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Abstract—Due to the semantic gap, the automatic interpre-
tation of digital images is a very challenging task. Both the
segmentation and classification are intricate because of the high
variation of the data. Therefore, the application of appropriate
features is of utter importance. This paper presents biologically
inspired texture features for material classification and interpret-
ing outdoor scenery images. Experiments show that the presented
texture features obtain the best classification results for material
recognition compared to other well-known texture features, with
an average classification rate of 93.0%. For scene analysis, both
a bottom-up and top-down strategy are employed to bridge the
semantic gap. At first, images are segmented into regions based
on the perceptual texture and next, a semantic label is calculated
for these regions. Since this emerging interpretation is still error
prone, domain knowledge is ingested to achieve a more accurate
description of the depicted scene. By applying both strategies,
91.9% of the pixels from outdoor scenery images obtained a
correct label.

I. INTRODUCTION

Over the last decades, the development of techniques for the
digitization of visual information, together with the decreasing
costs and increasing capacity of digital storage media, has
led to an explosion of digital content. According to a study
of the International Data Corporation (IDC), there will be a
continuous growth of digital information over the next years
[5]. Further, this study suggests that the biggest growth in data
is visual in nature, from devices such as digital cameras, digital
surveillance cameras, and digital televisions. To deal with this
explosion of digital images in size and complexity, one of the
main imperatives IT organizations face, is the need for new
tools and standards for data search and analytics. In particular,
there’s an increasing need for the development of automated
image content analysis and description techniques in order to
retrieve images based on their visual content efficiently from
large collections. In describing the visual content of images
for content-based image retrieval, the use of primitive image
features (e.g., color, edges, shapes) may not be sufficient due
to the semantic gap. The semantic gap is a major discrepancy
in content-based information retrieval. Smeulders et al. [21]
describe the semantic gap as: “the lack of coincidence between
the information that one can extract from the data and the
interpretation that the same data have for a user in a given
situation”. This means that a user wants to retrieve data on
a semantic level, but the characterizations can only provide a

low-level similarity. In this context, it is particularly important
to use content descriptors that are robust to the accidental
variance introduced by the image creation process (e.g., the
variation of the illuminant in visual data). Therefore, the
application of appropriate features is of utter importance.
This paper focuses on the segmentation and interpretation
of outdoor scenes and, herewith related, the recognition of
materials. A major weakness of image retrieval systems is
their lack of domain knowledge. Consequently, many systems
are error prone when it comes to detection of high-level
concepts. Most approaches to extract the semantics of scenery
images using low-level features use an image partitioning as
an intermediate step. Wang et al. [24] use a codebook to
segment an image based on the statistics of the regions’ color
and texture features. At pixel level, color-texture classification
is used to form the codebook. This codebook is in the next
stage used to segment an image into regions. The context
and content of these regions are defined at image level.
Zhu et al. [26] partition the image into equally sized blocks
and indexes the regions using a codebook whose entries are
obtained from the features extracted from a block. The method
of Li et al. [10] uses 2-dimensional hidden Markov models
to associate the image and a textual description. Depalov
et al. [4] use a quantized color and texture segmentation
algorithm to segment images depicting natural scenes. The
features of the obtained regions are used as medium level
descriptors to extract semantic labels at region level and later
at scene level. However, the use of quantized colors may
result in weaker segmentations. Yuan et al. use spatial context
constraints to label image regions [25]. Segmented image
regions are first regularized into a 2-dimensional lattice layout
to represent a graphical model for learning and inference.
However, their learning is supervised and the parameters of the
support vector machines and conditional random fields are es-
timated sequentially rather than simultaneously. Athanasiadis
et al. [1] associate a region with a fuzzy set of candidate
concepts stored in an ontological knowledge base. A merging
process is performed based on new similarity measures and
merging criteria that are defined at the semantic level with
the use of fuzzy sets operations. Schober et al. [20] applied
domain knowledge for the interpretation of landscape images.
They relate the extracted low-level features with concepts and



then generate rules which define the coherences between the
concepts. An ontology defines the spatial relations between
the concepts to remove the incorrect assignments. A detailed
overview of content-based image retrieval techniques which
include semantics is given by Liu et al. [11]. They divide these
methods into five categories: (i) employing ontologies to define
high-level concepts, (ii) applying machine learning on low-
level features, (iii) using relevance feedback to account for the
users’ action, (iv) generating semantic templates to assist high-
level information retrieval, and (v) using both visual content
and surrounding text. The approach presented in this paper
uses techniques from the first and second category. We apply
machine learning on perceptual textures and ingest domain
knowledge.

