3.2. Negotiation protocol 

In this paper, we continue to employ our extension 
of the SxT negotiation protocol [5]. We adapt the 
protocol implementation to support an individual drone 
that negotiates with a collective adaptive system. The 
negotiation protocol is defined by a set of message types 
that can be exchanged between two entities to initiate a 

negotiation, propose and counter propose integration 
configurations, and terminate negotiation by accepting 
a configuration or resolutely rejecting all previously 
proposed configurations. To extend this protocol to 
negotiations that include a collective adaptive system, 
we designate a leader from each collective that operates 
as an intermediary between a drone and the opposite 
collective. For our scenario, the homebase acts as the 
intermediary for both the collective system of 
surveillance drones and the collective system of 
wingmen. Each time a message is received from a drone, 
the homebase broadcasts the message to each member 
of the opposite collective, compiles their responses, and 
selects the collective’s most preferred integration 
configuration. It then engages in negotiation with the 
individual drone and contacts members of the opposite 
collective as needed. 

3.3. Stochastic multiplayer game 

An SMG [13,15] is a type of stochastic model that 
models a scenario using a select number of players who 
alternate turns. During their turn, a player takes a single 
action before yielding their turn to the next player. The 
first player represents a single surveillance drone. The 
second player represents the environment. Due to 
sources of uncertainty in the environment, even though 
the drone may perform some action, such as looking for 
intel caches, it cannot guarantee that the action will be 
successful. The purpose of the environment player is to 
capture the sources of uncertainty present in the scenario 
through its actions. As such, while the drone player 
represents the drone, the environment player represents 
all other entities present in the scenario, including the 
intel caches, adversaries, wingmen, and the homebase. 

The surveillance drone interacts with wingmen 
during negotiation via homebase which passes messages 
back and forth between the surveillance drones and the 
wingmen. Possible integration configurations are 
generated using random variables which determine how 
long the surveillance drone must wait for a wingman to 
reach the intel cache and how likely the surveillance task 
is to succeed without the drones being destroyed. This 
type of construction is particularly useful for scenarios 
where the environment player can be cooperative or 
competitive or are significantly influenced by stochastic 
processes [14]. The ISR scenario presented in this paper 
fits that description well. Although it exhibits 
competitive elements since adversaries attempt to 
destroy drones, the scenario does not treat adversaries as 
rational actors. 

3.3.1. Definition. We define an SMG 𝒢𝒢 =
〈𝛱𝛱, 𝑆𝑆,𝐴𝐴, (𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒),𝛥𝛥,𝐴𝐴𝐴𝐴,𝜒𝜒, 𝑟𝑟〉, where 
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• Π = {𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒𝑒𝑒} is the set of players: drone, 
representing a single surveillance drone, and env, 
representing the intel caches, adversaries, wingmen, 
and homebase, 

• S = Sdrone ∪ Senv is defined by the finite, non-empty 
sets of states of Sdrone (controlled by player drone) 
and Senv (controlled by player env) with (Sdrone ∩
Senv = ∅), 

• A = Adrone ∪ Aenv is defined by the finite, non-
empty set of actions of Adrone (available to player 
drone) and Aenv (available to player env), 

• Δ ∶  S × A → 𝒟𝒟(S) is a (partial) transition function 
denoting a probability distribution set S, 

• 𝐴𝐴𝐴𝐴 is the set of predicates that are predicated over 
state variables and are used to label states, 

• χ ∶  S → 2AP is a labeling function that assigns 
atomic predicates to each state, and 

• r ∶  S → ℚ≥0 is a reward function that maps a non-
negative reward to each state. 

We include an additional set of random variables as 
input parameters that define stochastic processes for the 
selection of actions by player env. These random 
variables include cache stagnation rate, cache detection 
rate, communication rate, likelihood of task success, 
intel units, and wait time. Cache stagnation rate 
determines the likelihood that an intel cache remains at 
its current location at the end of the turn. For our ISR 
scenario, intel caches are stagnant, but 15 of the 65 intel 
caches can randomly appear at any time over the course 
of the one-hour mission. This mechanism which permits 
caches to randomly pop up is similar to having intel 
caches that avoid a drone’s detection by changing their 
location or hiding, as long as the drone has an imperfect 
(less than 1.0) detection rate. 

