
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

Content-Based Image Retrieval of Museum Images

by

Mohammad Faizal Ahmad Fauzi

A thesis submitted for the degree of

Doctor of Philosophy

August 2004

http://www.soton.ac.uk�
http://www.engineering.soton.ac.uk�
http://www.ecs.soton.ac.uk�
mailto:mfaf00r@ecs.soton.ac.uk�

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Content-Based Image Retrieval of Museum Images

by Mohammad Faizal Ahmad Fauzi

Content-based image retrieval (CBIR) is becoming more and more important with the
advance of multimedia and imaging technology. Among many retrieval features associ-
ated with CBIR, texture retrieval is one of the most difficult. This is mainly because
no satisfactory quantitative definition of texture exists at this time, and also because of
the complex nature of the texture itself. Another difficult problem in CBIR is query by
low-quality images, which means attempts to retrieve images using a poor quality image
as a query. Not many content-based retrieval systems have addressed the problem of
query by low-quality images.

Wavelet analysis is a relatively new and promising tool for signal and image analysis. Its
time-scale representation provides both spatial and frequency information, thus giving
extra information compared to other image representation schemes. This research aims
to address some of the problems of query by texture and query by low-quality images
by exploiting all the advantages that wavelet analysis has to offer, particularly in the
context of museum image collections.

A novel query by low-quality images algorithm is presented as a solution to the problem of
poor retrieval performance using conventional methods. In the query by texture problem,
this thesis provides a comprehensive evaluation on wavelet-based texture method as well
as comparison with other techniques. A novel automatic texture segmentation algorithm
and an improved block oriented decomposition is proposed for use in query by texture.
Finally all the proposed techniques are integrated in a content-based image retrieval
application for museum image collections.

http://www.soton.ac.uk�
http://www.engineering.soton.ac.uk�
http://www.ecs.soton.ac.uk�
mailto:mfaf00r@ecs.soton.ac.uk�

Contents

Acknowledgements xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objective . 2
1.3 Achievements . 3
1.4 Thesis Summary . 4

2 Literature Review 6
2.1 Content-Based Image Retrieval . 6

2.1.1 CBIR System Architecture . 7
2.1.1.1 Feature Extraction . 7
2.1.1.2 Multidimensional Indexing 9

2.1.2 Current CBIR System . 10
2.2 Low-Quality Image Analysis . 14
2.3 Texture Analysis . 15

2.3.1 Definition of Texture . 16
2.3.2 Texture Properties . 17
2.3.3 Texture Feature Extraction Method 18

2.4 Wavelets and The Wavelet Transform . 20
2.4.1 Multiresolution and Wavelets . 20
2.4.2 Definition of Wavelets . 21
2.4.3 Properties of Wavelets . 21
2.4.4 One-Dimensional Wavelet Transform 23

2.4.4.1 Discrete Wavelet Transform (DWT) 24
2.4.4.2 Continuous Wavelet Transform (CWT) 27

2.4.5 Two-Dimensional Wavelet Transform 27
2.4.6 Computational Complexity . 30

3 Low-Quality Image Analysis 31
3.1 Introduction . 31

3.1.1 Analysis of Fax Images . 32
3.1.2 Other Low-Quality Image Examples 33

3.1.2.1 Images of Inappropriate Brightness and Contrast 33
3.1.2.2 Highly Compressed Images 34
3.1.2.3 Low Resolution Images 34
3.1.2.4 Quantized Images . 35

ii

CONTENTS iii

3.1.2.5 Noisy Images . 35
3.1.3 Previous Work on Query by Low-Quality Image 35

3.2 A Novel Query by Low-Quality Image (QBLI) Algorithm 36
3.2.1 Binary Image Thresholding . 37
3.2.2 Feature Vector Computation and Comparison 39

3.3 Available Methods for Comparison . 40
3.3.1 Pixel Matching Algorithm . 41
3.3.2 Pyramidal Wavelet Transform . 42

3.4 Experimental Analysis . 42
3.4.1 Evaluation of the Novel Algorithm 42
3.4.2 The Effect of the Distance Metric 45
3.4.3 The Effect of Different Numbers of Decomposition Levels, L 48
3.4.4 The Effect of Using Different Wavelet Bases 49
3.4.5 Optimum Threshold for Binarisation 50
3.4.6 Using Other Forms of Low-quality Image as Query 51

3.4.6.1 Images of Inappropriate Brightness and Contrast 52
3.4.6.2 Highly Compressed Images 53
3.4.6.3 Low Resolution Images 53
3.4.6.4 Quantized Images . 55
3.4.6.5 Noisy Images . 55

3.5 Chapter Summary . 57

4 Texture Feature Extraction 59
4.1 Introduction . 59
4.2 Texture Feature Method . 61

4.2.1 Co-occurrence Matrix . 61
4.2.2 Tamura’s Texture Feature . 63
4.2.3 Simultaneous Autoregressive Model (SAR) 65
4.2.4 Markov Random Field . 65
4.2.5 Fractal Dimension . 66
4.2.6 Law’s Texture Feature . 66
4.2.7 Discrete Cosine Transform (DCT) 67
4.2.8 Gabor Transform . 68
4.2.9 Wavelet-based Texture Features 69

4.3 Experimental Evaluation . 70
4.3.1 Evaluation of Texture Features . 71

4.3.1.1 Accuracy . 73
4.3.1.2 Speed of Computation . 77
4.3.1.3 Choosing the Best Texture Method 77

4.3.2 Evaluating the Best Parameters for the DWF 78
4.3.2.1 The Choice of Wavelet Basis 78
4.3.2.2 Number of Decomposition Levels 79
4.3.2.3 Image Padding Type . 81
4.3.2.4 Mean Subtraction . 83
4.3.2.5 Distance Metrics . 84

4.3.3 Improving the Retrieval Accuracy 86
4.3.3.1 Individual Functions . 86

CONTENTS iv

4.3.3.2 Combination of Functions 88
4.3.3.3 Channel Selection . 91

4.3.4 The Finalized DWF Texture Method 93
4.3.5 Evaluation on Colour Image Database 94

4.4 Chapter Summary . 96

5 Block Oriented Decomposition 99
5.1 Introduction . 99
5.2 Block Oriented Decomposition Techniques 100

5.2.1 Sliding Windows . 100
5.2.2 Quad-Tree Decomposition . 100
5.2.3 Quin-Tree Decomposition . 101
5.2.4 Nona-Tree Decomposition . 102
5.2.5 Multiscale Image Decomposition 103

5.3 A Novel Block-Oriented Decomposition Approach 104
5.3.1 Multiscale Decomposition Algorithm 106
5.3.2 Total Number of Sub-images . 110
5.3.3 Sub-image Coverage . 111

5.3.3.1 Case 1 Overlapping . 112
5.3.3.2 Case 2 Overlapping . 112

5.3.4 Scale Invariance . 115
5.4 Experimental Evaluation . 116

5.4.1 Dyadic Size Image Database . 116
5.4.1.1 Location of the Query in Database Image 117
5.4.1.2 Scale of the Query . 118
5.4.1.3 Size of the Query Images 121
5.4.1.4 Decomposition Followed by DWF vs. DWF Followed by

Decomposition . 124
5.4.2 Arbitrary Size Images Database . 125
5.4.3 Museum Image Collection . 126

5.5 Chapter Summary . 127

6 Automatic Texture Segmentation 129
6.1 Introduction . 129
6.2 Review of Texture Segmentation Algorithms 130

6.2.1 Texture Segmentation Techniques 130
6.2.2 Multiresolution Segmentation Techniques 131
6.2.3 Automatic Texture Segmentation 133
6.2.4 Comparison of Texture Segmentation Techniques 133

6.3 A Novel Automatic Texture Segmentation Algorithm 134
6.3.1 Modified Discrete Wavelet Frames 135
6.3.2 Mean Shift Algorithm . 136
6.3.3 Segmentation Algorithm . 138

6.3.3.1 Top-Down Decomposition Phase 138
6.3.3.2 Bottom-Up Segmentation Phase 140

6.4 Experimental Analysis . 141
6.4.1 Composite Texture Images . 142

CONTENTS v

6.4.2 Synthetic Texture Images . 146
6.4.3 Real Scene Images . 146
6.4.4 Museum Images . 147
6.4.5 Computational Speed of The Algorithm 147

6.5 The Effect of Segmentation Parameters 148
6.5.1 Mean Shift Parameters . 148
6.5.2 Fuzzy Clustering and Adaptive Smoothing Parameters 149

6.6 Texture Identifier for CBIR . 150
6.7 Integration With A Retrieval System . 151
6.8 Chapter Summary . 154

7 Content-Based Image Retrieval of Museum Images 155
7.1 Museum Databases . 155

7.1.1 The National Gallery . 156
7.1.2 The Victoria and Albert Museum 157
7.1.3 The Research and Restoration Centre for the Museum of France

(C2RMF) . 158
7.2 Content-Based Image Retrieval of Different Museum Databases 158

7.2.1 Query by Low-Quality Image . 159
7.2.2 Query by Texture . 160

7.3 Integration into the Artiste and Sculpteur Projects 164

8 Conclusion and Future Work 167
8.1 Conclusion . 167
8.2 Future Work . 169

A Comparison of Texture Features Performance 171

B Retrieval Rate of Brodatz Textures Using the Final DWF 181

C Classes of Vision Textures 183

D Retrieval Rate of Vision Textures Using the Final DWF 185

Bibliography 187

List of Figures

2.1 Image retrieval architecture. 7
2.2 Examples of fax images and their originals 15
2.3 Examples of texture (a) Brodatz texture , (b) Vision texture 17
2.4 Example of one-dimensional wavelet families. The number after each

family name corresponds to the number of vanishing moment. 22
2.5 A signal and its wavelet transform . 24
2.6 The Haar wavelet basis functions . 26
2.7 One level of wavelet decomposition of two-dimensional data 28
2.8 First two levels of a pyramidal, tree-structured and wavelet frames de-

composition . 29
2.9 Frequency splitting for (left) 2-level pyramidal and, (right) tree-structured

wavelet transform . 29

3.1 Histograms of a fax image and its original 33
3.2 Histogram of (a) ’Correct Image’, (b) Low-contrast image, (c) High-

contrast image, (d) Dark image, (e) Bright image 34
3.3 Flowchart of the proposed algorithm for database feature extraction . . . 38
3.4 Flowchart of the proposed algorithm for retrieval stage 39
3.5 20 selected images from the database . 43
3.6 20 fax images corresponding to the images in Figure 3.5 44
3.7 Fax images and their top six retrieved images. 46
3.8 Target image (top left) and its five modifications on brightness/contrast

of an image. 52
3.9 Target image (top left) and its corresponding highly compressed version. . 53
3.10 Target image (top left) and its quantized version. 55
3.11 Target image (top left) and its noisy version. 56

4.1 (left) Precision-recall graph example (right) Perfect precision-recall graph 61
4.2 Frequency coverage of (left) DCT features, and (right) Law’s features . . 68
4.3 Frequency spectrum view of 2D Gabor transform. 69
4.4 Neighbourhood sets N1, N2 and N3 for the MRSAR features. Each Ni

corresponds to one relative pixel position 73
4.5 Precision-recall plot for nine texture methods 74
4.6 The 16 sub-images of texture (left) D043 and, (right) D044 75
4.7 12 nonhomogeneous textures excluded from the evaluation 76
4.8 Precision-recall plot for nine texture methods using only 100 homogeneous

textures . 76
4.9 (left) A texture and, (right) its shifted version 78

vi

LIST OF FIGURES vii

4.10 Precision-recall plot for different wavelet basis 80
4.11 Precision-recall plot for different decomposition levels 81
4.12 Precision-recall plot for different image padding 82
4.13 Precision-recall plot for feature extraction on original images vs. mean-

removed images . 83
4.14 Top 50 retrieved images for feature extraction on (top) mean-removed

images (bottom) original image. The query is located at the top left . . . 84
4.15 Precision-recall plot for different distance metrics 86
4.16 Precision-recall plot for nine statistical functions 88
4.17 Precision-recall plot for two types of functions combination 89
4.18 Precision-recall plot for eight types of functions combination 90
4.19 Precision-recall plot for different channels selection using, (left) std dev.

energy, and (right) zero-crossings . 92
4.20 Precision-recall plot for different channels selection of 16 combinations . . 93
4.21 Examples of very similar textures and highly inhomogeneous textures of

the VisTex database . 95
4.22 Examples of retrieval result for VisTex database. The query is located at

the top left. 97

5.1 (a) Segments in quad-tree decomposition, (b) Example of quad-tree de-
composition . 101

5.2 The fifth segment in quin-tree decomposition 102
5.3 Additional segments in nona-tree decomposition 103
5.4 Multiscale image decomposition example 104
5.5 (top left) Coarse texture, (top right) Its frequency content, (bottom left)

Fine texture, (bottom right) Its frequency content 105
5.6 (a) Non-overlapped sub-images, (b) Additional sub-images for the over-

lapped case . 107
5.7 Amount of pixels overlapping for (left) originally non-overlapped case,

and (right) overlapped case . 108
5.8 A cube is slid on a stack of DWF coefficient images to compute the stan-

dard deviation and zero-crossings . 109
5.9 Flowchart of the proposed multiscale image decomposition technique (Block

decomposition followed by DWF) . 110
5.10 Flowchart of an alternative approach to multiscale decomposition (DWF

followed by block decomposition) . 111
5.11 Number of sub-images generated . 112
5.12 Minimum coverage in case 1 overlapping 112
5.13 Covered area of query image by segments 113
5.14 Example of sub-images generated for image of size 256× 256 115
5.15 Another example of sub-images generated for image of size 256× 256 . . . 115
5.16 Vision textures used as query in the multiscale experiments 117
5.17 Example of retrieval result of multiscale matching algorithm for dyadic

database . 119
5.18 5 different scales of query images . 120
5.19 Example of retrieval result of multiscale matching algorithm for different

scales of query images . 122
5.20 Query images used for experiment on the size of query images 123

LIST OF FIGURES viii

5.21 Example of retrieval results using non-dyadic image database 126
5.22 Example of retrieval results of real museum collections 128

6.1 (a) PWT output image (b) Represented as a pyramid. 132
6.2 3D plot in the feature space for (a) wavelet transform coefficient, (b)

modified DWF coefficient . 135
6.3 Mean shift convergence of a point. 137
6.4 Flowchart of the proposed segmentation algorithm. 139
6.5 (a) 4-textured image, and its segmentation result at, (b) level 2 (64×64),

(c) level 1 (128× 128), (d) level 0 (256× 256, final result) 143
6.6 Segmentation result for different number of textures 144
6.7 Example of incorrect segmentation . 145
6.8 Result using modified DWF (left) and wavelet transform (right) 146
6.9 Segmentation result of synthetic textures 146
6.10 Segmentation result of real scene image 147
6.11 Segmentation result of museum image . 147
6.12 Inter-relation of radius, h and threshold, T 149
6.13 Example of texture identifier . 151
6.14 Example of retrieval results of real museum collections 153

7.1 Example of National Gallery images . 156
7.2 Example of Victoria and Albert Museum images 157
7.3 Example of C2RMF images . 158
7.4 Retrieval example of National Gallery database (top) query image, (mid-

dle) result using multiscale-based approach, (bottom) result using segmentation-
based approach . 161

7.5 Retrieval example of Victoria and Albert Museum database (top) query
image, (middle) result using multiscale-based approach, (bottom) result
using segmentation-based approach . 162

7.6 Retrieval example of C2RMF database (top) query image, (middle) re-
sult using multiscale-based approach, (bottom) result using segmentation-
based approach . 163

7.7 Grid-based matching, where the regions to be searched for is selected . . . 165

List of Tables

3.1 Retrieval results using 20 fax images on a database of 1062 images 45
3.2 Comparison of speed between the three algorithms 45
3.3 Retrieval results using different distance metrics 47
3.4 Retrieval results using different numbers of decomposition levels 49
3.5 Filter coefficients of different wavelet basis 49
3.6 Retrieval results using different wavelet bases (D4=Daubechies 4-tap,

D8=Daubechies 8-tap, C6=Coiflet 6-tap, S8=Symmlet 8-tap, H=Haar,
and B=binary wavelet transform . 50

3.7 Retrieval results using different number of binaries 51
3.8 Retrieval results for highly compressed images, QX represent quality mea-

sure. 54
3.9 Retrieval results for low-resolution images, where r is the resolution of

image’s longest dimension. 54
3.10 Retrieval results for noisy images . 56

4.1 Percentage of recognition rate for different texture methods 75
4.2 Percentage of recognition rate for different texture methods using only

100 homogeneous textures . 77
4.3 Time taken to extract features in seconds for different texture methods . . 77
4.4 Filter coefficients of different wavelet basis 79
4.5 Percentage of recognition rate for different wavelet basis 80
4.6 Percentage of recognition rate for different decomposition levels 81
4.7 Time taken to extract features in seconds for different decomposition levels 82
4.8 Percentage of recognition rate for different image padding 82
4.9 Mean and standard deviation of each individual feature of the DWF fea-

tures, taken over the entire Brodatz texture sets 85
4.10 Percentage of recognition rate for different distance metrics 86
4.11 Percentage of recognition rate for nine statistical functions 88
4.12 Percentage of recognition rate for different function combinations com-

pared to the standard deviation energy 90
4.13 Summary of the best discrete wavelet frames parameters 94
4.14 Average recognition rate for different colour to grey scale conversion . . . 96

5.1 Retrieval rate for fixed target location . 117
5.2 Retrieval rate for random target location 118
5.3 Retrieval rate for different scales of query images 120
5.4 Retrieval rate for different scales of query images, with target region in-

creased to 140× 140 . 121

ix

LIST OF TABLES x

5.5 Retrieval rate for different scales of query images, with target region in-
creased to 200× 200 . 121

5.6 Retrieval rate for different sizes of query images 123
5.7 Retrieval rate for different multiscale approaches 124
5.8 Retrieval rate for random size image database 125

6.1 Percentage of correctly detected number of textures. 145
6.2 Percentage of misclassified pixels . 145

7.1 Retrieval results using 20 fax images on the Victoria and Albert Museum
database . 159

Acknowledgements

The author is grateful to the Faculty of Engineering and Applied Science for the support
of research studentship to undertake this work.

Also, I would like to extend my thanks to all the help my supervisor, Dr. Paul H.
Lewis has given me throughout the degree, and also to my wife and my parents for
being so supportive.

xi

To my loving wife

xii

Chapter 1

Introduction

In this first chapter, the motivation of the thesis is presented, as well as the research
objectives and achievements. The outline of the entire thesis concludes the chapter.

1.1 Motivation

Recent years have seen a rapid increase in the size of digital image collections. Everyday
imaging equipment generates giga-bytes of images. Surveys (1) have estimated that
world-wide 2,600 new images are created per second (equivalent to 80 billion per year)
with an estimated 10 billion of which are available on the internet. Finding the correct
image has become an expensive problem. It is necessary to have these data organized
so as to allow efficient browsing, searching, and retrieval.

Image retrieval has been a very active research area since the 1970s, with the thrust
from two major research communities; database management and computer vision (2).
Image retrieval can be divided into text-based image retrieval (TBIR) and content-
based image retrieval (CBIR). The text-based image retrieval technique first annotates
the images by text, and then uses text-based database management systems to perform
image retrieval. However, there exist two major difficulties, especially when the size of
image collections is large. One is the vast amount of labour required in manual image
annotation. The other difficulty is the subjectivity of human perception, that is, for
the same image content different people may perceive it differently. The perception
subjectivity and annotation impreciseness may cause unrecoverable mismatches in later
retrieval processes.

This leads to more efforts being required on content-based image retrieval. Using this
technique, images are indexed by their own visual content, such as colour, texture or
shape. CBIR has become more and more important with the advance of computer tech-
nology, and provides the answer to the two drawbacks of the TBIR system mentioned

1

Chapter 1 Introduction 2

above. It is important to stress that CBIR is not a replacement of, but rather a comple-
mentary component to TBIR. Only the integration of the two can result in satisfactory
retrieval performance at present.

In this thesis, the application of content-based image retrieval system is applied to
various museum image collections. The wavelet transform, a powerful tool in image
processing and analysis will be used as the main tool for the research work.

1.2 Research Objective

The main objective of this thesis is to produce an efficient content-based image retrieval
system for use with museum image collections. The museum collections are available
from various museums in a collaboration with the Department of Electronics and Com-
puter Science at the University of Southampton. Two specific areas concerned are the
query by low quality image and query by texture. In query by low quality image, the
content-based retrieval system is expected to retrieve images that are similar in content
to the poor input image, for example an image obtained from a fax machine. The system
should be of high accuracy while keeping the computational load at a minimum. For
this reason, the wavelet transform was chosen as one of the tools to address query by
low quality image.

In query by texture, the main goal of the retrieval system is to be able to retrieve images
containing similar texture to the given query texture. Several texture feature extraction
techniques are tested, and will also be improved in order to produce a method that is
suitable for use with the mentioned image domain. After reviewing the field, wavelet-
based methods are again chosen for this project because of their high accuracy and low
computational load, and several wavelet-based techniques will be tested and developed
to produce the best available option.

Since museum collections contain many natural scene images, texture usually appears
only in some part of the image. The next objective is to find the best available approach
in utilizing the texture feature extraction method to obtain local statistics. Museum
images usually consists of many regions of colour and texture within the same image.
Applying the feature extractor on the image globally will then result in an incorrect
representation for the textures within the image. Two approaches are considered in this
thesis, block oriented decomposition and automatic texture segmentation.

• Block oriented decomposition. Using this approach, the feature extractor is used to
extract features from several sub-image blocks. Assuming the sub-image blocks are
small enough and efficiently structured, this method will produce feature vectors
for each and every texture present in the image. Several block oriented decomposi-

Chapter 1 Introduction 3

tion are studied and an improvement over the available decomposition techniques
are suggested for a better localization.

• Automatic texture segmentation. Using this approach the image is segmented first,
and the feature vectors are computed only on the textured regions. By automatic
segmentation, we mean a segmenter which does not need a priori knowledge either
on the type of the texture or the number of textures present in the image. A novel
automatic texture segmenter must first be developed, since there are very few
automatic texture segmentation algorithms available in the literature, and they
are not very suitable for our application.

By the end of this stage, we will have two different approaches for content-based im-
age retrieval using texture features. A comprehensive evaluation of both approaches is
presented. It is interesting to have a comprehensive study on the advantages and the
disadvantages of both approaches, hence their performance will be compared in every
aspect. Because of the limited number of automatic texture segmentation algorithms
available, most systems use the block oriented decomposition for extracting local tex-
ture. Therefore it would also be interesting to see if segmentation is really needed in
content-based image retrieval applications.

From another point of view, although one of the main objectives of this thesis is to use
texture to bring novelty to the field of content-based image retrieval, it can also bring
novelty to other fields. The novel automatic texture segmentation algorithm proposed
in this thesis might also be useful in remote sensing, medical image analysis and other
fields associated with texture analysis.

1.3 Achievements

The original contributions in this thesis are applicable to content-based image retrieval
and texture analysis applications, and can be itemized as follows:

• A novel algorithm for content-based image retrieval using low quality image as
query (query by low-quality image),

• Evaluation of the query by low-quality image performance on various low-quality
images,

• Performance comparison between various wavelet-based texture features, as well
as other techniques,

• Identifying the best parameters to be associated with the selected wavelet-based
texture feature,

Chapter 1 Introduction 4

• An improved texture feature extraction of the wavelet-based methods for achieving
better retrieval performance,

• A survey of several block oriented decomposition techniques for use in content-
based image retrieval applications,

• A modified block oriented decomposition algorithm for better localization, the
multiscale algorithm,

• Comprehensive evaluation of the multiscale-based retrieval performance,

• A survey of several texture segmentation algorithms for use in content-based image
retrieval applications,

• A novel automatic texture segmentation algorithm that does not need a priori
knowledge on either the number or the type of textures,

• Extension of the automatic texture segmenter to produce a texture identifier, and
evaluation of its integration with a content-based image retrieval system,

• Evaluation on the performance of two different query by texture approaches,

• Application of all the proposed algorithms on different museum image collections.

1.4 Thesis Summary

In chapter 2, a literature study of the background of the thesis area will be studied. The
literature study includes the background of content-based image retrieval, texture analy-
sis and low-quality image analysis. Since the wavelet transform will be used significantly
in the thesis, the details of the wavelet transform will also be reviewed.

In chapter 3, previous work on query by low-quality image will be presented and dis-
cussed. A novel query by low-quality image algorithm is then proposed for use in museum
image collections.

In chapter 4, a comprehensive comparison between several wavelet-based features as well
as other texture features is conducted, and the best features are identified. The perfor-
mance of the texture methods will be evaluated in terms of accuracy and computation
time. Another experiment which identifies the best parameters to be associated with
the best method follows. Finally an improved version of the selected texture method is
proposed by examining several statistical functions to be used with the corresponding
texture technique.

An improved block-oriented decomposition method is proposed in chapter 5, and its
performance in achieving better localization is computed. The method is then combined

Chapter 1 Introduction 5

with the improved texture features method chosen in chapter 4, and its retrieval accuracy
in retrieving local textures within an image is evaluated using an appropriate test set.

Chapter 6 describes several non-automatic texture segmentation algorithms available in
the literature, and based on these, a novel automatic texture segmentation algorithm is
proposed. The algorithm is tested on several composite textures in order to evaluate its
accuracy, before evaluation on real museum images is performed. Finally an enhance-
ment to the automatic texture segmentation is suggested to produce a texture identifier,
and is integrated into a content-based image retrieval system.

Chapter 7 introduces different museum image collections available on our server, and
the performances of both query by low-quality image and query by texture are evaluated
on these museum databases. Discussions of the advantages and disadvantages of the
proposed methods are presented. A brief description on integrating the query by low-
quality image and the query by texture techniques into the Artiste and Sculpteur project
is also presented.

Finally in chapter 8, the conclusions of the research are gathered together and various
avenues for future works are presented.

Chapter 2

Literature Review

This chapter reviews all necessary background to gain an understanding required for
this thesis. Subjects reviewed include the content-based image retrieval, the texture and
low quality image analysis as well as wavelets and the wavelet transform.

2.1 Content-Based Image Retrieval

Content-based image retrieval system design highly depends on the image domain in
use. In the range of images under consideration, there is a gradual distinction between
narrow and broad image domains (3). In a narrow domain, one finds a limited variability
of the content of the images. Usually, the recording circumstances are also very similar
over the whole domain. An example of a narrow domain is a set of frontal views of
faces recorded against a clear background. Although each face is unique and has large
variability in the visual details, there are obvious geometrical, physical, and color-related
constraints governing the domain. Another good example of a narrow domain would be
a collection of fingerprint images.

In broad domains, images are polysemic and their semantics are described only partially.
It might be the case that there are conspicuous objects in the scene for which the object
class is unknown or even that the interpretation of the scene is not unique. The broadest
class available to date is the set of all images available on the internet. Many problems of
practical interest have an image domain in between these extreme ends of the spectrum.
The notions of broad and narrow domains are helpful in characterizing patterns of use,
in selecting features, and in designing systems. For this thesis, the image collection used
is museum images, which can be classified as a medium to broad domain.

6

Chapter 2 Literature Review 7

Image
Database

Feature Vector
Database

(CBIR
component)

Text Annotation
Database

(TBIR
component)

Multidimensional
Indexing

Feature extraction

Query Interface

Query processing

Retrieval engine

User

Figure 2.1: Image retrieval architecture.

2.1.1 CBIR System Architecture

Figure 2.1 shows a simple image retrieval system suitable for the broad image domain.
From the figure, there are three databases in the system architecture, the image database,
the feature vector database, and the text annotation database. The image database con-
tains the raw images for visual display purposes. The feature vector database stores the
visual features extracted from the images. This is the information needed to support
CBIR. Finally the text annotation database contains the keywords and free-text de-
scriptions of the images. The text-based retrieval is included in the system because,
as mentioned earlier, only the integration of the two methods can result in satisfactory
retrieval performance. However the concern of this thesis is only towards the left-hand
side of Figure 2.1, i.e. the CBIR, since content-based image retrieval is still new and
offers more room for improvement. In general there are two important phases in a CBIR
system, which are feature extraction and feature indexing.

2.1.1.1 Feature Extraction

Feature extraction is the basis of content-based image retrieval, and features can be
classified as general or domain-specific. General features are suitable for most appli-
cations and include colour, texture, shape, colour layout and shape layout features.
Domain-specific features are only suitable for a narrow image domain, which is appli-
cation dependent, and therefore is not of interest in the context of this thesis. Colour,
texture and shape are the most used features in content-based image retrieval.

Chapter 2 Literature Review 8

The colour feature is one of the most widely used visual features in content-based image
retrieval. It is relatively robust to background complication and independent of image
size and orientation. Some representative studies of colour perception and colour spaces
can be found in (4; 5; 6). The color histogram is the most commonly used color feature
representation. Statistically it denotes the joint probability of the intensities of the three
colour channels. Histogram intersection, an L1 metric (metric based on absolute values),
is usually used as the similarity measure for the colour histogram (7). To take into
account the similarities between similar but not identical colour, Ioka (8) and Niblack
et al. (9) introduced an L2-related metric (metric based on square values) in comparing
histograms. An improvement of the colour histogram method includes the cumulated
colour histogram (10), proposed by Stricker and Orengo. Besides the colour histogram,
other colour feature representations have been applied to content-based image retrieval,
including colour moments, colour sets and the colour coherence vector. Colour moments
methods (10) overcome the quantization effect in the colour histogram method. Colour
sets (11) is an approximation to the colour histogram, suitable for fast searching over
large scale image collections. Finally the colour coherence vector (12) differs from the
colour histogram in that it manages to capture information about the distribution of
the colours spatially within the image.

Texture refers to the visual patterns that have properties of homogeneity that do not
result from the presence of only a single colour or intensity. It is a natural property
of virtually all surfaces, including clouds, trees, bricks, hair, and fabrics. It contains
important information about the structural arrangement of surfaces and their relation-
ship to their surrounding environment. Because of its importance and usefulness in
pattern recognition and computer vision, there are rich research results from the past
three decades. Now it further find its way into image retrieval. More and more research
achievements are being added to it. A more detailed overview on texture and its features
will be discussed in the next section.

Shape features involve all the properties that capture conspicuous geometric details in
the image. The shape representations can be divided into two categories, boundary-
based and region-based. The former use only the outer boundary of the shape while
the latter use the entire shape region (13). The most successful representatives for
these two categories are Fourier descriptor and moment invariants. The main idea of
a Fourier descriptor is to use the Fourier transformed boundary as the shape feature.
Some early work can be found in (14). A modified Fourier descriptor which is robust
to noise and invariant to geometric transformation is proposed by Rui et al (13). The
main idea of moment invariants is to use region-based moments which are invariant to
transformations, as the shape feature. In (15), Hu identified seven such moments. Based
on his work, many improved versions emerged, such as the Zernike moment descriptors
proposed by Teague (16). The rotational invariance nature of the Zernike moment
descriptors make it very useful in overcoming the shortcomings associated with Hu’s

Chapter 2 Literature Review 9

moments. Besides the Fourier descriptor and moments, some other recent work in shape
representation and matching includes the finite element method (FEM)(17), the turning
function (18), and the wavelet descriptors (19). The FEM defines a stiffness matrix which
describes how each point on the object is connected to the other points. The turning
function method is useful in comparing both convex and concave polygons. Wavelet
descriptors have desirable properties such as multiresolution representation, invariance,
uniqueness, stability and spatial localization.

2.1.1.2 Multidimensional Indexing

Multidimensional indexing is needed in content-based image retrieval in order to make
the system truly scalable to large size image collections. It is an important issue for
multimedia systems since such systems needs to handle a vast amount of multimedia
data which normally involves high dimension. Similarity retrieval on multiple attributes
(as opposed to exact matching) is also an important issue for multimedia systems, as
most of the queries are searching for the nearest matches rather than exact matches.
Many different approaches for multidimensional indexing can be found, such as the many
branches of the famous tree-based algorithms (20; 21; 22; 23; 24; 25). Clustering and
neural nets, widely used in pattern recognition, are also promising indexing techniques
(26; 27). A thorough multidimensional indexing survey paper is given by Gaede et al
(28).

The history of multidimensional indexing techniques can be traced back to the middle
of 1970s, when cell methods, quad-tree, and k-d tree were first introduced. However
their performances were far from satisfactory. Pushed by then urgent demand of spatial
indexing systems, Guttman proposed the R-tree indexing structure (21). Based on his
work, many other variants of the R-tree were developed. Sellis et al. proposed R+-tree
in (22), while Greene proposed her variant of R-tree (23). In 1990, Beckman and Kriegel
proposed the best dynamic R-tree variant, R*-tree (24). However, even for the R*-tree,
it was not scalable to dimensions higher than 20 (29).

There are two main types of multidimensional indexing method: Point Access Methods
and Spatial Access Methods. The Point Access Method is only for multidimensional data
points whereas the Spatial Access Methods are designed for data not only represented
by points but also as multidimensional spatial regions. In general, the performance of
multidimensional access methods degrades dramatically with increasing dimensionality.
There are studies (30; 31) that show high dimensional attributes can be represented by
using a lower dimensional vector but still preserving the spatial relationship between data
objects. The lower dimensional features (such as Fourier series and multidimensional
scaling approaches) are then indexed by a fast multidimensional method.

However before we utilize any multidimensional indexing technique, it is beneficial to

Chapter 2 Literature Review 10

first perform dimension reduction. At least two approaches have appeared in the lit-
erature, i.e. Karhunen-Loeve transform (KLT) and column-wise clustering. KLT and
its variations, eigen-image and principal component analysis (PCA), have been studied
by researchers in performing dimension reduction (20; 32; 33; 34). Experimental re-
sults form these research showed that most real data sets (visual feature vectors) can
be considerably reduced in dimension without significant degradation in retrieval qual-
ity. Clustering is another powerful tool in performing dimension reduction. Row-wise
clustering has been used in various disciples such as pattern recognition and speech anal-
ysis. However clustering can also be used column-wise to reduce the dimensionality of
the feature space (35). Experiments show that this is a simple and effective approach.

2.1.2 Current CBIR System

This section describes some of the products which are available on the market or from
research laboratories to achieve content-based retrieval on images, and other multimedia.
There are far too many content-based techniques and systems to be able to describe them
all here so we point the reader to reviews of the field that can be found in (36; 37; 2; 38).
What follows is a brief description of some well known and well regarded systems in the
field.

QBIC

QBIC (Query By Image Content) (9; 39; 40) is the first commercial and probably the
most well known content-based retrieval system for image and video. Developed by
IBM, its system framework and techniques have had profound effects on later image
retrieval systems. The image feature extraction engine uses colour, shape and texture.
The colour feature used in QBIC are the average (R,G,B), (Y,I,Q), (L,a,b), and MTM
(mathematical transform to Munsell) coordinates, and a k -element colour histogram.
The use of colour in QBIC was originally limited to the overall colour histogram of the
image, or percentages of colour within an image, however, more recent versions of QBIC
have included a widget which allows queries based on the spatial colour layout of images
to be created (query by sketch). Its texture feature is an improved version of the Tamura
texture representation;, i.e. combinations of coarseness, contrast, and directionality (41).
Its shape feature consists of shape area, circularity, eccentricity, major axis orientation,
and a set of algebraic moment invariants. QBIC is one of the few systems which takes
into account the high dimensional feature indexing.

Chapter 2 Literature Review 11

Virage

Virage (42; 43) is a system produced by Virage Inc. that performs content-based re-
trieval on video and images, using colour, texture, composition (colour layout), and
structure (shape layout). Virage also goes one step further than QBIC, as it allows for
combinations of the above to be used in a single query. Weights can be varied for each
feature type according to the user’s needs. The framework was also extended to include
domain specific features as well as the general features.

RetrievalWare

RetrievalWare (44; 45) is a content-based image retrieval engine developed by Excalibur
Technologies Corp. that, among other things, uses colour, shape, texture, brightness,
colour layout, and image aspect ratio in a query-by-example paradigm to match images.
Like Virage, it also supports the combinations of these features and allows the users to
adjust the weights associated with each feature.

Photobook

Photobook (17) is a set of interactive tools for browsing and searching images developed
at the MIT Media Lab. Photobook consists of three ”subbooks” from which shape,
texture, and face features are extracted, respectively. Users can then query, based on
the corresponding features in each of the three ”subbooks”. Later versions allowed
human authors to help annotate images, based on ”society of models” approach that
reflect the particular domain and set of users.

VisualSEEk and WebSEEk

VisualSEEk (46) is a visual feature search engine and WebSEEk is a World Wide Web
oriented text/image search engine, both of which are developed at Columbia University.
Main research features are spatial relationship query of image regions and visual feature
extraction from the compressed domain. The visual features used in their systems are
colour set and wavelet transform based texture features. To speed up the retrieval pro-
cess, they also developed binary tree based indexing algorithms. VisualSEEk supports
queries based on both visual features and their spatial relationship. WebSEEk is a web
oriented search engine. It consists of three main modules, i.e. image.video collecting
module, subject classification and indexing module, and search, browse and retrieval
module. It supports queries based on both keywords and visual content.

Chapter 2 Literature Review 12

Netra

Netra (47) is a prototype image retrieval system developed in the UCSB Alexandria
Digital Library project. Netra uses colour, texture, shape, and spatial location infor-
mation in the segmented image regions to search and retrieve similar regions from the
database. main research features of the Netra system are its Gabor filter based texture
analysis, neural net-based image thesaurus construction, and edge flow-based region
segmentation.