Humans and primates outperform the best machine vision
systems in many aspects. Humans are very good at getting
the conceptual category and layout of a scene within a single
fixation. So, building a system that emulates the recognition
tasks of the cortex has always been a challenging and at-
tractive idea. Next to color, the human visual system (HVS)
is best trained to texture perception. Since texture is much
more robust than color with respect to lighting conditions,
it could play an important role in such kind of application.
Indeed, Renninger and Malik already have concluded that a
texture analysis provides useful information for rapid scene
identification [19]. However, in computer vision the use of
visual neuroscience has often been limited to a tuning of Gabor
filter banks. No real attention has been given to biological
features of higher complexity. In this paper, we propose a
set of biologically inspired texture features for scene analysis.
We present a bottom-up approach to link these low-level
features to semantic concepts using both unsupervised and
semi-unsupervised machine learning algorithms. In the first
stage, the proposed features are used to segment an image
into similar regions without supervision. In the second stage,
a previously trained classifier is then used to label the obtained
segments using a semi-supervised learning technique. In the
last stage, a top-down approach is used to apply domain
knowledge on the obtained labels which results in a more
accurate scene description. The paper is organized as follows.
In Sect. II, we briefly describe the computational model
to calculate the biologically inspired texture features and
Sect. III outlines the feature extraction and explains the data
preprocessing. Section IV explains the consecutive steps of
our methodology. Experiments on semi-supervised (material)
classification and semantic labeling are then described in
Sect. V. Finally, concluding remarks and some future work
appear in Sect. VL.

II. COMPUTATIONAL MODEL

The computational model of the texture features we propose
for classification is described in this section. At first, we take a
closer look in Sect. II-A at the configuration of the Gabor filter
which is at the basic level of our method. The model of Petkov
and Kruizinga is briefly explained in Sect. II-B to compute
enhanced grating cell responses. Finally, Sect. II-C considers

the spatial smoothing of Gabor responses with regard to texture
analysis.

A. Gabor filter

In the spatial domain, a Gabor function is a Gaussian
modulated by a sinusoid. To model the receptive fields of
simple cells in the visual cortex, the real part of the following
family of 2-dimensional Gabor filters are used as proposed by
Daugman [3]:

cos (277% + <p) exp (—% [»;7 + 1Y D

2mo Loy

gx,e,go(l’, y) =

where

' =z cosh —ysinb
y' = xsinf + ycosb.

The standard deviations o, and o, of the Gaussian factor
determine the effective size of the surrounding of a pixel
in which the summation takes place. A circular Gaussian
is preferred so that there is a constant spatial extent in all
directions, therefore o, = ay(: o). The parameter A is the
wavelength of the sinusoid, and the ratio /A determines
the bandwidth of the filter. Experiments indicate that the
frequency bandwidth of simple cells is about one octave [17],
thus o/A ~ 0.56. The spatial aspect ratio v determines the
eccentricity and herewith the eccentricity of the receptive field
ellipse. According to Jones and Palmer [7], it has been found
that ~y varies in a limited range of 0.23 < v < 0.92 and is set
to a constant value of 0.5. Further, the orientation of the filter
is denoted by 6 € [0, «[. This is the normal to the parallel lobes
of the filter in the spatial-frequency domain, denoted by z’ in
equation (1). Finally, the phase offset ¢ affects the symmetry
of the function. For ¢ = 0 or ¢ = 7 the filter is symmetric
while for ¢ = 7/2 or ¢ = —7/2 the filter is anti-symmetric.
The response of the receptive field function of a simple cell,
tuned to orientation 6 and frequency 1/, to the luminance
channel of an input image I(x,y) is then given by:

0,0 (2T, Y) = // I(s,t)gr0,0(x — s,y — t)dsdt. (2)

B. Enhanced grating cell operator

Grating cells respond to bar gratings of a given orientation
and periodicity, but not to single bars. In order to better
distinguish the salient texture-specific periodicities and to
obtain an improved texture discrimination, an enhanced image
I(x,y) is created by applying a histogram equalization to
the original input image I(z,y). Histogram equalization is
a well-known technique that rescales the range of the pixel
values to produce an image whose pixel values are more
uniformly distributed which results in an image with a higher
contrast. In previous work, we found that applying a histogram
equalization increases the performance of texture segmentation
when using grating cell outputs [12].