The cache detection rate determines the likelihood 
that a drone discovers an intel cache at its location. The 
scenario does not employ impediments to cache 
detection, such as obstructions or caches with avoidance 
behavior. However, to model a scenario where 15 of the 
65 intel caches randomly appear on the map, we must 
use an imperfect cache detection rate. Otherwise, a 
location that has been observed by a drone would have 
a zero likelihood of containing an intel cache, which can 
never be the case. The communication rate determines 
the likelihood that a drone can report the location of an 
intel cache. This random variable determines whether 
negotiation between drones can take place or whether 
the negotiation would be terminated, or interrupted, by 
environmental factors such as loss of connectivity or 
adversarial interference. 

Once negotiation takes place, the integration 
configuration must include a likelihood of task success, 

intel units, and a wait time, which are taken from the 
inputs to the SMG. The likelihood of task success is a 
random variable that determines whether a surveillance 
task will be successful. If the task is successful, then the 
drones collect the cache’s full intel units. Intel units is a 
random variable that determines the value of an intel 
cache. According to the scenario description, caches can 
be worth 10, 20, or 70 intel units but intel units are not 
uniformly distributed across the available intel caches. 
Finally, wait time is a random variable that indicates the 
number of turns a drone requires to reach the intel 
cache’s location so that the surveillance task can begin. 

3.3.2. Drone actions. Player drone takes the first turn. 
During their turn, player drone selects one of its 
available actions. Each action has a corresponding guard 
- a predicate over state variables to determine whether 
an action can be selected from a given state. Guards are 
specified as first-order predicates alongside their 
respective action. The predicate term (𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 →
𝑡𝑡′ = 𝑒𝑒𝑒𝑒𝑒𝑒) is the notation for yield. It states that “if the 
current turn owner 𝑡𝑡 is player drone, then the next turn 
owner 𝑡𝑡′ is player env.” This notation restricts each 
player to a single action per turn. 

The state variable 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the current turn in the 
game. Since both players are assumed to be operating 
simultaneously in the real world, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is incremented 
at the end of player env’s turn. The variable 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
is the maximum number of turns that the game allows, 
which is 720 (i.e., one hour). All actions are restricted 
by the term (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), which represents the 
terminal condition. The scenario is over once a player 
cannot perform any actions, which should occur only 
once the scenario’s maximum number of turns have 
been played. The variable cooldown is used to specify 
how long it takes for an action to complete. Player drone 
can only do nothing while on cooldown, and it is 
decremented at the beginning of player drone’s turn. 
Actions are put into effect at the end of their cooldown, 
i.e., when cooldown is 1. The variable HB is the 
location of the homebase and is set to (−1,−1). The 
variable loc  is the location that player drone intends to 
move to. Player drone always moves to the location that 
has the greatest likelihood of containing an intel cache. 
The function 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐻𝐻𝐻𝐻, 𝑙𝑙𝑙𝑙𝑙𝑙) returns the number of turns 
required for player drone located at position loc  to 
return to homebase. 

There are several other state variables that are used 
as flags to determine whether an action is permitted 
(true) or restricted (false). The state variable recon  is 
set to true if player drone is performing a recon action 
while the state variable interference is set to true if 
player env interferes with player drone’s 
reconnaissance. The state variable neg  is set to true if 
player drone is negotiating with homebase, and the state 
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variable conf  is set to true if player drone has been sent 
an integration configuration. The state variable execute 
is set to true when player drone executes a surveillance 
task. 

�𝒂𝒂𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �  
Do nothing; yield to player env. Caches cannot be detected 
during this action. 
Guard:  turns ≤ maxturns ∧ (t = drone → t′ = env). 

�𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�  
Move to adjacent location; yield to player env. Caches cannot 
be detected during this action. Set cooldown to 5. 
Guard:  cooldown =  0 ∧ turns + 5 ≤ maxturns −
dist(HB, loc) ∧ (t = drone → t′ = env). 