MARS

MARS (multimedia analysis and retrieval system) (48), developed at University of Illi-
nois at Urbana-Champaign, is a multimedia retrieval system that is designed to retrieve
text, images and video.The image retrieval engine they use is based on colour and tex-
ture. Colour histogram intersection and colour moments are used to match whole images,
as well as co-occurrence matrix and wavelet based methods of texture analysis. MARS
also demonstrates some unique features such as the integration of database manage-
ment system and information retrieval, the integration of indexing and retrieval, and
integration of computer and human.

eVe

eVe (the eVision Visual Engine) (1), is a commercial product developed by eVision, LLC
technologies. The engine uses automatic segmentation techniques applied to colour, tex-
ture, shape, and visual and text meta-tag searching. It attempts automatic segmentation
by grouping pixels based on pixel similarity and labels the clusters as objects. Although
they profess that this ”brings unsupervised segmentation to the commercial world”,
many of their examples contain objects on white background, and those which do not
are poorly segmented.

PicToSeek

PicToSeek (49) is a content-based image search system, designed for use on the web
by the Intelligent Sensory Information Systems research group, at the University of
Amsterdam. The system uses a colour model that is colour constant - that is, it is
independent of the illumination colour, shadows, and shading cues. PicToSeek, however,
is only concerned with the whole image histograms, and does not allow spatially oriented
queries.

Chapter 2 Literature Review 13

Color-WISE

Color-WISE (50) is an image similarity retrieval system which allows users to search
for stored images using matching based on the localized dominant hue and saturation
values. It uses a cunning fixed segmentation of overlapping elements to ensure that the
matching is slightly fuzzy. The system computes separate histograms for hue, saturation
and intensity, and reduces their size by finding their area-peak - basically removing noise
that is small amount of isolated colours. Color-WISE uses Microsoft Access to perform
the database functions, and uses a similarity metric based on QBIC system. Querying
in Color-WISE is achieved with query-by-image.

Blobworld

Blobworld (51) was developed at the University of Berkeley, California under the Digital
Library Project. It uses low-level grouping techniques to create ”blobs of stuff”, which
can be texture, colour or symmetry. The blobs can be matched against their content,
and their position, and it is possible to use high-level techniques to analyse the semantics
of the blobs (such as where they are in relation to other blobs), and conclude what they
might represent.

Image-MINER

Image-MINER (52) is an image and video retrieval system developed by the AI group
at the University of Bremen. Their colour indexing system for images uses local his-
tograms in a fixed grid geometry. Further grouping of the fixed elements occurs to get
’color-rectangles’, which are signatures for their input images. The colour based segmen-
tation module, is part of the larger Image-MINER system which includes video retrieval
methods, including shot detection and subsequent ’mosaicing’.

Other Systems

ART MUSEUM (53), developed in 1992, is one of the earliest content-based image
retrieval systems. It uses the edge feature as the visual feature for retrieval. CAETIIML
(54), built at Princeton University, uses a combination of the on-line similarity searching
and off-line subject searching. Some other systems include IMatch (55) by mwlabs which
uses colour, texture and shape for image retrieval, and DART (56) by AT&T which also
uses colour, texture, shape as well as locally smooth regions.

Chapter 2 Literature Review 14

Summary

There are many content-based retrieval systems which have been developed within the
last decade using relatively simple matching techniques. As described above, most of
these systems use colour, texture, shape and some have basic spatial location retrieval
(low-level features). However, few of them access the semantics (high-level features) of
the image and therefore fail to allow retrieval within the semantic domain. Very recently
in the literature, semantic retrieval is becoming an active research topic (57; 58; 59).
Should the above retrieval system be armed to support semantic-based querying, it is
highly likely that the retrieval performance will be much improved. However, having
said that, the role of low level features in image retrieval should not be overlooked.
Instead there must be a proper research balance between the two medium in order to
make content-based retrieval successful.

2.2 Low-Quality Image Analysis

It is interesting to note that, in published works on image retrieval, almost all efforts
are spent on normal quality image retrieval, that is using images captured digitally from
camera or video, or at least images obtained from a scanner as query. There are actually
other image acquisition media which can provide query images, but with a rather poor
quality; a fax machine is a very good example. This section briefly explains the idea of
query by low-quality images, and why it is necessary.

The motivation for research on low-quality image comes from a requirement by some
museums to respond to queries for pictorial information, submitted in the form of fax
messages or other low-quality monochrome images of works of art. The museums have
databases of high-resolution images of their artefact collections and the person submit-
ting the query is asking typically whether the museum holds the art work shown or
perhaps some similar work.

Typically the query image will have no associated metadata and will be produced from
a low-resolution picture of the original art work. The resulting poor quality image,
received by the museum, leads to very poor retrieval accuracy when the fax is used
in standard query by example searches using, for example, colour or texture matching
algorithms. Some examples of genuine fax images received by the museum together
with the corresponding high-resolution images they represent are shown in Figure 2.2.
It is obvious that fax images are of very low quality and even the best quality of fax
machine cannot prevent the loss of information in the fax image. If this image is to be
used as query, special algorithms need to be developed in order to improve the retrieval
accuracy.

With the advance of imaging and communication technology these days, one might

Chapter 2 Literature Review 15

Fax Image 1 Fax Image 5Fax Image 4Fax Image 3Fax Image 2

Figure 2.2: Examples of fax images and their originals

wonder if anyone would still use fax machines as a medium to transfer images. The
answer is yes; there is a study reporting that even with the popularity of e-mail and
photo-messaging, faxing is more popular than it has ever been (60). In the context of this
thesis, there are a lot of museums which hold large databases of images and keep receiving
fax images from all around the world asking if they have the artwork shown. They have
problems in fulfilling requests as a result of poor retrieval results using standard query
by example searches. Moreover even images captured by camera or scanner sometimes
carry noise, although they are not as bad as in fax images. Therefore this specific area
of content-based image retrieval needs to be explored more comprehensively.

2.3 Texture Analysis

In many machine vision and image processing algorithms, simplifying assumptions are
made about the uniformity of intensities in local image regions. However, images of
real objects often do not only exhibit regions of uniform intensities. For example, the
image of a wooden surface is not uniform but contains variations of intensities which
form certain repeated patterns called visual texture. The patterns can be the result
of physical surface properties such as roughness or oriented strands which often have
tactile quality, or they could be the result of reflectance differences such as colour on a
surface.

Texture analysis is an important and useful area of study in machine vision. Most natural
surfaces exhibit texture and a successful vision system must be able to deal with the
texture world surrounding it. Texture analysis methods have been utilized in a variety
of application domains. In some of the mature domain (such as remote sensing) texture
already has played a major role, while in other disciplines (such as surface inspection)
new applications of texture are being found. Some examples of the fields that texture
plays a major role are:

• Remote Sensing. Texture is extensively used in land use classification where ho-

Chapter 2 Literature Review 16

mogeneous regions with different types of terrains (such as wheat, bodies of water,
urban regions, etc.) need to be identified.

• Medical Image Analysis. The applications involve the automatic extraction of
features from the image which are then used for a variety of classification tasks,
such as distinguishing normal tissue from abnormal tissue.

• Surface Inspection. The applications include defect detection in image of textiles
and automated inspection of carpet wear and automobile paints.

• Document Processing. Texture is used as a tool to segment document images to
identify regions of interest.

• Image and Video Retrieval. Texture is one of the main features used for measuring
similarity between multimedia data.

2.3.1 Definition of Texture

We recognize texture when we see it but it is very difficult to define. This difficulty
is demonstrated by the number of different texture definitions attempted by vision re-
searchers. Coggins (61) has compiled a catalogue of texture definitions in the computer
vision literature and some examples are given below:

• ”We may regard texture as what constitutes a macroscopic region. Its structure
is simply attributed to the repetitive patterns in which elements or primitives are
arranged according to a placement rule.” -Tamura et al. (41)

• ”A region in an image has a constant texture if a set of local statistics or other local
properties of the picture function are constant, slowly varying, or approximately
periodic.” - Sklansky (62)

• ”The image texture we consider is nonfigurative and cellular. An image texture
is described by the number and types of its (tonal) primitives and the spatial
organization or layout of its (tonal) primitives. A fundamental characteristic of
texture: it cannot be analyzed without a frame of reference of tonal primitive being
stated or implied. For any smooth gray-tone surface, there exists a scale such that
when the surface is examined, it has no texture. Then as resolution increases, it
takes on a fine texture and then a coarse texture.” - Haralick (63)

• ”The notion of texture appears to depend upon three ingredients: (i) some local
’order’ is repeated over a region which is large in comparison to the order’s size, (ii)
the order consists in the non-random arrangement of elementary parts, and (iii)
the parts are roughly uniform entities having approximately the same dimensions
everywhere within the textured region.” -Hawkins (64)

Chapter 2 Literature Review 17

(a)

(b)

Figure 2.3: Examples of texture (a) Brodatz texture , (b) Vision texture

This collection of definitions demonstrates that the ”definition” of texture is formulated
by different people depending upon the particular application and that there is no gen-
erally agreed upon definition. Some are perceptually motivated, and others are driven
completely by the application in which the definition will be used.

Some examples of texture are given in Figure 2.3 where the textures are taken from
the Brodatz collection and the Vision texture collection. The Brodatz texture collection
consists of 112 textures with wide varieties and is widely used as a standard texture
analysis platform. Vision texture (VisTex) collection was made as an alternative to
the Brodatz texture library, which is not freely available for research use. However,
unlike the Brodatz collection, the images in VisTex do not conform to rigid frontal
plane perspectives and studio lighting conditions

2.3.2 Texture Properties

In spite of the lack of a general definition of texture in the computer vision literature,
there are a number of intuitive properties of texture which are generally assumed to be
true (65).

Chapter 2 Literature Review 18

• Texture is a property of areas; the texture of a point is undefined. So texture
is a contextual property and its definition must involve gray values in a spatial
neighbourhood. The size of this neighbourhood depends upon the texture type,
or the size of the primitives defining the texture.

• Texture involves the spatial distribution of gray levels. Thus, two-dimensional
histograms or co-occurrence matrices are reasonable texture analysis tools.

• Texture in an image can be perceived at different scales or levels of resolution. For
example, consider the texture represented in a brick wall. At a coarse resolution,
the texture is perceived as formed by the individual bricks in the wall; the interior
details in the brick are lost. At a higher resolution, when only a few bricks are in
the field of view, the perceived texture shows the details in the brick.

• A region is perceived to have texture when the number of primitive objects in
the region is large. If only a few primitives objects are present, then a group
of countable objects is perceived instead of a textured image. In other words, a
texture is perceived when significant individual ”forms” are not present.

2.3.3 Texture Feature Extraction Method

A texture feature is a value, computed from the image of an object, that quantifies
some characteristic of the grey level variation within the object. There are many feature
extraction techniques developed in order to improve the classification of textured images.
However, due to the fact that the perception of texture has so many different dimension,
there is no single method of texture representation which is adequate for a variety of
textures (65). Texture feature extraction methods can be divided into statistical, model-
based, signal processing and geometrical categories. However the use of geometrical
(structural) methods are rather limited because of tight assumptions of the nature of
textures. The methods briefly described below are all categorized into either statistical,
model-based or signal processing methods as they are the most widely used.

In the early 1970s, Haralick et al. (66) proposed the co-occurrence matrix representation
of texture features. This approach explored the gray level spatial dependence of tex-
ture. Meaningful statistics are extracted from the matrix as the texture representation.
Many other researchers followed the same line and further proposed enhanced versions.
Motivated by the psychological studies in human visual perception of texture, Tamura
et al. (41) explored the texture representation from a different angle. They developed
computational approximations to the visual texture properties found to be important in
psychology studies. The six visual texture properties were coarseness, contrast, direc-
tionality, line-likeness, regularity, and roughness. The QBIC system (39) and the MARS
system (48) further improved this texture representation.

Chapter 2 Literature Review 19

The Markov Random Field model (MRF) (67) assumes that the state of an image pixel
is highly dependent on the brightness value and the configuration of neighbouring pix-
els, and this assumption is exploited to get texture information. The Gaussian-Markov
Random Field (GMRF) and the multiresolution GMRF are the modified and improved
versions of MRF. In (68), Chellappa and Chatterjee use the GMRF model to clas-
sify GMRF-generated textures. Another method that received intensive research is the
simultaneous auto-regressive model (SAR) (69; 70). Like the Markov Random field
method and its families, the SAR method used the information from the neighbour-
ing pixels to compute the brightness of a particular pixel, but with error prediction
properties.

In (71), Pentland suggested the use of fractal dimension for texture analysis. Briefly,
’fractal analysis for textures’ refers to the search for the number that best characterizes
the assumed self-similar distribution of gray scale values, which comprise the texture
(72). An improved fractal-based analysis is proposed by Chauduri and Sarkar (73)
using the multi-fractal concept, in which, instead of using only one FD per pixel block,
they used 6 FDs from 6 modified original images. The Gabor transform (74; 75) is
another popular method for texture analysis. The basic idea behind the Gabor method
is to compute the features based on scale and orientation, where different textures have
energy concentrated in different scales and orientations.

In the early 1990s, after the wavelet transform was introduced and its theoretical frame-
work was established, many researchers began to study the use of the wavelet transform
as texture features. In (76), Smith and Chang used the mean and variance extracted
from the wavelet channels as texture features. To explore the middle band characteris-
tics, a tree-structured wavelet transform was used by Chang and Kuo (77) to improve
the classification accuracy. To achieve translational invariance, Unser (78) proposed a
discrete wavelet frames as the solution. The wavelet transform was also combined with
other techniques to achieve better performance, such as with the co-occurrence matrix
(79; 80).

Other methods that have been used for texture feature extraction include the logical
operators method (81), Jordan features (82), the Statistical Geometrical Features (SGF)
(83), the Laws texture feature (84), the kernel Principal Component Analysis (85), the
Geodesic active contours (86), the Voronoi polygons (87), and the edge-based method
(88). There are also quite a few review papers in this area. An early review paper by
Weszka et al. (89), compared the texture classification performance of Fourier power
spectrum, co-occurrence matrix, and first-order statistics of grey level differences. They
found out that the Fourier method performs poorly, while the other two were comparable.
In (90), Ohanian and Dubes compared and evaluated four types of textural features,
namely Markov random field, multichannel filtering, fractal-based and co-occurrence
matrix. They found that the co-occurrence matrix performed best in their test set. Ma
and Manjunath (91) evaluated various wavelet-based features, and found that the Gabor

Chapter 2 Literature Review 20

wavelet was the best among the tested candidates.

2.4 Wavelets and The Wavelet Transform

For many years the Fourier Transform has been the most popular time-frequency rep-
resentation of a signal. A Fourier transform expands a signal using a set of periodical
functions. The resulting coefficients are usually presented as a combination of two sig-
nals. The magnitude signal contains the frequency content, since the functions represent
different frequencies. The phase signal contains the spatial information in an implicit
way which cannot be interpreted directly.

Because of this, Fourier analysis has a serious drawback. In transforming to the fre-
quency domain, spatial information is lost. When looking at the Fourier transform of
a function, it is impossible to tell when a particular event took place. Although the
Windowed Fourier Transform (or Short-Time Fourier Transform) manages to represent
a sort of compromise between the time- and frequency-based views of a signal, they
introduce yet another problem, that is the reduction in flexibility caused by the fixed
window size.

Wavelet analysis, however, does not suffer from these problems. A wavelet transform
expands a function using a set of wavelet functions. The resulting wavelet coefficients
contain the frequency content since the wavelet functions also represent different scales
(or frequencies). The wavelet functions are also localised spatially, which means that
the expansion is local: coefficients are computed for all points of the original signal, thus
the spatial information remains intact.

2.4.1 Multiresolution and Wavelets

Multiresolution techniques for signal and image processing have been in use for decades
(92). The need for transforms that lead to a representation in which both spatial and
frequency information are present, is widely recognized. In order to provide this, a lot of
related techniques were developed, including Gabor, Walsh-Hadamard and subband fil-
tering, to name a few. Around 1990, a mathematical framework emerged which provides
a more formal, solid and unified approach to multiresolution representation (93).

The wavelet representation encompasses multiresolution decompositions of signals into
orthogonal bases of wavelet functions which have compact support (exactly zero outside
an interval). The development of methods to construct such functions is an important
aspect of the theory. In fact, the advent of smooth and compact wavelets initiated
the breakthrough of the framework, since they made it possible to compute sufficiently
precise decompositions with limited computational effort (94). In their brief history

Chapter 2 Literature Review 21

within the signal and image processing field, wavelets have already proven themselves to
be an indispensable addition to the analyst’s collection of tools and continue to produce
successful research work. It is now a preferred tool which provides both conceptual and
computational advantages compared to other techniques.

2.4.2 Definition of Wavelets

Wavelets can be described in more than one way. From the mathematical point of view,
wavelets are a set of basis functions. This set of functions is generated from the dilations
and translations of a unique function called the mother wavelet, ψ. Any function can be
expressed in terms of wavelets. This means that given a mother wavelet, we can project
any function onto the dilated and translated versions of this mother wavelet, much like
the sine and cosine functions in the Fourier domain.

From the engineering point of view, wavelets are band pass filters. The wavelet basis
can be viewed as a bank of filters with various bandwidths. The complete set of the
wavelet filter bank covers all frequencies in the Fourier domain and therefore all frequency
elements of a signal can be extracted from a set of wavelets. From the physicist’s point
of view, the wavelet functions are a set of functions which have good localisation in both
the time and frequency domains, which means that the wavelet transform can perceive
both frequency and time information from a given signal.

2.4.3 Properties of Wavelets

Having been exposed to the idea of wavelets, it is important to know the essential
characteristics of wavelets. A wavelet is a function ψ (95) whose Fourier spectrum ψ̂

satisfies the admissibility criterion:

∫ +∞

−∞

| ˆψ(t)2|
|t| dt < +∞ (2.1)

If ψ(t) is sufficiently regular (this means that it decreases exponentially for increasing
t), this condition reduced to:

ˆψ(0) ⇐⇒
∫ +∞

−∞
ψ(t)dt = 0; (2.2)

which means that a wavelet has to be localised (must oscillate and decay) and have zero
mean (must integrate to zero). A large variety of wavelet functions can be constructed.
Examples of some well known wavelets are shown in Figure 2.4. The main design choice
that has to be made is whether the localisation should be strongest in the frequency or
the spatial domain.

Chapter 2 Literature Review 22

Figure 2.4: Example of one-dimensional wavelet families. The number after each
family name corresponds to the number of vanishing moment.

Wavelets comprise an infinite set. The different wavelet families make different trade-
offs between several wavelet properties such as regularity, symmetry, orthogonality and
compactness (in both time and frequency). Within each family of wavelets (such as the
Daubechies family) are wavelet subclasses distinguished by the number of coefficients
and by the level of iteration. Wavelets are classified within a family most often by the
number of vanishing moments. For example, within the Coiflet wavelet family are Coiflet
with two vanishing moments and Coiflet with three vanishing moments. A wavelet has
m vanishing moments if:

∫ ∞

−∞
tlψ(t) dt = 0 for l = 0, 1, ...,m− 1. (2.3)

The vanishing moments are directly related to the number of coefficients and the smooth-
ness of wavelets. The larger the number of vanishing moments, the smoother the
wavelets. There is also an additional function associated with some, but not all wavelets.
This is the so-called scaling function or father wavelet, φ, and, along with the orthog-
onality property, determines whether a particular wavelet family can be considered for
discrete wavelet transform.

Based on the above properties, wavelets can be divided into five different categories (96):

• Crude wavelets (have only minimal properties), such as the Gaussian, Morlet and

Chapter 2 Literature Review 23

Mexican Hat wavelet families.

• Infinitely regular wavelets, such as the Meyer wavelet family.

• Orthogonal and compactly supported wavelets, such as the Haar, Daubechies,
Coiflet and Symlet wavelet families.

• Bi-orthogonal and compactly supported wavelet pairs, such as B-spline wavelets.

• Complex wavelets, such as the Gabor wavelet family.

Each category holds different properties and has its own advantages and disadvantages.
The most notable difference is the fact that only the third and fourth category are
qualified to use the fast algorithm discrete wavelet transform, which will be discussed
later.

2.4.4 One-Dimensional Wavelet Transform

As stated earlier, wavelets are dilations and translations of the mother wavelet, ψ. These
dilations and translations are derived from the formula:

ψ(s,l)(t) = s−1/2ψ(st− l) (2.4)

for any real numbers s and l, where s and l are variables that dilate and translate the
mother function (95).

The wavelet transform is the process of transforming a particular signal into a time-
scale representation of it. It is easier to explain wavelet transform by comparing it to
the Fourier transform. Mathematically, the process of Fourier analysis is represented by
the Fourier transform:

F (w) =
∫ ∞

−∞
f(t)e−jwtdt (2.5)

which is the sum over all time of the signal f(t) multiplied by a complex exponential.
The results of the transform are the Fourier coefficients F (w), which when multiplied
by a sinusoid of frequency w, yield the constituent sinusoidal components of the original
signal.

Similarly, wavelet transform is defined as the sum over all time of the signal multiplied
by scaled, shifted versions of the mother wavelet function ψ:

C(scale, position) =
∫ ∞

−∞
f(t)ψ(scale, position, t)dt (2.6)

The results of the wavelet transform are many wavelet coefficients, C, which are a
function of scale and position. Multiplying each coefficient by the appropriately scaled
and shifted wavelet yields the constituent wavelets of the original signal.

Chapter 2 Literature Review 24

time time

sc
al

e

CWT

Figure 2.5: A signal and its wavelet transform

Note that C is a coefficient with respect to scale and position. Therefore the output
of wavelet transform will have one extra dimension from the original signal. For a one-
dimensional signal, the wavelet transform output will have two dimensions, while for
a two-dimensional signal such as image, the wavelet transform output will have three
dimensions, and can be viewed as an image stack. An example of applying wavelet
transform to a one-dimensional signal is shown in Figure 2.5. It is a different view of
signal data from the time-frequency Fourier view, but it is not unrelated. The higher
scales correspond to the most ”stretched” wavelets. The more stretched the wavelet,
the longer the portion of the signal with which it is being compared, and thus the
coarser the signal features being measured by the wavelet coefficients. Thus, there is a
correspondence between wavelet scales and frequency as revealed by wavelet analysis:

• Low scale ⇒ Compressed wavelet ⇒ Rapidly changing details ⇒ High frequency

• High scale ⇒ Stretched wavelet ⇒ Slowly changing, coarse features ⇒ Low fre-
quency .

It’s important to understand that the fact that wavelet analysis does not produce a
time-frequency view of a signal is not a weakness, but a strength of the technique. Not
only is time-scale a different way to view data, it is a very natural way to view data
deriving from a great number of natural phenomena. The wavelet transform coefficient
plot has proved to be a much better view of data than the traditional time-frequency
view.

2.4.4.1 Discrete Wavelet Transform (DWT)

Calculating wavelet coefficients at every possible scale is computationally expensive, and
it generates a lot of data. What happens if we choose only a subset of scales and positions
at which to make our calculations? It turns out, rather remarkably, that if we choose
scales and positions based on powers of two, so-called dyadic scales and positions, then
our analysis will be much more efficient and just as accurate (93). Such an analysis is
referred to as discrete wavelet transform (DWT).

Chapter 2 Literature Review 25

However not all wavelets are suitable for this kind of analysis. To ensure a lossless
representation and a perfect reconstruction of data, the mother wavelet, ψ must be
associated with a scaling function, φ, and both ψ and φ have to be orthogonal and
compactly supported. As mentioned earlier, only some wavelets are associated with a
scaling function. Unlike the mother wavelet which integrates to zero, the scaling function
must integrate to unity. The dilation and translation must now be performed on both
the mother wavelet and the scaling function.

ψ(s,l)(t) = 2−s/2ψ(2−st− l)

φ(s,l)(t) = 2−s/2φ(2−st− l)

(2.7)

In other words, to perform DWT, there must be a pair of functions, one having a zero
dc component and the other having a unit dc component, the dilations and translations
of which form a complete basis for the lossless representation of a signal.

Figure 2.6 shows the dilations and translations of a wavelet in discrete wavelet transform.
The Haar wavelet, which is an odd rectangular pulse pair, is the simplest and oldest
orthonormal wavelet with compact support, and will be used for illustration purposes.
Starting from the finer scales, the basic wavelet is translated by increments equal to its
width, so that the complete set of wavelets at any scale completely covers the interval.
The basic wavelet is progressively stretched (increased in scale) by powers of two. As
the basic wavelet is scaled up by powers of two, its amplitude is scaled down by powers
of
√

2, to maintain orthonormality. The result of this is a set of orthonormal basis
functions. The scaling function completes the interval in the coarsest scale.

An efficient way to implement discrete wavelet transform using filters was developed in
1988 by Mallat (93). This very practical filtering algorithm, which is based on the theory
of multiresolution analysis, yields a fast discrete wavelet transform, a box into which a
signal passes, and out of which wavelet coefficients quickly emerge. In the paper, the
author verified that a family of orthogonal wavelets and their scaling function can be
represented by a bank of quadrature mirror filters (QMF), making it possible to replace
ψ and φ with the QMF itself in computing the wavelet coefficients.

The quadrature mirror filter is a special filter that can act as both a high and a low-
pass filter H and L by re-arranging its coefficients. Filtering a signal with a low-pass
QMF produces the coefficients corresponding to the mother wavelet, also termed ap-
proximation coefficients. Similarly, filtering a signal with a high-pass QMF produces the
coefficients corresponding to the scaling function, also termed detail coefficients. The
same QMF filter is used during reconstruction, i.e. converting the coefficients back to
obtain the original data. This process of high and low-pass filtering of signal to get
two sets of data is called signal decomposition. The resulting high and low-pass signals
can be sub-sampled by a factor of 2, without loss of information. The filtering and

Chapter 2 Literature Review 26

scale=1, location=1

scale=1, location=2

scale=1, location=3

scale=1, location=4

scale=2, location=1

scale=2, location=2

scale=1, location=1

scaling function

0 1

Figure 2.6: The Haar wavelet basis functions

sub-sampling is repeated iteratively on the low-pass signal. The result of this process
is a pyramid of signals with successive frequency content, which is called standard or
pyramidal wavelet transform.

Alternatively, the decomposition can be iterated not only on the low-pass but on the
high pass signals as well. This results in a binary tree of signals which is called tree-
structured wavelet transform or wavelet packet transform. Because of the sub sampling,
the total representation contains the same number of samples as the original signal.
When sub-sampling is omitted, an over-complete representation is obtained, which is
called discrete wavelet frames. The filtering approach is most widely used because it
is easy to understand and familiar in a signal processing context. The results of the
decomposition depend on the filters (or corresponding wavelets) that are used. In prac-
tise, usually it is the filters that are constructed in such a way that their corresponding
functions have the desired wavelet properties.

Chapter 2 Literature Review 27

2.4.4.2 Continuous Wavelet Transform (CWT)

Without the discretisation step, one deals with a continuous wavelet transform (CWT)
instead of a DWT. This is more general; it allows continuous scale selection and a
more flexible filter design. However, there exists no efficient implementation scheme
similar to that of the DWT. In fact, they are usually implemented in the same way as
continuous Gabor transform, by filtering in the Fourier domain. The difference between
CWT and Gabor transform lies only in the properties of the basis functions. While
important in theory, this difference can become negligible in practise. For example, the
B-spline wavelet has a corresponding Gabor function from which it differs only by small
correction term. This is also why the Gabor transform is sometimes referred to as the
Gabor wavelet transform. So in practical applications, the main design choice is to make
between discrete transforms, which are fast, or continuous transforms which offer more
precision and additional fine-tuning possibilities.

2.4.5 Two-Dimensional Wavelet Transform

To apply wavelet transform in images, the extension to two-dimensional has to be made.
For two-dimensional data, the transform can be categorized into separable and non-
separable transform. For the non-separable wavelet transform, the wavelet basis used
is a nonseparable function. This results in the transform being performed by filtering
in the Fourier domain, as in the continuous wavelet transform. This requires expensive
computation and therefore have no advantage over other type of transform computation-
ally. Most discrete wavelet transform in two-dimensional data is performed using the
separable wavelet transform. For the separable transform, the two-dimensional wavelets
are defined as tensor products of one-dimensional wavelets. This results in one scaling
function and three different mother wavelets:

φ[i, j] = φ[i]φ[j]
ψ1[i, j] = φ[i]ψ[j]
ψ2[i, j] = ψ[i]φ[j]
ψ3[i, j] = ψ[i]ψ[j]

(2.8)

This type of product allows one-dimensional filtering of rows, followed by one-dimensional
filtering of columns, instead of two-dimensional filtering. This results in four different
filtered images; one of which represent the approximation, namely the low-low (LL)
channel, while the other three represent the details, namely the low-high (LH) channel,
high-low (HL) channel and high-high (HH) channel. LL is a smoothed version of the
original image I, while the detail images LH, HL and HH contain respectively the
details of the vertical, horizontal and diagonal directions, thus retaining specific orien-
tational information. After this, a sub-sampling in both directions can be performed.

Chapter 2 Literature Review 28

signal,
s(t)

Low-pass filter
and

downsampling

High-pass filter
and

downsampling

Approximation
coefficients
(LL channel)

Low-pass filter
and

downsampling

High-pass filter
and

downsampling

Low-pass filter
and

downsampling

High-pass filter
and

downsampling

row

row

column

column

column

column

column

Detail
coefficients 1
(LH channel)

Detail
coefficients 2
(HL channel)

Detail
coefficients 3
(HH channel)

(a)

Image

HHHL

LHLL

HL

LL

HHHL

LH

filter

filter

filter

sub-sample

+

+ +

(b)

Figure 2.7: One level of wavelet decomposition of two-dimensional data

Figure 2.7 illustrates the filtering algorithm on two-dimensional data.

As in the one-dimensional case, by iterating the procedure on successive low-pass images
LL, sub-images LL on different levels are generated. This results in a pyramid with detail
images for different scales and orientations, the two-dimensional standard or pyramidal
wavelet decomposition. When not only the LL, but other sub-images are decomposed
further, a tree-structured wavelet transform or wavelet packet for two dimensions are
obtained. If the sub-sampling is not performed, the discrete wavelet frames are obtained,
and can be viewed as a stack of wavelet images. All are depicted in Figure 2.8.

Chapter 2 Literature Review 29

Image

PWT

TWT

DWF

Figure 2.8: First two levels of a pyramidal, tree-structured and wavelet frames de-
composition

Figure 2.9: Frequency splitting for (left) 2-level pyramidal and, (right) tree-structured
wavelet transform

The frequency splitting of the standard wavelet transform is in octave bands. This leads
to a description that is sometimes too coarse, especially for higher frequencies. Using a
wavelet packet transform refines the frequency splitting for the higher frequencies , at
the expense of leading to a large number of sub-images and worse spatial localisation.
It is instructive to look at the frequency splitting in Fourier space, as shown in Figure
2.9

Chapter 2 Literature Review 30

2.4.6 Computational Complexity

The wavelet transform essentially involves filtering with two one-dimensional convolution
masks. Therefore one level of decomposition has a computational complexity which is
linear in n, the number of image pixels. For a multilevel decomposition, the depth d

also determines the complexity. It is limited by the size of the image: d ≤ 1
2 log2n. The

computational complexity becomes:

O(n, d) = n
i<d∑

i=0

C (2.9)

with C the fraction of the image pixels taken to a next level. For C 6= 1:

O(n, d) = n
Cd − 1
C − 1

= n
C

1
2
log2n − 1
C − 1

(2.10)

Therefore, for the three cases of decomposition described above, the computational
complexity is as below:

• standard wavelet transform: < 4
3n

• tree-structured wavelet transform: n ∗ d

• discrete wavelet frames: n ∗ d

The wavelet based methods compare favorably with Fourier based frequency analysis,
since the fast Fourier transform has a complexity of n log n. Because of the advantage
in computational complexity as well as better localisation in both time and frequency
domain, wavelet is a very powerful tools for image processing and analysis, and therefore
will be our main tools in this thesis.

Chapter 3

Low-Quality Image Analysis

This chapter starts with a review on low-quality image analysis, and the motivation
behind the whole project. Since fax images are the reason for the exploration of this field,
they will be used as the main source of low-quality images throughout this chapter. The
properties of fax images as well as other low quality images are analysed and discussed.
A novel algorithm for query by low-quality image application is then proposed, and its
performance is evaluated on a collection of museum images using fax images as well as
some other low quality image types as query.

3.1 Introduction

As mentioned in chapter 2, the motivation for research on low-quality images comes
from a requirement by some museums to respond to queries for pictorial information,
submitted in the form of fax messages or other low-quality monochrome images of works
of art. The museums have databases of high-resolution images of their artefact collections
and the person submitting the query is asking typically whether the museum holds the
art work shown or perhaps some similar work. Typically the query image will have no
associated metadata and will be produced from a low-resolution picture of the original
art work.

The resulting poor quality image, received by the museum, leads to very poor retrieval
accuracy when the fax is used in standard query by example searches using, for example,
colour or texture matching algorithms. It is obvious that fax images are of very low
quality and even the best quality of fax machine cannot prevent the loss of information
in the fax image. Special algorithms need to be developed in order to improve the
retrieval accuracy for query by low-quality image application. Throughout this chapter,
fax images will be used as the main source of low-quality image for query by low-quality
image experiments. Nonetheless some other forms of low-quality image will also be
considered.

31

Chapter 3 Low-Quality Image Analysis 32

3.1.1 Analysis of Fax Images

The fax machine is one of the most important communication machines throughout the
world. You can walk into nearly any office, big or small, and you will find a fax machine.
Connected to a normal phone line, a fax machine allows us to transmit pieces of paper
to someone else instantly. Even with the popularity of e-mail, it is nearly impossible to
do business without one of these machines today.

During faxing, the scanner in the machine looks at one line of the sheet of paper and
looks for a group of black and white spots. It encodes the pattern of spots and sends them
through the phone line. The bits for the scanned document travel through the phone line
and arrive at a receiving fax machine. The bits are decoded, uncompressed, reassembled
into the scanned lines of the original document, and printed onto a paper. However
there are many factors that can degrade the quality of the received document from
the original. First of all, most fax machines convert colour documents to monochrome
documents, and certain colours such as yellow, greenish yellow and light blue are not
recognised by the machine. Secondly, if either fax machine is dirty, then the document
will be smudged or have black lines though it.

The resolution and contrast setting of the machine is important as well. For most
machines, several resolution settings can be chosen such as super fine, fine, standard and
half tone. Higher resolution gives better quality but take a longer time to transmit the
document, while lower resolution have the opposite effects. The contrast setting also tend
to be set high since that will improve the quality of a transferred text document. But for
an image document, the received image will tend to be binary-like. Since fax machine
operates using telephone lines, noise and distortion can also occur during transmission.
Finally the printing quality of the receiving fax machine will also contribute to the
quality of the received document. Some fax machines even need to use special paper for
printing that tends to turn yellow or brown after a period.

All of these factors may contribute to the poor quality of fax images. Figure 2.2 shows
several examples of them. From the figure, it is obvious that the fax images are almost
entirely binary (probably because of high contrast setting), and differ significantly from
their original images. Figure 3.1 shows the histogram of the fax images compared to
the original image. From the histogram, we can see that the pixel distribution of the
fax image is pushed towards both ends of the histogram. If the distribution is pushed
further towards the two extremes, we will obtain a binary image. The histogram also
suggests that no image enhancement or image restoration algorithms could be used to
restore the fax image to the original. Therefore if the fax image is to be used as a query
for content-based image retrieval, we have to make do with the inadequate information.
However, one property of the fax images which has been learned is the fact that they
are almost binary in nature, and we could exploit this property for content-based image
retrieval applications.

Chapter 3 Low-Quality Image Analysis 33

Figure 3.1: Histograms of a fax image and its original

3.1.2 Other Low-Quality Image Examples

Besides fax images, there are other forms of low-quality images. This includes images of
inappropriate contrast and brightness, highly-compressed images, low resolution images,
quantized images, as well as noisy images. All of these forms of low-quality images
will also be considered and used as queries for the novel query by low-quality image
algorithms to be discussed in the next section.

3.1.2.1 Images of Inappropriate Brightness and Contrast

There are many image acquisition devices available on the market. One of the most
popular is the digital camera. But even with a high quality digital camera we can
still get a rather poor quality image. For example, an image can be overexposed or
underexposed and the resulting images can be either too bright or too dark. The over
and underexposed images are also difficult to enhance. When an image is overexposed,
its pixels tend to skew toward the high end of the histogram, and simple histogram
modification is sometimes inadequate to recover the image. The same can be said about
underexposed images. An image can also be of low contrast or high contrast. A low
contrast image will have a very narrow histogram, while a high contrast image will have
pixels clustered at both the low and high end of the histogram (same as fax images).
Figure 3.2 shows histograms of some poor quality monochrome images.

Chapter 3 Low-Quality Image Analysis 34

(a) (b) (c)

(d) (e)

Figure 3.2: Histogram of (a) ’Correct Image’, (b) Low-contrast image, (c) High-
contrast image, (d) Dark image, (e) Bright image

3.1.2.2 Highly Compressed Images

In order to save storage space, most digital images are compressed when stored in a
computer. The compression technique used to compress the image is usually the lossy
compression for standard image collections. This is done by eliminating data that are
visually unnecessary and by taking advantage of the redundancy that is inherent in most
images. Standard lossy compression techniques can achieve up to 50 times reduction
in storage space for still images. However there is a tradeoff in achieving such a high
compression ratio. Higher compression means more data being removed, and hence
leads to a drop in image quality. When the compression ratio is too high, a significant
degradation in image quality is observed. This reduction in quality will be crucial when
the image is used as a query in content-based image retrieval applications.

3.1.2.3 Low Resolution Images

Images can have a wide range of resolutions. The higher the resolution, the larger the
potential information carried by the image. In the case of a low resolution image, if the
resolution is too low, there might not be enough information in the image. The number
of pixels determines the resolution of an image, and it is a subjective issue to decide how
many pixels are considered to be of low resolution. If these images are used as query
in a content-based image retrieval system, problems might arise due to the inadequate
information in the image. Various interpolation algorithms are available in order to
increase the resolution of the image, but interpolation algorithms do not increase the
information in the image. No matter how good the algorithm is, it is impossible to

Chapter 3 Low-Quality Image Analysis 35

recreate data that is non-existent in the first place.