To model the non-linear behavior of the grating cells, we
make use of the model of Kruizinga and Petkov [9]. This



model first computes the output of a simple cell of the
visual cortex s 9., (z,y), tuned to a specific orientation # and

frequency 1/, to input I(x,y)

0 if ax(z,y) =0
Sx0.0(2,y) = e R 3)
0,0 \Ts x | 28y otherwise,
Aa,e,gp ot +C
NEX))

where the average gray value of the receptive field is given by

ax(z,y) = //T(S,t) exp (2= 9)" +7%(y - t)2dsdt.
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and R denotes the maximum response level, C' is the semi-
saturation constant, x(t) = ¢ for ¢t > 0 and x(¢) = 0 for
t <0.

This output is then used to calculate the activity of a
grating subunit. A grating subunit will be activated if for the
preferred orientation § and spatial-frequency 1/, the function
5),0,p, is alternately activated in intervals of length \/2 for
n = —3,—2,..,2 and this along a line segment of length 3\
centered on point (x,y). In other words, a grating subunit is
thus activated if at least 3 parallel bars with spacing A and
orientation 6 of the normal to them are encountered. In the
final stage, the response of the grating cell operator w) g is
obtained by summing up the grating subunits for a given 6
and A. The operator is made symmetric by considering the
opposite direction @ + 7. Using I(z,y) as input, we obtain
the enhanced grating cell operator W) ¢. For more details, we
refer to [9].

C. Spatial smoothing

Textures which do not have sufficiently narrow bandwidths
may suffer from leakage. The effects of leakage can be reduced
by post-filtering the channel amplitudes with Gaussian filters
having the same shape as the corresponding channel filters but
greater spatial extents. Therefore, smoothed Gabor responses
are known to improve the performance for texture analysis [2].
There exists a physiological reason for utilizing smoothing
since it mimics characteristics of the HVS. Hall and Hall [6]
describe the existence of sustained channels in the visual
system, indicating that the HVS not only considers pixels in
the field of view, but also pixels in the vicinity.

The spatially smoothed Gabor responses we use, are ob-
tained by convolving symmetric Gabor responses with a
Gaussian with standard deviation ¢’ = 20

a0 = [x0,0 * gauss](z,y) 4)

where

% + y2
20./2

1
gauss(x,y) = S P~

III. FEATURES

The texture features consist of enhanced grating cell features
wy,¢ and the spatially smoothed Gabor responses 7y . The
frequencies for the filters are \/5, 2\/5,4\/5, 8v/2, and 1612
cycles per image and we use 8 orientations (6=0, %,..,%ﬂ),
what results in an 80-dimensional texture feature vector. Since

wy,¢ have a different range than 7, g, scaling of the feature
vectors is of special importance, otherwise bigger variables
tend to dominate the others. Therefore, normalization is re-
quired.

IV. METHODOLOGY

Our approach consists of 3 steps. Instead of directly as-
signing a label to each pixel, we first apply an intermediate
segmentation step. Based on the perceptual texture, the im-
age is segmented into similar regions using no supervision
(Sect. IV-A). Secondly, the texture features of the region are
used for material identification in order to obtain a label
(Sect. 1V-B). Finally, we apply domain knowledge on the
computed intermediate results to achieve more accurate image
descriptions (Sect. IV-C). Thus, our methodology employs two
strategies:

1) a bottom-up strategy to compute semantically relevant
information from the low-level image data (IV-A and
IV-B),

2) a top-down strategy that ingests domain knowledge to
increase the accuracy of the obtained interpretation (IV-
O).

A. Segmentation

To segment a scenery image into regions, we make use
of a Self-Organizing Map (SOM). The SOM is a single
layer artificial neural network that simulates the process of
unsupervised self-organization with a simple, yet effective
numerical algorithm [8]. There exists a lot of neurophysiologic
evidence to support the idea that the SOM captures some
of the fundamental processing principles of the human (both
visual and auditory) cortex. An important property of the SOM
is that it clusters similar data vectors and projects dissimilar
ones far from each other on the map. A SOM includes a grid
of nodes and each node is associated with a parametric real
vector, called the model vector. For a given input, the model
vectors are updated according to the following rule: (i) find the
best matching unit (BMU) using a predefined metric, and (ii)
change the model vectors in a neighborhood of the BMU (the
size of the neighborhood is a decreasing function of time). The
computed texture features are used to train a 10 x 10 SOM.
As a result of this training process, pixels which belong to the
same texture, are assigned to the same or adjacent nodes. For
more details about unsupervised image segmentation, we refer
to our previous work [12], [13].