�𝒂𝒂𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �  
Remain at current location; recon for caches; yield to player 
env. Set 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to true. Caches can be detected during this 
action. Set cooldown to 1. 
Guard:  cooldown =  0 ∧ turns + 1 ≤ maxturns −
dist(HB, loc) ∧ (t = drone → t′ = env). 

�𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�  
Move to adjacent location; recon for caches; yield to player 
env. Set 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to true. Caches can be detected during this 
action. Set cooldown to 5. 
Guard:  cooldown =  0 ∧ turns + 5 ≤ maxturns −
dist(HB, loc) ∧ (t = drone → t′ = env). 

�𝒂𝒂𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �  
Report intel cache; negotiate with homebase; yield to player 
env. Set 𝑛𝑛𝑛𝑛𝑛𝑛 to true. Caches cannot be detected during this 
action. Set cooldown to 5. 
Guard:  𝑐𝑐ooldown =  0 ∧ ¬ interference ∧ turns + 5 ≤
maxturns − dist(HB, loc) ∧ (t = drone → t′ = env). 

�𝒂𝒂𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �  
Accept selected integration configuration; execute surveillance 
task; yield to player env. Caches cannot be detected during this 
action. Set execute to true. Action requires several turns as 
determined by the configuration’s specified wait time and the 
number of turns that player drone requires to fully survey the 
intel cache. A surveillance drone can survey five intel units per 
turn. Set cooldown to (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 5⁄ ). 
Guard:   𝑐𝑐ooldown =  0 ∧ conf ∧ turns + waitTime +
intelUnits 5⁄ ≤ maxturns− dist(HB, loc) ∧ (t = drone →
t′ = env). 

Action 𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is selected whenever player drone 
has no other actions available because it is on cooldown 
or because it does not have enough turns to execute any 
other actions. Action 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 returns player drone to 
homebase when it does not have enough remaining turns 
to execute any of its other actions. The drone cannot be 
on cooldown and it must have enough turns remaining to 
return to homebase. Action 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is used to recon the 
drone’s current location. This action is selected when the 
drone’s current location has at least the likelihood of 
containing an intel cache as all its adjacent locations. 
Action 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is used to recon one of the drone’s 
adjacent locations. This action is selected when one of 
the drone’s adjacent locations has a greater likelihood of 

a containing an intel cache than the drone’s current 
location. These two actions cannot be performed while 
the drone is on cooldown or if the drone does not have 
enough turns remaining before the mission expires. The 
action 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is not a combination of the drone’s other 
actions but is a unique action that is executed when the 
drone intends to both move and recon. Action 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is 
executed when the drone intends to move but not recon, 
e.g., when returning to homebase. Action 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is 
executed when the drone intends to recon but not move, 
e.g., when its current location has the greatest likelihood 
of containing an unidentified intel cache. 

Action 𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  negotiates with homebase. It can 
only be performed if player drone is not being interfered 
with by player env and if player drone has enough turns 
remaining to reach homebase after negotiations have 
concluded. Action 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  executes a surveillance task 
according to the integration configuration selected by 
player env. It can only be selected if a configuration has 
been sent to player drone and there are enough turns to 
execute the task and then return to homebase. When 
more than one action is available, player drone selects its 
action according to the following preference order: 
𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, and 
𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . 

3.3.3. Env actions. Player env is the second player to 
take their turn. We predicate each action’s guard over a 
random variable Z, whose value is sampled each turn 
from a uniform distribution. Its guards are intentionally 
constructed so that player env only has one available 
action each turn. 

�𝒂𝒂𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒆𝒆𝒆𝒆𝒆𝒆 � Do nothing and yield to player drone. 
Guard:  �(Z < cacheStagRate ∧ ¬ recon) ∨ Z <
cacheStagRate ∙ cacheDetectRate� ∧ ¬ neg ∧ turns ≤
maxturns ∧ (t = env → t′ = drone). 

[𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆 ]  
Move cache to an adjacent location; yield to player drone. 
Guard:  �(cacheStagRate ≤ Z ∧ ¬ recon) ∨ cacheStagRate ∙
cacheDetectRate ≤ Z < cacheDetectRate� ∧ ¬ neg ∧
turns ≤ maxturns ∧ (t = env → t′ = drone). 