3.1.2.4 Quantized Images

The standard number of grey level values used for monochrome images is 256 as studies
have shown that the human visual system can differentiate no more than 256 grey levels
(97). However, in some applications, images are quantized to some smaller number of
grey levels. The smallest number of grey levels for an image is 2, which is the case for
binary images. In between these values, users can always set their own number of grey
levels for an image, usually a number of the power of 2. However lower grey values mean
a reduction in information that can be carried in the image. Using these kinds of images
in content-based image retrieval applications can also raise a problem because of the
lack of information, as in the previous case.

3.1.2.5 Noisy Images

Images can sometimes be accompanied by noise. Noise is any undesired information
that contaminates an image. Noise appears in images from a variety of sources. The
digital image acquisition process, which converts an optical image into a continuous
electrical signal that is then sampled, is the primary process by which noise appears in
digital images. At every step in the process there are fluctuations caused by natural
phenomena that add a random value to the exact brightness value for a given pixel.
The signal-to-noise ratio determines the amount of noise in an image. The lower the
signal-to-noise ratio, the poorer the quality of the image.

3.1.3 Previous Work on Query by Low-Quality Image

As far as content-based image retrieval is concerned, there is no comprehensive work
on query by low-quality image applications. In most CBIR systems, if a low-quality
image is encountered, either as query or database image, they usually enhance the
particular image first before processing the information in the image, for example by
noise reduction (98; 99; 100) or histogram manipulation (101; 102). Although this may
be a good approach in some cases, it is usually effective only on ”not so low”-quality
images. As we have seen previously, the images we are working on are particularly
poor in quality, and enhancing the image will not increase the retrieval accuracy of the
system. In the following section, a simple but effective method for dealing with query
by low-quality image problems is proposed.

Chapter 3 Low-Quality Image Analysis 36

3.2 A Novel Query by Low-Quality Image (QBLI) Algo-

rithm

Our novel query by low-quality image algorithm (103; 104) is based on the wavelet
transform. There are several reasons for the use of wavelet transforms in the algorithm.
Firstly, the wavelet transform is of low computational intensity, which is an essential
property in the proposed algorithm. Secondly, the wavelet transform is known to have
very good discrimination when used in image classification, at least for texture retrieval.
Finally the feature vector produced by the wavelet transform is compact, that is we
can simply take the mean energy of each wavelet channel as a feature. The number of
channels of the wavelet transform can be controlled by adjusting the number of decom-
position levels during the transform. The compact feature vectors are also an essential
property for using the proposed algorithm. These properties make the wavelet transform
a suitable image analysis tool for query by low-quality image application.

From chapter 2, we learned that there are a number of varieties of wavelet transform.
These include the standard or pyramidal wavelet transform (PWT), tree-structured
wavelet transform (TWT), discrete wavelet frames (DWF) and Gabor wavelet trans-
form, among others. However, not all of these varieties of wavelet transform have the
three properties mentioned above. In fact, the standard wavelet transform is the only
technique that offers all three advantages. The tree-structured wavelet transform results
in a much higher number of channels, and is quite complex compared to the standard
wavelet transform. Moreover, for a non-textured image, the frequency content of an im-
age is concentrated in the low frequency region, thus image decomposition is needed just
for the low frequency band. The discrete wavelet frames technique, although it has the
same number of channels, is more computationally intensive than the standard wavelet
transform. The Gabor wavelet and all other continuous wavelet transforms have an
even higher computational complexity. Therefore the PWT will be used in the proposed
QBLI algorithm to compute the feature vector of an image.

Now we will discuss how to use the PWT technique in the QBLI algorithm. Since the
quality of a low-quality image is so low that it differs substantially from its original,
applying the PWT to the original image will not produce a feature vector close enough
to the feature vector of the query. To avoid this problem, we exploit the fact that the
low-quality image is almost binary in nature. The low-quality image is first converted to
a binary image, before the PWT is applied. A similar conversion to binary is applied to
each of the database images, choosing a threshold which makes them as close as possible
to the binary fax image, before the PWT is applied. Therefore during matching, the
comparison is actually made between the binary versions of both the query image and
the database images. Using an appropriate thresholds, the binary image of the query
should be similar to the binary image of its original. If two binary images are almost
the same, their feature vectors should also be similar, hence resulting in correct retrieval

Chapter 3 Low-Quality Image Analysis 37

of the original image. One simple approach to compute the threshold value for binary
conversion of the database images is to use the percentage of black or white pixels of
the query binary. For example, if after binarisation, the percentage of white pixels of
the query image is x, then all the database images can be converted to binary in such a
way that the percentage of white pixels is also x.

At first, this method seems to be unsuitable for use with the system in Figure 2.1,
since in order to compute the feature vector of the database images, the percentage of
white pixels is required and that depends on the query images. It is highly ineffective
to compute the feature vectors of the database images during retrieval as it makes the
response time large, depending on the volume of the database. An effective retrieval
system computes the feature vectors of the images in the database in advance, so that
only the matching process is needed during retrieval process. Nevertheless, due to the
compact nature of the wavelet signatures, we are able to propose an algorithm that suits
the system represented in Figure 2.1. The algorithm consists of two steps; binary image
thresholding and feature vector computation and comparison, and these are explained
below.

3.2.1 Binary Image Thresholding

As stated earlier, since the query images are almost binary, it is better to compute
feature vectors in the binary domain. The query image can be converted to binary by
thresholding in the middle of the grey scale range covered by the image. In order for
the feature vector of a database image to be compared fairly with the feature vectors
from the query, the database image must also be converted to binary. But the choice of
threshold is not immediately obvious. For the original database image corresponding to
the query, an appropriate threshold is probably one that produces a binary image with
the same percentage of black (or white) pixels as the binary form of the query image.
We could use this percentage for all the database images, but it varies from query to
query. How can the percentage be matched if we are to precompute the feature vectors
from the binary versions of all the database images? Note that since the query image is
the target and already effectively binary, it is the original database image that must be
made as close as possible to the binary query and not vice versa.

One way to solve this problem is to convert each database image into a set of different
binary images corresponding to different percentages of black pixels from 0 to 100%.
If sufficient binaries are created, the binary query image will then be very similar to
one of these binaries for the original image. We propose that 99 binaries are created
for each database image corresponding to percentages of black pixels from 1 to 99 in
steps of 1% (note that binaries of 0% and 100% are respectively black and white images,
and thus are not needed). One might argue that 99 binaries for the database images
might be too much or too little. In the experimental section, we will discuss the optimum

Chapter 3 Low-Quality Image Analysis 38

number of binaries to be created for each database image. At the moment, for the sake of
explanation and as an initial estimate, the simple-to-understand 99 binaries representing
99 threshold percentages will be used.

Using the current threshold,
convert the image into binary

image

Compute PWT features for the
binary image

t=maximum?

Yes

No

Final Feature Vector

Increase the threshold, t
by a certain steps

Database Image,
I(M,N)

Set the threshold, t to the
minimum value

Resize the image to
256 x 256

Figure 3.3: Flowchart of the proposed algorithm for database feature extraction

However, the binaries do not need to be stored. Calculating the feature vectors for the
database involves calculating the PWT for each of the binary images for each image
in the database. This is implementable since the PWT is a fast algorithm and, more
importantly, the feature vectors for each binary image have only a relatively small num-
ber of coefficients. There will be 99 sets of feature vectors for each database image,
but during matching, once the percentage of pixels of the query is known, only one of
these 99 sets will be used for comparison, namely the set associated with the same pixel
percentage as the binary query image. Figures 3.3 and 3.4 show the flowchart of the
proposed algorithm for the feature extraction stage and the retrieval stage respectively.

Chapter 3 Low-Quality Image Analysis 39

Compute the percentage of
black and white pixels of the

binary image

Compute PWT features for the
binary image

Retrieved Images

Select the appropriate set of
feature vector database based

on the percentage pixels in
the query binary

Query Image,
I(M,N)

Convert the query image to
binary by thresholding in the

middle of the grey level

Compare the feature vector of
query with the feature vector

database

Resize the image to
256 x 256

Figure 3.4: Flowchart of the proposed algorithm for retrieval stage

3.2.2 Feature Vector Computation and Comparison

As described earlier, the PWT is used as a tool for feature vector extraction. Since the
PWT is usually applied on dyadic square images, the binary images are all resized to
256×256 . Other image sizes can also be used although bigger sizes will increase the
computational load while smaller sizes will reduce the information within the image.
The 256 × 256 size is thus the most suitable option. For simplicity, nearest neighbour
interpolation and decimation will be used for the resizing process. The resizing can also
be done before the binary conversion. The PWT algorithm is applied and the image is
decomposed into four sub-images (LL,LH ,HL and HH , refer chapter 2). The LL band
is decomposed further until the desired number of decomposition levels is achieved. For
a start, we set the smallest sub-images (sub-images corresponding to the highest level)
are of size 4×4 , which means six levels of decomposition for an image of size 256×256.
This results in 19 different sub-images or sub-bands.

Chapter 3 Low-Quality Image Analysis 40

Once the wavelet coefficients of a binary image are available, features are computed from
each sub-band, resulting in 19 features for each binary image. The mean µ is the energy
measure used to compute the features. Let the image sub-band be Wmn(x, y) while mn
denotes the specific sub-band, m is the decomposition level and n=1,2,3,4 indicates the
LL, LH, HL, HH bands respectively, then µmn is calculated by:

µmn =
1

N2
mn

∑
y

∑
x

|Wmn(x, y)| (3.1)

where N is the length of a particular sub-band mn.There are several other energy mea-
sures that can be used as the feature such as the standard deviation, the number of
zero-crossings etc., and these are evaluated in the context of texture retrieval in chapter
4 of this thesis. But in order to keep the algorithm simple, only the mean energy is used.
Incorporating any other energy measure with the mean energy will increase the total
number of features for a particular database image quite drastically, and hence is not
very suitable for the proposed algorithm. The feature vector f for a particular binary
image is therefore:

f = [µmn] , n 6= 1 except for the coarsest level, i.e. m=6,

= [µ12, µ13, µ14, µ22, ...µ61, µ62, µ63, µ64]

(3.2)

The feature vectors for the database images will have 99×19=1881 coefficients, although
only 19 will be used for comparison in each retrieval task. During matching, a distance
classifier is used to compute the similarity between the query and each database im-
ages. There are quite a few distance classifiers available and their performance for this
particular algorithm will also be investigated. However as a default, the widely known
minimum Euclidean distance will be used for the early part of the experiments. The
minimum Euclidean distance between 2 features i and j is given by:

dEuclidean(i, j) =
∑
m

∑
n

[
µ(i)

mn − µ(j)
mn

]2
(3.3)

The square root is omitted for computational efficiency as it does not affect the order
of similarity. Once the distances are computed, the images will be retrieved in order of
increasing distance from the query image.

3.3 Available Methods for Comparison

As previously mentioned, there is little published research specifically on query by low-
quality images available in the literature. Thus it is difficult to compare the performance
of the proposed algorithm with other published algorithms. However, in this section we

Chapter 3 Low-Quality Image Analysis 41

listed two techniques which will be compared against the proposed algorithm. One of the
techniques is a simple pixel matching algorithm which we develop for comparison with
the proposed QBLI method. The other technique is simply to use the wavelet transform
to extract features from the low-quality image without any binarisation processes. It
is intended to show the superiority of the inclusion of the binarisation in solving the
particular retrieval problem.

3.3.1 Pixel Matching Algorithm

The pixel matching algorithm is almost identical to the proposed QBLI algorithm except
that instead of using PWT coefficients of binary images as features, it uses pixel by pixel
matching between the binary query and the database queries. It is intended to show
the effect of using PWT coefficients as features in the QBLI algorithm. For a particular
database image, 99 binaries are created and stored as features. During retrieval, the
query is converted to binary and the percentage of black pixels is computed. A pixel
by pixel matching is then performed between the query binary and the database binary
corresponding to the percentage of black pixels. The number of matching pixels, as
a percentage of the total number of pixels, is used as the similarity measure and the
database images are then retrieved in decreasing order of similarity.

This method however uses large amount of storage. A 256×256 image requires 256×256×99
8bit

≈ 800kB of memory to store all the features. An alternative way to perform the pixel
matching algorithm is by performing binary conversion during the retrieval process.
The query image is converted to be totally binary, and the percentage of black pixels is
computed. The database image to be compared to the query is then converted to binary
in such a way that the percentage of its black pixels is the same as in the binary query
image. Both binaries are re-sampled to the same size and a pixel by pixel comparison
is made. Performing the pixel matching algorithm this way, there is no need for feature
storage at all, although the computational load involved during interactive retrieval is
very high.

Based on the description above, the pixel matching algorithm is not appropriate for
interactive retrievals since it either involves a large storage or a very slow interactive
retrieval. However, as will be shown later, this method does give a very high accuracy
in retrieving images based on low-quality query. This method is used as a yardstick for
the evaluation of the proposed wavelet-based QBLI algorithm since it gives such good
retrieval accuracy. In the experiment section, the second approach to pixel matching
algorithm will be used because there is not much different in computational speed with
the increasing size of re-sampled images, as oppose to linear increase in storage space
for the first approach.

Chapter 3 Low-Quality Image Analysis 42

3.3.2 Pyramidal Wavelet Transform

Since the proposed QBLI method uses the pyramidal wavelet transform as the feature
extractor, it is reasonable that the PWT algorithm is compared to the novel algorithm.
By comparing it with the feature extractor itself, we can evaluate the true effectiveness
of the binarisation stage in the QBLI. We can also observe how the retrieval accuracy
would be if we are using standard feature extraction techniques without considering the
high difference between the low-quality image and its original.

The procedure for the retrieval using the pyramidal wavelet transform is relatively
straight forward. The entire database image is first resized to a dyadic square im-
age. In this experiment, we use the same size as in the proposed QBLI method, which
is 256 × 256. The pyramidal wavelet transform is applied to the database image, and
19 channels are produced. The mean energy (as in Equation 3.1) is computed from
each channel. During the retrieval process, the query image is also resized to 256× 256
and features are computed in the same way as for the database image. The similarity
between the query and database image is computed using the function in Equation 3.3,
and the images are retrieved in order of increasing distance.

3.4 Experimental Analysis

The database used in our experiment consists of 1062 images of various types and sizes,
taken from the Victoria and Albert museum collection. From the 1062, 20 images are
selected as target images in the experiments, and are shown in Figure 3.5. As mentioned
before, fax images are the primary sources for the low-quality image in this paper, hence
a genuine fax version of the 20 selected images are used as queries for the retrieval
experiment. The 20 fax images are shown in Figure 3.6. The evaluation is based on the
ability of the algorithm to retrieve the original image when the fax version of the original
is used as the query. Experiments conducted include the evaluation of the effectiveness
of the proposed algorithm, the performance using different distance classifiers, as well
as different numbers of decomposition levels and wavelet bases, investigation of the
optimum number of binaries to be created, and finally the performance of the algorithm
on other types of low-quality images.

3.4.1 Evaluation of the Novel Algorithm

In this particular experiment, the number of binaries created for each database image is
set to 99, representing 99 different percentages of black pixels. The wavelet basis used
for wavelet transform decomposition is the Daubechies 8-tap wavelet. The distance
metric used is the minimum Euclidean distance, and the number of decomposition levels

Chapter 3 Low-Quality Image Analysis 43

Image 1

Image 5

Image 4Image 3Image 2

Image 7 Image 8Image 6

Image 9 Image 11 Image 12Image 10

Image 13 Image 15 Image 16Image 14

Image 17 Image 19 Image 20Image 18

Figure 3.5: 20 selected images from the database

is set to six, which means 19 features for each binary image. The results for the novel
QBLI algorithm are shown in table 3.1, where the retrieval position of the original image
among the 1062 database images is shown. The table also shows the results obtained by
using a basic query by example retrieval using PWT features calculated from the raw
query and database images without the initial binarisation stage.

It can be seen that the basic PWT query by example algorithm is particularly poor
for fax queries, but the retrieval results obtained using the QBLI algorithm are very
encouraging. All the original images are retrieved within the top 5. This is a good
result considering the poor quality of the fax images and the reasonably large image
database used. The result suggests the importance of the binarisation process in the
algorithm. It also suggests that the distances between the fax images and their originals
are very close and should still produce good results for a larger image database. Figure

Chapter 3 Low-Quality Image Analysis 44

Fax Image 1

Fax Image 5

Fax Image 4Fax Image 3Fax Image 2

Fax Image 7 Fax Image 8Fax Image 6

Fax Image 9 Fax Image 11 Fax Image 12Fax Image 10

Fax Image 13 Fax Image 15 Fax Image 16Fax Image 14

Fax Image 17 Fax Image 19 Fax Image 20Fax Image 18

Figure 3.6: 20 fax images corresponding to the images in Figure 3.5

3.7 shows an example of three retrieval results using the QBLI algorithm.

Table 3.1 also shows the results using the pixel matching algorithm. The result was
obtained using the second approach to pixel matching algorithm with the re-sampled
size set to 256×256. As expected, the pixel matching algorithm gives very good retrieval
results. All the originals were returned as the first match, except for one case only, which
fails because of the poor state around the edges of that particular query image, which
leads to inaccurate computation of the percentage of black pixels. The result of the
QBLI algorithm for that particular query is however very promising. This shows that
the pixel matching algorithm is very sensitive to noise, while the QBLI algorithm is much
more robust. It was also observed that the size of the re-sampled image is quite critical
for pixel matching algorithm. The bigger the re-sampled image, the better the accuracy,
with the best result was observed when the re-sampled images are set to 256 × 256 or

Chapter 3 Low-Quality Image Analysis 45

Query Rank of Original
Image Basic Pixel Novel
No. PWT Matching QBLI
1 104 1 1
2 369 1 1
3 15 1 1
4 21 1 3
5 272 1 1
6 130 1 1
7 258 1 1
8 2 1 3
9 502 1 1
10 302 15 2

Query Rank of Original
Image Basic Pixel Novel
No. PWT Matching QBLI
11 603 1 1
12 299 1 1
13 60 1 1
14 495 1 4
15 500 1 2
16 339 1 1
17 15 1 2
18 264 1 4
19 1 1 1
20 1 1 1

Table 3.1: Retrieval results using 20 fax images on a database of 1062 images

Time Basic PWT Pixel Matching Novel QBLI
taken to Technique Technique Technique
retrieve
images 1 130 1

(in seconds)

Table 3.2: Comparison of speed between the three algorithms

bigger.

Table 3.2 compares the average time taken for retrieving images from the database of
1062 images using the three techniques. The times are observed on a 700 MHz Xeon
processor. From table 3.1 and table 3.2 it can be seen that the proposed QBLI algo-
rithm almost equals the pixel matching algorithm in terms of retrieval performance, but
involves a much smaller computational load, and therefore is much better for interactive
queries. It is also important to point out the fact that the PWT algorithm applied on
binary images helps in minimising computation time. Logically, a computation based
on just ones and zeros is much quicker than a computation based on multiple values.
To sum up, it can be said that the fast QBLI method integrates the high accuracy of
the pixel matching method with the low computational load and the robustness of the
basic PWT method.

3.4.2 The Effect of the Distance Metric

In the previous experiment, we used the minimum Euclidean distance as distance clas-
sifier for the proposed algorithm. There are however several other distance metrics that
can be used with the algorithm such as the Manhattan distance, Bayesian distance and
Mahalanobis distance. However with the exception of Manhattan distance, these dis-
tance metrics are rather complex in nature. For the sake of computational simplicity, we
restrict our distance metrics only to simple functions, which means only the Euclidean

Chapter 3 Low-Quality Image Analysis 46

1

654

32

Query image 1

1

654

32

Query image 2

1

654

32

Query image 3

Figure 3.7: Fax images and their top six retrieved images.

Chapter 3 Low-Quality Image Analysis 47

Query Rank of Original
Image Manh. Norm. Norm.

Eucl. Manh.
1 1 1 2
2 1 1 1
3 1 1 4
4 3 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 2 1 1
9 1 1 1
10 2 1 1

Query Rank of Original
Image Manh. Norm. Norm.

Eucl. Manh.
11 1 1 1
12 1 1 1
13 1 1 1
14 3 5 2
15 2 1 3
16 1 1 1
17 1 1 1
18 3 61 61
19 1 1 1
20 1 1 1

Table 3.3: Retrieval results using different distance metrics

and Manhattan distance will be tested. However we will also introduce normalisation
in distance computation to observe if the addition of normalisation can further boost
the retrieval performance. The idea of normalising the feature vectors arises due to
different range of energy values between different wavelet channels, and it is feared that
this might lead to contributions from some channels become insignificant. In the follow-
ing experiment, we will observe the performance of three different distance classifiers,
namely the Manhattan distance, the normalised Euclidean distance and the normalised
Manhattan distance, compared to the Euclidean distance. The three distance metrics
are given below:

dManhattan(i, j) =
∑
m

∑
n

∣∣∣µ(i)
mn − µ(j)

mn

∣∣∣ (3.4)

dNorm.Euclidean(i, j) =
∑
m

∑
n

[
µ

(i)
mn − µ

(j)
mn

σmn

]2

(3.5)

dNorm.Manhattan(i, j) =
∑
m

∑
n

∣∣∣∣∣
µ

(i)
mn − µ

(j)
mn

σmn

∣∣∣∣∣ (3.6)

where σmn is the standard deviation of a particular feature over the entire database.

Table 3.3 shows the ranking of the retrieved results using three different distance metrics.
From the table, there is not much difference between the three distance metrics compared
to the Euclidean distance (refer Table 3.1, third column). However closer inspection
suggests that the standard Euclidean and Manhattan distance metrics give somewhat
more stable retrieval results. This is because of the ranking of fax image 18, where in
both the normalised cases, the ranking is outside the top 60. Careful inspection shows
that fax image 18 has noise distributed across it in terms of black dots on a brighter
background. After binarisation, it appears that the noise is still present in the binary
image. This noise is usually of high frequency, thus it will be captured by the high
frequency channels of the wavelet decomposition.

Chapter 3 Low-Quality Image Analysis 48

The high frequency channels of the wavelet decomposition have a small range of energy
values compared to the other channels. By normalising the features, the noise in the
high frequency channels is amplified and therefore results in high dissimilarity between
the fax and the original. Without the normalisation process, the dissimilarity measure
will not be too big because the high frequency channels contribute only a small portion
of the overall measurement. Since low quality images are very likely to contain noise as
in fax image 18, it is better not to normalise the features. Further inspection shows that
although the features have a wide range of energy value, none of the individual feature
differences really dominate in a way that a particular feature difference is completely su-
perior to the others. Hence there really is no need for normalisation for the dissimilarity
computation.

Between the non-normalised Euclidean and Manhattan distance, the Manhattan dis-
tance appears to be better than the Euclidean distance, where all the retrieved targets
are within the top 3. The reason for this is that with Euclidean distance, the individual
feature difference is squared, which further reduces the contribution of smaller feature
differences. By using Manhattan distance, the individual feature differences are added
together which preserves the contribution of each individual feature. Using this metric,
none of the feature differences are amplified or neglected, hence resulting in a better
retrieval performance. The Manhattan distance will therefore be used as the distance
classifier for the QBLI algorithm.

3.4.3 The Effect of Different Numbers of Decomposition Levels, L

The number of decomposition levels is an important factor in the wavelet transform.
It decides how many frequency channels a particular transform will have. The bigger
the number of decomposition levels, the more the detail in the image is captured. How-
ever since the pyramidal wavelet transform decimates its output by a factor of 2, if the
decomposition is continued all the way, we will obtain channels with only 1 pixel reso-
lution. This might lead to inaccurate readings and unstable features, and will increase
the number of features to be computed. Therefore we will have to limit the smallest
resolution for a particular channel, and it was found experimentally that 4×4 pixels
is the smallest appropriate channel resolution. For a 256×256 image, this leads to a
maximum of 6 levels of decomposition, the one used in previous experiments.

However we might want to use fewer decomposition levels since it involves fewer compu-
tations and fewer features. Table 3.4 shows the results of the retrieval experiments using
different numbers of decomposition levels using Manhattan distance. From the table,
clearly the retrieval performance decreases with the decrease of the number of decompo-
sition levels. The decrease in performance is quite drastic for some query images, while
steady in most other queries, depending on the quality of the queries. However since
using six levels of decomposition gives the best performance, and that its corresponding

Chapter 3 Low-Quality Image Analysis 49

Query Rank of Original
Image L=6 L=5 L=4 L=3

1 1 2 5 11
2 1 1 1 1
3 1 3 19 106
4 3 1 2 1
5 1 1 3 18
6 1 9 5 1
7 1 1 1 2
8 2 2 1 5
9 1 1 1 2
10 2 1 14 2

Query Rank of Original
Image L=6 L=5 L=4 L=3

11 1 1 2 83
12 1 1 3 5
13 1 1 1 2
14 3 57 143 387
15 2 6 3 8
16 1 1 2 6
17 1 1 1 1
18 3 16 41 178
19 1 1 2 53
20 1 1 1 2

Table 3.4: Retrieval results using different numbers of decomposition levels

Haar Daubechies Daubechies Coiflet Symmlet Binary WT
4-tap 8-tap 6-tap 8-tap lowpass highpass

-0.7071 -0.4830 -0.2304 0.0727 -0.0322 1 1
0.7071 0.8365 0.7148 0.3379 -0.0126 1 1

-0.2241 -0.6309 -0.8526 0.0992 1 1
-0.1294 -0.0280 0.3849 0.2979 0 1

0.1870 0.0727 -0.8037 1 1
0.0308 -0.0157 0.4976 0 1

-0.0329 0.0296 1 0
-0.0106 -0.0758 0 0

Table 3.5: Filter coefficients of different wavelet basis

number of features (19 features) is still compact, we adapt these parameters for the
QBLI algorithm.

3.4.4 The Effect of Using Different Wavelet Bases

In the previous experiments, the Daubechies 8-tap wavelet is used as the wavelet basis for
decomposition. Four more wavelet bases are tested in order to observe the effect of using
different wavelet bases in the algorithm. In addition, a special binary wavelet transform
decomposition is also tested since it is interesting to see if total binary operation on
binary images might give better results. Six decomposition levels are applied for each
case, and the Manhattan distance is used as classifier. Table 3.6 shows the retrieval
results using the Daubechies 4-tap wavelet, Coiflet 6-tap wavelet, Symmlet 8-tap wavelet,
Haar wavelet and the binary wavelet transform. Table 3.5 shows the filter coefficients
of each wavelet basis. The bases for binary wavelet transform are the ones suggested by
Swanson and Tewfik (105).

From the results table, the binary wavelet transform particularly gives a very poor
result. The other normal wavelet transform provides comparable performance. The
poor retrieval results for the binary wavelet transform are due to the lack of information
carried by the output of the binary wavelet transform. The binary wavelet transform

Chapter 3 Low-Quality Image Analysis 50

Query Rank of Original
Image D4 D8 C6 S8 H B

1 1 2 3 1 1 184
2 1 2 1 1 2 26
3 1 2 1 1 2 302
4 3 1 1 1 1 19
5 1 1 1 1 1 228
6 1 1 1 1 1 5
7 1 1 1 1 1 1
8 3 3 1 1 1 3
9 1 1 1 1 1 168
10 2 29 1 1 8 104

Query Rank of Original
Image D4 D8 C6 S8 H B

11 1 1 1 1 1 335
12 1 1 1 1 1 84
13 1 2 3 1 1 53
14 4 38 1 7 10 605
15 2 1 1 1 1 448
16 1 2 1 1 2 38
17 2 1 1 1 1 1
18 4 59 1 1 9 248
19 1 1 1 1 1 301
20 1 1 1 1 1 1

Table 3.6: Retrieval results using different wavelet bases (D4=Daubechies 4-tap,
D8=Daubechies 8-tap, C6=Coiflet 6-tap, S8=Symmlet 8-tap, H=Haar, and B=binary

wavelet transform

performs a special filtering operation which results in a binary output. Since we are
using mean energy as the feature, computing this feature on binary channels does not
provide enough information, which leads to poor discrimination between images. While
the binary wavelet transform is good in the compression of binary images, it is not
suitable for image retrieval.

The other four wavelet bases give a good performance, especially the Coiflet and Symmlet
bases. It can be concluded that the choice of wavelet bases is not very crucial in the
QBLI algorithm, although based on this particular test, the Coiflet wavelet basis gives
the best result and will be used as the basis for the algorithm. One might argue that
the Haar wavelet should give better performance because of the binary-like nature of its
filter. This might be true, but since we are dealing with low quality images, in which
the query binary does not really resemble the target binary completely due to noise etc.,
a bit of tolerance is needed in computing the features. In this case, the Haar wavelet
may be too accurate in representing the binary images so that when noise is present, the
dissimilarity measure increases dramatically. The Daubechies 8-tap, Coiflet 6-tap and
Symmlet 8-tap wavelets although they may not be very accurate in representing binary
images, they are better for the reasons above.

3.4.5 Optimum Threshold for Binarisation

It is debatable whether the choice of creating 99 different binaries for each database
image is optimal. Different numbers of binaries are tested for the algorithm to find the
optimal number of binaries to be created. Steps of 0.5%, 2%, 5% and 10% (which creates
199, 49, 19 and 9 binaries respectively) are tested and the results are shown in Table
3.7. Note that there is quite a large reduction in the number of features to be stored by
reducing the number of binaries to be created. Experiments are conducted using Coiflet
6-tap wavelet bases, six decomposition levels and Manhattan distance as classifier.

Chapter 3 Low-Quality Image Analysis 51

Query Rank of Original
Image 0.5% 1% 2% 5% 10%

1 3 3 6 3 155
2 1 1 6 23 9
3 1 1 1 1 2
4 1 1 1 18 55
5 1 1 2 1 7
6 1 1 1 1 1
7 1 1 1 1 1
8 1 1 1 1 3
9 1 1 1 1 3
10 1 1 1 3 3

Query Rank of Original
Image 0.5% 1% 2% 5% 10%

11 1 1 1 1 1
12 1 1 1 1 1
13 3 3 3 4 5
14 1 1 1 1 1
15 1 1 1 1 1
16 1 1 1 1 1
17 1 1 12 167 146
18 1 1 2 2 2
19 1 1 1 5 58
20 1 1 1 1 1

Table 3.7: Retrieval results using different number of binaries

From the table, increasing the number of binaries from 99 to 199 does not appear to
improve the retrieval performance. For each case of the query image, the same result
using only 99 binaries are observed. Hence there is no need for increasing the numbers.
The performance of using 49 binaries does not differ much from that of using 99 binaries,
except for some specific queries. All the retrieved targets are still within the top 15,
and the fact that it halves the number of features to be stored might make 49 binaries
useful. As the number of binaries decrease to 19 and 9, the performance continued to
drop, which suggest that the steps of 5% and 10% might be too big and results in poor
binary matching.

In actuality, as long as the query binaries resemble closely enough the target binary,
we will obtain good results. The problem arises when the percentage of pixels of the
binary queries appear in the middle of two target binaries, say 85% of query binary
compared to 80% and 90% of target binaries which can lead to a quite different binary
matching. In this case, the 5% and 10% steps proved to be too big a gap for some
queries and therefore should not be used. This experiment also suggests that in order to
get the best possible result, we only have to use a maximum of 99 binaries as increasing
them does not improve the performance. The choice of optimum number of binaries
is therefore a tradeoff between retrieval performance and the computational speed. If
the speed constraint is not very crucial, using 99 binaries is better, otherwise using 49
binaries offer a comparable alternative. In our case, we chose to use 99 binaries for the
QBLI algorithm.

3.4.6 Using Other Forms of Low-quality Image as Query

We now consider other types of low-quality images besides fax images to establish
whether the proposed algorithm works for these particular types of images. As men-
tioned previously, we have listed 5 other low-quality image types which are the image of
inappropriate brightness and contrast, highly compressed images, low resolution images,

Chapter 3 Low-Quality Image Analysis 52

Figure 3.8: Target image (top left) and its five modifications on brightness/contrast
of an image.

quantized images and noisy images. The same twenty images as in Figure 3.5 are used as
the target for retrieval with the query being the modified low-quality version of them. All
experiments are conducted using 99 binaries for each image, Coiflet 6-tap wavelet basis,
having six decomposition levels and utilizing Manhattan distance as distance classifier,
as this combination is found to be the best in the previous section.

3.4.6.1 Images of Inappropriate Brightness and Contrast

The twenty selected images are modified by varying their brightness and contrast in order
to make 20 queries for the experiment. We have conducted 5 different experiments using
5 different brightness/contrast modifications. The modifications are high brightness
(75% increase in original brightness), low brightness (-75% of original brightness), high
contrast (75% of original contrast), low contrast (-75% of original contrast), and random
combinations. Figure 3.8 shows an example of query images corresponding to the 5
modifications above. The target image of the query is also shown for comparison in
quality.

Experimental results show that for all queries, the target images are retrieved as the
first rank. Clearly from the result the proposed algorithm works well with this kind of
low-quality images. Note that the queries are generated by performing some operation
on the histogram of its originals. As long as the operation does not entirely change
the histogram, the proposed QBLI algorithm lends itself well in solving this type of
problem. Problems will only arise when a non-linear operation is performed on the
original resulting in the pixel distribution of the image being completely modified, in
which case the modified image will probably be very different from its original.

Chapter 3 Low-Quality Image Analysis 53

Figure 3.9: Target image (top left) and its corresponding highly compressed version.

3.4.6.2 Highly Compressed Images

Five different compression quality are used to obtain low-quality queries. Each of these
queries are produced using MATLAB, and are compressed using the standard JPEG
compression. The quality setting in JPEG compression is measured by values between 0
and 100, with 0 corresponding to the highest compression (worst quality) and 100 corre-
sponding to the lowest (best quality). The default quality setting for JPEG compression
is 75. In this experiment, the five different compression qualities take the values of 0,
5, 10, 20 and 30. Figure 3.9 shows an example of a target image and the corresponding
five highly compressed versions of it.

Table 3.8 shows the retrieval results for the highly compressed images. From the table, it
is observed that the proposed algorithm works well using this kind of low-quality images,
even when using the lowest compression quality as query. The queries having compres-
sion quality of 0 and 5 in particular are very poor, yet the algorithm still manages to
achieve very promising retrieval. As the compression quality increases, the performance
increases unsurprisingly because the better the quality, the more it resembles the queries’
originals.

3.4.6.3 Low Resolution Images

The twenty selected images are resized to a lower resolution to produce low-quality
images of this type. However since in the algorithm we resized all images to 256×256,
the twenty selected images need to be resized to a resolution smaller than 256, otherwise
there will not be the same amount of information between the queries and the targets,

Chapter 3 Low-Quality Image Analysis 54

Query Rank of Original
Image Q0 Q5 Q10 Q20 Q30

1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1
7 3 1 1 1 1
8 1 1 1 1 1
9 1 1 1 1 1
10 1 1 1 1 1

Query Rank of Original
Image Q0 Q5 Q10 Q20 Q30

11 1 1 1 1 1
12 1 1 1 1 1
13 1 1 1 1 1
14 1 1 1 1 1
15 1 1 1 1 1
16 2 1 1 1 1
17 1 1 1 1 1
18 1 1 1 1 1
19 3 1 1 1 1
20 1 1 1 1 1

Table 3.8: Retrieval results for highly compressed images, QX represent quality mea-
sure.

Query Rank of Original
Image r = 32 r = 64 r = 128

1 3 1 1
2 1 1 1
3 4 4 1
4 1 1 1
5 2 1 1
6 4 1 1
7 10 2 1
8 1 1 1
9 398 18 1
10 487 4 1

Query Rank of Original
Image r = 32 r = 64 r = 128

11 3 1 1
12 1 1 1
13 28 3 1
14 1 1 1
15 1 1 1
16 45 1 1
17 632 134 2
18 39 2 1
19 262 79 13
20 9 3 2

Table 3.9: Retrieval results for low-resolution images, where r is the resolution of
image’s longest dimension.

and the queries cannot be considered as low-quality images. We choose to resize the
selected images into having 32, 64 and 128 pixels along their longest dimension. Table
3.9 shows the retrieval results for the low-resolution queries.

The result of resolution 32 is quite poor compared to the other resolutions. This is
understandable since an image having 32 pixels in its longest dimension is actually a
very small image and not much information is carried. We also have to notice that
query images 9, 10 and 17 have a high length to width ratio. If their longest dimension
is 32, their other dimension will have far less pixels resulting in a very small amount of
information along that particular dimension. Increasing the resolution means increasing
the amount of information carried, hence the reason for the much better results for
resolution 64 and 128. Apart from the very small resolution of query images 9, 10 and
17 which is responsible for the very poor retrieval results, the other queries give quite a
good performance, although not as good as the 2 previous types of low-quality images.
Hence the proposed algorithm is also suitable in solving this type of low-quality image.

Chapter 3 Low-Quality Image Analysis 55

Figure 3.10: Target image (top left) and its quantized version.

3.4.6.4 Quantized Images

Four different quantized images are produced, having a quantisation of 2 (binary), 4, 8
and 16 grey levels. In all cases, the quantized images are poor compared to the originals.
Figure 3.10 shows an example of a target image and its corresponding 2, 4, 8, and 16
grey levels quantized version.

Experimental results show that all target images are retrieved as the first match, hence
the performances of all quantized cases are very good. The binary queries (2 levels of
grey values) are in fact not much different from the fax images, and since the proposed
algorithm operates in binary, it lends itself very well with the binary queries. It is also
worth mentioning that the performance of the other three quantized images are exactly
the same as with the binary cases, because no matter how many grey level values we
use, they are all going to be converted to binaries, hence will also work well with the
QBLI algorithm. We can conclude that the proposed algorithm is very well suited to
this type of low-quality images.

3.4.6.5 Noisy Images

The 20 selected images shown in Figure 3.5 have noise added to produce noisy image
queries. Gaussian noise having zero mean with three different strengths are chosen. The
strength of the noise is characterized by their standard deviation, and values of σ =
0.005, 0.01 and 0.02 were used. In addition a second type of noise, in terms of image
blurring, will also be tested. Pixel averaging of radius five pixels are performed on the
selected images to produce blur images. Figure 3.10 shows an example of a target image

Chapter 3 Low-Quality Image Analysis 56

Figure 3.11: Target image (top left) and its noisy version.

