14,788 research outputs found

    Content-based image retrieval of museum images

    Get PDF
    Content-based image retrieval (CBIR) is becoming more and more important with the advance of multimedia and imaging technology. Among many retrieval features associated with CBIR, texture retrieval is one of the most difficult. This is mainly because no satisfactory quantitative definition of texture exists at this time, and also because of the complex nature of the texture itself. Another difficult problem in CBIR is query by low-quality images, which means attempts to retrieve images using a poor quality image as a query. Not many content-based retrieval systems have addressed the problem of query by low-quality images. Wavelet analysis is a relatively new and promising tool for signal and image analysis. Its time-scale representation provides both spatial and frequency information, thus giving extra information compared to other image representation schemes. This research aims to address some of the problems of query by texture and query by low quality images by exploiting all the advantages that wavelet analysis has to offer, particularly in the context of museum image collections. A novel query by low-quality images algorithm is presented as a solution to the problem of poor retrieval performance using conventional methods. In the query by texture problem, this thesis provides a comprehensive evaluation on wavelet-based texture method as well as comparison with other techniques. A novel automatic texture segmentation algorithm and an improved block oriented decomposition is proposed for use in query by texture. Finally all the proposed techniques are integrated in a content-based image retrieval application for museum image collections

    Using video objects and relevance feedback in video retrieval

    Get PDF
    Video retrieval is mostly based on using text from dialogue and this remains the most signiÂŻcant component, despite progress in other aspects. One problem with this is when a searcher wants to locate video based on what is appearing in the video rather than what is being spoken about. Alternatives such as automatically-detected features and image-based keyframe matching can be used, though these still need further improvement in quality. One other modality for video retrieval is based on segmenting objects from video and allowing end users to use these as part of querying. This uses similarity between query objects and objects from video, and in theory allows retrieval based on what is actually appearing on-screen. The main hurdles to greater use of this are the overhead of object segmentation on large amounts of video and the issue of whether we can actually achieve effective object-based retrieval. We describe a system to support object-based video retrieval where a user selects example video objects as part of the query. During a search a user builds up a set of these which are matched against objects previously segmented from a video library. This match is based on MPEG-7 Dominant Colour, Shape Compaction and Texture Browsing descriptors. We use a user-driven semi-automated segmentation process to segment the video archive which is very accurate and is faster than conventional video annotation

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    Perceptual-based textures for scene labeling: a bottom-up and a top-down approach

    Get PDF
    Due to the semantic gap, the automatic interpretation of digital images is a very challenging task. Both the segmentation and classification are intricate because of the high variation of the data. Therefore, the application of appropriate features is of utter importance. This paper presents biologically inspired texture features for material classification and interpreting outdoor scenery images. Experiments show that the presented texture features obtain the best classification results for material recognition compared to other well-known texture features, with an average classification rate of 93.0%. For scene analysis, both a bottom-up and top-down strategy are employed to bridge the semantic gap. At first, images are segmented into regions based on the perceptual texture and next, a semantic label is calculated for these regions. Since this emerging interpretation is still error prone, domain knowledge is ingested to achieve a more accurate description of the depicted scene. By applying both strategies, 91.9% of the pixels from outdoor scenery images obtained a correct label

    Region-based Multimedia Indexing and Retrieval Framework

    Get PDF
    Many systems have been proposed for automatic description and indexing of digital data, for posterior retrieval. One of such content-based indexing-and-retrieval systems, and the one used as a framework in this thesis, is the MUVIS system, which was developed at Tampere University of Technology, in Finland. Moreover, Content-based Image Retrieval (CBIR) utilising frame-based and region-based features has been a dynamic research area in the past years. Several systems have been developed using their specific segmentation, feature extraction, and retrieval methods. In this thesis, a framework to model a regionalised CBIR framework is presented. The framework does not specify or fix the segmentation and local feature extraction methods, which are instead considered as “black-boxes” so as to allow the application of any segmentation method and visual descriptor. The proposed framework adopts a grouping approach in order to correct possible over- segmentation faults and a spatial feature called region proximity is introduced to describe regions topology in a visual scene by a block-based approach. Using the MUVIS system, a prototype system of the proposed framework is implemented as a region-based feature extraction module, which integrates simple colour segmentation and region-based feature description based on colour and texture. The spatial region proximity feature represents regions and describes their topology by a novel metric proposed in this thesis based on the block-based approach and average distance calculation. After the region-based feature extraction step, a feature vector is formed which holds information about all image regions with their local low-level and spatial properties. During the retrieval process, those feature vectors are used for computing the (dis-)similarity distances between two images, taking into account each of their individual components. In this case a many-to-one matching scheme between regions characterised by a similarity maximisation approach is integrated into a query-by-example scheme. Retrieval performance is evaluated between frame-based feature combination and the proposed framework with two different grouping approaches. Experiments are carried out on synthetic and natural image databases and the results indicate that a promising retrieval performance can be obtained as long as a reasonable segmentation quality is obtained. The integration of the region proximity feature further improves the retrieval performance especially for divisible, object-based image content. Finally, frame-based and region-based texture extraction schemes are compared to evaluate the effect of a region on the texture description and retrieval performance utilising the proposed framework. Results show that significant degradations over the retrieval performance occur on region-based texture descriptors compared with the frame-based approaches

    TRECVid 2005 experiments at Dublin City University

    Get PDF
    In this paper we describe our experiments in the automatic and interactive search tasks and the BBC rushes pilot task of TRECVid 2005. Our approach this year is somewhat different than previous submissions in that we have implemented a multi-user search system using a DiamondTouch tabletop device from Mitsubishi Electric Research Labs (MERL).We developed two versions of oursystem one with emphasis on efficient completion of the search task (FĂ­schlĂĄr-DT Efficiency) and the other with more emphasis on increasing awareness among searchers (FĂ­schlĂĄr-DT Awareness). We supplemented these runs with a further two runs one for each of the two systems, in which we augmented the initial results with results from an automatic run. In addition to these interactive submissions we also submitted three fully automatic runs. We also took part in the BBC rushes pilot task where we indexed the video by semi-automatic segmentation of objects appearing in the video and our search/browsing system allows full keyframe and/or object-based searching. In the interactive search experiments we found that the awareness system outperformed the efficiency system. We also found that supplementing the interactive results with results of an automatic run improves both the Mean Average Precision and Recall values for both system variants. Our results suggest that providing awareness cues in a collaborative search setting improves retrieval performance. We also learned that multi-user searching is a viable alternative to the traditional single searcher paradigm, provided the system is designed to effectively support collaboration

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio
    • 

    corecore