[𝒂𝒂𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒆𝒆𝒆𝒆𝒆𝒆 ]  
Cache avoids the drone’s visual detection; yield to player 
drone. 
Guard:  cacheDetectRate ≤ Z < 1 − (1 −
cacheStagRate)(1 − cacheDetectRate) ∧ recon ∧ turns ≤
maxturns ∧ (t = env → t′ = drone). 

[𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒆𝒆𝒆𝒆𝒆𝒆 ]  
Cache avoids the drone’s visual detection; move cache to an 
adjacent location; yield to player drone. 
Guard:  1 − (1 − cacheStagRate)(1 − cacheDetectRate) ≤
Z ∧ recon ∧ turns ≤ maxturns ∧ (t = env → t′ = drone). 

[𝒂𝒂𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆𝒆𝒆 ]  
Send integration configuration; yield to player drone. Set 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
to true. Configuration is selected according to a uniform 
distribution over all possible configurations. 

Page 7652



Guard:  neg ∧ turns ≤ maxturns ∧ (t = env → t′ = drone). 

�𝒂𝒂𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒆𝒆𝒆𝒆𝒆𝒆 � Destroy drones executing a surveillance task; yield 
to player drone. 
Guard:  likelihoodTaskSuccess ≤ Z ∧ execute ∧ turns ≤
maxturns ∧ (t = env → t′ = drone). 

Action 𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒  is player env’s action to do 
nothing, indirectly preventing the cache from changing 
location and permitting a cache to be identified by a 
drone performing reconnaissance. It cannot be selected 
if player drone is currently negotiating. Player env’s 
second action 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒  changes the location of a cache to 
an adjacent location and indirectly permits a cache to be 
identified by a drone performing reconnaissance. This 
action cannot be selected if player drone is currently 
negotiating. Action 𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒  prevents player drone from 
identifying a cache if it is performing reconnaissance 
and prevents the cache from changing location. This 
action can only be selected if player drone is performing 
reconnaissance. Action 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒  prevents player drone 
from identifying a cache and changes the cache location. 
This action can only be selected if player drone is 
performing reconnaissance. If and only if player drone 
is negotiating, then player env must select action 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 , 
sending an integration configuration to player drone. If 
player drone is executing a surveillance task, then player 
env may select action 𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒  to destroy the drone. 

3.3.4. Reward. The output of the SMG is defined as a 
set of state variables updated over the course of the 
SMG lifecycle. The outputs, 𝑃𝑃("𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒") 
- the expected likelihood of locating a cache, 
𝑃𝑃("𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠") - the expected task successes, and 
𝑃𝑃("𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓") - the expected task failures, assign a 
reward to the final state of the SMG according to the 
following equations: 
 

𝑟𝑟(𝑆𝑆) = �𝑟𝑟1(𝑆𝑆) + 𝑟𝑟2(𝑆𝑆) + 𝑟𝑟3(𝑆𝑆)� 70⁄ , 
𝑟𝑟1(𝑆𝑆) = 30 ∙ 𝑃𝑃("𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒"), 
𝑟𝑟2(𝑆𝑆) = 25 ∙ 𝑃𝑃("𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠") ∙ 65 ∙ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 1800⁄ , 
𝑟𝑟3(𝑆𝑆) = 15 ∙ 100 ∙ [1 − 𝑃𝑃("𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓")]. 

 
The reward function 𝑟𝑟 measures the drone’s 

expected performance with respect to its requirements. 
It is the weighted sum of the reward functions 𝑟𝑟1, 𝑟𝑟2, and 
𝑟𝑟3. Other reward systems are outside the scope of this 
work. The ISR scenario has strict grading criteria that 
are integral to the scenario. A change to any of the 
reward functions would result in the evaluation of a 
different ISR scenario. 

The reward function 𝑟𝑟1 measures expected 
performance with respect to requirement DRONE.1 
(Section 3.1.2) to maximize the number of caches 
located. To compute 𝑟𝑟1, we weigh the likelihood of 
locating a cache. Weights are determined by Table 1. 