Query Rank of Original
Image Gaussian, σ= Blurred

0.005 0.01 0.02 images
1 1 1 12 1
2 1 1 1 1
3 1 1 1 7
4 1 1 1 1
5 1 1 1 1
6 1 1 4 1
7 1 1 1 1
8 1 1 1 1
9 2 3 20 335
10 1 2 41 6

Query Rank of Original
Image Gaussian, σ= Blurred

0.005 0.01 0.02 images
11 1 1 1 1
12 1 1 1 1
13 4 14 76 3
14 1 1 1 1
15 1 1 1 1
16 1 1 8 45
17 1 1 17 308
18 1 1 1 44
19 8 1 7 4
20 1 1 1 2

Table 3.10: Retrieval results for noisy images

and its four noisy image versions.

Table 3.10 shows the result of the retrieval experiment. For the Gaussian noise, the
retrieval rate are not significantly affected for σ = 0.005. As the strength of the noise
increases, the performance of the algorithm decreases, although they are still giving
acceptable retrieval results. This shows that the proposed algorithm is also suitable in
tackling noise related problems. As for the blurred images, except for a few queries, the
proposed algorithm also works well to retrieve the target images. The few poor results
are for queries 9 and 17, and careful inspection shows that the particular blurred images
are quite distorted compared to their originals.

Chapter 3 Low-Quality Image Analysis 57

3.5 Chapter Summary

In this chapter, a novel query by low-quality image technique which uses a binary match-
ing algorithm together with pyramidal wavelet transform is proposed. A simple but
highly time consuming technique, the pixel matching technique is also developed, to be
use as a yardstick for the evaluation of the proposed QBLI algorithm. The pixel match-
ing technique gave very good retrieval accuracy, while the proposed QBLI algorithm gave
a comparable performance. This implies that the QBLI algorithm is almost as good as
the pixel matching algorithm, but has the advantage of being much faster computation-
ally, making it more suitable for interactive use. The novel QBLI method illustrates
the importance of the wavelet-based feature extractor in image analysis, where in PWT,
we have a very fast algorithm and compact feature vectors. These two constraints are
important in using the proposed QBLI method where multiple feature extractions as
well as multiple feature vectors are necessary for each database image. Other feature
extraction techniques are either slow or have large feature vectors.

Another important observation from the experiments conducted is that the binary image
matching and thresholding method proposed is an excellent way to search using low-
quality images. This is shown by the fact that the basic PWT technique gives a very poor
retrieval accuracy when used for this kind of problem. This suggests that other general
purpose feature extraction methods might also fail to deliver a good performance if not
accompanied by a special pre-process like the binary image thresholding and matching
technique. Further experiments suggested the use of Manhattan distance as the distance
classifier in order to get the best results. Normalising the distance function appears to
over-amplify the noise associated with the queries and therefore is not suggested. The
choice of decomposition levels is also crucial as the retrieval performance decrease with
lower number of decompositions. Since decomposing an image without imposing a limit
might de-stabilize the features, 4×4 resolution is taken as the smallest possible sub-
image size. Hence the best number of decomposition levels is found to be 6, resulting in
19 features.

The choice of wavelet basis is not very crucial although from the experiment, the best
basis was found to be Coiflet 6-tap wavelets. The binary wavelet transform however is
not suitable for use with the proposed algorithm as it does not carry enough information
to perform good discrimination. The optimum number of binaries to be created for
each image is found to be either 49 or 99. Increasing the number beyond 99 does not
appear to improve the results, while reducing it below 49 reduces the performance quite
drastically. If speed is not a crucial factor, it is better to use 99 binaries as it gives
the best performance, otherwise using 49 binaries offers a comparable result. Finally
the proposed algorithm lends itself quite well to solving query by other low-quality
image types. Experiments showed that good results are obtained in solving images of
inappropriate brightness and contrast, highly compressed images, low-resolution images,

Chapter 3 Low-Quality Image Analysis 58

quantized images and noisy images.

Although the proposed algorithm gives good performance in solving query by low-quality
image, it still offers plenty of room for improvement. For example the system might face
a problem if the object to background ratio of the image differs significantly from the
target images. In this case, a special pre-processing algorithm to detect plain background
can be developed so that all images will have their default object to background ratio,
hence solving the above problem. The accuracy of the QBLI algorithm can also be
further improved if some sort of text annotation can be associated with it, i.e. to use
both text-based and content-based image retrieval (TBIR and CBIR) as in Figure 2.1.
The TBIR can act as a pre-filter for the content-based retrieval process applied at later
stage.

Chapter 4

Texture Feature Extraction

In this chapter, texture representation schemes are reviewed and an evaluation of several
texture features is conducted and they are compared with wavelet-based texture features.
A novel implementation of the discrete wavelet frames is introduced and evaluated for
texture extraction.

4.1 Introduction

Texture analysis is one of the main topics in computer vision. There is a large volume
of research on different approaches and it is not possible to cover all of them in this
literature review. Several popular methods and some other new approaches are chosen
as a representative cross section to review. These methods belong to statistical, model-
based, signal processing and structural categories. The reason why structural methods
are not considered in this thesis is because they possess a number of impracticalities for
our application; for example some have many pre-processing stages in order to extract
texture primitives, while most of them are computationally intensive, and the assump-
tion is that the input images contain strong regular features. There are several issues
that this chapter is concerned with:

• Computational intensity. Although a lot of methods are being developed and have
a high classification rate, the computation intensity needs to be considered. The
goal of this thesis is to develop a texture matching algorithm for an interactive
content-based retrieval application. Such a method should be as rapid as possible
to avoid the user waiting for the query result. Furthermore, the number of images
in the museum database for this thesis is in the region of tens of thousands of
images, and could be up to hundreds of thousands in the future, which will requires
a lot of time to extract features from all of the images. However this factor is not
so crucial since it does not involve interaction with users.

59

Chapter 4 Texture Feature Extraction 60

• Properties of algorithm. It is important to identify whether a texture matching
technique supports translation, rotation and scale invariance. Nearly all the ap-
proaches are translation invariant, and some of them include rotation invariance.
However, there are very few studies on rotation and scale invariant texture features,
since scale is a difficult task to solve in the context of texture.

• Number of textures for testing. A number of texture papers only evaluated a
small subset of Brodatz textures which are treated as a standard testing set by
researchers. However, evaluating only a few textures can cause a number of prob-
lems:

– It is very difficult to find the best method based on results reported in the
papers.

– There are some textures in the Brodatz set that are known to have a low
retrieval rate. We believe that a method should be tested on the entire set to
see the results on the mixtures of different kinds of patterns, since in practice
we should not expect an image database to always have clear and well defined
textures.

– The developer would find it difficult to choose a texture method to suit his
or her own purpose. For example, a person may want to develop a technique
that has the best result on lace patterns from the Brodatz set, disregarding
other texture result.

• Classification vs retrieval. Most texture analysis papers evaluated their texture
features based on texture classification or segmentation. Since our application is
image retrieval, this may lead to inaccurate performance measures if the texture
methods are evaluated based on their classification ability. In this thesis, all tex-
ture retrieval performance is evaluated in terms of precision and recall. Based on
information retrieval theory, precision is defined as the fraction of images in the
answer to the query that are relevant, and recall is defined as the fraction of the
relevant images in the answer to the query. They are calculated as below:

Precision =
Number of retrieved images that are relevant

Total number of retrieved images
(4.1)

Recall =
Number of relevant images that are retrieved

Total number of relevant images
(4.2)

Precision and recall are normally represented on a graph on apposing axis. This
data is created by calculating the precision and recall up to each of the rankings
in turn, so forming a graph containing as many points as documents retrieved. A
perfect retrieval where only relevant documents are retrieved would form a straight
line. Examples of a precision-recall graph are shown in Figure 4.1. By calculating
the area under the graph, we obtain the average precision for the query. Recall is

Chapter 4 Texture Feature Extraction 61

also sometimes termed as recognition rate, and is also used individually to measure
the progress of the retrieval rate against the number of retrieved documents. In
this thesis, to compare the retrieval performance precisely, we will refer to the
precision-recall plot and the recognition rate at several distinct places.

P
re

ci
si

on

Recall
0

0 1

1

P
re

ci
si

on

Recall
0

0 1

1

Figure 4.1: (left) Precision-recall graph example (right) Perfect precision-recall graph

The following section describes several popular texture feature methods, including the
three different wavelet-based methods. After the review, a retrieval performance exper-
iment is undertaken and evaluated between several selected texture features.

4.2 Texture Feature Method

In this section, all of the reviewed methods fit into either the statistical, model-based or
signal processing group as they are adopted by the majority of researchers. Geometrical
(structural) approaches will not be covered here for the reasons mentioned beforehand.

4.2.1 Co-occurrence Matrix

Co-occurrence matrix (or spatial grey level dependency matrix) is one of the primary
techniques adopted by Haralick et al. (66) for texture classification. The matrix P

basically contains the information of the population of two pixel grey levels with distance
d at an orientation of θ. For G grey levels in the image I, P will be of size G×G. The
G × G grey level co-occurrence matrix Pd for a displacement vector d = (dx, dy) is
defined as follows. The entry (i, j) of Pd is the number of occurrences of the pair of grey
levels i and j which are distance d apart. Formally, it is given as:

Pd(i, j) = |{((r, s), (t, v)) : I(r, s) = i, I(t, v) = j}| (4.3)

where (r, s), (t, v) ∈ N ×N , (t, v) = (r + dx, s + dy), and |.| is the cardinality of a set.

Chapter 4 Texture Feature Extraction 62

As an example, consider the following 4× 4 image containing 4 different grey values:

0 0 1 1
0 0 1 1
0 2 2 2
2 2 3 3

The 4× 4 grey level co-occurrence matrix for this image is given as follows:

P(0,1) =

4 2 1 0
2 4 0 0
1 0 6 1
0 0 1 2

P(1,0) =

6 0 2 0
0 4 2 0
2 2 2 2
0 0 2 0

P(1,1) =

2 1 3 0
1 2 1 0
3 1 0 2
0 0 2 0

P(1,−1) =

4 1 0 0
1 2 2 0
0 2 4 1
0 0 1 0

Here the entry (0, 0) of P(0,1) is 4 because there are four pixel pairs of (0, 0) that are
offset by (0, 1) amount. The co-occurrence matrix reveals certain properties about the
spatial distribution of the grey levels in the texture image. For example, if most of the
entries in the matrix are concentrated along the diagonals, then the texture is coarse
with respect to the displacement vector d. Haralick has proposed a number of useful
texture features that can be computed from the co-occurrence matrix, and four of them
are given below:

Angular Second Moment =
G−1∑

i=0

G−1∑

j=0

p2
ij (4.4)

Contrast =
G−1∑

n=0

N2{
∑

|i−j|=n

pij} (4.5)

Correlation =
1

σxσy

G−1∑

i=0

G−1∑

j=0

ijpij − µxµy (4.6)

Entropy =
G−1∑

i=0

G−1∑

j=0

pijlogpij (4.7)

where µx, µy, σx and σy are the means and standard deviations corresponding to the
distributions

p
(x)
i =

G−1∑

j=0

pij p
(y)
i =

G−1∑

i=0

pij (4.8)

Each of these statistics can be computed from each of the four co-occurrence matrices

Chapter 4 Texture Feature Extraction 63

to make up the texture features. There are also several modified version of the co-
occurrence matrix, such as the generalized co-occurrence matrix by Davis et al. (106).
Instead of capturing the spatial grey level difference between pixels, they defined another
form of matrix to carry the distribution of local maxima. Other modified versions of the
co-occurrence matrix include the work by Tamura et al. which will be discussed next.

4.2.2 Tamura’s Texture Feature

Motivated by the psychological studies in human visual perception of texture, Tamura
et al. explored the texture representation from a different angle (41). They developed
computational approximations to the visual texture properties found to be important
in psychological studies. The six visual texture properties were coarseness, contrast,
directionality, line-likeness, regularity and roughness. One major distinction between
the Tamura texture representation and the co-occurrence matrix representation is that
all the texture properties in Tamura representation are visually meaningful, whereas
some of the texture properties used in co-occurrence matrix representation may not be.

For computing coarseness, each point in the image (except the boundary) is first averaged
over the neighbourhood size by using a mask operator with various sizes. The the
difference between each pair of non-overlapping averaged neighbourhoods is taken on
both opposite sides of the mask centre point in horizontal and vertical directions. Finally,
the coarseness feature can be computed as:

Coarseness =
1

m× n

m∑

i

n∑

j

Sbest(i, j) (4.9)

where m and n are the width and height of the image, Sbest(i, j) = 2k and k is the size of
the operator which gives the highest difference on either horizontal or vertical directions.

Contrast was evaluated on the basis of standard deviation, polarization of grey level
range, sharpness of edges and period of repeating patterns. Tamura et al. used the
kurtosis method to measure the polarization with the ratio of fourth moment and square
of variance. Then the contrast is measured with kurtosis, α and standard deviation σ

as the following:
Contrast =

σ

αn
4

(4.10)

where n was evaluated with various values, and n = 1
4 yielded the best correlation result

to human visual inspection on contrast.

The assessment of directionality was applied with horizontal and vertical edge operators.
The magnitude ∆G and the edge direction θ of each centre pixel of an operator can be
extracted with |∆G| = (|∆H |+|∆V |)/2 and θ = tan−1(∆V

∆H
)+ π

2 , where ∆V and ∆H were
the values after the convolution of vertical and horizontal edge operators respectively. A

Chapter 4 Texture Feature Extraction 64

directionality histogram is then obtained by counting the points where the magnitude is
greater than or equal to 12 and its edge direction is in a certain quantized degree range.
In order to measure the directionality over the histogram, the directionality feature is
derived from the sharpness in peaks in which the second moment of each peak between
valleys was calculated.

Directionality = 1− r · np ·
np∑
p

∑

φ∈wp

(φ− φp)2 ·HD(φ) (4.11)

where np is the number of peaks, φp is the p-th peak position of directional histogram
HD, wp is the range of p-th peak between valleys, r is the normalizing factor for φ, and
φ is the quantized direction code from 0 to 15.

Line-likeness is computed by first constructing a co-occurrence matrix PD, with quan-
tized direction codes and magnitude which are used for the directionality feature. An
element in the matrix means the number of co-occurrences that two points p and q both
have quantized direction i and j respectively and magnitude greater or equal to 12 with
d4 distance apart.Then the line-likeness feature is calculated as:

Line-likeness =
n∑

i

n∑

j

PD(i, j)
cos[(i− j)2π

n]∑n
i

∑n
j PD(i, j)

(4.12)

For calculating regularity, Tamura et al. assumed that it was based on all the above
features varied over the image. The smaller variation of each feature gave a higher
regularity. Each feature wac evaluated with a sub-image from the original image and
the standard deviation was calculated among these sub-images by a normalizing factor
and subtracted from 1.

Regularity = 1− r(σcoarseness + σcontrast + σdirectionality + σline−likeness) (4.13)

where r is the normalizing constant, σxxxis the standard deviation of each above feature
taken from 9 sub-images.

Finally, in order to compute roughness, Tamura et al. suggested that it was derived
from the level of coarseness and brightness.

Roughness = Coarseness + Contrast (4.14)

The above six features of the Tamura texture representation have the advantage in that
they can provide a more user-friendly interface, and have been proved very useful in
texture representation.

Chapter 4 Texture Feature Extraction 65

4.2.3 Simultaneous Autoregressive Model (SAR)

SAR is a well known statistical model for texture classification, segmentation and syn-
thesis. The simultaneous autoregressive model for an image I(m,n) can be expressed
as:

I(m,n) =
∑

(k,l)∈N θ(k, l)I(m− k, n− l) + σεε(m, n),

where N is the model neighbourhood,

θ(k, l)are the model parameters,
σεε(m, n)the model error terms

(4.15)

Equation 4.15 generally describes the centre pixel which has a spatial relation θ(n) with
neighbouring pixels. The neighbouring pixels can be first, second order etc. For a second
order neighbourhood, four parameters θ1, θ2, θ3 and θ4 represent the four different direc-
tions (0◦, 90◦, 45◦, 135◦) of the model. A series of equations with unknown parameters
θ and σε are generated by applying the SAR formula to each pixel of the image. Two
conventional techniques are used to estimate the unknown parameters, the Maximum
Likelihood (ML) and Least Square (LS) methods. The least square method is more
generally accepted because it is easier and faster although the results are inconsistent
(69).

Mao et al. (70) showed that increasing the number of SAR parameters (larger neigh-
bourhood on a single resolution) reduced the discrimination power as it has a severe
averaging effect on some of the good distinguishable parameters. They demonstrated
that small neighbourhoods a few pixels apart can provide satisfactory discrimination
on lower resolutions. In order to capture the details of different resolutions, they used
the Gaussian Image Pyramid model to construct a low pass filter and sub-sampled the
image. The size of output images is reduced through different gaussian image levels from
fine to coarse. Each of these output images was then integrated with the SAR technique
to provide the parameters θ and σε on each level. This modified version is known as the
multiresolution simultaneous autoregressive model.

4.2.4 Markov Random Field

Cross and Jain (107) introduced the use of Markov Random Filed (MRF) properties to
generate texture-based features and synthesizing textures with given parameters. Since
then MRF has been widely studied for texture modelling. The MRF assumes that the
state of an image pixel is highly dependent on the brightness values of neighbouring
pixels (conditional probability) and also the configuration of the neighbouring pixels. In
MRF, different orders can be used and higher order has a larger number of neighbour
pixels and a different coding scheme. A second order is used in normal cases with four
codings over the image lattice.

Chapter 4 Texture Feature Extraction 66

Cross and Jain used the binomial model to model a pixel grey level value with a bino-
mial distribution by taking the parameters of neighbourhood brightness values. These
neighbouring parameters are evaluated according to the order of neighbourhoods, i.e.
the second order is 8 neighbourhoods. The number of tries in the binomial model is the
number of grey levels that appeared in the image taken for analysis. The main advan-
tage of the MRF is that the parameters can capture the properties of a random texture
very well, and can generate a visually similar texture for inspection. In (68), Chellappa
and Chatterjee further improved the MRF by using a Gaussian Markov Random Field
model to represent textures.

4.2.5 Fractal Dimension

Fractals were pioneered by Mandelbrot (108). They have been widely used in computer
graphics and other problems of numerical analysis. In texture analysis, Pentland (71)
investigated the property of the fractal dimension (FD) as relating to natural textures.
The author concluded that fractals provide good model for describing the roughness of
textured surfaces. Intuitively, the larger the fractal dimension, the rougher the texture
is. The FD also shows correspondence to human perception, and is possibly suited to
natural or satellite image analysis, with changing FD values.

Keller et al. (109) propose a method for estimating the fractal dimension. The image is
first represented by points in 3 dimensions as (x, y, f(x, y)). A cube with size s×s×s is
then overlayed onto each image pixel and the number of points that are in the cube are
counted. This procedure is repeated for different sizes of cube, L, on every pixel. The
fractal dimension can be approximated by using the least square method with different
size cubes. However, some textures may have different appearances but with the same
fractal dimension. Keller et al. suggested an extra parameter, lacunarity, which has
been defined by Mandelbrot to distinguish the same FD with different appearances.

Sarkar and Chauduri (110) propose a more effective and noise tolerant method known
as Differential Box Counting (DBC), to estimate fractal dimensions. Six features are
derived, each describing the fractal dimension of different properties of an image, such
as the FD of the original image, the FD of the high/low gray-valued image, the FD of
the horizontally/vertically smoothed image and the multi-FD of an image.

4.2.6 Law’s Texture Feature

The texture energy measures developed by Laws (111) at the University of Southern
California have been used for many diverse applications. These measures are computed
by first applying small convolution kernels to a digital image, and then performing a
nonlinear windowing operation. The 2-D convolution kernels typically used for tex-
ture discrimination are generated from the following set of one-dimensional convolution

Chapter 4 Texture Feature Extraction 67

kernels of length five:

L5 = [1 4 6 4 1]
E5 = [−1 −2 0 2 1]
S5 = [−1 0 2 0 −1]

W5 = [−1 2 0 −2 1]
R5 = [1 −4 6 −4 1]

(4.16)

These mnemonics stand for Level, Edge, Spot, Wave, and Ripple. Note that all kernels
except L5 are zero-sum. In his dissertation, Laws also presents convolution kernels of
length three and seven, and discusses the relationship between different sets of kernels.

From these one-dimensional convolution kernels, we can generate 25 different two-
dimensional convolution kernels by convolving a vertical 1-D kernel with a horizontal
1-D kernel. As an example, the L5E5 kernel is found by convolving a vertical L5 kernel
with a horizontal E5 kernel. Of the 25 two-dimensional convolution kernels that we can
generate from the one-dimensional kernels above, 24 of them are zero-sum; the L5L5
kernel is not.

Given an image, we first apply each of our 25 convolution kernels to the image. This
results in a set of 25 grey scale images. The energy of each grey scale image is computed
as texture features. The energy calculation is given by:

e =
N−1∑

n=0

M−1∑

m=0

|W (i, j)| (4.17)

4.2.7 Discrete Cosine Transform (DCT)

The discrete cosine transform is popular in image coding due to its good performance and
fast implementation (112). It is, for instance, the backbone in the JPEG compression
standard. Ng et al. (113) suggest using a 3 × 3 discrete cosine transform for texture
feature extraction.

Image transforms are equivalent to critically sampled filter banks. The 3 × 3 discrete
cosine transform is tested in a filter bank implementation, but without critical sampling.
The filter bank is separable, determined by the one-dimensional filter masks:

h1 = [1 1 1]
h2 = [1 0 −1]
h3 = [1 −2 1]

(4.18)

Note that all kernels except h1 are zero-sum. The result of the discrete cosine transform
is 9 grey scale images, each of which is computed for its energy using the formula in

Chapter 4 Texture Feature Extraction 68

ϖ

υ

1/2

1/2

0
0

ϖ 1/20
0

Figure 4.2: Frequency coverage of (left) DCT features, and (right) Law’s features

equation 4.17. Ng et al. further suggest that the low-frequency component of the DCT is
excluded, thus yielding only eight features. Figure 4.2 shows the difference in frequency
coverage between DCT features and Law’s texture features.

4.2.8 Gabor Transform

Gabor functions (114) are Gaussians modulated by a complex sinusoid. A well known
property of these functions is that they achieve the minimum possible joint resolution
in the space and frequency domain. A two-dimensional Gabor function takes the form
of:

g(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σx
2

+
y2

σy
2

)
+ 2πjWx

]
(4.19)

where σy and σx are the standard deviations of the Gaussian envelope along the x and
y directions respectively, and W is the frequency of the sinusoidal function.

Gabor functions are also known as Gabor wavelets because there is a corresponding
wavelet (B-spline) from which it differs only by a small correction term. Let g(x, y) be
the mother Gabor wavelet, S be the total number of scales, and K be the total number
of orientations (or translations) to be computed. A family of Gabor wavelets can then
be obtained by appropriate dilations and rotations of g(x, y) through the generating
function:

gmn(x, y) = a−mg(x′, y′)
x′ = a−m (xcosθ + ysinθ)
y′ = a−m (−xsinθ + ycosθ)

(4.20)

where a > 1, θ = nπ/K, and m, n are integers, m = 1, 2, ..., S and n = 1, 2, ..., K. Ex-
panding the mother Gabor wavelet forms a complete but non-orthogonal basis set. This
non-orthogonality implies that there will be redundant information between different
resolutions in the output data. To reduce this redundancy, Manjunath and Ma (114)
proposed the following strategy: Let Ul and Uh denote the lower and upper frequency
of interest. Then the design strategy is to ensure that the half-peak magnitude support

Chapter 4 Texture Feature Extraction 69

of the filter responses in the frequency spectrum touch each other as shown in Figure
4.3, for S = 4 and K = 6.

Figure 4.3: Frequency spectrum view of 2D Gabor transform.

The Gabor transform is then defined by:

Wmn(x, y) =
∫

I(x1, y1)gmn ∗ (x− x1, y − y1)dx1dy1 (4.21)

where ∗ indicates the complex conjugate. The Gabor transform therefore produce KxS

number of output images, and features can be computed from each of the output images
using the formula in equation 4.17.

4.2.9 Wavelet-based Texture Features

As mentioned in the previous chapter, there are two types of wavelet transform, the con-
tinuous wavelet transform and the discrete wavelet transform. The continuous wavelet
transform offers more variety in frequency tuning or orientation, while the discrete
wavelet transform only offers four orientations per scale, but has the important advantage
of fast implementation. In this thesis we are only interested in the discrete wavelet trans-
form because of its low computational intensity. Other wavelet-based feature extraction
techniques such as the nonseparable wavelet transform (115), the complex wavelet trans-
form (116) and rotated wavelet filters (117) require quite a high computational intensity
because they are based on the continuous wavelet transform, thus possess no advantage
over other techniques in terms of speed. In fact the Gabor transform discussed in the
previous section can be used to represent the family of continuous wavelet transform
techniques for performance comparison purpose.

The three most popular methods among the discrete wavelet transforms are the pyrami-
dal wavelet transform (PWT) (93), tree-structured wavelet transform (TWT) (77; 118)
and discrete wavelet frames (DWF) (78), see Figure 2.8. PWT decomposes an image
into different frequency and orientation channels by repeatedly decomposing the low
frequency channels of the image. This results in 3L + 1 channels, where L is the depth
of the decomposition. DWF, or over-complete wavelet transform, is nearly identical to

Chapter 4 Texture Feature Extraction 70

the PWT, except that one up-samples the filters, rather than down-samples the image.
While the frame representation is over-complete, and computationally more intensive
than PWT, it holds the advantage of being translationally invariant (78). Given an
image, the DWF decomposes it using the same method as the PWT, but without the
sub-sampling process. This results in four channels with the same size as the input
image. The decomposition is then continued in the LL channels only as in PWT, but
since the image is not sub-sampled, the filter has to be up-sampled by inserting zeros in
between its coefficients.

Unlike PWT, the TWT repeatedly performs the decomposition not only in the low
frequency channels, but in the medium and high frequency channels as well. TWT how-
ever has several varieties of decomposition strategy. Laine and Fan (118) perform a full
decomposition tree, while Chang and Kuo (77) proposed an adaptive decomposition,
where only channels with energy above certain threshold are decomposed further. The
full decomposition tree results in a large number of features while the adaptive decompo-
sition tree results in complexity in indexing. For most applications, only the low and the
medium channels are decomposed further, resulting in medium size features. The high
frequency channels are not decomposed since it destabilizes the texture features (91). In
this thesis we will also be using the suggested tree structure for our experiments. This
will results in 4(3L + 3L−1 + ... + 30) channels.

For all three methods, features are extracted by computing the mean energy from each
channel (equation 4.17), just as other signal processing based texture features.

4.3 Experimental Evaluation

Four major experiments are conducted. The first three experiments were based on a
grey scale database, and are used to identify the best starting point for the development
of an image retrieval application, configuring the parameters of the chosen method to
achieve the optimum performance, as well as improving it using some statistical analysis.
The last experiments were involved in testing the configured method on a colour texture
database. The database used in the retrieval experiments for the grey scale image is
the Brodatz texture database, while the Vision Texture database is used for the colour
image database.

Although experiments matching sub-images are very standard among most of the texture
papers, it only illustrates to the readers how accurate a technique is on sub-images.
Also the Brodatz textures album was not designed for image recognition purposes, it
is questionable whether this collection of textures can cover a wide range of possible
textures. Moreover a texture technique may be able to match all the correct sub-images
in the top matches but it may not perform well on visual similarity after those accurate
matches. One should experiment on the entire Brodatz textures database and other

Chapter 4 Texture Feature Extraction 71

texture images with human visual assessment on a large set of human subjects. This
can assist the researchers and readers to another dimension in performance evaluation,
although such examination can be very expensive in cost and time. Nevertheless, the
evaluation of sub-image matching is still common in the field of texture analysis, as this
quickly gives a first impression of the performance and of course this depends on the
size of the database.

The Brodatz database contains 112 textures of various kinds, including the many in-
homogeneous ones which are not usually included in texture studies. By including the
entire Brodatz collection in the database, we allow the potential of confusion and failure
that exists when texture algorithms encounter non-texture regions in natural scenes.
Each Brodatz texture is scanned at 300 dpi with 256 grey levels, and is 512 × 512 in
resolution. Each 512 × 512 image was then cut into 16 non-overlapping sub-images of
size 128×128. A total of 1792 (112×16) database images are produced from the texture
album. The image classes are defined by the 112 Brodatz textures.

Vision Texture is a collection of texture imagery developed at MIT that is publicly
available for evaluating different texture features. However, hardly any studies use this
texture set for evaluating texture analysis performance. It contains 4 components: ref-
erence textures, texture scenes, video textures and video orbits which all contain a set
of different textures for various experimental purposes. In this report, the reference tex-
tures are used for evaluating the discrete wavelet frames technique on colour textures.
There are 167 colour textures in the reference textures components. Like in the exper-
iment with the Brodatz textures, all images are cut into 16 non-overlapping 128× 128
sub-images, yielding a total 2672 database images in the VisTex collection.

For each experiment, each image in the database is used once as a retrieval prototype
and the average precision and recall rate is computed for different numbers of retrieved
images. A 100% recall rate is achieved at anytime all 15 matches are found within the
top retrieved images considered, R, while a 100% precision rate is achieved only when
all 15 matches are found within the top 15 matches. For example, if 9 matches were
found in the first 15 retrieved images, while 6 others were found in the top 30, then the
recall rate is 9

15 × 100 = 60% at R = 15, and reaches 100 % at R = 30. The precision
rate is computed as 9

15 × 100 = 60% and 9
30 × 100 = 30% respectively. As mentioned

before, each experiments will be compared using a precision-recall plots and an average
recognition rate. The average recognition rate will be measured at R = 15,30 and 45,
and is presented in a table to support the precision-recall plot measurement.

4.3.1 Evaluation of Texture Features

In this section, all three wavelet-based texture feature extraction techniques along with
several other techniques will be evaluated for their performance in retrieving similar

Chapter 4 Texture Feature Extraction 72

texture from the Brodatz texture database. For performance comparison purposes, at
least one representative from the statistical, model-based and signal processing categories
will be evaluated. The discrete cosine transform (DCT), the Law’s texture feature and
the Gabor transform techniques represent the signal processing categories (the Gabor
transform can also represents the continuous wavelet transform family), while the grey
level co-occurrence matrix (GLCM) and the multiresolution simultaneous autoregressive
model (MRSAR) represents the statistical and model based categories respectively. The
parameters used for each methods are summarized below:

• PWT: A three level wavelet decomposition is used using the Daubechies 8-tap
wavelet basis, resulting in 10 features.

• TWT: Same as PWT, but all channels except the HH channels are decomposed
further, resulting in 40 features.

• DWF: Same as PWT, 10 features.

• Gabor: The method described in the previous section which helps in reducing
redundant information is used. Two different parameters are tested, the first
one having 6 orientations and 4 scales (24 features), while the second having 6
orientations and 3 scales (18 features).

• Law’s: As described in the previous section, 25 features.

• DCT: As described in the previous section, with the low frequency channels ex-
cluded, 8 features.

• GLCM: To get the best statistical significance, the 255 grey level image is first
quantized to only 8 grey levels as suggested by Ohanian and Dubes (90), and
the angular second moment, contrast, correlation and entropy are computed from
four different orientations ((0,1),(1,0),(1,1) and (1,-1)) as described in the previous
section, yielding 16 features.

• MRSAR: Features are computed from three neighbourhoods as shown in Figure
4.4 with 4 parameters and the standard deviation of the error term from each
neighbourhoods are used as features, yielding 15 features.

We tested two different parameters for the Gabor transform in order to observe a fairer
comparison with the wavelet-based techniques. In several texture techniques comparison
papers, when evaluating the performance between wavelet-based techniques and the Ga-
bor transform, we believe a rather unfair comparison was made. The Gabor transform
used for the comparison are usually with six orientations and four scales. This is com-
pared with the wavelet-based techniques using 3 decomposition levels, i.e. three scales.
We believe in order to obtain a fairer comparison the same number of scales should be
used. Although one might argue that the Gabor transform with six orientations and

Chapter 4 Texture Feature Extraction 73

N1

N1

N1N1N1

N1

N1N1

N2N2

N2

N2 N2 N2

N2

N2

N3N3

N3

N3 N3 N3

N3

N3

Figure 4.4: Neighbourhood sets N1, N2 and N3 for the MRSAR features. Each Ni

corresponds to one relative pixel position

four scales are the best representatives of the Gabor transform, and therefore should be
used for comparison purposes, it is interesting to also observe how the two techniques
fare for the same number of scales. Therefore two different scales are used for the Gabor
transform features.

To compute the features of the signal processing-based techniques (PWT, TWT, DWF,
Gabor, DCT, Law’s), the mean absolute value or mean energy of each channel or filtered
image is used and is given as:

f =
1

M ×N

m−1∑

i=0

n−1∑

j=0

|Wk(i, j)| (4.22)

where M and N are the number of rows and columns of the channels or filtered images,
and Wk is the k-th channels or filtered images.

The distance measure used for comparing and retrieving the similar patterns is defined
to be:

d(i, j) =
∑

k

∣∣∣∣∣
f (i)(k)− f (j)(k)

σ(k)

∣∣∣∣∣ (4.23)

where i and j denote two image patterns, f(k) is the k-th component features, and σ(k)
is the standard deviation of the distribution of features f(k) in the entire database and
is used to normalize the individual feature components.

4.3.1.1 Accuracy

Figure 4.5 shows the precision-recall plot for the nine methods, while Table 4.1 gives
the recognition rate. In the graph, the point where the slope of the graphs change is
when R = 15, and is more or less similar to the data given in the corresponding table
for R = 15. It is therefore easier to refer to this point (R = 15) when comparing

Chapter 4 Texture Feature Extraction 74

recognition rate for a particular method. From the figures, the best texture matching
method is found to be the MRSAR technique which is just slightly better than the
Gabor transform method of 6 orientations and 4 scales. The performance of the three
wavelet-based method are almost identical with the DWF favored just slightly from
the other two. The TWT does not seem to give a much better retrieval rate than the
PWT, instead it is slightly worse than the PWT and the DWF. This might be because
the decomposition on the medium frequency channels (LH and HL), although it may
provide better discrimination features for some textures, it might also lead to poor
discrimination for others. The fact that DWF carries more information than PWT and
TWT in terms of coefficient is probably the reason it is better than the other two.

However all three wavelet-based techniques are found to be better than the Gabor trans-
form with 6 orientations and 3 scales. This means that for 3 scales decomposition, the
discrete wavelet transform technique is better than the continuous wavelet transform
technique, even though the Gabor transform offers more orientation tunings (6 vs 4).
However all three wavelet-based techniques are inferior to the Gabor transform with 6
orientations and 4 scales. The Law’s texture feature and the discrete cosine transform
give a considerable performance but not as good as the MRSAR, Gabor and wavelet-
based techniques. Note that the Law’s texture feature is considerably better than the
discrete cosine transform since it partitions the frequency space into 25 regions instead
of just 9 for the DCT, and thus has better discrimination features. The grey level co-
occurrence matrix gave the worst performance among the nine evaluated techniques.
Appendix A gives the detailed recognition rate for all 112 Brodatz textures for all 9
methods evaluated.

Red Solid
Green Solid
Blue Solid
Black Solid
Yellow Solid
Magenta Solid
Red Dashed
Green Dashed
Blue Dashed

Recall

P
re

ci
si

on

: MRSAR
: Gabor 6x4
: Gabor 6x3
: DWF
: PWT
: TWT
: Law’s
: DCT
: GLCM

Figure 4.5: Precision-recall plot for nine texture methods

From Appendix A, some texture classes with a very low recognition rate are observed.
For example, texture D043 gave a very low average recognition rate of less than 10%

Chapter 4 Texture Feature Extraction 75

Texture Number of retrieved images considered
Method 15 30 45
PWT 65.47 76.72 81.36
TWT 65.87 76.29 80.90
DWF 66.42 77.42 81.61
Gabor 6×3 66.12 75.47 79.53
Gabor 6×4 69.06 78.98 83.41
DCT 52.20 64.28 70.56
Law’s 60.44 71.53 76.55
GLCM 41.86 52.68 58.92
MRSAR 69.40 79.36 83.85

Table 4.1: Percentage of recognition rate for different texture methods

of its entire class member. After visual inspection, texture D043 is a nonhomogeneous
texture, therefore when one of the sub-images of the texture is used as the query, the
retrieved result will mostly contain textures from other classes. Figure 4.6 show the 16
sub-images of texture D043 and D044. Clearly if one of the sub-images are taken as query
for texture retrieval, it could easily be confused between the two classes. Furthermore,
some of the sub-images do not even contain any texture, which will definitely result in
incorrect retrieval. To obtain a much better accuracy for our evaluation, we will only
include the homogeneous texture classes as the query prototype. The nonhomogeneous
texture will remain in the database to provide the non-texture regions, but will not be
used as query. Thus the image database remains with size 1792 images. After careful
observation, 12 texture classes (D013, D042, D043, D044, D045, D058, D059, D061,
D069, D090, D091 and D097) will be excluded from the experiments. All 12 textures
are shown in figure 4.7. The evaluation will now be based on only 100 homogeneous
texture classes, and will reflect a more true accuracy of the retrieval performance.

Figure 4.6: The 16 sub-images of texture (left) D043 and, (right) D044

Figure 4.8 and table 4.2 shows the performance for just the 100 homogeneous Brodatz
textures. From the table and graph, all nine texture methods experienced a significant
rise of recognition rate compared to using the whole Brodatz texture sets. In terms of

Chapter 4 Texture Feature Extraction 76

Figure 4.7: 12 nonhomogeneous textures excluded from the evaluation

evaluation of the best method, the rankings between texture method does not change
much, except for the 6 orientations and 3 scales Gabor transform which is now closer
to the performance of the wavelet-based methods. The best recognition rate for top 15
retrieved images was recorded by the Gabor transform with 6 orientations and 4 scales
and the MRSAR method with around 74% accuracy with the wavelet-based method not
far behind at 71% accuracy. All the following experiments on grey scale textures will
therefore be based on these 100 homogeneous textures only, as they reflects a more true
performance.