B. Semi-supervised Classification

In the second step, the obtained regions are assigned a label
using a semi-supervised learning algorithm. To classify the
extracted feature vectors, we make use of a hierarchical variant
of the SOM. At first, a 2-dimensional SOM of a predefined
size is trained using a labeled training set. The labels of the
training data correspond to the semantics the data describe.
However, we have experienced that when some textures are
relatively similar to each other compared to several other
textures in the training data, it is possible that these textures



are not distinguished by the SOM and, consequently, they are
assigned to the same node. To tackle this issue, we employ a
hierarchical approach utilizing the labels of the training data
as some means of supervision. The training vectors associated
with such a node are used to train a new, smaller SOM.
This process is iteratively repeated until a certain stopping
criterion is reached or no progress in the classification is
obtained. Suppose that a node N is related to a set V of
training vectors v of k classes ¢;, i = 0.k — 1: N « V =
{Veo,1 - Veg,mos + Vej 1+ Vey_y,my_, } Where m; denotes the
number of training vectors of texture c¢; assigned to N. The
stopping criterion is defined by a threshold 0 < 7 < 1:

max;—o. k-1 {m;}
Sy mi

If (5) isn’t satisfied, V' is used to train a new SOM. This
process is then repeated for the nodes of the resulting SOM.
The label of an unknown test sample is easily obtained by
calculating its BMU. If the BMU is an empty node (no vectors
were assigned to this node during the training phase), the label
of its closest node is used. The parameter 7 is empirically set
to 0.95 and the dimensions of the SOM for K texture classes
are chosen as follows: 4 x4 for K =2 or 3, 8 x 8 for K = 4,
10x 10 for K = 5. The label of an image region is then easily
computed by calculating the BMU of each pixel of the region
and then assigning the label with the highest count.

>T ®)

C. Domain Knowledge

Describing high-level concepts with low-level features is a
challenging task and, consequently, any bottom-up approach
is error prone. In order to cope with errors and to obtain
a more plausible interpretation of the depicted scene, we
ingest domain knowledge. Therefore, an ontology is created
that describes the conditions and restrictions of the depicted
concepts (i.e., the concepts that are present in the training
set of the previous step). In this way, image regions can be
merged or misclassifications and illogical compositions can be
removed or altered. However, one should pay special attention
to the knowledge modeling phase to avoid false rules or rules
that are not universally applicable within the given context.

The created ontology consists of a few simple, but effective
rules. Given the concepts of our training set, the following
rules are iteratively applied:

1) neighboring regions with the same label, are merged

2) no blob can exist in sky

3) no blob of sky can exist in water

4) no water can be above sky

5) a region should be at least 8 pixels wide and high

6) regions that not obey to the above rules, are relabeled

(the new label is obtained by the ith BMU of the region,
where 7 denotes the iteration number)

V. EXPERIMENTS

To test the material classification and the image labeling,
we create a training set consisting of 100 real-life textures
which are manually collected from the World Wide Web

(WWW)!. Each collected texture belongs to one of these five
classes: (i) Branches, (ii) Bricks, (iii) Grass, (iv) Sky, and
(v) Water. Every class contains 20 samples. Figure 1 depicts
some example textures from the training set. We carry out

(b)

(® ®

Fig. 1. Examples of real-life textures: water (a, d); branches (b, h); sky (c,
2); bricks (e, i); grass (f).

two type of experiments. At first, we test the performance of
our SOM-based classification for material detection (Sect. V-
A) using the texture features presented in Sect. III. In the
second experiment, we apply semantic labeling of scenery
images (Sect. V-B). Further, we use the SOM Toolbox [22]
to create the SOMs, and the Euclidean distance is employed
as distance metric. Remark that the ground-truth images are
created manually and therefore they should be interpreted as
an approximation rather than a certainty.

A. Material classification

In this experiment, we test the proposed texture features
for material classification. The performance and robustness of
our SOM-based classification is analyzed using the proposed
texture features which are obtained from the presented texture
set. From each texture class, we leave out one image that we
use as test image, the other images are then used to train
the classifier. This process is repeated for every image (cross-
validation).

We also tackle this classification problem using GMREF,
multi-scale LBP, and Gaussian smoothed Gabor features (see
equation 4). The implementation of the GMRF features is
obtained from the MeasTex site [14] and the features are
computed using the standard symmetric masks. The 73-
dimensional GMREF feature vectors are obtained by concate-
nating feature vectors of GMRF models of order 1 to 7.