The reward function 𝑟𝑟2 measures expected performance 
with respect to requirement DRONE.2 to maximize the 
number of intel units surveyed. To compute 𝑟𝑟2, we 
weigh the percentage of intel units collected as 
determined by the expected number of task successes 
multiplied by the expected cache value of each success. 
The reward function 𝑟𝑟3 measures expected performance 
with respect to requirement DRONE.3 for drones to 
return to homebase before the mission ends. The guards 
for the drone’s actions comply with this safety 
requirement. Therefore, drones that do not comply are 
those destroyed during the mission. Drones are 
destroyed by an adversary when they fail to complete a 
surveillance task. To compute 𝑟𝑟3, we first compute the 
expected number of drone losses which is the expected 
number of task failures multiplied by the number of 
drones lost per failure, which is two. We then measure 
the total number of drones that return home which is the 
total drones (200) minus expected losses. 

4. Ordinary least squares regression 

OLS regression attempts to compute a set of 
coefficients that minimize the sum of squared residuals, 
where a residual is the difference between the model’s 
prediction of reward and the true reward as output by the 
SMG. Each coefficient is assigned to a specific feature 
contained in the training data and the OLS model also 
includes a constant. OLS can be used for linear or 
polynomial regression depending on whether the data 
has a linear or curvilinear relationship to the data. Since 
the SMG’s outputs are determined by products of its 
inputs, we choose to use polynomial regression. If it is 
not known whether the data is linear or curvilinear with 
respect to the input features, there are many linearity 
tests that can be applied to the data. In addition, OLS 
assumes that the variance of each residual is the same 
for any input and that the data is normally distributed. 

The primary advantages of using OLS regression is 
that OLS models are extremely concise and can predict 
the output reward in constant time. This is because the 
model is defined as an array of coefficients, or weights, 
making OLS regression useful for low power devices. 
Predictions can be computed in constant time which 
poses the smallest burden possible on a device’s already 
limited battery life. 

We employ OLS regression to predict the expected 
reward of an integration configuration. We use a subset 
of the SMG’s input parameters – cache stagnation rate, 
cache detection rate, communication rate, likelihood of 
task success, and intel units – to compute the model’s 
features. We also include downtime as a model 
parameter, which represents the number of turns that the 
drone is non-productive (no reconnaissance or 
surveying). Each drone action has a non-negative 
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cooldown incurred when the action is executed. 
However, it is also influenced by the integration 
configuration. Every configuration must specify a wait 
time required for the secondary team member to reach 
the intel cache’s location. This wait time is non-
productive and added to the drone’s downtime. Even 
though downtime is considered an output of the SMG, 
we include it as a parameter since the model evaluates 
configurations where the downtime is specified as a wait 
time. 
 

𝑟̂𝑟 = 𝑟𝑟1� + 𝑟𝑟2� + 𝑟𝑟3� , 
 

The expected reward 𝑟̂𝑟 of the SMG is a function of 
its outputs – expected number of caches located 𝑟𝑟1� , the 
expected amount of intel units collected 𝑟𝑟2� , and the 
expected number of task failures 𝑟𝑟3� . These outputs are 
computed within the SMG using a linear combination of 
higher order polynomial terms. For example, to 
determine the expected number of caches located, we 
consider both cache stagnation rate and cache detection 
rate. The likelihood of a cache being at any location 
within the map is the sum of the likelihoods that the 
cache was either at that location and remained there or 
at an adjacent location and moved there. This remains 
true throughout SMG execution resulting in a higher 
order polynomial of the term cache stagnation rate. The 
highest degree amongst these polynomial terms is 
maxturns (the length of the game). 
 
𝑟𝑟1� = (𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2 + ⋯ ) ∙
                 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 
𝑟𝑟2� = 𝑟𝑟1� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑃𝑃("𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠") ∙
                𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 
𝑟𝑟3� = 𝑟𝑟1� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ [1 − 𝑃𝑃("𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠")], 
 

To model the expected number of caches located, 
we use the product of the sequence of polynomial terms 
defined over cache stagnation rate and cache detection 
rate. The cache must both be at the location and 
detected. We refer to this sequence of terms as the 
detection estimator 𝑟𝑟1� . A task can only be attempted if 
a cache is detected and then reported. Attempted tasks 
succeed according to the likelihood of task success and 
every successful task awards the cache’s total number 
of intel units. We refer to this sequence of terms as the 
intel estimator 𝑟𝑟2� . Tasks that are attempted fail 
according to the inverse of the likelihood of task 
success. We refer to this sequence of terms as the failure 
estimator 𝑟𝑟3� . 