Red Solid
Green Solid
Blue Solid
Black Solid
Yellow Solid
Magenta Solid
Red Dashed
Green Dashed
Blue Dashed

Recall

P
re

ci
si

on

: MRSAR
: Gabor 6x4
: Gabor 6x3
: DWF
: PWT
: TWT
: Law’s
: DCT
: GLCM

Figure 4.8: Precision-recall plot for nine texture methods using only 100 homogeneous
textures

Chapter 4 Texture Feature Extraction 77

Texture Number of retrieved images considered
Method 15 30 45
PWT 70.48 82.07 86.55
TWT 70.42 81.02 85.52
DWF 71.56 82.60 86.84
Gabor 6×3 71.77 81.41 85.38
Gabor 6×4 74.34 84.46 88.63
DCT 55.96 68.53 74.95
Law’s 64.49 75.98 80.92
GLCM 44.99 56.18 62.52
MRSAR 74.10 84.30 88.48

Table 4.2: Percentage of recognition rate for different texture methods using only 100
homogeneous textures

Texture Method 128× 128 256× 256
PWT 0.09 0.21
TWT 0.45 0.95
DWF 0.19 0.58
Gabor 6×3 2.23 53.30
Gabor 6×4 2.78 59.11
DCT 0.06 0.57
Law’s 0.17 2.23
GLCM 1.27 3.68
MRSAR 15.01 61.16

Table 4.3: Time taken to extract features in seconds for different texture methods

4.3.1.2 Speed of Computation

Table 4.3 gives the time taken to perform feature extraction on images of size 128× 128
and 256 × 256 for all nine texture methods. The time was recorded using Matlab 6.5
on a Pentium III 733MHz processor. The PWT, TWT, DWF, DCT and Law’s texture
features are very fast in extracting features of size 128 × 128, although Law’s texture
method was quite affected by the increase in image sizes. This is illustrated by the fact
that the time taken for Law’s method was increased by a factor of more than 10 from
image size 128×128 to the size 256×256.The Gabor transform and MRSAR methods is
the most computationally intensive. The Gabor transform method is still considerable
for image size 128 × 128 but it took almost a minute to compute features from image
size 256× 256. The performance of the GLCM is also good although not as good as the
wavelet-based algorithm and the DCT and Law’s techniques.

4.3.1.3 Choosing the Best Texture Method

Taking into account both the retrieval accuracy and the speed of the algorithm, we can
conclude that the wavelet-based methods give the best overall performance in retrieving

Chapter 4 Texture Feature Extraction 78

texture. All the three wavelet-based texture methods give a very similar retrieval accu-
racy and computational speed. However, since the TWT used more features compared
to the other two (40 compared to 10), we discard the TWT from consideration in choos-
ing the best available texture features. Thus we only need to consider between PWT
and DWF methods to be used for the rest of this thesis. However, since the DWF offers
translation invariance (78), this might offer more advantage for the retrieval purpose.

Consider the image in Figure 4.9. The feature vectors computed for the image on the
left and its shifted version on the right using DWF will produce exactly the same feature
vectors. However this is not true for the PWT, which recorded different feature vectors
between the two images. Although the translation invariant properties do not show any
advantage in the sub-image matching experiment, we believe this property might be
useful when retrieving texture from real scene images. For this reason, and also one
other reason from a segmentation point of view, which will be discussed in chapter 6,
we opt to use the discrete wavelet frames method as the starting point.

Figure 4.9: (left) A texture and, (right) its shifted version

4.3.2 Evaluating the Best Parameters for the DWF

In the last section, the discrete wavelet frames has been chosen as the best available tex-
ture method to be used in this thesis. In this section, a range of wavelet parameters will
be tested for the DWF and their effect on the retrieval accuracy will be evaluated. The
parameters to be tested include the type of the wavelet basis, the number of decomposi-
tion levels, and the type of padding used during the computation of wavelet transform.
In the last section, we use a Daubechies 8-tap wavelet filter as the wavelet basis for the
DWF, along with a 3 levels of decomposition using a periodic image padding.

4.3.2.1 The Choice of Wavelet Basis

There are a lot of wavelet bases that can be used for computing the wavelet transform
and the wavelet frames, making it impossible to evaluate all of them within this thesis.

Chapter 4 Texture Feature Extraction 79

However, a selection of well known bases such as the Daubechies, Haar, Coiflet and
Symlet wavelet will be tested for this experiment. Three different vanishing moments
are chosen for each of the Coiflet and Symlet wavelet family, while two and one from
the Daubechies and the Haar wavelet family respectively. Table 4.4 gives the filter
coefficients for the ten wavelet bases.

Haar Daubechies Coiflet Symlet
8-tap 16-tap 6-tap 12-tap 18-tap 4-tap 8-tap 16-tap

-0.7071 -0.2304 -0.0544 0.0727 -0.0164 0.0038 -0.4830 -0.0322 -0.0019
0.7071 0.7148 0.3129 0.3379 -0.0415 0.0078 0.8365 -0.0126 -0.0003

-0.6309 -0.6756 -0.8526 0.0674 -0.0235 -0.2241 0.0992 0.0150
-0.0280 0.5854 0.3849 0.3861 -0.0658 -0.1294 0.2979 0.0038
0.1870 0.0158 0.0727 -0.8127 0.0611 -0.8037 -0.0491
0.0308 -0.2840 -0.0157 0.4170 0.4052 0.4976 -0.0272
-0.0329 -0.0005 0.0765 -0.7938 0.0296 0.0519
-0.0106 0.1287 -0.0594 0.4285 -0.0758 0.3644

0.0174 -0.0237 0.0718 -0.7772
-0.0441 0.0056 -0.0823 0.4814
-0.0140 0.0018 -0.0346 0.0613
0.0087 -0.0007 0.0159 -0.1433
0.0049 0.0090 -0.0076

-0.0004 -0.0026 0.0317
-0.0007 -0.0011 0.0005
-0.0001 0.0005 -0.0034

0.0001
-0.0000

Table 4.4: Filter coefficients of different wavelet basis

Figure 4.10 and table 4.5 shows the average recognition rate for the ten wavelet bases
in retrieving 100 homogeneous Brodatz texture classes. From the figures, it can be
observed that the choice of wavelet basis does not effect the performance of the discrete
wavelet frames in texture retrieval significantly, and therefore is not critical. Except
from the Haar wavelet, which is the simplest of wavelet bases, all other wavelet bases
give a very similar average recognition rate of about 71%. In terms of speed, there is
also not a significance difference between all ten wavelet bases.

4.3.2.2 Number of Decomposition Levels

5 different decomposition levels of 1,2,3,4 and 5 will be evaluated. This results in
4,7,10,13 and 16 features respectively for the discrete wavelet frames decomposition.
Figure 4.11 and table 4.6 shows the average recognition rate of the five levels. From
the figures, we can conclude that increasing the number of decomposition levels helps
in improving the retrieval accuracy of the discrete wavelet frames. The increment in
accuracy is quite dramatic from 1 decomposition level to 3 decomposition levels, but
only a small increment is observed when the decomposition levels change from 3 levels

Chapter 4 Texture Feature Extraction 80

Blue Solid
Green Solid
Red Solid
Yellow Solid
Magenta Solid
Black Solid
Red Dashed
Blue Dashed
Black Dashed

Recall

P
re

ci
si

on
 : Coiflet 18

: Symmlet 16
: Daubechies 16
: Coiflet 12
: Symlet 8
: Daubechies 8
: Coiflet 6
: Symmlet 4
: Haar

Figure 4.10: Precision-recall plot for different wavelet basis

Wavelet Number of retrieved images considered
Basis 15 30 45
Haar 67.57 79.21 83.90
Daubechies 8-tap 71.56 82.60 86.84
Daubechies 16-tap 72.02 83.11 87.39
Coiflet 6-tap 70.44 81.54 85.94
Coiflet 12-tap 71.59 82.65 86.90
Coiflet 18-tap 71.92 82.87 87.13
Symlet 4-tap 70.33 81.45 85.86
Symlet 8-tap 71.57 82.59 86.82
Symlet 16-tap 72.04 82.90 87.26

Table 4.5: Percentage of recognition rate for different wavelet basis

to 4 and almost no increment at all from 4 to 5 levels. This might suggest that 3 levels
is the optimal choice for discrete wavelet frames decomposition of a 128 × 128 images.
Furthermore the time taken to compute the features also increase quite dramatically
when the decomposition levels increase from three to higher levels. Table 4.7 shows the
time needed to compute the discrete wavelet frames features for image of various sizes.
From the table, it is clear that by increasing the decomposition levels, the computational
load increases almost quadratically. Since the improvement in accuracy over the 3-levels
decomposition is not very significant, 4- and 5-levels decomposition can be considered as
unnecessary. The optimal choice of the decomposition levels for our research purposes
is therefore the 3-levels, with 10 features.

Chapter 4 Texture Feature Extraction 81

Red Solid
Green Solid
Blue Solid
Yellow Solid
Black Solid

Recall

P
re

ci
si

on

: 5 levels
: 4 levels
: 3 levels
: 2 levels
: 1 level

Figure 4.11: Precision-recall plot for different decomposition levels

Decomposition Number of retrieved images considered
Levels 15 30 45
1 57.29 72.60 79.14
2 66.35 79.18 84.24
3 71.56 82.60 86.84
4 74.08 84.39 88.28
5 74.56 85.07 88.85

Table 4.6: Percentage of recognition rate for different decomposition levels

4.3.2.3 Image Padding Type

Wavelet transform and wavelet frames is the process of filtering the image with appro-
priate filters. Therefore depending on the length of the filter coefficients, the image to
be filtered needs to be padded before the filtering process takes place. In this section we
will consider three types of image padding:

• Zero Padding: This method assumes that the signal is zero outside the original
support.

• Periodic Padding: This method assumes that signals or images can be recovered
outside their original support by periodic extension.

• Symmetrical Padding: This method assumes that signals or images can be recov-
ered outside their original support by symmetric boundary value replication.

Figure 4.12 and table 4.8 show the average recognition rate for the three different image
padding. It is very clear from this experiment that the choice of image padding does not

Chapter 4 Texture Feature Extraction 82

Decomposition levels 128× 128 256× 256 512× 512
1 (4 features) 0.06 0.17 0.57
2 (7 features) 0.11 0.34 1.19
3 (10 features) 0.19 0.58 2.15
4 (13 features) 0.40 1.14 3.93
5 (16 features) 2.30 5.21 13.38

Table 4.7: Time taken to extract features in seconds for different decomposition levels

Padding Number of retrieved images considered
Type 15 30 45
Zero Padding 71.52 82.25 86.57
Periodic Padding 71.56 82.60 86.84
Symmetric Padding 71.72 82.48 86.86

Table 4.8: Percentage of recognition rate for different image padding

effect the retrieval accuracy of the discrete wavelet frames, since all three padding types
give a very similar retrieval rate. Thus the choice of image padding is not crucial in the
context of texture retrieval. However, the translation invariant property discussed in the
previous section is affected by the choice of image padding. The translation invariance
of discrete wavelet frames can only be achieved using periodic padding. Hence if we
are to preserve the translation invariance property throughout this thesis, the periodic
padding needs to be employed. The symmetric padding however might be useful in
texture segmentation since periodic padding might affect the boundary coefficients if
the opposite ends of an image contains different texture. Therefore the periodic padding
will be used for feature extraction purpose while the symmetric padding will be used for
segmentation in chapter 6.

Blue Solid
Green Solid
Red Solid

Recall

P
re

ci
si

on

: Zero Padding
: Periodic Padding
: Symmetric Padding

Figure 4.12: Precision-recall plot for different image padding

Chapter 4 Texture Feature Extraction 83

4.3.2.4 Mean Subtraction

There are several wavelet papers which suggest a mean value of the image is subtracted
first before the wavelet transform or the wavelet frames are applied (78; 119). In this
section, the advantage of this preprocessing stage is investigated. In theory, this prepro-
cessing step can help in achieving invariance of the brightness value of the image. Since
the LL channels of the wavelet transform and the wavelet frames is obtained by filtering
with a filter which is non-zero sum between its coefficients, the resulting LL coefficients
will be highly dependent on the brightness of the image. In other words, two similar
texture but with a different brightness will have a different feature in the LL channels.
Removing the mean from the input image is an alternative to solve this problem. Figure
4.13 shows the precision-recall plot for the retrieval process using the original image grey
levels versus the retrieval process with the mean-removal pre-processing algorithm.

Red Solid
Blue Solid

Recall

P
re

ci
si

on

: Original Grey Level
: With mean value removed

Figure 4.13: Precision-recall plot for feature extraction on original images vs. mean-
removed images

From the figure, the mean removal does not seem to have an advantage over the ones
using the original grey level, in fact it is slightly worse. However after visually inspecting
the behaviour of the retrieved images, it appears that the pre-processing step helps in
grouping together images with the same texture configuration, even though they are
from different classes. Figure 4.14 shows the result of top 50 retrieved images of the two
approaches using one of the D001 sub-images as the query. As can be seen, with mean
removal, textures with vertical and horizontal stripes are grouped together, while that
is not the case for the ones using the original grey levels. For this reason, and the fact
that it can also solve the problem of brightness invariance, the mean removal process
will be used before discrete wavelet frames is applied.

Chapter 4 Texture Feature Extraction 84

Figure 4.14: Top 50 retrieved images for feature extraction on (top) mean-removed
images (bottom) original image. The query is located at the top left

4.3.2.5 Distance Metrics

Distance measure is an important issue in texture retrieval. The Euclidean distance
is the most commonly used distance metric in texture retrieval. However since we
are using wavelets, the Euclidean distance are not very suitable since the range of the
individual features tend to increase dramatically with increasing resolution, i.e. for
the lower frequency. This might results in the lower frequency components dominating
the distance measure, hence making the higher frequency components have very little
influence in texture discrimination. As an example, the mean and standard deviation
of the entire Brodatz texture sets for the discrete wavelet frames features are given in
table 4.9, where fi is the individual feature component, with f1,f2,f3,f4 are the features
from the 3rd level coefficients, f5,f6,f7, are from 2nd level, and f8,f9,f10 are from the
1st level.

As can be seen from the table, the higher the levels, i.e. the lower the frequency channels,

Chapter 4 Texture Feature Extraction 85

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Mean 156.58 66.45 68.31 44.73 37.62 36.44 20.93 15.81 15.18 6.42

Standard
Deviation 95.01 36.33 45.97 28.29 22.21 24.72 11.73 10.01 10.11 5.600

Table 4.9: Mean and standard deviation of each individual feature of the DWF fea-
tures, taken over the entire Brodatz texture sets

the higher and bigger the feature range. It is therefore interesting to observe whether the
Euclidean distance is suitable for use with the wavelet-based features. One alternative
way to reduce the domination of the lower frequency components is to normalize each
individual features with the standard deviation of the corresponding features. It is
also interesting to observe whether the order in the Lm distance metric contributes
to the overall retrieval rate. The Euclidean and the Manhattan (L2 and L1 distance
respectively) distance metrics will be considered. All together, four distance metrics will
be evaluated, and is summarized as follows:

Manhattan distance :
∑

k

∣∣f i(k)− f j(k)
∣∣ (4.24)

Euclidean distance :
∑

k

(
f i(k)− f j(k)

)2 (4.25)

Normalized Manhattan distance :
∑

k

∣∣∣∣
f i(k)− f j(k)

σ(k)

∣∣∣∣ (4.26)

Normalized Euclidean distance :
∑

k

(
f i(k)− f j(k)

σ(k)

)2

(4.27)

There are other distance metrics such as the Mahalanobis and the Bayesian distance
metrics. However these metrics are quite complex in nature and require some statistical
properties of textures. This requirement is quite unsuitable for an interactive content-
based retrieval application and thus we will not be evaluating such metrics. Furthermore
the normalized Euclidean distance can be classified as a simplified Mahalanobis distance,
and can therefore represent the Mahalanobis distance to some extent. Figure 4.15 and
table 4.10 shows the recognition rate of the four different distance metrics. From the
figures, both the normalized distance give an almost similar performance and is the best
among the evaluated metrics. This illustrates that the domination of the low frequency
components does effect the discrimination ability of the discrete wavelet frames features.
When the feature is not normalized, the Manhattan distance appeared to be better
than the Euclidean distance. This is caused by the fact that the domination of the
low frequency features are further amplified by the square element of the Euclidean
distance metric. Without the square function, the higher frequency components can
still contributes to the discrimination ability of the DWF features. Nevertheless, since
the normalized Euclidean distance is slightly better than the normalized Manhattan

Chapter 4 Texture Feature Extraction 86

Distance Number of retrieved images considered
Metric 15 30 45
Manhattan 66.84 78.80 83.53
Euclidean 61.99 73.65 78.66
Normalized Manhattan 71.72 82.48 86.86
Normalized Euclidean 72.07 83.22 87.45

Table 4.10: Percentage of recognition rate for different distance metrics

distance, it will be used as the distance metric for the DWF features in this thesis.

Red Solid
Green Solid
Blue Solid
Black Solid

Recall

P
re

ci
si

on

: Manhattan
: Euclidean
: Normalized Manhattan
: Normalized Euclidean

Figure 4.15: Precision-recall plot for different distance metrics

4.3.3 Improving the Retrieval Accuracy

Throughout the last sections, the mean energy of the coefficients in each channel is
used as the feature. In this section several other statistics will be investigated for their
suitability in discriminating textures. First the individual performance of the selected
statistical function will be evaluated. This is followed by investigating the best combi-
nation of statistics in order to achieve the best texture retrieval performance. However
in doing so, the speed constraint will always have to be observed so as not to sacrifice
the low computational advantage of the discrete wavelet frames while improving the
recognition rate.

4.3.3.1 Individual Functions

Ten individual features are short-listed for evaluation, which are the mean value, stan-
dard deviation value, mean energy, standard deviation energy, maximum value, mini-

Chapter 4 Texture Feature Extraction 87

mum value, maximum energy, maximum row sum energy, maximum column sum energy,
and the number of zero-crossings. However, since all the channels except the low-low
channel of the discrete wavelet frames are zero mean (the low-low channel will also be
zero mean since we remove the mean before applying the DWF), the mean feature will
provide no meaningful property. This leave us with nine functions to be considered. For
an M ×N image I, the nine statistical functions are defined as below:

Standard deviation value, σ =
∑

n

∑
m[I(m,n)− µ]2

M ×N
=

∑
n

∑
m I(m,n)2

M ×N
(4.28)

Mean energy, |µ| =
∑

m

∑
n |I(m,n)|

M ×N
(4.29)

Standard deviation energy, |σ| =
∑

n

∑
m[I(m,n)− |µ|]2
M ×N

(4.30)

Maximum value, max = max I(m,n) (4.31)

Minimum value, min = min I(m,n) (4.32)

Maximum energy, max = max |I(m, n)| (4.33)

Maximum row sum energy, maxrow = max
∑

n

|I(m,n)| (4.34)

Maximum column sum energy, maxcol = max
∑
m

|I(m, n)| (4.35)

Average zero-crossings, ZC =
total number of zero-crossings

M ×N
(4.36)

Note that the term ’value’ refers to computation on the original value of the coefficients,
while the term ’energy’ refers to computation on the absolute value of the coefficients.
The zero crossing feature is used based on the fact that zero-crossings of a wavelet
transform correspond to edges in the original image (120; 121). In some previous work
(122),researchers used an edge density per unit area in order to classify texture. There-
fore computing the density of zero-crossings within wavelet coefficients are similar to
computing edge density in the original image. Furthermore, being a multiresolution
technique, computing the zero-crossings on different wavelet scales are equivalent to
computing the edge density of different edge thresholds. The zero-crossings computa-
tion is therefore believed to be a useful tool for texture discrimination.

Figure 4.16 and table 4.11 shows the performance of the nine functions. From the
figure, it is quite clear that the standard deviation energy features perform best followed

Chapter 4 Texture Feature Extraction 88

closely by the standard deviation value. The mean energy and the zero-crossings feature
make up the top four rank statistical features. The performance of the maximum value,
minimum value, maximum energy, maximum row sum energy and maximum column
sum energy do not fare very well compared to the top four functions. The pair of
maximum and minimum values give a very similar performance, as do the performance
of the maximum row sum energy and the maximum column sum energy. The top four
functions, the standard deviation energy, the standard deviation value, the mean energy
and the zero-crossings are chosen for the combination of functions experiments.

Red Solid
Green Solid
Blue Solid
Yellow Solid
Black Solid
Red Dashed
Green Dashed
Blue Dashed
Black Dashed

Recall

P
re

ci
si

on

: Standard deviation energy
: Standard deviation value
: Mean energy
: Zero-crossings
: Maximum column sum energy
: Maximum row sum energy
: Maximum value
: Minimum value
: Maximum energy

Figure 4.16: Precision-recall plot for nine statistical functions

Function Number of retrieved images considered
15 30 45

Std deviation value 72.36 84.24 88.68
Mean energy 72.07 83.22 87.45
Std deviation energy 72.78 84.74 89.25
Max energy 53.52 68.98 76.10
Max value 54.66 69.88 76.94
Min value 54.59 69.63 76.86
Max row sum energy 62.82 77.70 83.63
Max column sum energy 63.87 78.08 83.78
Zero-crossings 69.42 83.28 87.58

Table 4.11: Percentage of recognition rate for nine statistical functions

4.3.3.2 Combination of Functions

From the nine listed functions in the previous section, it is logical to see the effect
of combining the minimum value function with the maximum value function as well
as combining the maximum row sum energy with the maximum column sum energy

Chapter 4 Texture Feature Extraction 89

function. Therefore before the top four statistical functions are examined for suitable
combinations, the above two combinations will first be investigated. Figure 4.17 shows
the precision-recall plot for the combined functions, along with the individual functions
for comparison purpose. Both the combination functions help in improving the retrieval
rate, although it is still not as high as the best individual function which is the standard
deviation energy. Therefore it is impractical to used these combined functions as the
texture features since the length of the features have doubled but are still inferior to the
best individual function with feature length 10.

Green Solid

Blue Solid

Red Solid
Black Solid
Red Dashed
Green Dashed
Blue Dashed

Recall

P
re

ci
si

on

: Max row and column
 sum energy combination
: Min and max value
 combination
: Standard deviation energy
: Maximum column sum energy
: Maximum row sum energy
: Maximum value
: Minimum value

Figure 4.17: Precision-recall plot for two types of functions combination

Now the top four functions which are the standard deviation energy, standard deviation,
mean energy and the zero-crossings will be evaluated. The following summarizes the
combination of the functions:

• F1: standard deviation energy + zero-crossings,

• F2: standard deviation energy + mean energy,

• F3: standard deviation energy + standard deviation value,

• F4: zero-crossings + mean energy,

• F5: zero-crossings + standard deviation value,

• F6: mean energy + standard deviation value,

• F7: standard deviation energy + zero-crossings + mean energy,

• F8: standard deviation energy + zero-crossings + standard deviation value,

Chapter 4 Texture Feature Extraction 90

Combination Number of retrieved images considered
Function 15 30 45
F1 80.67 90.84 93.62
F2 74.59 85.73 90.02
F3 76.29 86.93 90.46
F4 79.68 89.97 92.99
F5 78.68 89.30 92.25
F6 73.20 84.52 88.65
F7 80.80 90.58 93.56
F8 81.18 90.83 93.70
Std dev. energy 72.78 84.74 89.25

Table 4.12: Percentage of recognition rate for different function combinations com-
pared to the standard deviation energy

The first six combinations consists of 20 features while the last two combinations consists
of 30 features. Figure 4.18 and table 4.12 shows the performance of the eight combined
functions. The performance of the standard deviation energy alone is also plotted for
comparison. From the graph, almost all combinations of function improve the retrieval
accuracy significantly. Combination F8 for example reaches 81% recognition rate for
top 15 retrieved images, an increment of almost 9% over the best individual functions
performance. Overall, the best combination is achieved with F1, F7 and F8 combinations.
It is also interesting to note that the combination of 3 functions does not have any
advantage over the best combination of two functions. Therefore we can conclude that
for an optimal feature extraction technique using discrete wavelet frames, 20 features
are adequate to obtain a good retrieval performance. In this experiment, it is found that
the combination of the standard deviation energy with the zero-crossings are the best
possible DWF features.

Red Solid

Green Solid
Blue Solid
Yellow Solid
Black Solid
Red Dashed
Green Dashed
Blue Dashed
Black Dashed

Recall

P
re

ci
si

on
 : Standard deviation

 energy
: F1
: F2
: F3
: F4
: F5
: F6
: F7
: F8

Figure 4.18: Precision-recall plot for eight types of functions combination

Chapter 4 Texture Feature Extraction 91

4.3.3.3 Channel Selection

The standard deviation energy and the zero-crossings feature will be used as texture
features for each of the channels of the discrete wavelet frames. For a 3 level decom-
position, this results in 20 features for each image. In this section the performance of
individual channels will be investigated. In other words, we would like to find if using
all channels are necessary to obtain the best retrieval result, or dropping some channels
(hence reducing the number of features) would not cause any reduction in performance.
In certain wavelet papers, the LL channels are dropped for certain reasons, while some
other papers tend to drop the HH channels. In this experiment, the following channels
selection will be tested:

• All channels,

• All channels except the HH channel of each level,

• All channels except the LL channel,

• Only the LH and HL channels of each level,

The two functions, standard deviation energy and the zero-crossings will first be evalu-
ated separately, followed by a combination of the two as the following:

• S1: Standard deviation energy of all channels,

• S2: Standard deviation energy of only the LH and HL channels of each level,

• S3: Standard deviation energy of all channels except the LL channel,

• S4: Standard deviation energy of all channels except the HH channel of each level,

• Z1: Zero-crossings of all channels,

• Z2: Zero-crossings of only the LH and HL channels of each level,

• Z3: Zero-crossings of all channels except the LL channel,

• Z4: Zero-crossings of all channels except the HH channel of each level,

• C1: S1 + Z1,

• C2: S1 + Z2,

• C3: S1 + Z3,

• C4: S1 + Z4,

• C5: S2 + Z1,

Chapter 4 Texture Feature Extraction 92

• C6: S2 + Z2,

• C7: S2 + Z3,

• C8: S2 + Z4,

• C9: S3 + Z1,

• C10: S3 + Z2,

• C11: S3 + Z3,

• C12: S3 + Z4,

• C13: S4 + Z1,

• C14: S4 + Z2,

• C15: S4 + Z3,

• C16: S4 + Z4,

The performance of channels selection on the two functions separately is shown in Figure
4.19. On both functions, the best performance was observed when all the channels are
used. The smaller the number of channels used, the poorer the retrieval performance.
This is further confirmed in Figure 4.20 when among all 16 combinations of channels
selection, the ones which employ all channels is found to be the best. It is then safer
to include all the channels when computing both the standard deviation energy and the
zero-crossings.

Red Solid
Green Solid
Blue Solid
Black Solid

Recall

P
re

ci
si

on

: S
1

: S
2

: S
3

: S
4

Recall

P
re

ci
si

on

Red Solid
Green Solid
Blue Solid
Black Solid

: Z
1

: Z
2

: Z
3

: Z
4

Figure 4.19: Precision-recall plot for different channels selection using, (left) std dev.
energy, and (right) zero-crossings

Chapter 4 Texture Feature Extraction 93

Red Solid
Green Solid
Blue Solid
Yellow Solid
Black Solid
Red Dashed
Green Dashed
Blue Dashed

Recall

P
re

ci
si

on

: C1
: C2
: C3
: C4
: C5
: C6
: C7
: C8

Red Solid
Green Solid
Blue Solid
Yellow Solid
Black Solid
Red Dashed
Green Dashed
Blue Dashed

Recall

P
re

ci
si

on

: C9
: C10
: C11
: C12
: C13
: C14
: C15
: C16

Figure 4.20: Precision-recall plot for different channels selection of 16 combinations

4.3.4 The Finalized DWF Texture Method

From the early experiments conducted, the discrete wavelet frames method is found
to be the best texture feature method for texture retrieval in terms of accuracy and
speed. The subsequent experiments investigated the best parameters and features to be
associated with the discrete wavelet frames, and is summarized in table 4.13.

The above constraints resulted in a feature length of 20, and computational speed of
0.19 seconds for an image of size 128 × 128. The average recognition rate for the 100
homogeneous Brodatz textures on the entire database is recorded at 80.67% for R = 15.
The recognition rate of each individual class is given in Appendix B.

Chapter 4 Texture Feature Extraction 94

Level of decomposition 3
Wavelet basis Not crucial, but Daubechies 8-tap is chosen
Padding type Periodic for feature extraction,

symmetric for segmentation
Image pre-processing Mean subtraction
Distance metric Normalized Euclidean
Statistical features Standard deviation energy,

Zero-crossings
Channels selection All channels

Table 4.13: Summary of the best discrete wavelet frames parameters

4.3.5 Evaluation on Colour Image Database

The discrete wavelet frames texture method described in the previous section will now
be evaluated on the colour image database. To achieve this, the collection from the
Vision Texture (VisTex) (123) database will be used. A total of 2672 128×128 database
images are produced from the original 167 512 × 512 images. Each image is converted
to a grey level image using the luminance function:

Luminence, L = 0.299R + 0.587G + 0.114B (4.37)

where R, G and B is the red, green and blue components of the colour spaces respectively.

If the Vision Texture database is visually inspected, there are parts of the original
images that are almost identical. Compared to the Brodatz texture database, it is more
rigorous in distinguishing textures. With human visual discrimination, using the VisTex
sub-images, it is impossible to decide which original texture to associate some of the sub-
images with. This can severely distort the true accuracy of the texture algorithm. There
are also more collections on highly inhomogeneous textures existing in the database, such
as the Buildings and Paintings, compared to Brodatz textures. Figure 4.21 illustrates
some of the patterns in VisTex. There is hardly any difference between Tile.0000 and
Tile.0001, whereas Buildings.0005 and Painting.1.0000 are significantly uneven over the
whole image. In appendix C, a list of which VisTex textures belong to the same class is
presented, as well as which textures will not be included in the performance evaluation.

To obtain the true accuracy of the retrieval, the precision and recall approaches employed
in the previous section need to be modified. This is because since some sub-images such
as the ones from Tile.0000 and Tile.0001 are grouped together as one class, the size
of each classes will no longer be the same. Some will have 16, and some will have 32.
The most extreme case is within the Terrain classes where all 11 parent images are very
similar, hence this class will consists of 11 × 16 = 176 database images. It is therefore
unfair to measure the recognition rate at R = 15 for all classes. In order to observe
the retrieval performance of the VisTex database, the following approach is employed.
For a texture class of size N , we observe how many of the database images within this

Chapter 4 Texture Feature Extraction 95

Tile.0000 Tile.0001 Buildings.0005 Paintings.1.0000

Figure 4.21: Examples of very similar textures and highly inhomogeneous textures of
the VisTex database

class is retrieved within the top N − 1 retrieved images when one of them is used as
query. For example, for a class of size 16, the recognition rate is recorded for the top
15, while for class of size 32 and 176, the recognition rate is recorded for the top 31 and
175 respectively.

The recognition rate for each VisTex class is shown in Appendix D. It was observed
that the average recognition rate for the VisTex database is 68.58%. This is quite a
high retrieval rate considering the level of confusion the Vistex database brought with
them. The performance of standard deviation energy and the zero-crossings individually
was also observed, and is recorded to be 56.55% and 53.52% respectively. This further
confirms the superiority of the combined features over the individual features for VisTex
database. To investigate the effectiveness of the luminence function in converting colour
images into grey scale images, a selection of several colour to grey scale conversion for-
mulae were also evaluated. The selected colour to grey scale conversions are summarized
below:

• CL1: I = 0.333R + 0.333G + 0.333B

• CL2: I = 0.405R + 0.116G + 0.133B

• CL3: I = 0.145R + 0.827G + 0.627B

• CL4: I = 0.596R− 0.274G− 0.322B

• CL5: I = 0.211R− 0.253G + 0.312B

• CL6: I = 0.500R− 0.500B

• CL7: I = −0.5R + G− 0.5B

• CL8: I = R

• CL9: I = G

• CL10: I = B

Chapter 4 Texture Feature Extraction 96

Table 4.14 shows the average recognition rate for the different colour to grey scale
conversion. From the table, except for a few conversion methods, all the colour to grey
scale conversion approaches give quite a similar performance. We can conclude that the
choice of colour to grey-scale conversion is not very critical in texture retrieval using
discrete wavelet frames, and the two most commonly used approaches, the luminence
and the average, CL1 gives a comparable performance. Figure 4.22 shows some retrieval
examples of the VisTex database experiments.

Conversion Type Average Recognition Rate
Luminence, CL0 68.58

CL1 69.02
CL2 68.97
CL3 68.22
CL4 63.77
CL5 69.12
CL6 64.35
CL7 65.82
CL8 68.18
CL9 67.46
CL10 67.00

Table 4.14: Average recognition rate for different colour to grey scale conversion

4.4 Chapter Summary

This chapter started with a brief description of some popular texture feature extraction
methods. An experiment was then conducted to evaluate the performance of wavelet-
based texture features, which are the PWT, TWT and the DWF. Several other tech-
niques (Gabor transform, DCT, Law’s texture feature, co-occurrence matrix and MR-
SAR) were also investigated for comparison with the wavelet-based method. From the
experiment, it was found that the wavelet-based method performs quite comparably with
the other method, with only the Gabor transform and the MRSAR techniques showing
better retrieval performance. However the wavelet-based techniques have a very impor-
tant advantage of very fast computation, hence making it the optimal choice for texture
retrieval. Among the three wavelet-based techniques, the DWF was chosen for further
experimentation because it is slightly better than the other two, as well as the fact that
it is translationally invariant.

The next experiments were focused on the discrete wavelet frames where several impor-
tant parameters were investigated for its influence in the performance of the DWF in
retrieval rate. The best level of decompositions were found to be 3, as increasing the
levels after this level tends to increase the computation time while not having much
improvement in retrieval rate. The choice of wavelet basis for decomposition was found

Chapter 4 Texture Feature Extraction 97

Figure 4.22: Examples of retrieval result for VisTex database. The query is located
at the top left.

Chapter 4 Texture Feature Extraction 98

to be not critical in retrieval performance, except for the Haar wavelet which gave quite
a low rate compared to the others. The Daubechies 8-tap wavelet was however chosen
as the wavelet basis for later experiments as it is known to have the best localization
in the spatial and frequency domain. The choice of image padding was also found to
be not critical, although in order to preserve the translation invariance properties of
the DWF, the periodic padding was chosen. A simple pre-processing of removing the
mean of the grey level before applying the wavelet decomposition is important in tex-
ture retrieval as it helps in grouping together different textures with a rather similar
configuration. Finally the best distance metric for use with the DWF features is the
normalized Euclidean distance.

The next experiments focused on improving the retrieval accuracy of the DWF tech-
niques. Several statistical functions were short-listed for evaluation and the standard
deviation energy was found to have the best discrimination ability. Combining two or
more statistical functions also helps in dramatically improving the retrieval accuracy,
where an improvement of up to 9% was observed. However combining three or more
statistical functions does not seem to have any improvement over the best combination
of two functions only. Therefore the best combination of two statistical functions, which
is the standard deviation energy and zero-crossings combination was chosen as the best
combination. These two functions are computed from each of the DWF channels to
obtain the best result. Dropping one or more channels seems to also reduce the retrieval
rate.

Finally the final discrete wavelet frames features recorded a recognition rate of more than
80% for 100 Brodatz textures and almost 70% for 142 VisTex textures. In converting the
colour images to grey scale, most of the conversion formulae tested give a very similar
performance, indicating that the choice of conversion is not crucial. In the next chapters,
the final discrete wavelet frames features presented in this chapter will be used in block
-oriented decomposition as well as texture segmentation.

Chapter 5

Block Oriented Decomposition

This chapter is concerned with the effectiveness of a block-oriented decomposition in
texture retrieval. A brief review of some of the popular block-oriented decomposition
techniques is presented and a novel block oriented decomposition technique is proposed.
Experiments to evaluate the technique are conducted on a Brodatz database as well as
real museum collections.

5.1 Introduction

A common visual query to an image database system involves finding all images in the
database which contain a sub-image similar to a given query. As the feature vector of
a complete database image may not correctly represent its sub-images, retrieval based
on comparison between the feature vectors of the query image and database images
may not provide satisfactory results. Thus, image segmentation is necessary to properly
implement such feature-based techniques for searching image databases (124). Effective
segmentation isolates the important features of database images.

Ideally, the results generated through the process of image recognition and analysis
would be used to automatically segment image content. However, as image recognition
itself is still in its formative stage, investigations in this direction are still in their infancy.
In terms of texture retrieval, the texture property is usually computed in local masks for
localization (36). It is therefore interesting to see if texture segmentation is really needed
in the query by texture application, or whether the local masks approach mentioned
above is just as effective. As far as texture retrieval is concerned, there is no study
comparing the advantages and disadvantages of the two approaches in an open image
retrieval application.

This chapter will therefore focus on the block-based approach while the following chapter
will focused on the texture segmentation approach. The next section briefly describes

99

Chapter 5 Block Oriented Decomposition 100

some available methods in using block-oriented image decomposition in texture locali-
sation within an image.

5.2 Block Oriented Decomposition Techniques

There are quite a few different approaches in using the local mask in content-based image
retrieval. This includes a simple sliding mask (114; 125), the quad-, quin- and nona-tree
decompositions (124; 126), and a multiscale decomposition (127), among others.