IThe texture set is available at the location:

http://www.mmlab.be/users/gmartens/textures

following



The multi-scale LBP, i.e. LBP(TSifﬁ +(16,2.4)> are uniform and
rotation invariant and the 2-dimensional co-occurrence LBP
histograms are classified using a non-parametric L-statistic as
proposed by [15], [16].

As can be seen in Table I, the proposed features achieve the
best classification results. Also the smoothed Gabor responses
obtain good results. However, the multi-scale LBP have some
difficulties with the Water and Grass textures because of the
high variation of the data. Our experiments further indicate that
GMREF features are clearly not designed for this kind of task.
The GMRF have major difficulties to discriminate textures
from the class Water and Sky, and textures from the class
Grass and Branches.

TABLE I
MATERIAL CLASSIFICATION RATE (%)

proposed | GMRF | LBP | smoothed
Gabor
Branches 96.8 81.6 722 87.6
Bricks 98.5 26.5 86.11 81.9
Grass 87.7 15.5 11.1 85.8
Sky 95.9 99.9 100 95.3
Water 85.9 2.3 16.6 85.7
average 93.0 45.2 57.2 87.3

B. Labeling of image regions

In this experiment, we test the labeling of image regions
of outdoor scenes using the proposed method and texture
features as exemplified in Fig. 2. The labeling experiments
are conducted on multiple scenery images collected from
the WWW containing no other texture classes than those in
our training set. After the segmentation process, our trained
classifier is then used to label the computed image regions.
As can be seen in Fig. 2(c) and Fig. 2(g) the result of this
labeling process contains different errors. Some isolated pixels
are misclassified. These errors can be removed by applying
constraints on the size of the regions. However, some errors
are due to reflection, e.g., the sky-blob in the lake of Fig. 2(c).
Such type of errors can only be removed by incorporating
domain knowledge. Other errors emerge from the fact that
the scaling of certain textures alters due to changes in the
perspective, e.g., at the edges of the mountains in Fig. 2(c).
Generally, this problem is harder to tackle. In the last step, the
ontology of Sect. IV-C is applied on the intermediate results.
As can be seen in Fig. 2(d) and Fig. 2(h), small misclassified
regions are filtered away, and the blob of sky in the lake is
removed. After the semi-supervised classification step, 82.7%
of the pixels have a corrected label. However, employing the
domain knowledge enhanced the region labeling with 9.2% up
to 91.9%.

VI. CONCLUSIONS

Due to the semantic gap, the automatic interpretation of
images is an intricate task. In this paper, we have used a
bottom-up and top-down approach for the labeling of regions
from outdoor scene images. The bottom-up approach consists

of two consecutive steps: (i) the extraction of features that
are related to human visual perception and, (ii) the applica-
tion of machine learning algorithms for unsupervised image
segmentation and semi-supervised region labeling. For these
tasks, we presented the use of biologically inspired texture
features that correspond to cell outputs from the human visual
cortex. We have shown in our experiments that these texture
features obtain the best classification results for material
recognition compared to other well-known texture features,
with an average classification rate of 93.0%. This indicates that
the application of the proposed biologically inspired features is
very useful for material classification and scene interpretation.
This bottom-up approach already labeled 87.9% of the pixels
in scenery images correctly.

In the final stage, a top-down approach is applied. By
ingesting an ontology which describes the conditions and
restrictions of the considered concepts, the labeling results
obtained from the bottom-up approach can be corrected. This
resulted in a final classification rate of 91.9%, which means a
gain of 9.2% compared to the output of the semi-unsupervised
classifier.

Despite the good results, some improvements can still be
made. At first, the segmentation step should be enhanced. In
our experiments, we have noticed that some region boundaries
are not correctly detected. The latter could be tackled by
also taking edge information into account or, by using color
information as well. Indeed, since color is the primary visual
stimulus, we expect that introducing color information, next to
texture information, could also increase the classification rate.
On the other hand, in the HVS bar and grating cells seem
to play an important role in boundary detection [9], [23]. In
contrast to grating cells, bar cells respond only to an isolated
edge or line but does not respond to any texture edge. Hence,
it is possible to distinguish between an edge belonging to
a textured region and a non-textured region. Another major
difficulty is related to the altering of the scale of the textures
due to the perspective. Since the HVS already performs feature
extraction on different scales, a scale robust classifier might
be inevitable.
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