5. Evaluation 

Our evaluation is divided into two subsections. 
First, we investigate the use of OLS polynomial 

regression. Second, we include the regression model in 
the SMG and modify its actions so that negotiation is 
always terminated if the proposed integration 
configuration would result in a smaller expected reward 
than a failed negotiation, as predicted by the regression 
model. We compare the output of an SMG with and 
without an OLS model. The results of our evaluation 
show that the OLS model can predict the expected 
performance of the drone within an error of 0.0024 and 
that including this model into the SMG improves 
expected performance and significantly improves the 
drone’s success-to-failure ratio. 

5.1. Evaluating the regression models 

The sample dataset for these results includes 2,400 
samples of the SMG. Samples are generated using a 
25x25 grid, a maxturns of 720, a constant cache 
stagnation rate of 0.9, a range of all inputs of cache 
detection rates from 0.05 to 1.0 in increments of 0.05, a 
constant communication rate of 1.0, a range of intel 
units that include 10, 20, and 70, a non-uniform 
distribution of wait times based on the distribution of 
drones throughout the 25x25 grid which results in wait 
times from 5 to 35 turns, and 40 random samples of the 
likelihood of task success using a uniform distribution. 
60% of the samples are randomly selected and compiled 
into a training set while the other 40% are compiled into 
a holdout set. The model is trained using the training set 
and scored against the holdout set. We apply 10-fold 
cross validation to the training set using 60% of the set 
for validation and 40% of the set for testing in each fold. 
The performance of the model is compared to the results 
of the 10-fold cross validation to check for overfitting. 

Table II presents the results from the model 
attempting to predict the test set after having been 
trained using the training set. The OLS model is 
parameterized over the detection estimator, intel 
estimator, failure estimator, and downtime. The degree 
of each polynomial term in the higher order models is 
limited to a maximum of three. Degrees larger than three 
improve the results of the model but only by less than 
0.0001. The model is scored using the mean absolute 
error (MAE), the root mean squared error (RMSE), and 
R-Squared (R2). MAE measures the absolute distance 
between the model’s predictions and the true reward 
value contained in the test set to indicate model 
accuracy. RMSE captures the average magnitude of the 
error – a second indication of accuracy that is more 
sensitive to larger errors. R2 indicates the variance of the 
data that can be attributed to the model’s features. An R2 
value of 0.0 occurs when the model ignores the training 
data, and an R2 value of 1.0 occurs when the data’s 
variance is fully determined by the model’s features. 
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Table II: MAE, RMSE, and R2 scores from 
model prediction. 

Model MAE RMSE R2 

OLS 0.0017 0.0024 0.9973 
 
Table II results show that the OLS model has a 

MAE value of 0.0017 and an RMSE value of 0.0024. 
Thus, the model’s prediction will be, on average, within 
0.0024 of the true reward of the SMG. Since the values 
of the RMSE and the MAE are relatively close, there is 
no clear indication of large errors present in the data. 
The OLS model has an R2 value 0.9973, which indicates 
that the model’s features explain nearly all the variance 
present in the data. 

Table III: Mean & std deviation of MAE, RMSE, 
and R2. 

 OLS 
 Mean Stdev 

MAE 0.0017 <0.0001 
RMSE 0.0025 0.0001 

R2 0.9972 0.0004 
 

These results are compared to the results of the  
10-fold cross validation that we apply to the model’s 
training set. Table III shows the mean and standard 
deviation of the MAE, RMSE, and R2 for the model 
across all 10 folds. Comparing the mean values in  
Table III to the results in Table II, the values are within 
0.0001 for MAE, RMSE, and R2. The standard deviation 
is less than 0.0001 for both MAE and RMSE, indicating 
the error of the prediction is similar across all 10 folds. 
Thus, the model has most likely not overfit the training 
data and should perform well for larger datasets. 