5.2.1 Sliding Windows

Sliding windows is the simplest block-oriented approach in texture localisation and is the
one usually used in texture retrieval. Given an image, a collection of small to medium
sized sub-images is produced by a simple image cropping procedure. The sub-images
produced could be overlapping or non-overlapping, with the overlapping windows pro-
viding better localisation, but with a lot more sub-images, which could effect the speed
of the feature extraction process. The size of windows usually depends on application,
with large windows providing better localisation for coarse texture but risk in failing
to capture small texture regions. The feature extraction process is then performed on
these sub-images. During matching, the feature vector of the query image is compared
with all the sub-images’ feature vectors, and the sub-image corresponding to the fea-
ture vector with the least dissimilarity is taken as the region most similar to the query
image. Manjunath and Ma (114) used a non-overlapping windows of size 128× 128 for
browsing large satellite images and air photos (about 5000 × 5000 pixels) with Gabor
transform as the texture features. They recorded a satisfactory retrieval performance.
Another example of image retrieval using sliding windows can be found in WALRUS
system (125).

5.2.2 Quad-Tree Decomposition

A quad-tree is a hierarchical image decomposition structure which can provide quick
access for image retrieval. A quad-tree is based on the principle of recursive decompo-
sition of images. Each decomposition of an image segment produces four equal-sized
quadrants. Figure 5.1(a) demonstrates the positions of the four quadrants, numbered
1, 2, 3 and 4, within the decomposed segment. The image decomposition process using
quad-tree structure can be described recursively, with the root representing the entire
image, and its children representing the decomposed segments; these, in turn, become
roots for further segmental decomposition. Each internal node has exactly 4 children.
The original quad-tree decomposition labels the decomposed segments white if they

Chapter 5 Block Oriented Decomposition 101

1

43

2

(a) (b)

Figure 5.1: (a) Segments in quad-tree decomposition, (b) Example of quad-tree de-
composition

consist of white pixels only, black if they consist of black pixels only, and grey if they
consist of both black and white pixels. Further decompositions are only carried out on
gray segments.

Smith and Chang (124) have presented a query by texture approach using quad-tree
segmentation and wavelet transform. In their application of the quad-tree structure,
the definition of leaf nodes is slightly changed. Before four children are generated by
each parent, conditions for merging are tested. A distance threshold is computed for
each child on the basis of extracted texture features. The distances in the feature space
are measured from the parent node to each child. If the distance to all four children
falls within the thresholds of the children, a single texture would be declared in the
parent node, and no further decomposition is necessary. Otherwise, pairwise grouping
of the children will then be performed. That is, if the distance between two neighbouring
children falls below the thresholds of both, the children are merged as a single child. The
quad-tree decomposition is then iterated on each child until the size of the smallest child
reaches a certain number of pixels. Overall, the maximum number of children generated
by a quad-tree decomposition is 4i, where i is the number of the decomposition level.
Figure 5.1(b) shows an example of one of the possibilities of image decomposition using
the quad-tree proposed by Smith and Chang.

5.2.3 Quin-Tree Decomposition

A quin-tree is a hierarchical image decomposition structure based on a slight modification
of the recursive decomposition of images used in quad-trees. Each decomposition of an
image segment produces five sub-segments of equal size. In addition to the four equal-
sized quadrants obtained in quad-tree decomposition, a fifth sub-segment equal in size
to each quadrant is generated from the central area of the image segment. Figure 5.2
demonstrates the position of the segment, numbered 5, within the decomposed segment.

The decomposition process of a quin-tree can also be described recursively, with the root
representing the entire image and its children representing the decomposed segments;
these, in turn, become roots for further segmental decomposition. Each internal node has

Chapter 5 Block Oriented Decomposition 102

at most five children. The strategy of quad-tree decomposition proposed by Smith and
Chang (124) was used by Guo et al. (126) to guide the decomposition of sub-segments 1,
2, 3 and 4 in the quin-tree. Whether or not these sub-segments are generated determines
the generation of sub-segment 5. Guo et al. listed two cases for the generation of sub-
segment 5:

• No decomposition of sub-segments 1, 2, 3 and 4: A single texture has been declared
for the segment, thus sub-segment 5 should not be generated.

• Existence of some sub-segments among 1, 2, 3 and 4: The segment has a hetero-
geneous texture, thus sub-segment 5 is generated.

5

Figure 5.2: The fifth segment in quin-tree decomposition

Overall, the maximum number of children generated by a quin-tree decomposition is
(4i+1 − 1)/3 (after eliminating redundant block segments caused by the overlapping of
sub-segment 5 with sub-segments 1, 2, 3 and 4), where i is the number of decomposition
level.

5.2.4 Nona-Tree Decomposition

A nona-tree is a hierarchical image decomposition structure based on a further modi-
fication of the recursive decomposition of images that is proposed in quin-trees. Each
decomposition of an image segment produces nine sub-segments of equal size. In addition
to the five equal segments in quin-tree, four additional segments, again of the same size,
are produced from the central areas of the upper, bottom, left and right halves of the
image segment. Figure 5.3 demonstrates the positions of the four segments, numbered
6, 7, 8 and 9, within the decomposed segment.

The decomposition process of a nona-tree can also be described recursively, with the root
representing the entire image and its children representing the decomposed segments;
these, in turn, become roots for further segmental decomposition. Each internal node
has at most nine children. Similar to the definition of the leaf nodes in the quin-tree, the
strategy of quad-tree decomposition proposed by Smith and Chang (124) is used by Guo
et al. (126) to guide the decomposition of sub-segments 1, 2, 3 and 4 in the nona-tree.
Whether or not sub-segments 1, 2, 3 and 4 are generated determines the generation of
sub-segments 5, 6, 7, 8 and 9. Guo et al. listed the following cases:

Chapter 5 Block Oriented Decomposition 103

• No decomposition of sub-segments 1, 2, 3 and 4: A single texture has been declared
for the segment, thus sub-segment 5, 6, 7, 8 and 9 should not be generated.

• No decomposition of sub-segments 1 and 2: A single texture has been declared
for the merging of sub-segments 1 and 2. Thus, sub-segment 6 should not be
generated.

• No decomposition of sub-segments 1 and 3: A single texture has been declared
for the merging of sub-segments 1 and 3. Thus, sub-segment 8 should not be
generated.

• No decomposition of sub-segments 2 and 4: A single texture has been declared
for the merging of sub-segments 2 and 4. Thus, sub-segment 9 should not be
generated.

• No decomposition of sub-segments 3 and 4: A single texture has been declared
for the merging of sub-segments 3 and 4. Thus, sub-segment 7 should not be
generated.

6

7

8 9

Figure 5.3: Additional segments in nona-tree decomposition

Those sub-segments which do not correspond to any of the above cases are generated in
the tree. Overall, after eliminating redundant sub-segments caused by the overlapping
of additional sub-segments, the maximum number of children generated by a nona-tree
decomposition is (2i+1 − 1)2, where i is the number of decomposition level.

5.2.5 Multiscale Image Decomposition

Multiscale image decomposition can be viewed as a multiscale version of the sliding
windows described previously. In (127), Chan et al. uses a multiscale image decompo-
sition approach in order to support colour localisation within high resolution images.
Although their application is for colour features (using the colour coherence vector)
rather than texture, it might also suit well for texture localisation application. The idea
of the multiscale approach is to divide the database images into pyramids of patches
and recording the features for each. All images are first resized to a dyadic size, and
overlapping patches of size 64 × 64 are slid across the image. The patches are slid by
an amount of half the length of the patch size. The feature vectors computed from each
sub-image patch is used as feature vectors for that particular scale.

Chapter 5 Block Oriented Decomposition 104

The image is then halved, resulting in images corresponding to lower resolution, and
overlapping patches of the same 64 × 64 size are used to compute the feature vector
at that scale. This process is repeated until the reduced image corresponds to a single
patch, i.e. of size 64× 64. Doing the decomposition this way, the patches correspond to
the lowest scale representing the parent image, while patches correspond to the higher
scale correspond to specific parts of the parent image. Therefore this method is a good
tool in capturing both global and local features of an image. Figure 5.4 demonstrates
the multiscale image decomposition process for a 256×256 image. In Chan et al.’s work,
the query sub-image is also sub-divided into patches and the best match is obtained by
combining the feature match scores.

halved halved

256 x 256

128 x 128

64 x 64

Figure 5.4: Multiscale image decomposition example

5.3 A Novel Block-Oriented Decomposition Approach

Based on the approaches described in the previous section, we proposed a novel block-
oriented decomposition approach to be used in the content-based image retrieval of
museum images (128). Our approach is based on the multiscale image decomposition
method used by Chan et al. in (127). The reason for the choice is that we simply want
to reduce the scale dependence of our texture feature extraction technique, the discrete
wavelet frames. Moreover, while the quad-, quin-, and nona-tree approaches offer inter-
esting methods for block-oriented decomposition, the existence of the merging threshold
in the tree-based approach is a very complicated issue. A simple yet efficient variant of
the multiscale approach is chosen instead. Moreover, the tree-based approaches can be
viewed more or less as crude texture segmentation, therefore we think it is better to opt
for a non-segmentation like approach for comparison with an actual texture segmenta-
tion approach.

Before we go to the description of our proposed algorithm, it is important to point out
that the discrete wavelet frames (and transform) is not a scale invariant texture feature.
Since the distribution of energy in wavelet decomposition is based on scale, texture with

Chapter 5 Block Oriented Decomposition 105

Figure 5.5: (top left) Coarse texture, (top right) Its frequency content, (bottom left)
Fine texture, (bottom right) Its frequency content

a coarser scale will have their energy concentrated in a certain frequency range, say the
LH channel of the first level decomposition. A finer scale version of the same texture will
however find their energy concentrated in some other frequency range, say LH channel
of the second level decomposition. Since our DWF texture features method performs a
channel by channel comparison of the standard deviation of the wavelet coefficient and
the number of zero-crossings within each channel, the resulting dissimilarity distance
will be large due to the difference in different energy distribution. Figure 5.5 shows the
distribution of frequency content for two similar textures but with different scales.

It is clear from the figure that the frequency domain of the coarse texture is more
condensed in the low frequency region, while it is more spread out for the fine texture.
The resulting feature vectors of the two textures will thus be very dissimilar if channel
by channel comparison is performed. For this reason, we opt to use the multiscale
decomposition approach in the hope that it will help in reducing the scale dependence
of the texture feature. The resulting algorithm will not be totally scale invariant, but
will at least reduce the scale dependence.

Chapter 5 Block Oriented Decomposition 106

5.3.1 Multiscale Decomposition Algorithm

The proposed algorithm is based on the multiscale algorithm of Chan et al. where
in their paper, the colour coherence vector is used to extract features from each sub-
image. Because colour property does not change when re-scaling the images without
maintaining the aspect ratio of the width and the height of the image, Chan et al.
resize all the database images to dyadic sizes to facilitate easier image cropping and
re-scaling. This means that at the lowest level, the database image will always be of
size 64 × 64, and hence is the same size as the sub-image patch. If we are to use the
multiscale approach to texture retrieval, a modification is necessary since re-scaling the
image without maintaining the aspect ratio of the image’s width and height tends to
totally alter the properties of the underlying texture. We would like to make sure all
texture properties at every level remain unaltered, except for the scales, so that the
retrieved images pose a fair resemblance to the query image.

The proposed algorithm is described below. The sub-image patch used is the same as
proposed by Chan et al. that is 64× 64, since in real applications, we believe the query
image should not be smaller than this size. Consider a texture with size 256 × 256.
The dyadic size of the texture means that 16 sub-images will fit into the whole image
at the root level as shown in Figure 5.6(a). However, there is no overlapping between
sub-images, and one might argue that better localisation can be achieved by using an
overlapping sub-images. Figure 5.6(b) shows that the additional 33 sub-images well
placed inside the whole image, to make up a total of 49 sub-images for the overlapping
case. While the overlapping approach is better localised, it requires more sub-images,
which means more computation for each scale. Throughout this chapter, both overlap-
ping and non-overlapping approaches will be investigated for their performance.

The number of sub-images, K generated for the non-overlapped and overlapped cases
at any single level can be computed respectively as:

K =
Width pixels

64
× Height pixels

64
(5.1)

K =
(

Width pixels
64

∗ 2− 1
)
×

(
Height pixels

64
∗ 2− 1

)
(5.2)

Now we will consider the case where the size of the image is not of dyadic integer, but
instead any random integer value. In our multiscale image decomposition, the size of
the image to be processed remains unchanged at the first level. When performing sub-
image localisation, we have to allow some overlapping between sub-images even for the
non-overlapped case to make sure the sub-images are evenly distributed. The number
of sub-images, K for the overlapped and non-overlapped case for any single level is

Chapter 5 Block Oriented Decomposition 107

(a)

(b)

Figure 5.6: (a) Non-overlapped sub-images, (b) Additional sub-images for the over-
lapped case

therefore calculated respectively as:

K =
⌈
Width pixels

64

⌉
×

⌈
Height pixels

64

⌉
(5.3)

K =
(⌈

Width pixels
64

⌉
∗ 2− 1

)
×

(⌈
Height pixels

64

⌉
∗ 2− 1

)
(5.4)

where de is the rounded up operator. The de operator ensures the sub-images are inter-
connected and no sections of the image will be left out. For example, consider an image
with size 193 × 332. For the non-overlapped case, the image will contain

⌈
193
64

⌉
= 4

sub-images in the row direction and
⌈

332
64

⌉
= 6 sub-images in the column direction. For

the overlapped case, the number of sub-images will be 4×2−1 = 7 and 6×2−1 = 11 in
the row and column direction respectively. The amount of overlapping can be computed
as below for the overlapped and non-overlapped cases respectively:

Amount of overlapping = 64−

 width pixels − 64⌈width pixels

64

⌉
− 1

 (5.5)

Amount of overlapping = 64−

 width pixels − 64⌈width pixels

64

⌉
× 2− 2

 (5.6)

Figure 5.7 shows the variation of overlapping amount with different sizes of image for
the two approaches. From the figure, the minimum amount of overlapping for the non-
overlapped case is 0, while the minimum amount of overlapping for the overlapped case
is 32. The minimum overlapping is achieved when sizes are in multiples of 64. The

Chapter 5 Block Oriented Decomposition 108

maximum overlapping is achieved when either the width or the height of the image
has a size of 65 (2 sub-images, the first sub-image takes the first 64 pixels, and the
second sub-image takes the last 64 pixels). Since both approaches involves overlapping
of sub-images for most of the image dimension, it is necessary to rename the originally
non-overlapped case. From this point onwards, the originally non-overlapped case will
be referred to as case 1 overlapping, and the original overlapped case will be referred as
case 2 overlapping.

Figure 5.7: Amount of pixels overlapping for (left) originally non-overlapped case,
and (right) overlapped case

Now that the sub-image coverage of the first scale is configured, the image re-scaling
process will be now discussed. As mentioned previously, the first level of the decom-
position involves the original dimension of the image to be processed. The re-scaling
of the image can be described as follows. For an image with M × N dimensions, the
minimum of the two dimensions, min(M,N) is taken as the basis for re-scaling. Let us
say the row, M is the minimum of the two dimensions. Then the image is re-scaled to
the nearest dyadic integer that is smaller than M , while maintaining the aspect ratio of
the width and height of the image. The sub-image decomposition described previously
is then performed on the re-scaled image to get the sub-images corresponding to the
second level. Starting from the second level, to obtain the parent image at the following
level, the image is just re-scaled by a factor of 2. This process continues until min(M, N)
reached 64. For example, consider an image with size 783×556. The following illustrates
the image dimensions at each level.

• First level: 783× 556

• Second level: 721×512 (512 is the nearest dyadic integer smaller than min(783, 556))

• Third level: 361× 256

• Fourth level: 181× 128

• Fifth level: 91× 64

Chapter 5 Block Oriented Decomposition 109

The lowest level (91 × 64) now consists of 2 sub-images for case 1 overlapping and 3
sub-images for case 2 overlapping. In general, for an M ×N image, the number of scales
can be computed as:

Number of scales =
⌈

log(min(M,N))
2log2

⌉
(5.7)

Recall in chapter 4, we came across the problem of image padding in order to perform
discrete wavelet frames decomposition. It was found that the periodic padding should
be used if the translation invariance property is to be maintained. However, using
multiscale image decomposition technique, we are dealing with image blocks and not
actually separate entities. Therefore one might argue that the border information can
be extracted from neighbouring image blocks by borrowing border pixels in the filter-
ing operation. Done this way, the discrete wavelet frames decomposition and feature
extraction processes are no longer independent for each spatial block, but the exchange
offers an elegant solution for padding, and the order of operation can be reversed.

First, the entire image is decomposed using wavelet filtering, and then the patches can
be slid across the stack of DWF coefficients in order to compute the features for each
sub-image. After the image is re-scaled to appropriate size, the DWF decomposition
is applied once again and so on until the lowest scale image. This means, the DWF
decomposition only has to be applied k times, where k is the number of scales (once
for each level), instead of applying it to each sub-image generated by the multiscale
decomposition. The parent images at each scale however will need to be padded using
a periodic padding. The feature extraction is also simplified using this technique, where
the standard deviation and the number of zero-crossings are computed straight away
within each block, like sliding a standard deviation and zero-crossings operators over a
stack of images, as shown in Figure 5.8.

Figure 5.8: A cube is slid on a stack of DWF coefficient images to compute the
standard deviation and zero-crossings

However, since we are subtracting the mean of the image before applying the wavelet
frames decomposition (recall chapter 4), this could pose a potential problem. The pur-
pose of subtracting the image mean is to make sure the image is zero-mean, and therefore

Chapter 5 Block Oriented Decomposition 110

brightness invariance can be ensured. Applying the wavelet frames decomposition im-
plies that the mean to be subtracted is the global mean, and not the local mean for a
particular texture. As a result, not only the brightness invariance property is lost, but
the retrieved images might also be inaccurate. To confirm this, we will evaluate both
approaches (DWF followed by block decomposition and block decomposition followed
by DWF) in the experimental section. Figures 5.9 and 5.10 show the flowchart of the
two different approaches of the proposed multiscale image decomposition technique.

Get a sub-image, perform DWF
decomposition and compute its

feature vector

Add sub-image's feature vector
to the final feature vector

Finish with all sub-
images?

min(M,N)=64?

No

Yes

No

Yes

Final Feature Vector

Half image by
a factor of j/i, where:

i=min(M,N),
j=nearest dyadic integer that

is smaller than i,
j<i

Image, I(M,N)

Divide image into several
64x64 sub-images

Figure 5.9: Flowchart of the proposed multiscale image decomposition technique
(Block decomposition followed by DWF)

5.3.2 Total Number of Sub-images

Equations 5.3 and 5.4 give the number of sub-images generated at a particular scale
for the case 1 and case 2 overlapping respectively. The total number of sub-images
generated by the multiscale algorithm for all scales can be computed by adding the
number of sub-images at each scale. Figure 5.11 shows the total number of sub-images
generated for case 1 and case 2 overlapping for a square M ×M image, with M ranging
from as small as 64 up to 1024. From the figure, the number of sub-images for case 2

Chapter 5 Block Oriented Decomposition 111

Divide DWF coefficients into
several 64x64 blocks

Get a block, and compute the
feature vector

Add the feature vector to the
final feature vector

Finish with all blocks?

min(M,N)=64?

No

Yes

No

Yes

Final Feature Vector

Half image by
a factor of j/i, where:

i=min(M,N),
j=nearest dyadic integer that

is smaller than i,
j<i

Image, I(M,N)

Perform DWF decomposition
on image

Figure 5.10: Flowchart of an alternative approach to multiscale decomposition (DWF
followed by block decomposition)

overlapping increases almost quadratically with the increase of M over the number of
sub-images of case 1 overlapping.

5.3.3 Sub-image Coverage

We will now discuss the overlapping coverage between a query image and the segments
of a database image in instances in which the query image is similar to a sub-image of
the database image. Let Q be a query image and D be a database image. We assume
for simplicity that the query image is of size 64× 64 and the database image is of size
128× 128. Assume that D contains a sub-image d which is similar to Q and d may be
anywhere in D. We now examine the degrees of coverage between the query image and
the segments generated by the two approaches mentioned before, the case 1 and case 2
overlapping.

Chapter 5 Block Oriented Decomposition 112

Number of blocks

M

Blue : Case 1 overlapping
Red : Case 2 overlapping

Figure 5.11: Number of sub-images generated

5.3.3.1 Case 1 Overlapping

For a 128× 128 image, it is decomposed into 4 quadrants of size 64× 64. The minimum
coverage between these four quadrants of D and Q will be 1

4 of Q, when d is located
in the centre of D. Obviously, when d is located in other places in D, the coverage
between Q and any quadrant of D will be larger than the 1

4 of Q. So when the size of
the database image is non-dyadic, the coverage will be larger than 1

4 of Q. Figure 5.12
illustrates the situation.

1 2

3 4

d

D

Figure 5.12: Minimum coverage in case 1 overlapping

5.3.3.2 Case 2 Overlapping

Case 2 overlapping approach ensures that there exists a segment in D which covers
at least 9

16 of Q. Figure 5.13 illustrates this situation. For a 128 × 128 image, it is
decomposed into 9 quadrants of size 64 × 64. Let the query image overlap with the
database image at an offset of d1 and d2 at each side as indicated in Figure 5.13.

In the figure, the overlap between query image Q and database image D is represented
by the shaded area. Let L = 64 be the size of the query image, in general, as shown

Chapter 5 Block Oriented Decomposition 113

d1 DQ
d2

(a)

d1
DQ

d2

(b)

d1

D

Q

d2

(c)

d1

D

Q

d2

(d)

d1

D

Q

d2

(e)

d1
D

Q

d2

(f)

d1
D

Q

d2

(g)

d1
D

Q
d2

(h)

d1

D

Q

d2

(i)

Figure 5.13: Covered area of query image by segments

in Figure 5.13, the shaded area A of the query image conforms to one of the following
cases:

• (Figure 5.13a) 0 ≤ d1, d2 ≤ 1
4L: The area covered is

A = (L− d1)× (L− d2) ≥ 9
16

L2,

• (Figure 5.13b) 0 ≤ d1 ≤ 1
4L and 1

4L ≤ d2 ≤ 3
4L : The area covered is

If 1
4L ≤ d2 ≤ 1

2L, A = (L− d1)× (
1
2
L + d2) ≥ 9

16
L2,

If 1
2L ≤ d2 ≤ 3

4L, A = (L− d1)× (
3
2
L− d2) ≥ 9

16
L2,

• (Figure 5.13c) 0 ≤ d1 ≤ 1
4L and 3

4L ≤ d2 ≤ L : The area covered is

A = (L− d1)× d2 ≥ 9
16

L2,

Chapter 5 Block Oriented Decomposition 114

• (Figure 5.13d) 1
4L ≤ d1 ≤ 3

4L and 3
4L ≤ d2 ≤ L : The area covered is

If 1
4L ≤ d1 ≤ 1

2L, A = (
1
2
L + d1)× d2 ≥ 9

16
L2,

If 1
2L ≤ d1 ≤ 3

4L, A = (
3
2
L− d1)× d2 ≥ 9

16
L2,

• (Figure 5.13e) 3
4L ≤ d1 ≤ L and 3

4L ≤ d2 ≤ L : The area covered is

A = d1 × d2 ≥ 9
16

L2,

• (Figure 5.13f) 3
4L ≤ d1 ≤ L and 1

4L ≤ d2 ≤ 3
4L : The area covered is

If 1
4L ≤ d2 ≤ 1

2L, A = (d1)× (
1
2
L + d2) ≥ 9

16
L2,

If 1
2L ≤ d2 ≤ 3

4L, A = (d1)× (
3
2
L− d2) ≥ 9

16
L2,

• (Figure 5.13g) 3
4L ≤ d1 ≤ L and 0 ≤ d2 ≤ 1

4L : The area covered is

A = d1 × (L− d2) ≥ 9
16

L2,

• (Figure 5.13h) 1
4L ≤ d1 ≤ 3

4L and 0 ≤ d2 ≤ 1
4L : The area covered is

If 1
4L ≤ d1 ≤ 1

2L, A = (
1
2
L + d1)× (L− d2) ≥ 9

16
L2,

If 1
2L ≤ d1 ≤ 3

4L, A = (
3
2
L− d1)× (L− d2) ≥ 9

16
L2,

• (Figure 5.13i) 1
4L ≤ d1 ≤ 3

4L and 1
4L ≤ d2 ≤ 3

4L : The area covered is

If 1
4L ≤ d1 ≤ 1

2L and 1
4L ≤ d2 ≤ 1

2L, A = (
1
2
L + d1)× (

1
2
L + d2) ≥ 9

16
L2,

If 1
2L ≤ d1 ≤ 3

4L and 1
4L ≤ d2 ≤ 1

2L, A = (
3
2
L− d1)× (

1
2
L + d2) ≥ 9

16
L2,

If 1
4L ≤ d1 ≤ 1

2L and 1
2L ≤ d2 ≤ 3

4L, A = (
1
2
L + d1)× (

3
2
L− d2) ≥ 9

16
L2,

If 1
2L ≤ d1 ≤ 3

4L and 1
2L ≤ d2 ≤ 3

4L, A = (
3
2
L− d1)× (

3
2
L− d2) ≥ 9

16
L2,

The above calculations are also true for different image sizes and different scales. Ob-
viously, if the image is of non-dyadic size, the coverage will be larger than the 9

16 of
Q, since the overlapping between sub-images will be increased. Although case 1 over-
lapping decomposition introduces fewer segments than does a case 2 overlapping, the
latter provides a more effective and robust platform for image retrieval. The question

Chapter 5 Block Oriented Decomposition 115

of which of these approaches is better can only be answered experimentally, where an
evaluation of whether it is worth generating the extra sub-images can be observed in
terms of retrieval accuracy.

5.3.4 Scale Invariance

As mentioned before, the multiscale image decomposition can help in reducing the scale
dependence of the discrete wavelet frames texture features. This section will look on
how the multiscale decomposition approach captures different texture scales. Consider
the image in Figure 5.14, which is of size 256 × 256. The sub-images generated by the
multiscale decomposition (using case 1 overlapping) are also shown in the figure. There
are 16 sub-images corresponding to level 1, 4 sub-images corresponding to level 2, and 1
sub-image corresponding to the lowest level. From the figure, it is clear that the texture
scales are changing from coarse to fine with the increase of levels. If, let us say, a same
texture but with the scale equivalent to the lowest level in Figure 5.14 is used as query,
the probability that the parent image will be retrieved should be higher than the method
using just only one scale, since the comparison is now performed on 3 scales, and the
sub-image corresponding to the lowest scale should have the least dissimilarity compared
to the sub-images corresponding to the other two scales.

Level 1 sub-images

Level 2 sub-images Level 3 sub-images

Figure 5.14: Example of sub-images generated for image of size 256× 256

Level 1 sub-images

Level 2 sub-images Level 3 sub-images

Figure 5.15: Another example of sub-images generated for image of size 256× 256

However, the above theorem is not true for all cases. Consider the image in Figure 5.15.

Chapter 5 Block Oriented Decomposition 116

The image consists of a combination of the tile texture and water, where the tile texture
is only a fraction of the whole image. From the generated sub-images shown, only one
of them manages to capture the whole tile region of the image, which is the second sub-
image at level 1. Sub-images at level 2 and 3 fail to capture the unique tile region, thus
resulting in no representative of the tile texture at that level. Hence only the original
scale of the tile texture will be stored in the feature vector. The water texture however
has representatives at two different scales, i.e. at level 1 and 2. We can conclude that the
multiscale nature of the multiscale decomposition depends on the portion of the texture
of interest within the whole image. The larger the portion, the higher the number of
scales to be represented for the texture. Nevertheless, since the portion of the texture
of interest in the parent image is quite small, it is unreasonable to ask for the system to
process the texture at many scales, thus this small problem cannot really be considered
a disadvantage of the multiscale algorithm.

5.4 Experimental Evaluation

In this section, we will discuss the effectiveness of the multiscale sub-image matching al-
gorithm for content-based image retrieval. Experiments are conducted on three separate
databases. The first database consists of dyadic size Brodatz textures. This is just to
make certain evaluation easier. The second database consists of non-dyadic Brodatz tex-
tures of random sizes. Finally the third database consists of museum image collections.
The evaluation takes into account several important factors, including the sensitivity
of various sub-image locations within database images to which query images are com-
pared, the size of query images and the scale of query images. The DWF technique with
parameters listed in table 4.13 is used for feature extraction, and the luminence is used
for colour to grey scale conversion.

5.4.1 Dyadic Size Image Database

An image data testbed was constructed from Brodatz texture images. From each 112
scanned 512 × 512 texture, 9 overlapping sub-images of size 256 × 256 are produced.
Thus, there are a total of 1008 texture images in the database for the experiments. Ten
Vision textures are selected and are cut-and-pasted onto a selected image from the 1008
Brodatz database to provide target textures for the multiscale algorithm. The colour
Vision textures are converted to grey-scale before the cut-and-paste process. Each vision
texture is pasted on 9 different database images at different locations within the images,
giving a total of 90 modified database images. The Vision texture is then used as query
image and the effectiveness of the multiscale algorithm is measured on the ability of the
algorithm to retrieve all 9 similar textures. Figure 5.16 shows the 10 Vision textures to
be used as query images.

Chapter 5 Block Oriented Decomposition 117

Figure 5.16: Vision textures used as query in the multiscale experiments

5.4.1.1 Location of the Query in Database Image

In the first experiment, the sensitivity of the sub-image locations will be tested in order
to compare case 1 overlapping with case 2 overlapping. For the sake of simplicity, in
this experiment, the evaluation is based on single scale only, that is the very first scale
only. In other words, the scale of the query image is the same as the target sub-images,
in which the algorithm should retrieve sub-images corresponding to the original scale
only. The size of the query images is 64 × 64, while the target sub-images pasted on
the database images of size 256 × 256 is set to 80 × 80 pixels. We consider two sets of
experiments. The first set of experiments was performed by pasting each Vision texture
onto some location in the nine overlapping regions as in Figure 5.6(b) (right most image).
This experiment is to test whether case 1 overlapping approach is severely affected by
the location of target sub-images. In the second set of experiments, each Vision texture
is pasted at nine random locations within the database images.

Query Case 1 Case 2
Image overlapping overlapping

1 0 9
2 1 9
3 1 9
4 0 9
5 2 9
6 1 9

Query Case 1 Case 2
Image overlapping overlapping

7 1 9
8 0 9
9 0 9
10 2 9

Average 8.8% 100%

Table 5.1: Retrieval rate for fixed target location

Table 5.1 shows the result of retrieval rate for the first experiment set. The numbers
given are the correctly retrieved images out of 9 possible retrievals. Clearly from the
table, case 1 overlapping approach gave a very poor result when the coverage of sub-
image is around 25% of the total query image. The retrieval rate for case 2 overlapping
on the other hand gave a perfect 100% retrieval rate since in those specified locations,
the sub-image coverage for that particular approach is 100% coverage. This experiment

Chapter 5 Block Oriented Decomposition 118

shows that when the sub-image coverage of case 1 overlapping approach is minimum, this
results in very poor retrieval rate, but the case 2 overlapping approach gave a very good
performance. This is a huge advantage for the case 2 overlapping approach because when
the coverage of case 2 overlapping is minimum (9

16 of the query image), the coverage of
case 1 overlapping is about the same, hence in overall performance, the performance of
case 2 overlapping should still be much better than the case 1 overlapping approach.

Query Case 1 Case 2
Image overlapping overlapping

1 5 7
2 2 6
3 4 6
4 2 4
5 6 8
6 2 6

Query Case 1 Case 2
Image overlapping overlapping

7 2 9
8 5 8
9 5 9
10 3 8

Average 40 % 78.88%

Table 5.2: Retrieval rate for random target location

This is further confirmed in the second set of experiments. Using a randomly pasted
target sub-image, the retrieval results are shown in table 5.2. From the table, the per-
formance of case 2 overlapping is almost double the retrieval rate for case 1 overlapping
approach. We can conclude that case 1 overlapping, although it has a much lower com-
putational intensity, is very far behind case 2 overlapping in terms of retrieval accuracy.
Figure 5.17 shows three examples of retrieval result on randomly pasted target using the
case 2 overlapping approach. The first two examples are the best recorded result (query
image 7 and 9) while the last example shows the worst recorded result (query image 4).
The box within the image shows part of the image found to be the most similar to the
query.

5.4.1.2 Scale of the Query

This experiment is intended to test the multiscale nature of the proposed algorithm.
The exact same set of database images as in the very first experiment (target is located
at nine overlapping region) is used in this experiment, but with different scales of query
images. Five different scales are tested for the query images. The size of the query
image however remains the same at 64 × 64 pixels. The five different scales query
images are produced from the original Vision texture image by appropriate resizing of
the original images. Figure 5.18 shows the 5 different image scales of each query image.
The multiscale algorithm used is case 2 overlapping, as it is the much better approach,
as suggested in the last experiment.

Table 5.3 shows the retrieval result of the experiment. From the table, it is clear that as
the scale of the query images changes further from the original scale, the retrieval rate
drops dramatically. Using query images with the same scale as the target sub-images,

Chapter 5 Block Oriented Decomposition 119

Figure 5.17: Example of retrieval result of multiscale matching algorithm for dyadic
database

100% retrieval rate is recorded, while using query images of around twice the scale of
the target sub-images (scale 5), a very poor 5.5% retrieval rate is recorded. However,
note that in the database, the target sub-images is only of size 80×80 pixels. Therefore,
when the image is re-scaled to the next resolution, there are no blocks that manage
to capture the homogeneous target sub-images. The 80× 80 target sub-images will be
re-scaled to 40× 40 pixels, hence the 64× 64 block capturing the target region will also
consists of another texture. If the size of the target images is increased, the likelihood
that the 64× 64 block will capture the homogeneous target region will be much better.
To confirm this, another two sets of experiments are conducted. In these experiments,
the 80 × 80 pixels target region is replaced by a much bigger target. We experimented
with 140×140 and 200×200 pasted sub-images. Note that only the size of the sub-image

Chapter 5 Block Oriented Decomposition 120

Figure 5.18: 5 different scales of query images

Query Scale 1 Scale 2 Scale 3 Scale 4 Scale 5
Image (Original)

1 9 9 9 0 1
2 9 9 3 3 3
3 9 9 0 0 0
4 9 0 0 0 0
5 9 9 0 0 0
6 9 5 1 0 0
7 9 5 1 0 0
8 9 0 0 0 0
9 9 9 3 0 0
10 9 9 0 1 1

Average 100% 71.1% 18.9% 4.4% 5.5%

Table 5.3: Retrieval rate for different scales of query images

is different, the scale of the target remains the same.

Tables 5.4 and 5.5 shows the retrieval result of the respective experiments. From the
tables, the retrieval results using different scales are very much improved, especially using
scale 3, 4 and 5. This confirms our previous assumption that the multiscale algorithm
works better if the proportion of the target texture is of appropriate size. The bigger the
proportion, the better the multiscale algorithm works in reducing the scale dependence
of the texture feature. The difference will be more obvious if the database images used
are bigger than 256 × 256 since more scales will be involved. From tables 5.4 and 5.5,
scale 5 especially gives a very good retrieval result. This is probably because scale 5 is
very close to half of the original scale of the query image, which makes the feature vector
of the query image of scale 5 very close to the feature vector of the second level of the
multiscale. A re-scaled texture of factor 1.4, 2.4, 3.4 and so on is closer to the multiscale
features at level 1, 2, 3 and so on respectively. Without the multiscale feature, only

Chapter 5 Block Oriented Decomposition 121

Query Scale 1 Scale 2 Scale 3 Scale 4 Scale 5
Image (Original)

1 9 9 9 1 9
2 7 9 6 3 9
3 9 9 5 6 9
4 9 4 0 0 9
5 9 9 9 0 9
6 8 7 2 0 9
7 9 5 0 0 9
8 9 2 0 8 9
9 9 8 3 8 9
10 9 9 0 9 9

Average 96.7% 78.8% 37.7% 38.9% 100%

Table 5.4: Retrieval rate for different scales of query images, with target region in-
creased to 140× 140

Query Scale 1 Scale 2 Scale 3 Scale 4 Scale 5
Image (Original)

1 9 9 9 1 9
2 9 9 6 4 9
3 9 9 7 5 9
4 9 3 0 0 6
5 9 9 9 2 9
6 9 9 2 1 9
7 9 9 1 0 9
8 9 3 0 8 9
9 9 9 8 7 7
10 9 9 0 9 9

Average 100% 86.7% 46.7% 41.1% 94.4%

Table 5.5: Retrieval rate for different scales of query images, with target region in-
creased to 200× 200

the original scale is used for comparison, hence the bigger the re-scale factor, the higher
the dissimilarity to the original texture. Therefore, assuming the target texture is of
appropriate size, the multiscale algorithm helps in reducing the scale dependence of the
discrete wavelet frames texture feature. Without the multiscale feature, textures with
different scales will be much harder to match and retrieve.

Figure 5.19 shows an example of retrieval result of different scales using query image 9
(best result). The target region size is 140 × 140. We can see that as the scale of the
query changed, the sub-images corresponding to different scales are retrieved.

5.4.1.3 Size of the Query Images

In the previous experiments, all the query images used were of size 64×64. This section
will examine whether the size of the query images is crucial to the retrieval result.

Chapter 5 Block Oriented Decomposition 122

Figure 5.19: Example of retrieval result of multiscale matching algorithm for different
scales of query images

Chapter 5 Block Oriented Decomposition 123

However, it is important not to confuse this with the scale of the query images which
has already been investigated in the last section. What we mean by size is the proportion
of the query image itself. When we change the size of the query image from 64× 64 to
say, 128× 128, the scale of the query image remains the same. As an example, consider
an image which has a large homogeneous texture region within it. If we want to use
the textured region in the image as query, we can simply crop part of the texture region
and compute its feature vector. We can make a large rectangle crop or just a small
rectangle crop, as long as the texture is well represented. This is what we mean by the
size of query image. We would like to know if there are any differences if only a small
rectangular texture is used instead of a large rectangular texture block. Theoretically,
the feature vector of the two textures should not be significantly different since the
standard deviation and zero-crossings computation is averaged over the total number
of pixels, hence the retrieval result should not be affected much. However to confirm
this, a new set of experiment is conducted. The database used is the same as the one
used in the location of target experiment, where the target images are pasted on nine
different overlapping regions. The query images used are of sizes 48×48, 64×64, 96×96,
128× 128 and 150× 150. Figure 5.20 shows the query images for the experiment.