5.2. Embedding the Model 

We embed the OLS model into the SMG and 
modify the guard of its execute task action so that it is 
only permitted when the proposed integration 
configuration is predicted to have a greater reward than 
terminating the negotiation. We compare the output of 
the SMG with and without the OLS model to determine 
the relative impact that embedding the model has on the 
drone’s expected performance. Both SMGs are sampled 
across 2,400 trials. We use the same process to generate 
the samples for the experiment as we did to generate the 
training and test data. 

The results of our experiment are provided in  
Table IV. Each row states the output of the SMG 
without the OLS Model and the SMG with the OLS 
Model. The final row shows the final computed reward. 
Each result is averaged over the number of trials. The 
results in the final column of Table IV indicate that the 

inclusion of the OLS model is expected to increase the 
drone’s final reward by increasing the expected number 
of caches that it identifies and reducing the number of 
failed surveillance tasks. 

Table IV: SMG output with and without the 
OLS model. 

 No OLS OLS Change 
Expected 

Likelihood of 
Caches Identified 

0.1180 0.1184 +0.0004 

Expected Tasks 
Rejected 0.0000 0.0667 +0.0667 

Expected Task 
Successes 0.0590 0.0374 -0.0216 

Expected Task 
Failures 0.0590 0.0143 -0.0447 

Expected Success 
Rate 50.00% 72.34% +22.34% 

Expected Failure 
Rate 50.00% 27.66% -22.34% 

Reward (r) 0.2820 0.2830 +0.0010 
 

Even though fewer tasks are attempted and the 
expected performance of the surveillance drone only 
increases by 0.0010, maintaining the same reward while 
significantly reducing the loss of drones is an extremely 
positive outcome. Without the OLS model, a single 
surveillance drone is expected to identify and attempt to 
survey 11.8% of intel caches, collect intel from 50% of 
those tasks, and be destroyed attempting the other 50% 
of tasks. With the OLS model, a single surveillance 
drone is expected to identify 11.84% of intel caches, 
attempt to survey 5.17% of caches, collect intel from 
72.34% of tasks, and be destroyed attempting the other 
27.66% of tasks. With the OLS model, a team of drones 
is nearly three-times more likely to succeed when 
attempting to survey an intel cache than they are to fail. 
Furthermore, the SMG does not measure the relative 
utility of a surveillance drone over time. Once 
destroyed, a drone can no longer identify intel caches, 
survey intel, or interfere with adversaries. The expected 
performance of each SMG does not consider the 
potential loss of caches identified or surveyed should 
surveillance drones be destroyed earlier in the mission. 
As such, the expected performance of the SMG without 
the OLS model included is likely to be smaller since it 
has a much higher failure rate. 

6. Conclusion 

In this paper, we present an ISR scenario where two 
collective adaptive systems of drones must work 
together to survey a target amount of intel within a 
single hour. The scenario begins with each drone 
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deploying from homebase to recon the search grid for 
intel caches. Each intel cache is protected by a single 
adversary, so drones must negotiate to self-organize into 
a two-drone team to complete surveillance tasks as intel 
caches are identified. We model the scenario using an 
SMG and include sources of uncertainty as random 
variables. The SMG models the behavior of a single 
surveillance drone. An OLS polynomial regression 
model is trained on the output of the SMG after 
combining the SMG’s inputs into a set of features. The 
results demonstrate that the OLS model can predict the 
output of the SMG within a quarter of a percent on 
average. We incorporate the OLS model into the SMG 
by modifying its actions so that it can only execute a 
surveillance task that has been permitted by the 
regression model. Comparing the results of the SMG 
with and without the OLS model shows that the 
inclusion of the regression model improves the expected 
performance of the drones and significantly improves 
the drone’s success-to-failure ratio. 

For future work, we would like to investigate 
additional scenarios and reward systems to better 
evaluate our approach across applications. We would 
like to extend the SMG to evaluate the expected 
performance loss should a surveillance drone be 
destroyed at various times throughout the mission. This 
would permit us to construct a more accurate model of 
the drone’s performance as well as produce a model that 
can predict the drone’s expected performance over time. 
Finally, we would like to investigate the use of other 
regression models and conduct a deeper analysis of each 
feature used in the regression model. 
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