Figure 5.20: Query images used for experiment on the size of query images

Query 48× 48 64× 64 96× 96 128× 128 150× 150
Image

1 9 9 9 9 9
2 9 9 9 9 9
3 9 9 9 9 9
4 9 9 9 9 9
5 9 9 9 9 9
6 1 9 9 9 9
7 9 9 9 9 9
8 1 9 9 0 0
9 9 9 9 2 2
10 9 9 9 9 9

Average 82.2% 100% 100% 82.2% 82.2%

Table 5.6: Retrieval rate for different sizes of query images

Chapter 5 Block Oriented Decomposition 124

Table 5.6 shows the retrieval result for different sizes of query images. The performance
of different query image sizes does not seem to be very different, except for some query
images (query 6, 8 and 9). Although the retrieval accuracy for query 6 using query size
48 × 48 is poor, it was observed that most of the top ten retrieved images consist of
visually similar textures from the Brodatz collection. The ten target images are not far
down the ranking, hence the retrieval result in general is still good. As for queries 8 and
9, the reason for poor results using sizes 128 × 128 and 150 × 150 is probably because
as the size increases, the textures tend to vary a little bit. For example in query 8, we
can see for query size 150 × 150 that the right hand side of the texture is darker than
the left hand side, thus the feature vector produced might be a bit different from the
ones produced from a 64 × 64 query image (which is more homogeneous). The same
can be said for query 9. Hence in general we can conclude that given the properties of
the texture does not change very much, the query image can take any size, which is an
advantage if the CBIR system supports image cropping to provide query textures.

5.4.1.4 Decomposition Followed by DWF vs. DWF Followed by Decompo-

sition

As mentioned previously, there are two approaches in utilizing the multiscale approach.
The first approach performs the image decomposition first followed by DWF and is
summarized in Figure 5.9. The second approach performs the DWF on the whole image
first, followed by decomposition and is summarized in Figure 5.10. In this section an
experiment is conducted to test which of these approaches is better. The database used
is the one used in the experiment on location of target images, where each target image
is pasted randomly on 9 selected database images. The query images are of the same
scale as the target images and of size 64× 64. Table 5.7 shows the retrieval result of the
two approaches.

Query Decomp. DWF then
Image then DWF decomp.

1 7 6
2 6 3
3 6 3
4 4 1
5 8 6
6 6 4

Query Decomp. DWF then
Image then DWF decomp.

7 9 8
8 8 4
9 9 3
10 8 6

Average 78.9% 48.9%

Table 5.7: Retrieval rate for different multiscale approaches

It is obvious from the table that the DWF followed by the decomposition approach does
not give a good retrieval rate. As discussed previously, this is most probably because
of the brightness invariance properties of the proposed multiscale algorithm, where the
mean of the image was first subtracted from the image before the DWF is applied. By
subtracting the mean of the whole image, only the parent image will have zero-mean,

Chapter 5 Block Oriented Decomposition 125

while the texture regions of interest will not be zero-mean. When the feature vectors
of these non-zero-mean texture regions are compared to the feature vector of the query
texture which is zero-mean, the dissimilarity will be larger due to the difference in pixel
histogram. In this thesis we will therefore stick to the original approach which is to
perform image decomposition first, and then followed by DWF.

5.4.2 Arbitrary Size Images Database

Now that important measurements of the multiscale algorithm have been evaluated using
a dyadic size image database, the multiscale algorithm will be tested on an arbitrary size
image database. The procedure is not much different from previous experiments. From
each 512× 512 scanned Brodatz texture image, 9 randomly sized images are produced,
which can be of any height, width and location within the parent images. This results
in 1008 random size images in the database. Then for each 10 Vision textures, target
images of size 80 × 80 are randomly pasted onto 9 different database images, resulting
in 90 modified database images consisting of target textures. Each of the ten Vision
textures (of size 64× 64) is used as query for the retrieval experiment. Table 5.8 shows
the retrieval rate for each of the ten Vision textures.

Query Retrieved
Image Target Images

1 6
2 9
3 7
4 6
5 9
6 6

Query Retrieved
Image Target Images

7 9
8 9
9 9
10 9

Average 87.8%

Table 5.8: Retrieval rate for random size image database

An average of 87.8% accuracy is reported from the experiment. If we compare this rate
with the rate using dyadic image sizes (table 5.7), where the retrieval rate is 78.9%, the
difference is quite significant. This is mainly due to the fact that, by using randomly
sized images, we increase the coverage of sub-images in the multiscale algorithm, hence
resulting in much better localisation. Recall that the minimum coverage of the multiscale
method is 9

16 . This minimum coverage is achieved only when the image is of dyadic size.
For images that are not of dyadic size, the sub-image coverage will be bigger than 9

16 .
All the results obtained from previous experiments using dyadic image database actually
gives the worst case scenario for each experiment. If the database is not restricted to
dyadic image size, the retrieval rate will be better. Figure 5.21 shows some retrieval
results using a non-dyadic image database, ranked from left to right, top to bottom. In
order to accommodate the figure, images shown are resized not by the same factor.

Chapter 5 Block Oriented Decomposition 126

Figure 5.21: Example of retrieval results using non-dyadic image database

5.4.3 Museum Image Collection

In this section, the multiscale algorithm will be tested on a real database of museum
images. A total of 1106 museum images of size up to more than 1000×1000 are selected
from the whole museum collection available from the research group. The reason we
experimented on such a small database is because at this point, we only want to inves-
tigate the suitability of the proposed method on museum image collections. Once it is
found that the method is indeed suitable, then the technique will be evaluated on much
bigger collection in chapter 7, together with the segmentation-based approach as well as
the QBLI algorithm.

The museum collections consist of a range of museum images, from paintings to images

Chapter 5 Block Oriented Decomposition 127

of interesting objects. Since we do not know how many similar textures there might
be in the museum database, it is impossible to provide the retrieval rate for each query
image. Therefore in this experiment, the evaluation will be based on visual inspection
of the retrieval results provided. Figure 5.22 shows some retrieval results from the
experiment. From the results, the multiscale algorithm does manage to retrieve visually
similar texture of real museum collections. In the first example, the query is a flowery
texture, and the retrieved results are all visually similar to the query images. In the
second example, the query is a dotted pattern of a fabric, and the retrieved images also
consists of visually similar texture, although one or two retrieved textures are not very
similar. But still the top ten matches consist of mostly similar textures. In the third
example, the query is a finer scale version of the second example query image, which
consists of a stripe pattern. The first five retrieved images are all stripes texture with
different colours. Since there are no more similar textures to the query image in the
database, the next five textures results in not so similar textures. Because of a limitation
in space, it is impossible to show all the results from different query images, but from the
3 examples shown, the multiscale algorithm is seen to be very useful in texture retrieval
of museum collections.

5.5 Chapter Summary

The chapter starts by describing some popular methods for texture retrieval using block-
based techniques. These include the sliding windows, the tree-based method and the
multiscale sub-image matching. After careful study, the multiscale sub-image matching
was found to be the most suitable for our application, partly because of the multiscale
property of the method, which can be use to reduce scale dependence of the discrete
wavelet frames texture features. Some modifications are proposed for the multiscale
algorithm in order to make it suitable for texture retrieval. The modifications include
the scaling factor for different scales, as well as the positioning of the blocks within the
entire image of interest.

Several experiments were carried in order to evaluate the performance of the multiscale
algorithm. In the first experiment, it was found that case 2 overlapping is far better than
case 1 overlapping, hence making the extra sub-images of the former very worthwhile.
The second experiment suggests that the multiscale algorithm was in fact a very good
method in achieving scale invariant texture retrieval, although it is not perfectly scale
invariant. Nonetheless, the algorithm at least helps in reducing the scale dependence of
the texture features. It was also found that the size of the query images has little effect
on retrieval result, making it a robust technique. The subsequent experiment suggests
that the idea of performing the discrete wavelet frames decomposition first before image
decomposition is quite poor, where the retrieval accuracy is very poor compared to the
original approach of performing the image decomposition first before applying discrete

Chapter 5 Block Oriented Decomposition 128

Figure 5.22: Example of retrieval results of real museum collections

wavelet frames. Finally the multiscale algorithm can also be used for non-dyadic image
database, where good retrieval results were observed in Brodatz database as well as real
database of museum image collections.

Chapter 6

Automatic Texture Segmentation

Having evaluated the block-based texture retrieval approach, the attention is now switched
to segmentation-based texture retrieval. In this chapter, a brief review on texture seg-
mentation is presented, before a novel automatic texture segmentation algorithm is
developed. The algorithm is tested on several textured images including composite tex-
ture images, synthetic texture images, real scene images as well as our main source of
images, the museum images of various kinds. An extension to the automatic texture
segmentation, a texture identifier is also introduced in order to be integrated into a
retrieval system, providing another approach to texture retrieval.

6.1 Introduction

Texture segmentation deals with identification of regions where distinct textures exist,
so that further analysis can be done on the respective texture regions alone. As far as
this thesis is concerned, there are three types of texture segmentation, which are:

• Supervised segmentation: This type of segmentation assumes prior knowledge of
the types of the textures which exist within the image

• Unsupervised segmentation: This type of segmentation does not assumes any prior
knowledge of the types of textures, but it still needs to know how many textures
there are in the image

• Automatic segmentation: This type of segmentation does not need any prior
knowledge on either the type of the texture or the number of textures in the
image.

There are already a large number of supervised (86; 129) and unsupervised (130; 118)
texture segmentation algorithms in the literature. While the supervised and unsuper-
vised techniques are very useful in a lot of applications, it is not very useful for our

129

Chapter 6 Automatic Texture Segmentation 130

application, since for both techniques the number of textures present need to be given
a priori. The particular application area with which this thesis is concerned is content-
based retrieval of art and museum artefact images, where the segmentation is to be
performed on several thousand images. It is therefore inefficient to expect the number
of textures to be manually provided for all the images. An automatic texture detection
and segmentation algorithm is therefore needed to suit this kind of application.

In this thesis, a novel automatic texture segmentation, i.e. the ones without any a
priori knowledge on either the type of textures or the number of textures in the image is
presented. The method uses a modified discrete wavelet frames (DWF) decomposition
to extract important features from an image before a mean shift algorithm is used
together with a fuzzy c-means (FCM) clustering to cluster or segment the image into
different texture regions. The proposed algorithm has the advantage of high accuracy
while maintaining low computational load. We will also show the advantage of using the
modified DWF over the standard DWF and the wavelet transform, and demonstrate how
using the mean shift together with the FCM helps in speeding up the fuzzy clustering
process.

The next section will briefly describes several popular texture segmentation algorithms,
and from there the novel automatic texture segmentation algorithm is derived.

6.2 Review of Texture Segmentation Algorithms

There are already a large number of texture segmentation algorithms in the literature.
Texture segmentation usually involves the combination of texture feature extraction
techniques with a suitable segmentation algorithm. Among the feature extraction tech-
niques used for texture segmentation are the Gabor filters, Markov random fields, Laws’
texture features, fractal dimension, Voronoi polygons, and wavelet decomposition. Seg-
mentation methods, on the other hand, are based on split-and-merge, region growing,
estimation theory, clustering, relaxation and neural networks. It is impossible to review
all of the available texture segmentation algorithms in the literature, but the following
will briefly describes some of the popular techniques as well as the techniques which we
believe are of interest for this thesis.

6.2.1 Texture Segmentation Techniques

In (86), Paragios and Deriche combine the Gabor filters with Geodesic Active Contour
Model to obtain supervised texture segmentation. First the feature space is generated
by filtering the image using Gabor filters, and analysing their responses as a multi-
component conditional probability density function. The texture segmentation is then
obtained by minimising a Geodesic Active Contour Model objective function where

Chapter 6 Automatic Texture Segmentation 131

the boundary-based information is expressed via discontinuities on the statistical space
associated with the multi-modal textured feature space.

Manjunath and Chellappa (67) experimented with Gauss Markov random field mod-
els (GMRF) to obtain an unsupervised texture segmentation algorithm. The image is
first divided into a number of non-overlapping regions and the GMRF parameters are
computed from each of these regions. A nearest neighbour clustering method is used
to merge these regions. The parameters of the model estimated from the clustered
segments are then used in two different schemes, one being an approximation to the
maximum a posteriori estimate of the labels and the other minimizing the percentage
of misclassification error.

Voronoi polygons are used by Tuceryan and Jain (131) together with a relaxation algo-
rithm in their unsupervised texture segmentation algorithm. The algorithm first builds
the Voronoi tessellation of the tokens that make up the textured image. It then com-
putes a feature vector for each Voronoi polygon. These feature vectors are used in a
probabilistic relaxation labelling on the tokens, to identify the interior and the border
regions of the textures.

Fractal dimension (FD) has also been used for texture segmentation. Chaudhuri and
Sarkar (73) use it with a k -means like clustering approach to obtain an unsupervised
segmentation. Six FD features are based on the original image, the above average/high
gray level image, the below average/low gray level image, the horizontally smoothed
image, the vertically smoothed image, and the multi-fractal dimension of order two.
A modified box-counting approach is used to estimate the FD, in combination with
feature smoothing in order to reduce spurious regions. To segment a scene into the
desired number of classes, an unsupervised k -means like clustering is used.

6.2.2 Multiresolution Segmentation Techniques

Multiresolution segmentation is becoming more popular due to the extra information
available through different resolutions of the image to be segmented. It performs the
segmentation algorithm over a range of spatial scales of the input image (132). Wavelets
and other multiresolution algorithms are very suitable for use with this segmentation
algorithm. To illustrate multiresolution segmentation, consider the pyramid-structured
wavelet transform output image shown in Figure 6.1.

The PWT image in Figure 6.1(a) can be viewed as a pyramid image (Figure 6.1(b)).
From the pyramid, it is clear that there are three different image resolutions forming
the PWT output. Now the segmentation process can be applied from the top to the
bottom of the pyramid. The four sub-images at the top of the pyramid are used as
a four-dimensional data set to be segmented. The crude segmentation results at this
level are interpolated and passed to the next resolution. The segmentation at the next

Chapter 6 Automatic Texture Segmentation 132

LL

HHHL

LH

LH

HHHL

LH

HHHL

(a)

LL

HHHL

LH

LH

LH

HL

HL

HH

HH

(b)

Figure 6.1: (a) PWT output image (b) Represented as a pyramid.

resolution can then be performed by combining the data of that resolution with the
temporary segmentation obtained from the previous resolution. The process continues
and the final segmented image is obtained at the base of the pyramid. From this simple
example only, it is clear that multiresolution segmentation offers more advantages over
single resolution techniques.

In (133), Salari and Ling use the above multiresolution segmentation algorithm using
the pyramidal wavelet transform and k -means clustering. The four channels at the top
of the pyramid are grouped into the desired number of clusters by using the k -means
clustering technique. The resulting temporary segmentation is then labelled according
to different clusters and normalized to avoid the domination of certain channels. The
labelled image is then interpolated and combined with the three channels at the next
level. The process continues until the labelled image corresponding to the root level
is obtained. A post-processing algorithm can be applied to eliminate undesired small
segments.

Chang and Kuo (134) experimented with the tree-structured wavelet transform and fuzzy
clustering. The image is first decomposed into tree-structured wavelet decomposition.
Then, starting from the coarsest level, four leaf nodes corresponding to each tree nodes
are clustered using the fuzzy c-means algorithm. The resulting output from the fuzzy
clustering is a membership function. This membership function is then interpolated and
combined with the leaf nodes or the membership functions available at the next level
to provide features at that level. The process continues until the membership function
corresponding to the root node is achieved. The segmented image can be obtained by
assigning each pixel to the class in which it has the highest membership value.

In (135), Krishnamachari and Chellappa proposed a texture segmentation technique
based on multiresolution Gauss Markov random fields (GMRF). Coarser resolution sam-

Chapter 6 Automatic Texture Segmentation 133

ple fields are obtained by sub-sampling the sample field at fine resolution. They used
two techniques to estimate the GMRF parameters at coarser resolutions from the fine
resolution parameters, one by minimising the Kullback-Leibler distance and another
based on local conditional distribution invariance. The coarsest resolution data is first
segmented by modelling a label field using MRF and the segmentation results are prop-
agated upward to the finer resolution.

6.2.3 Automatic Texture Segmentation

As previously mentioned, there are very few automatic texture segmentation algorithms
available in the literature. All of the texture segmentation techniques described above
are not automatic texture segmentation algorithms. One of the few automatic texture
segmentation technique can be found in (136) by Perry and Lowe. In their algorithm,
a modified Gabor transform is used to produce n-dimensional feature vectors for each
pixel. To perform segmentation, texture seed regions are established by comparing each
feature vector with their neighbours. Elements that are found to be similar to at least
three of their four neighbours are placed on the list of candidate texture seed regions.
Then texture region borders are extended and refined through an iterative stage. The
growing ends when there exists no neighbouring element for which the distance of this
element to the region is smaller than the threshold for the region. This algorithm however
is computationally very intensive.

Other automatic texture segmentation algorithms mostly tend to first identify the num-
ber of textures within the image before an unsupervised clustering algorithm is carried
out to segment the image into the desired number of segments. An example for this
kind of segmentation can be found in (137). In their paper, Porter and Canagarajah
use the standard wavelet transform together with k -means clustering and within cluster
distance calculation to perform automatic texture segmentation. The wavelet transform
is used to extract texture features, and the within cluster distance calculation is used to
estimate the number of different textures within the image. Once the number of textures
are known, the k -means clustering is applied to the data where k is the estimated number
of texture regions. But this method is rather expensive computationally as it requires
two completely different sets of algorithms, one to detect the number of textures present
and another to segment them. Furthermore we will show in the next section that the
standard wavelet transform features does not provide a particularly good feature space,
hence will probably affect the segmentation result for different textures.

6.2.4 Comparison of Texture Segmentation Techniques

There are also a few papers comparing the performance of several segmentation tech-
niques. Du Buf et al. (138) compared seven different texture feature extraction meth-

Chapter 6 Automatic Texture Segmentation 134

ods which are the Grey Level Co-occurrence Matrix, fractal, Michelle’s texture feature,
Knutsson’s texture feature, Laws’ texture feature, Unser’s texture feature, and curvilin-
ear integration. Their paper is one of most important studies since they are the first to
attempt to evaluate issues of image segmentation and boundary accuracy comparison
in a quantitative framework. From the seven feature extraction methods tested, the
Haralick, Laws and Unser methods gave the best overall results.

Chang et al. (139) experimented with three feature extraction methods and three
segmentation algorithms. The three texture feature methods are the Grey Level Co-
occurrence Matrix (GLCM), Laws’ texture feature and Gabor filtering techniques while
the segmentation algorithms include the fuzzy clustering, square-error clustering and
split-and-merge algorithms. The combination of Gabor filtering with the square error
clustering was found to be the best among several combinations. Gabor filtering more
readily incorporates multiresolution information than the GLCM and Laws, therefore
resulting in much better segmentation.

Pichler et al. (140) compared the pyramidal and tree-structured wavelet transform with
the Gabor filtering in segmenting textured images. Fuzzy c-means clustering is used
to obtain a segmentation based on computed texture features. The Gabor filtering was
found to give the best segmentation result among the three techniques. Nevertheless,
Gabor filtering was found to be very time consuming compared to the other two tech-
niques.

6.3 A Novel Automatic Texture Segmentation Algorithm

Our proposed texture segmentation algorithm (141) is based on multiresolution cluster-
ing of texture data. Firstly a feature extraction technique is applied to the image to
obtain a series of texture coefficients at different resolutions. Each coefficient represents
pixels in the original image. The coefficients are then clustered into an appropriate
number of groups in the feature space, and each pixel is labelled to the group of its
corresponding coefficients. There are several feature extraction techniques to be used in
capturing texture coefficients. Since we have been using discrete wavelet frames through-
out this thesis, and will eventually use it again to extract textures from the segmented
regions following segmentation, it is only logical to use the discrete wavelet frames for
segmentation purposes as well.

Nevertheless, DWF results in quite a large number of coefficients, and this might slow
the segmentation process. A modified DWF is proposed instead. Once the feature space
has been constructed, a suitable clustering algorithm can be used to cluster the data.
However, since we would like to produce an automatic texture segmentation algorithm,
the clustering algorithm needs to be able to identify how many clusters there are in
the feature space. This can be done using the mean shift algorithm. The modified

Chapter 6 Automatic Texture Segmentation 135

DWF, mean shift and the proposed segmentation algorithms are described in detail in
the following.

6.3.1 Modified Discrete Wavelet Frames

Recall that for the standard wavelet transform, the output of the filter is sub-sampled
at each level resulting in an output with the same size as the input image, while discrete
wavelet frames are an over-complete wavelet transform where all the output data are
preserved. For an M ×M image, the output of the standard wavelet transform is M2

while the output of the discrete wavelet frames will have (3K + 1) × M2 coefficients,
where K is the number of decomposition levels. If we sample the DWF output every
2k samples, where k = 1, ..., K is the level associated with a particular filtered image,
the output will be exactly the same as the wavelet transform. The standard wavelet
transform coefficients are actually a subset of a much larger set of discrete wavelet
frames coefficients. It is therefore of more computational advantage to use the standard
wavelet transform for segmentation instead of the discrete wavelet frames.

However, because of the sub-sampling, the wavelet transform coefficients are of very high
variance, which could affect the clustering process quite badly. For example, the 3rd level
coefficients of the wavelet transform are sampled every 8 coefficients both horizontally
and vertically, and if we plot these into a feature space, there will not be well defined
clusters due to the high variance, even after applying some smoothing process. The
discrete wavelet frames on the other hand does not suffer from this problem. While
the wavelet transform is perfectly reconstructable, thus making it very good in some
other fields, it is not very suitable for image segmentation, at least for the automatic
case. One of the most important properties in achieving automatic segmentation is to be
able to come up with a well defined feature space, thus the wavelet transform is clearly
unsuitable. This also contributes to our decision in opting for the DWF instead of PWT
in feature extraction techniques in chapter 4.

(a) (b)

Figure 6.2: 3D plot in the feature space for (a) wavelet transform coefficient, (b)
modified DWF coefficient

Chapter 6 Automatic Texture Segmentation 136

Nonetheless, it occurs that we can reduce the coefficients of the discrete wavelet trans-
form to take the pyramid structure of the standard wavelet transform without signifi-
cantly affecting the distribution of data in the feature space. If the coefficients of the
discrete wavelet frames are carefully chosen rather than simply throwing away every
other data point as in the wavelet transform, well defined clusters can be preserved and
the amount of data can also be reduced greatly. A simple yet reliable method is to take
the mean of energy within distinct blocks. For each filtered image, the DWF coefficients
are divided into distinct blocks of size 2k × 2k, and the mean absolute value of the data
within the blocks are taken as the new coefficients of the DWF at that level. This results
in data reduction of factor (2k × 2k) for that particular filtered image. If this proce-
dure is repeated for every filtered image of the DWF we will have the same pyramid
configuration as the wavelet transform but with better coefficients. Figure 6.2 shows a
3D plot of coefficients at level 3 for both the wavelet transform and the modified DWF
of the same image consisting of 3 textures. Notice the data of the wavelet transform
coefficients are poorly scattered and end up detecting 4 clusters instead of 3.

6.3.2 Mean Shift Algorithm

Mean shift clustering is a relatively new clustering technique which finds possible cluster
centres based on the density gradient of data, thus allowing unsupervised clustering to
be performed. The rationale behind the density estimation based clustering approach
is that the feature space can be regarded as the empirical probability density function
(p.d.f) of the represented parameter. Dense regions in the feature space thus correspond
to the local maximum of the p.d.f., that is, to the modes of the unknown density. Once
the location of the mode is determined, the cluster associated with it can be delineated
based on the local structure of the feature space.

Most of the work on mean shift clustering in image processing is done by Comaniciu
and Meer (142; 143; 144), although the original idea was introduced by Fukunaga and
Hostetler (145). The idea of mean shift is to shift all points in the feature space by
a significant amount until they converge to certain points. The convergence points are
subsequently analysed to find possible cluster centres. A point is shifted to a new location
based on the mean of all points within a radius h from the point itself. Theoretically
the point will be shifted towards a local density maximum of the data set. An example
of mean shift convergence of a point is shown in Figure 6.3, for a two-dimensional case.

However, Comaniciu and Meer used a simple nearest neighbour clustering to associate
each data point to its cluster centre for their colour features. We find this approach is
too basic to be used for texture features, since unlike colour, the distribution of texture
feature data in the feature space is more complex and therefore needs a more robust
clustering technique. Furthermore, since our method uses a multiresolution feature
extraction in discrete wavelet frames, the decision about cluster membership for a pixel

Chapter 6 Automatic Texture Segmentation 137

x x x x x xx x xxx x

x x x x x x
x

O

O

Data point

Convergence
point

xxxxx
xxxx

xx

x

xxxxxx

x

O

O

Data point

Convergence
point

Figure 6.3: Mean shift convergence of a point.

only needs to be decided at the root level. The clustering output at all levels, except
the root, only serve as intermediate results, and therefore is better represented by some
sort of a membership function instead of a membership class. For these reasons, we opt
to use the fuzzy c-means clustering to cluster the data, while the mean shift algorithm
is just used to estimate the number of clusters and the cluster centres.

The mean shift algorithm used in the proposed segmentation technique can be broken
down into five processes:

• Data sampling. To reduce the computational load, a set of m points called the
sample set is randomly selected from the data. Two constraints are imposed on
the points retained in the sample set. The distance between any two neighbours
should not be smaller than h, the radius of the sphere Sh(x), and the sample points
should not lie in sparsely populated regions. The latter condition is to avoid low
density clusters. A region is sparsely populated whenever the number of points
inside the sphere is below a threshold T .

• Mode seeking. For each of the sample points, apply a mean shift procedure
until the points converge to a stationary point. The mean shift computation for
each sample points is based on the entire data set. The convergence points are
considered as cluster centre candidates.

• Cluster centres derivation. Any subset of cluster centre candidates which are
sufficiently close to each other (for any given point in the subset, there is at least
another point in the subset such that their distance is less than h) defines a cluster
centre. The cluster centre is the mean of the cluster centre candidates in the
subset.

• Cluster centre validation. Between any two cluster centres, a significant valley
should occur in the underlying density. The existence of the valley is tested for
each pair of cluster centres. If the density at any point between the two centres is

Chapter 6 Automatic Texture Segmentation 138

below V× (highest density between the two centres); 0 < V < 1, then a valley is
observed and both centres are valid. If no valley was found, the cluster centre of
lower density is removed from the set of cluster centres.

• Clusters delineation. At this stage, each data point is associated with a cluster
centre using fuzzy c-means clustering technique.

6.3.3 Segmentation Algorithm

Our proposed texture segmentation algorithm has a hierarchical structure and consists
of two phases: a top-down decomposition phase followed by a bottom-up segmentation
phase. Figure 6.4 shows the flowchart of the algorithm.

6.3.3.1 Top-Down Decomposition Phase

In the top-down decomposition phase, we perform a K -level discrete wavelet frames
decomposition. For a 2n × 2n image, this results in 3K + 1 planes of 2n × 2n data.
The amount of data is then reduced by applying steps described in the modified DWF
section. This results in pyramid-structured coefficients. At this point, we label the
original image of size 2n × 2n with level index 0 (the root level), the four sub-images
of size 2n−1 × 2n−1 with level index 1 and so on. Since the discrete wavelet frames
provide good spatial and frequency energy localization, we may take the energy value
of each modified DWF coefficient as an energy feature. However, the variance of the
feature is still high since only one sample is used. By assuming that neighbouring DWF
coefficients are identically and independently distributed, the variance can be reduced
by performing a local averaging or smoothing operation.

On the one hand, it is desirable to have a large window to reduce the statistical variations.
On the other hand, since a large window centred at points in the texture boundary region
may contain multiple texture classes, the window size has to be small. To avoid this
problem, we choose to use a sophisticated adaptive smoothing algorithm developed by
Chang et al. (119), which repeatedly implements a simple local averaging operation
until some criterion is satisfied. A typical smoothing operator is of the form:

W =
1
16

1 2 1
2 4 2
1 2 1

 (6.1)

For an N ×N image f(x, y), the iteration stopping criterion for a sub-image at the pth

Chapter 6 Automatic Texture Segmentation 139

At each level, apply
feature smoothing to

reduce variance

Integrate the 4 channels
of the coarsest level

Root level?

Yes

Integrate the interpolated
membership function
with the 3 channels of

the following level

Image, I(M,N)

Perform K-level DWF
decomposition followed by

data reduction

Apply mean shift algorithm
with fuzzy c-means clustering,

followed by interpolation

Assigned each pixel to
the class in which it has the
highest membership value

Top-down phase

Bottom-up phase

Figure 6.4: Flowchart of the proposed segmentation algorithm.

level is given by:

Γk = 1.28
α

2p
N2 (6.2)

where

Γk =
∑

x

∑
y

∣∣Dkf(x, y)
∣∣

|W k−1f(x, y)|+ |Dkf(x, y)|+ ε
(6.3)

and α is an estimate of the percentage of the number of boundary pixels (suggested
value 1/N), ε is a very small number, Dk ≡ W k −W k−1, and W k means applying the
smoothing operator k times.

Chapter 6 Automatic Texture Segmentation 140

The smoothed energy values are then normalized to the range between 0 and 1 within
each node so that they can be conveniently used for segmentation in the bottom-up
phase, as well as to make sure that no components will artificially dominate the clustering
process.

6.3.3.2 Bottom-Up Segmentation Phase

In the bottom-up phase, we start with level K and produce an intermediate segmentation
result for level K − 1 using the four sub-images available at level K. To generate the
intermediate segmentation, the four sub-images of size 2n−K × 2n−K are integrated in
a way that it can be viewed as four-dimensional 2n−K × 2n−K data, before the mean
shift algorithm is applied and provides us with the number of clusters detected in the
data as well as the cluster centre positions. As mentioned in the last section, the fuzzy
c-means clustering (FCM) is chosen above other clustering techniques and is applied to
the four-dimensional data using the information provided by the mean shift. The fuzzy
c-means clustering algorithm is an iterative procedure described in the following:

Fuzzy C-Means Clustering Algorithm

Given M input data points {xm;m = 1, ..., M}, the number of clusters C (2 ≤ C < M),
and the fuzzy weighting exponent w, 1 < w < ∞, initialize the fuzzy membership
functions u

(0)
c,m with c = 1, ..., C and m = 1, ..., M which are the entry of a C×M matrix

U (0). Perform the following for iteration l = 1, 2, ...:

1. Calculate the fuzzy cluster centres vc
l with vc =

∑M
m=1 (uc,m)wxm/

∑M
m=1 (uc,m)w

2. Update U (l) with uc,m = 1/
∑C

i=1

(
dc,m

di,m

) 2
w−1 where (di,m)2 = ‖xm − vi‖2 and ‖ · ‖

is any inner product induced norm.

3. Compare U (l) with U (l+1) in a convenient matrix norm. If ‖U (l+1) − U (l)‖ ≤ ε

stop; otherwise return to step 1.

The value of the weighting exponent, w determines the fuzzyness of the clustering deci-
sion. A smaller value of w, i.e. w is close to unity, will give the zero/one hard decision
membership function, and a larger w corresponds to a fuzzier output. Our experimental
results suggest that w = 2 is a good choice. The advantage of using the mean shift
algorithm together with the fuzzy c-means clustering is demonstrated here. The fuzzy
c-means algorithm is not a fully unsupervised clustering method as it requires the num-
ber of clusters to be known a priori. Besides that, one other drawback of the fuzzy
c-means is finding the best way to initialize the fuzzy membership function.

Chapter 6 Automatic Texture Segmentation 141

The FCM algorithm finds a local minimum of ΣC
c=1Σ

M
m=1u

w
c,md2

c,m by solving uc,m and vc,
and its output depends on the initial value of U (0). Various methods have been proposed
on the best way to initialize U (0) such as the maximin distance algorithm. But by using
the mean shift, it not only provides the FCM with the number of clusters, but also the
cluster centres, meaning that the initial value of U (0) is already quite close to the final
value of U (0). Hence part of the task of the FCM, that is to find appropriate cluster
centres, is done. Experiments have shown that the FCM algorithm terminates after just
a few iterations, thanks to the precise location of the cluster centres.

The output of the fuzzy c-means is a 2n−K×2n−K membership function of Nc dimension,
where Nc is the number of clusters. Each element of the membership function describes
the membership value with respect to a particular type of cluster and the sum of these
elements is equal to 1. The membership function is then interpolated to size 2n−K+1 ×
2n−K+1 so that it has the same size with the data at the following level. For simplicity,
a linear interpolation algorithm is used to interpolate the membership function.

At level K−1, the interpolated membership function is integrated with the 3 sub-images
at this level resulting in an (Nc +3)-dimensional data to be used for the next mean shift
and FCM processes. These procedures of data integration, mean shift, clustering and
interpolation are applied recursively from bottom to top so that we eventually obtain
the segmentation result of the root level, i.e. the original image. The final crispy
segmentation at level 0 can be determined by assigning each pixel to the class where it
has the highest probability of membership. Note that the number of clusters detected by
the mean shift algorithm can be different at each level. We might get a wrong number
of clusters in the bottom level, but that is just an intermediate result, where not all data
are utilized. What matters is the final segmentation result, after all data is taken into
account. The incorrect number of clusters in the bottom level might be refined by the
data at the higher levels.

Finally the proposed texture segmentation algorithm works on image of any resolution,
and not confined to dyadic length image only. For non-dyadic image length, the formula
for the modified DWF remains the same except we introduce the floor function when
converting the coefficient to lower level. For example, an image with length 355 will
have the length of 177 for level 0 coefficients, 88 for level 1 coefficients, and 44 for level
2 coefficients. During the bottom-up segmentation process, the length will be converted
back to the original length.

6.4 Experimental Analysis

We will first show the sequence of segmentation result from coarse to fine resolution in
order to give a better illustration of the segmentation process at each level. For illus-
tration purpose, we experiment with a composite texture image comprising 4 different

Chapter 6 Automatic Texture Segmentation 142

Brodatz textures (D017, D024, D055 and D077), with each texture positioned at each
quarter of the image. The size of the image is 256×256. The image is decomposed using
the modified DWF for up to three levels using an 8-tap Daubechies wavelet filter. The
radius, h and threshold, T for the mean shift algorithm is critical, and from experiment
a suitable value of h at all levels is found to be 0.2, while a suitable value of T is one
twentieth of the total data points at each level. The valley threshold, V is set to 0.5.
Figure 6.5 shows the sequence of segmentation results obtained at each level for the com-
posite texture image. In this example, the initial segmentation result obtained at level 2
already gives a quite good segmentation and is used as a basis for higher level processing.
It can be clearly seen that as the level increases, the segmentation result improves. This
implies that the coefficients from the higher levels help in refining the boundary of the
textures, thus illustrating the advantage of multiresolution segmentation.

We will now evaluate the performance of the algorithm for different numbers of textures
within an image. The following section evaluates the performance on composite textures,
synthetic textures, real scene images and museum images.

6.4.1 Composite Texture Images

In this section, the performance of the segmentation algorithm will be evaluated by its
ability in identifying the correct number of textures in the image, as well as its precision
in defining the boundaries of the segmented images. The precision is measured by
computing the percentage of misclassified pixels in the segmented images. We applied
our texture segmentation algorithm to several images of composite textures with size
256 × 256 pixels and 256 grey levels. Textures from the Brodatz album are used to
make up the composite texture images by cut-and-paste technique. Textures pasted are
of either rectangular or square shape in order to make the computation of misclassified
pixels easier. None of the textures used in our experiment can be discriminated by grey
level values alone.

Figure 6.6 shows an example of applying the texture segmentation algorithm to a number
of images with different numbers of textures. The 2-textured image consists of texture
D012 and D017, the 3-textured image of texture D054, D074 and D102, the 4-textured
image of texture D001, D011, D018 and D026, while the 5-textured image consists of
texture D001, D053, D065, D074 and D102. All the results in Figure 6.6 show a correctly
identified number of texture as well as good segmentation. All together, we have applied
our algorithm to 50 composite textures, and the results are summarized in Table 6.1.

A return of 90% correctly detected number of textures is very promising. Except for
one of the 3-textured images, which the algorithm detected to have 5 textures, all other
incorrect results only miss by plus/minus one texture. Figure 6.7 shows an example of a
wrongly detected number of textures. The image consists of texture D065, D066, D086

Chapter 6 Automatic Texture Segmentation 143

(a)

(b)

(c)

(d)

Figure 6.5: (a) 4-textured image, and its segmentation result at, (b) level 2 (64×64),
(c) level 1 (128× 128), (d) level 0 (256× 256, final result)

and D102. From the figure, it is clear that the incorrect segmentation is caused by the
fact that the top half texture appears to contain two visually different regions. For the
5 incorrect cases, the cause is either the same problem as above, or the fact that two
textures are almost visually the same.

Chapter 6 Automatic Texture Segmentation 144

(a)

(b)

(c)

(d)

Figure 6.6: Segmentation result for different number of textures

Table 6.2 shows the percentage of segmentation errors for the five correctly segmented
textures shown in Figure 6.5 and 6.6. All of the images give an error percentage of
below 5% which is quite a low rate in texture segmentation. Notice that the more texture
boundaries there are, the more difficult decisions must be made, resulting in an increasing
number of misclassified pixels. Non-boundary pixels seem to be well distinguished by

Chapter 6 Automatic Texture Segmentation 145

Number of Number of Images with Number of textures detected
textures images tested correctly detected for the wrong detection case

in an image number of textures 2 3 4 5
2 16 15 1
3 12 11 1
4 13 12 1
5 9 7 2

Total 50 45 (90%) 1 2 2

Table 6.1: Percentage of correctly detected number of textures.

Figure 6.7: Example of incorrect segmentation

the proposed algorithm. All together from the 45 correctly segmented images, we obtain
an average of just 3.72% misclassified pixels.

Finally, we compare the performance of our algorithm with a segmentation technique
based on the wavelet transform segmentation, i.e. the data to be clustered by the mean
shift and the FCM is generated by the wavelet transform instead of the modified DWF.
Figure 6.8 compares the performance of the modified DWF with the wavelet transform
method for the image in Figure 6.6(d). Clearly, the wavelet transform fails to provide
good clusters in the feature space resulting in a poor segmentation. Also, the sampling
of poorly scattered data points during the mean shift results in a rather inconsistent
segmentation for the wavelet transform-based segmentation. The modified DWF is
therefore superior to the wavelet transform in terms of segmentation performance, and
is superior to the standard DWF in terms of computational speed.

Image Textures Misclassified Percentage
pixels of error

Figure 6.5 4 1654 2.52%
Figure 6.6(a) 2 621 0.90%
Figure 6.6(b) 3 1771 2.70%
Figure 6.6(c) 4 1615 2.46%
Figure 6.6(d) 5 2816 4.29%

Table 6.2: Percentage of misclassified pixels

Chapter 6 Automatic Texture Segmentation 146

Figure 6.8: Result using modified DWF (left) and wavelet transform (right)

6.4.2 Synthetic Texture Images

Figure 6.9 shows segmentation results for synthetic textures composed of the +- and
L- symbols. This texture pair has a spectrum with the same magnitude but different
phases. However since it is difficult to pre-assign the classes for boundary pixels, it
is difficult to compute the misclassified pixels. Thus the evaluation for this particular
problem is simply based on visual inspection. The algorithm successfully segments the
two different textured regions. Since the illumination of both textures is the same, this
example also shows that it is the surface texture, not the illumination condition that is
being classified.

Figure 6.9: Segmentation result of synthetic textures

6.4.3 Real Scene Images

Figure 6.10 shows a segmentation result on a real scene image, where the algorithm
correctly segmented the sky, mountain and water into 3 separate regions. As in the
synthetic texture case, it is difficult to define an objective boundary for this example,
thus the percentage of segmentation errors cannot be measured. However, from the
figure, it is clear that the proposed algorithm works well in distinguishing real scene
image textures.

Chapter 6 Automatic Texture Segmentation 147

Figure 6.10: Segmentation result of real scene image

6.4.4 Museum Images

Figure 6.11 shows an example of one of many various kinds of images in our museum
collections. The top figure shows an image of an open book consists of a textured region
in the middle of the book and non-textured region in other part of the book as well as
non-textured background. The bottom left figure shows the segmentation result which
consists of 3 segments, one of which is textured. From the result of the segmentation, it
can be seen that the algorithm manages to isolate the textured region of the book page
from the non-textured region. The bottom right figure shows the particular textured
region. The result suggests that the proposed segmentation algorithm will be useful in
texture retrieval application.

Figure 6.11: Segmentation result of museum image

6.4.5 Computational Speed of The Algorithm

The computational speed of the proposed algorithm depends on the resolution of the
image as well as how many segments the algorithm perceives the image has. The higher

Chapter 6 Automatic Texture Segmentation 148

the number of different clusters, the longer it will take to segment the image. Segmen-
tation on typical museum image of size 768 × 768 with around 3 to 5 segments take
around 10 seconds on average. This will be very helpful in minimising the time spent
when creating a database of very large image collections.

6.5 The Effect of Segmentation Parameters

Throughout the entire segmentation process, several parameters are encountered and
these parameters may or may not have significant effect on the outcome of the seg-
mentation result. These parameters include the radius, h, threshold, T and valley, V

of the mean shift algorithm, the fuzzy weighting exponent, w and the fuzzy stopping
criterion, ε of the fuzzy clustering, and the estimate of the percentage of the number of
boundary pixels, α in the adaptive smoothing algorithm. In this section we will discuss
the significance of these parameters to the final segmentation result.

The mean shift algorithm is used to determine the number of texture regions in our
segmentation algorithm, hence the three mean shift parameters affected only the final
number of texture segments. The fuzzy clustering and adaptive smoothing parameters
on the other hand contributed to the boundary accuracy of the segmentation of the
known number of texture regions.

6.5.1 Mean Shift Parameters

The radius and threshold of the mean shift is very crucial in our segmentation algorithm.
The radius controls the number of segments or clusters in the image. It needs to be big
enough so that the mean shift can converge to the correct cluster centers, but cannot be
too big as it will result in all the points converging to the same cluster center, i.e. only
one big cluster is found. The threshold is used to make sure that the sample points do
not belong to scarcely populated area. This in turn contributes in controlling the size
of the texture segments, i.e. in order for a particular texture to be considered as one
texture region, the textured area should not be too small.

The radius and threshold is inter-related. When the radius is small, an appropriate
threshold needs to be found so that it proportionates with the amount of points in the
circle of radius h. Figure 6.12 illustrates the effect of this inter-relation. A very large
radius, depending on the threshold, will either detect only 1 big cluster or no cluster at
all. Small radius with small threshold will produce too many clusters, thus increasing the
probability of error. However since we normalized the wavelet features to be between 0
and 1, the choice of radius and threshold can be determined quite easily by experiment.
A radius of 0.2 is found to be suitable for our collection of museum images, while the

Chapter 6 Automatic Texture Segmentation 149

value of the threshold, assuming there will not be more than 20 clusters within the
image, is taken as one twentieth of the total data points at each level.

Too many
clusters

One cluster/
No cluster

One clusterOne cluster

No cluster

No cluster

Small T Medium T Large T

S
m

al
l h

M

ed
iu

m
 h

La

rg
e

h

Figure 6.12: Inter-relation of radius, h and threshold, T

The last mean shift parameter, the valley, V is less crucial and is only used to check
whether two cluster centers are actually in two different clusters. 100 points are gen-
erated between the two cluster centers and the density of each point within the circle
radius is calculated. If at any point the density is lower than V×(highest density of
the two cluster centers), then it proves the two cluster centers are in different clusters.
Otherwise the two are considered to be in one cluster, and only one of the cluster centres
will be considered as the final cluster center. Therefore the value of V does effect the
number of clusters; the bigger V , the higher the number of clusters. It was found that
a suitable value of V is 0.5.

6.5.2 Fuzzy Clustering and Adaptive Smoothing Parameters

As mentioned before, the fuzzy weighting exponent, w (1 < w < ∞) controls the
fuzziness of the membership function of the fuzzy clustering algorithm. The higher
the weighting exponent, the more accurate the boundary accuracy of the segmentation.
Nonetheless, bigger w also implies that there will be ’holes’ within the homogeneous
texture segments. In other words, while it may increase the boundary accuracy of the
segments, the non-boundary region will not be as smooth. This problem can be solved
by using higher w together with some relaxation process. However as bigger w tend to
make the membership function to be uniform, it does have an effect during the mean
shift convergence of the following level. For this reason the choice of w value should not
be too big. From experiment, w = 2 was found to be the most suitable choice.

The fuzzy stopping criterion, ε does not have a major impact on the segmentation result
since it only effects the location of the final cluster centers. The smaller the stopping
criterion, the more iteration the fuzzy clustering will perform before settling the location
of the cluster centers. However there is very little difference on the cluster center location
that overall this parameter does not have a significant impact on the final outcome.

Finally, the estimate of the percentage of the number of boundary pixels, α controls the

Chapter 6 Automatic Texture Segmentation 150

shape of the clusters. The adaptive smoothing operation is applied to reduce the high
variance of the wavelet coefficients, and the number of times the smoothing iteration is
applied depends on α. Smaller α means applying the smoothing operation more times
and may results in the data points being grouped together in one big cluster. Higher α,
the extreme case means no smoothing operation at all, on the other hand it may result
in loosely populated clusters and might lead to too many clusters. The choice of α = 1

N

as suggested by (119) is suitable for our application, where N is the length of the image.

6.6 Texture Identifier for CBIR

In order to be used with a content-based image retrieval system, it is necessary for
the segmentation algorithm not only to segment between textured region, but also to
distinguish between textured region and non-textured region. Hence only the feature
vectors of the textured segments will be created and stored for matching purposes. Our
proposed segmentation algorithm can discriminate not only between different textured
regions but also between textured regions and non-textured regions, although it may
or may not be able to segment different homogeneous or non-textured region. For
example an image consisting of two textures on a dark background at the top and a
bright background at the bottom will results in either 3 or 4 clusters using the proposed
algorithm, two of them textured. The inability to segment non-textured region however
is not important as we are only interested in the textured region. The non-textured
region can be discarded using the algorithm to determine whether a particular segment
is textured or not proposed by Porter and Canagarajah (137). The basic idea behind
their algorithm is to find the ratio of the mean energy in the low frequency channels to
the mean energy in the middle frequency channels. Non-textured images (in which the
grey level varies smoothly) are heavily dominated by the low-frequency channels in their
wavelet transform. However textured images have large energies in both the low and
middle frequencies. For a 3-level decomposition, the ratio can be computed between the
mean energy in the four low frequency channels (LL3, LH3,HL3,HH3) and the mean
energy in the three middle frequency channels (LH2,HL2,HH2) and is given as follows:

R =
LL3 + LH3 + HL3 + HH3

LH2 + HL2 + HH2
(6.4)

If the ratio,R of a segment is above a certain threshold, then we can conclude that the
particular segment is non-textured and thus no feature vectors should be created for it.
Otherwise if the ratio is below the threshold, then a feature vector is created for the
segment.

From visual inspection, a textured region usually gives a ratio of less then 10, while a
non-textured region can be from 10 up to infinity. However this is not always true as
our collection of images is very large and it is impossible to visually inspect the ratio

Chapter 6 Automatic Texture Segmentation 151

of all the textures. To avoid a situation where a genuine texture is missed, a threshold
of 20 is used. It is less harmful for a non-textured being classified as textured than
a textured being classified as non-textured as it will be completely ignored in creating
feature vectors. Figure 6.13 shows the same image example used in section 6.4.4, and
the ratio of each of its segments. The textured segment clearly gives a small ratio to
indicate its textured-ness while the two non-textured regions have a much larger ratio.

Segment 1:
Ratio = 3.4210

Segment 2:
Ratio = 25.2937

Segment 3:
Ratio =72.8172

Image example

Figure 6.13: Example of texture identifier

The texture identifier hence is a useful tool in identifying significant texture regions
within an image for feature extraction, while neglecting the non-textured region of the
image.

6.7 Integration With A Retrieval System

We are now ready to integrate the proposed segmentation algorithm with a retrieval
system. From the segmented regions, the last thing we need to do is to compute the
feature vectors for the identified texture regions. We do not need to perform the wavelet
decomposition again as we already have the original coefficients of the DWF when we
perform the segmentation. In order to make a fair comparison with the multiscale-based
retrieval later, all the parameters used for feature extraction and comparison are set to
be as similar as possible to the ones used in chapter 4 (table 4.13).

The number of decomposition levels and the wavelet basis are already similar since we use
3 level of decomposition using Daubechies 8-tap wavelet during the segmentation process.
The mean subtraction can be applied by removing the local mean of the segmented region

Chapter 6 Automatic Texture Segmentation 152

in the LL channel to make it zero mean. The normalized Euclidean distance is used
as the distance metric, while the standard deviation energy and the number of zero-
crossings of all channels are used as texture features. For the identified texture regions,
the features are computed from the original DWF coefficients (not the modified ones
used for segmentation) within the segmented texture regions only. This will create a
feature vector that closely resembles the texture in that particular region. Finally the
luminence function is used to convert colour images to monochrome images. The only
dissimilarity here between the multiscale-based approach and the segmentation-based
approach is the type of image padding used. Since the same DWF coefficients are used
to segment the image as well as to compute the features, the resulting features correspond
to symmetric padding as oppose to periodic padding for the multiscale-based approach.
Therefore in the segmentation-based approach, the translation invariance property is
lost. Nonetheless, since it is impractical to have to compute the DWF again just to
preserve the one property, the small dissimilarity can be neglected as it is not going to
have much effect in the bigger context of retrieval performance.

One might argue that we can simply take the cluster centers in each level and combine
them to provide the feature vector. However this is not true since the number of clusters
found in each level might not be the same. Hence it is difficult to compute the feature
vector this way. Moreover the cluster center is based on the modified DWF, and not from
the true DWF coefficients, thus might not be as good as the original DWF coefficients
when used in texture matching between several thousands texture images. Therefore
the proposed feature computation above will be used instead, as it is much easier to
perform, and the discrimination performance of the original DWF coefficients has been
proved in chapter 4.

A simple retrieval experiment is carried in order to observe the validity of this retrieval
approach as well as its performance. The retrieval experiment is tested on the same
museum database of 1106 images used in the multiscale experiment in the previous
chapter. As in the multiscale experiment, the retrieval performance on the museum
database was observed visually since we do not know how many similar textures there
might be in the database. Nonetheless, as long as the top matches are visually similar
to the query, it can be considered successful. Figure 6.14 shows three examples of the
segmentation-based retrieval. The yellow line circling part of the image indicates the
segmented region found by the algorithm to be similar to the query.

As can be seen, the retrieval system manages to retrieve visually similar textures to the
query, and thus is very useful in texture retrieval of museum collections. However, one
disadvantage of using segmentation-based retrieval can be seen in the third example.
Here the query image is a small stripe from one of the images in the database, and can
be considered as a subset of a coarser texture. However since the segmentation algorithm
segments the coarser texture, the retrieved images does not actually correspond to the
finer texture of the image; instead it corresponds to the coarser texture. In this example,

Chapter 6 Automatic Texture Segmentation 153

Figure 6.14: Example of retrieval results of real museum collections

the features of the finer scale texture and the coarser scale texture may be close (because
the majority of the image consists of stripes), hence it still manage to retrieve all images
consisting stripes although its accuracy is not as good as the performance using the
multiscale-based retrieval (Figure 5.22).

Nonetheless, apart from the lack of multiscale property, the segmentation-based ap-
proach proves to be very good and provides an alternative way of texture retrieval to
the multiscale-based approach, and it will be interesting to compare the performance of
the two. The comparison will be discussed in detail in the next chapter.

Chapter 6 Automatic Texture Segmentation 154

6.8 Chapter Summary

In this chapter, a new framework for automatic texture segmentation based on modified
discrete wavelet frames and the mean shift algorithm is developed. By modifying the
discrete wavelet frames, much better clustering is obtained on a reduced set of data,
making possible the use of the mean shift algorithm to detect the correct number of
clusters, and substantially reduces the processing time. The mean shift also provides
the position of the cluster centres which effectively solves the problem of initializing
the membership function in the fuzzy c-means algorithm, and hence reducing the fuzzy
iterations.

From the results of the experiments we can see that the proposed method can detect
the correct number of clusters as well as segmenting the image correctly in composite
textures, synthetic textures, real scene images and museum images, while maintaining
the low computational load. The texture segmentation was then extended to be a texture
identifier in order to use it in image retrieval system. This is done by computing the ratio
of energy in the low-frequency channels to the energy in the middle frequency channels,
and observing whether the ratio is below a certain threshold. The feature vector of the
identified texture region is then computed for matching purposes. From experiment, the
proposed segmentation-based retrieval system performs well in retrieving similar texture
from a museum database, hence provides an alternative to the multiscale-based texture
retrieval.

Chapter 7

Content-Based Image Retrieval of

Museum Images

This chapter introduces the various image collections available on the server of the
School of Electronics and Computer Science of the University of Southampton. The
three algorithms are then evaluated on these different museum databases of different
sizes and observations are discussed. Finally the integration of the proposed algorithms
on the Artiste and Sculpteur projects are presented.

7.1 Museum Databases

The School of Electronics and Computer Science of the University of Southampton has
collaborations with several museums across Europe through the two major projects car-
ried by the Intelligence, Agents and Multimedia (IAM) Research Group, the Artiste and
Sculpteur projects. This program of research is concerned with media processing, extrac-
tion of semantics and architectural developments to provide more effective multimedia
systems using content and concept based browsing, retrieval and navigation techniques.
Four major European galleries are involved in the projects, namely the National Gallery
and the Victoria and Albert Museum in London, the Research and Restoration Centre
for the Museum of France (C2RMF) in Paris and the Uffizi Gallery in Florence. All of
these museums contributed their images to the IAM research group for various research
purposes. The Victoria and Albert Museum for instance contributed tens of thousands
of its images.

Throughout this final experiment, we will use the images from the National Gallery, the
Victoria and Albert Museum and the C2RMF databases. The Uffizi Gallery however
will not be used since the number of images in its databases is too small to make useful
observations. The three databases to be used are described as below.

155

Chapter 7 Content-Based Image Retrieval of Museum Images 156

7.1.1 The National Gallery

The National Gallery in London houses one of the greatest collections of European
painting in the world. Their permanent collection spans the period from about 1250 to
1900 and consists of Western European paintings. Artworks from various well known
artists such as Vincent van Gogh, Claude-Oscar Monet and Leonardo da Vinci can be
found in the gallery. To facilitate a digital image library within the museum, these
paintings are scanned using a very high resolution scanner.

There are more than 1000 images from the museum available in our server database.
The original images from this museum are of very high quality and their dimension
can be up to 3000 × 3000 pixels. However scaled-down versions of the images are
also available, and in order to compensate for the lack of multidimensional indexing
techniques for the proposed algorithms, one of the scaled-down versions will be used
for content-based image retrieval experiments. The images of this scaled version have
the resolution between 500 to 1000 pixels length. In total, the number of images in the
National Gallery database to be used in the final experiment is 1462. Figure 7.1 shows
some example of the images within the National Gallery database.

Figure 7.1: Example of National Gallery images

Chapter 7 Content-Based Image Retrieval of Museum Images 157

7.1.2 The Victoria and Albert Museum

The Victoria and Albert Museum is a great museum of applied and decorative arts.
It is a world treasure house with collections of vast scope and diversity. The museum
holds 3000 years’ worth of artefacts from many of the world’s richest cultures. Among
its collections are Asian and Islamic arts, Europeans arts and sculptures, twentieth
century arts, jewelries, silvers and metals, textiles, dresses, ceramics, glasses, paintings,
photography and drawings.

The Victoria and Albert Museum contributed more than 30,000 images to the research
group. Except for the paintings and drawings, images from the museum mostly contain
pictures of an individual work of art on a homogeneous background. All the images
in this collection however are not as high in resolution as the National Gallery images.
The image dimension varies between 500 to 1000 pixels length as in the scaled-down
version of the National Gallery images. In total, the number of images in the Victoria
and Albert Museum database to be used in the final experiment is 16959. Figure 7.2
shows some example of the images within the Victoria and Albert Museum database.

Figure 7.2: Example of Victoria and Albert Museum images

Chapter 7 Content-Based Image Retrieval of Museum Images 158

7.1.3 The Research and Restoration Centre for the Museum of France

(C2RMF)

C2RMF is one of the oldest and largest research laboratories in the museum sector. Its
main research area is the restoration of paintings in French museums. C2RMF con-
tributes a large number of images to the IAM research group, in the region of hundreds
of thousands. Most of these images are monochrome paintings, and is mainly used for
research on image restoration, crack and plank detection and analysis. However, most
of these images are duplicates with some processing (restoration) applied. For example,
there might be five different versions of the same painting, and on top of it, the image
of the plank at the back of the paintings are also included. Since our objective is to
perform content-based image retrieval on museum images, the duplicates and the plank
images are ignored. Hence a total of 2500 different paintings are selected for use in the
CBIR experiments in this thesis. Figure 7.3 shows some example of the images within
the C2RMF database.

Figure 7.3: Example of C2RMF images

7.2 Content-Based Image Retrieval of Different Museum

Databases

The query by low-quality image algorithm and the two query by texture algorithms are
now used for content-based image retrieval of museum collections. The 20 fax images

Chapter 7 Content-Based Image Retrieval of Museum Images 159

Query Image No. Rank of Original
1 4
2 4
3 1
4 1
5 1
6 6
7 1
8 2
9 1
10 1

Query Image No. Rank of Original
11 2
12 1
13 2
14 4
15 1
16 1
17 1
18 1
19 1
20 1

Table 7.1: Retrieval results using 20 fax images on the Victoria and Albert Museum
database

and their originals (Figure 3.5 and 3.6)used in chapter 3 are all taken from the Victoria
and Albert database, hence the CBIR experiment on QBLI will be evaluated only on
that particular database. The query by texture on the other hand will be evaluated on
all three databases, as it is quite clear from the previous section that the three databases
are quite different in their image contents.

7.2.1 Query by Low-Quality Image

The 20 fax images used in chapter 3 are again used as query images. Recall that the
QBLI gave a very good performance when used in a database size of 1062 images. In
this experiment, the same procedures as in chapter 3 are used but on a much larger
database size. The Victoria and Albert Museum database as described in the previous
section consists of 16959 images. Six levels of decompositions are used to perform wavelet
decomposition on 99 binaries per database image using Coiflet 6-tap wavelet basis, while
the Manhattan distance metric are used to compute the dissimilarity measure. Table
7.1 shows the results of the experiment.

Clearly from the table, the proposed algorithm has no problems in adjusting to a larger
database. All of the target originals are retrieved within the top 6. Considering there are
almost 17000 different images within the database, top 6 performance is very good. In
fact 13 of the 20 target originals are retrieved as the first ranked image, which suggests
that the proposed algorithm manages to produce very similar feature vectors between
the fax and the originals. Hence even with much more images added to the database to
confuse the system, the algorithm will still be able to find the correct target.

Based on this observation, using any other kind of low-quality images described in
chapter 3 should also be successful on large database. Finally the time taken to perform
the retrieval is recorded to be around 80 seconds on average on a 700MHz Xeon processor.
This is a reasonable performance considering there is no multidimensional indexing at
all employed to index such a large number of feature vectors. An addition of a suitable

Chapter 7 Content-Based Image Retrieval of Museum Images 160

multidimensional indexing technique can help with the increasing size of database and
improve the speed of retrieval, and make the CBIR system friendlier for the users. In
addition, a suitable fast searching algorithm can also further improve the speed of the
system.

7.2.2 Query by Texture

The multiscale-based and the segmentation-based approaches are both evaluated on the
three museum databases using the procedures and parameters described in chapter 5
and 6 respectively. The three databases carry quite a different challenge. The Victo-
ria and Albert Museum database has largely an image of an object, hence is not too
complex, but the database size is the biggest. The National Gallery database contains
more complex images because all of its images are paintings of a scene. Finally the
C2RMF database offers the most difficult challenge where most of its images are quite
a smudgy painting (because they are originally for use in restoration research) and also
not many textures are significantly visible. Due to limitation in space, it is not possible
to give too many examples of the retrieval performance of the algorithms. Nonetheless
all the observations from the experiments are summarized below as well as suggested
improvements to the algorithms. Figure 7.4, 7.5 and 7.6 show examples of retrieval
results using both algorithms on the National Gallery, Victoria and Albert Museum and
C2RMF databases respectively.

The most important observation from the experiments is that both algorithms work
well with all three museum databases. Even for the C2RMF database, both algorithms
manage to retrieve visually similar texture although its performance is not as good as
for the other two databases. This is because the smudgy nature of images within the
database brings a high level of confusion. The other two databases on the other hand
show a much better retrieval result. Even for a database size of 16000 images for the
Victoria and Albert Museum database, both query by texture algorithms manage to
retrieve similar textures to the query. Both algorithms can be said to be applicable in
the content-based image retrieval system.

The next observation is to compare the performance between the multiscale-based ap-
proach and the segmentation-based approach. From the experiments, it was observed
that the multiscale-based approach gives better performance than the segmentation-
based approach. One example can be seen from Figure 7.1. In this particular example,
the multiscale-based approach manages to retrieve two images which have exactly the
same texture as the query (images ranked first and third) while the segmentation-based
approach can only manage to retrieve one of them. This is probably caused by a default
in the segmentation process or the lack of multiscale property within the segmentation-
based approach. It was also observed that the patches retrieved by the multiscale-based
approach are also much more similar to the query. The segmentation-based approach

Chapter 7 Content-Based Image Retrieval of Museum Images 161

Figure 7.4: Retrieval example of National Gallery database (top) query image, (mid-
dle) result using multiscale-based approach, (bottom) result using segmentation-based

approach

however has a much faster retrieval speed. This is because the number of feature vec-
tors of the segmentation-based algorithm for a particular image is much lower than the
multiscale-based algorithm. Overall, the advantages and disadvantages of both algo-
rithms can be summarized as follows.

The multiscale-based approach has the advantage of much better accuracy at the expense
of computational load. The multiscale nature of this approach also adds to its advantages
as it has been proved to be useful in capturing both coarse and fine textures. The

Chapter 7 Content-Based Image Retrieval of Museum Images 162

Figure 7.5: Retrieval example of Victoria and Albert Museum database (top)
query image, (middle) result using multiscale-based approach, (bottom) result using

segmentation-based approach

algorithm however can suffer from some odd retrieval result. For example when two
textures are captured by a sub-image, the resulting feature vector might be similar to
a feature vector of a completely different query texture, and hence will be retrieved as
one of the top matches. However this is only a minor problem as it does not affect the
overall performance of the algorithm. An improvement to the multiscale-based approach
will mainly be on reducing the computational load. One of the possibilities is to use
the case 1 overlapping for sub-image coverage instead of case 2 overlapping (see section
5.3.1), although the accuracy might drop quite drastically as well. Another possibility
is to introduce the texture identifier like the one used for the segmentation process to

Chapter 7 Content-Based Image Retrieval of Museum Images 163

Figure 7.6: Retrieval example of C2RMF database (top) query image, (middle) result
using multiscale-based approach, (bottom) result using segmentation-based approach

decide whether a particular sub-image is textured or not. The feature vectors are then
created only for the textured patches, hence reducing the total number of feature vectors
greatly. Finally a suitable multidimensional indexing algorithm can also be associated
to help speed up the matching process.

The segmentation-based algorithm has the advantage of retrieval speed, although the
accuracy is not as good as the multiscale-based approach. The computational load for
the feature extraction process is also lower than that of the multiscale-based approach.
Although this approach lacks the multiscale property, it can on the other hand provide
the shape of the segmented objects. This might be useful for later purposes such as
object identification or shape-from-texture processes. On the downside, this approach
can suffer from a default in segmentation process, where either a texture is classified as
insignificant or a texture is classified together with another texture. An improvement

Chapter 7 Content-Based Image Retrieval of Museum Images 164

to the algorithm means improving the texture segmenter itself to make it more accurate
and reliable. If the multiscale property is desired, then a way for integrating it to the
segmentation-based algorithm can be investigated.

Finally the choice between the multiscale-based and the segmentation-based approaches
depends on application. If the user is willing to compensate a longer time for a better
accuracy, then the multiscale-based approach will be suitable. However if the user wants
a quick retrieval response and is willing to tolerate a slightly riskier outcome, then the
segmentation-based approach will be more suitable. An algorithm which combines the
advantages of the multiscale-approach with the advantages of the segmentation-based
approach therefore needs to be explored.

7.3 Integration into the Artiste and Sculpteur Projects

Artiste (An Integrated Art Analysis and Navigation Environments) (146) is a European
Commission supported project that has developed integrated content and metadata-
based image retrieval across several major art galleries in Europe. Collaborating galleries
include the four museums/galleries mentioned in the previous section. The Artiste
system currently holds over 160,000 images from the separate collections owned by the
mentioned partners. Artiste projects ran from the start of 2000 until the end of 2002.
Over the three year period, Artiste has developed an image search and retrieval system
that integrates distributed, heterogeneous image collections, providing a single interface
to the art and its metadata.

The Artiste project addresses several problems which among others include:

• P1: Matching of similar images,

• P2: Search based on concept of style,

• P3: Search based on features oriented to restoration framework,

• P4: Access information quickly and easily,

• P5: Search based on colour,

• P6: Query by low quality images,

• P7: Query by sketch,

• P8: Joint retrieval by content and text,

• P9: Detail finding.

Chapter 7 Content-Based Image Retrieval of Museum Images 165

At the conclusion of the project in 2002, two out of the three proposed algorithms in
this thesis has been successfully incorporated into the system. The query by low-quality
image (P6) provides one of the main attributes of the system where, as mentioned
before, the problem is quite important for the museums to address. The multiscale-
based query by texture (P1 and P9) is the other algorithm successfully implemented
within the system, albeit an earlier prototype algorithm, which uses the pyramidal
wavelet transform instead of the discrete wavelet frames decomposition. The sub-image
coverage is also not as detailed as the ones proposed in chapter 5. Nonetheless the
successful integration of the query by low-quality image and the multiscale-based query
by texture proves that both algorithms are suitable for an open interactive image retrieval
of museum collections application.

The Artiste system also supports grid-based matching, which will be particularly useful
in retrieving textures. As been mentioned before, a query image should not necessarily
be a whole texture image. It could be an image of regular paintings or scenery, and
only a certain part of the image contains the texture that we want to perform similarity
retrieval. Using grid-based matching, the image is divided into equally sized regions, and
the interface allows selection and deselection of elements of the grid within the image.
A selected element implies that it is a pertinent area containing features which are to
be searched for. Figure 7.7 illustrates this process.

Figure 7.7: Grid-based matching, where the regions to be searched for is selected

Compared to the other CBIR systems such as the QBIC, Virage, Photobook etc as
mentioned in section 2.1.2, the major difference between those systems and the value
of Artiste is that Artiste is specifically produced for the purposes of the museums and
galleries, and therefore has some functionalities which other systems do not provide.
Artiste has some things in common with these other systems. For example, all the
systems, including Artiste, have the ability to search for images based on their colour
distribution, and many of them also have some whole image texture measure. Artiste
on the downside lacks the shape-based querying of QBIC, Virage, RetrievalWare and

Chapter 7 Content-Based Image Retrieval of Museum Images 166

Photobook, but is the only one of the systems that allows the matching of queries for
sub-images (with the multiscale-based approach) and is the only system to facilitate
dynamic links and navigations.

Sculpteur (Semantic and Content-based Multimedia Exploitation for European Benefit)
(147) is a continuation project to Artiste. It is a three-year European project that
started in May 2002 and is co-funded by the European Community. In addition to the
four museums collaborating in the Artiste project is the Museum of Cherbourg in France.
The Sculpteur project will further develop and improve the Artiste system, including
the concept and content-based retrieval application, while developing the technology
and expertise to help create, manage and present cultural archives of 3D models and
associated multimedia objects.

The texture algorithms from Artiste are being imported to Sculpteur and it is likely
that with some further development they will also be used for 3D object retrieval via
the texture maps of these objects. Finally, as part of the work, Sculpteur also exploits an
exciting new development in web technology, the semantic web, and develops e-Learning
systems able to use the semantic knowledge created during the project.

Chapter 8

Conclusion and Future Work

This research has been concerned with the development of algorithms to tackle some
of the problems faced in the content-based image retrieval of museum image collec-
tions, namely query by low-quality image and query by texture. A new methodology
for retrieving images based on low-quality queries is proposed and developed, while two
new methodologies are also proposed, developed and compared to solve the problem of
texture retrieval for museum collections.

Image retrieval based on low-quality query is a very challenging task and poses some
crucial problem for the museum curator in the form of fax images. There are not many
published works on this type of problem available in the literature which makes it an
even more challenging field. The research began by tackling the underlying properties of
the fax images and how several modifications on the available query by image example
could improve the retrieval performance. Query by texture on the other hand is quite a
well documented research area. The problem however is how to capture the property of
local texture instead of the global ones. Two approaches namely the multiscale-based
approach and the segmentation-based approach are proposed and evaluated for use in
the vast museum collections.

This chapter presents the main innovations of this research by summarizing the three
proposed techniques presented in chapter 3, 4, 5 and 6, as well as the performance
observation on an interactive content-based image retrieval application in chapter 7.

8.1 Conclusion

The overall aim of this research was to address the problems of query by low-quality image
and query by texture, which was a requirement for the Artiste project. The work on the
query by low-quality image began with identifying the binary nature of the main source
of low-quality images for the museums, the fax images. It was found that the almost

167

Chapter 8 Conclusion and Future Work 168

black and white fax images lost most of their information at the receiving end of the fax
machine; hence a standard query by image example search will be inadequate to retrieve
correct target images. A novel query by low-quality image technique which uses a binary
matching algorithm together with the pyramidal wavelet transform is proposed. For each
image, the algorithm creates a certain number of binaries by adjusting the threshold for
binarisation, and the pyramidal wavelet transform is used to extract features from the
binaries. During matching, the percentage of black pixels within the binary version of the
query is computed and its feature vector is compared with only one of the many feature
vectors associated with each database image, namely the feature vector corresponding
to the binary image that has the closest percentage of black pixels to the query binary.

A simple but highly time consuming technique which is called the pixel matching tech-
nique was also proposed and developed, to be used as a yardstick for the evaluation of
the proposed QBLI algorithm. The pixel matching technique gave very good retrieval
accuracy, while the proposed QBLI algorithm gave a comparable performance. This
implies that the QBLI algorithm is almost as good as the pixel matching algorithm, but
has the advantage of being much faster computationally, making it more suitable for
interactive use. It was also found that the proposed binarisation stage of the algorithm
and the pyramidal wavelet transform is very important as they are the main factors
in improving the accuracy and keeping a minimal computational load respectively. Fi-
nally the proposed algorithm lends itself quite well to solving query by other low-quality
image types. Experiments showed that good results are obtained in solving images of
inappropriate brightness and contrast, highly compressed images, low-resolution images,
quantized images and noisy images.

The query by texture research began by identifying the best texture feature extraction
techniques to be used in extracting local texture features. It was found that the best
overall technique is the discrete wavelet frames decomposition. The best parameters to
be associated with the discrete wavelet frames were also identified in order to further
improve the retrieval accuracy of the technique. Now that the local texture feature
extraction is identified, two approaches for query by texture, the multiscale-based and the
segmentation-based approach were proposed and evaluated. The two approaches were
considered because it is also interesting to observe whether actual texture segmentation is
really needed in order to perform query by texture, or whether the block-based approach
is just as good.

The multiscale-based approach offers a better localisation compared to other block-based
technique because it has the multiscale property which can reduce the scale-dependence
of the discrete wavelet frames texture features. Some modifications are proposed for the
multiscale algorithm in order to make it suitable for texture retrieval. The modifications
include the scaling factor for different scales, as well as the positioning of the blocks
within the entire image of interest. The multiscale-based approach was evaluated on
several databases with known ground truth in order to observe the coverage of its sub-

Chapter 8 Conclusion and Future Work 169

images and the effect of different query sizes and scales to the algorithm. It was observed
that the approach is very suitable for texture retrieval of museum collections.

For the segmentation-based approach, a new framework for automatic texture segmenta-
tion based on modified discrete wavelet frames and the mean shift algorithm is developed.
The texture segmenter consists of a top-down decomposition phase and a bottom-up seg-
mentation phase. Top-down decomposition works by first performing a discrete wavelet
frames decomposition on the image to be segmented, followed by some feature averaging
to reduce the amount of data to be clustered. In the bottom-up segmentation, the mean
shift algorithm is used to detect the number of segments at each level, and the fuzzy
c-means clustering is used to assign each pixel to the desired segments. The process
continues until the root level is reached and the final segmentation is obtained.

By modifying the discrete wavelet frames, much better clustering is obtained on a re-
duced set of data, making possible the use of the mean shift algorithm to detect the
correct number of clusters, and substantially reduces the processing time. The mean
shift also provides the position of the cluster centres which effectively solves the prob-
lem of initializing the membership function in the fuzzy c-means algorithm, and hence
reducing the fuzzy iterations. It was observed that the proposed segmentation method
can detect the correct number of clusters as well as segmenting the image correctly in
composite textures, synthetic textures, real scene images and museum images. The tex-
ture segmentation was then extended to be a texture identifier in order to use it in an
image retrieval system, where only textured regions are processed for feature extraction.
It was observed that the segmentation-based retrieval system performs well in retriev-
ing similar texture from a museum database, hence it provides an alternative to the
multiscale-based texture retrieval.

All three algorithms were then evaluated on several different museum databases with
much larger sizes. For the query by low-quality image, the algorithm works well even
for a database size of 16,000 images, which further proves the reliability of the proposed
technique. The same was observed for the query by texture algorithms, where promising
performance was recorded. It was also observed that the multiscale-based approach is
better than the segmentation-based algorithm in terms of retrieval accuracy although
it comes with a much slower retrieval speed. The choice of which algorithm is more
suitable thus depends on the preference of the user. Finally the query by low-quality
image and the multiscale-based query by texture have been successfully integrated with
the Artiste and Sculpteur image retrieval system.

8.2 Future Work

The three algorithms presented in this thesis successfully demonstrated innovation and
novelty. The results that have been obtained are highly promising and have reasonably

Chapter 8 Conclusion and Future Work 170

demonstrated a proof of concept. However there is substantial scope for further research
and development to the system.

For the query by low-quality image, as mentioned in chapter 3, a problem might occur
if the object to background ratio of the image differs significantly from the target im-
ages. In this case, a special pre-processing algorithm to detect plain background can be
developed so that all images will have their default object to background ratio, hence
providing the solution. A suitable indexing method can also be introduced in order to
improve the retrieval speed when the database size increases by several factors.

The improvement on the multiscale-based query by texture should mainly be on in-
troducing a suitable multidimensional indexing technique to assist the high volume of
feature vectors the algorithm produces. The Artiste image retrieval system, which also
does not incorporate any multidimensional indexing technique, will most probably be
very slow when using the final prototype of the multiscale-based approach because of
the high volume of images in the database as well as the very high resolution for each
image. An introduction of a texture verifier for each sub-image and a suitable indexing
algorithm will help improve the speed.

Future works on the segmentation-based query by texture can be in improving the seg-
mentation accuracy as this will reduce the possibility of pixels from another segment
affecting the outcome of the feature vector, as well as reducing the possibility of wrongly
segmented regions. Moreover it can also provide a better shape for use in extracting
shape features for further process, if needed. If the multiscale property is desired, then
a way for integrating the property to the segmentation-based algorithm can be investi-
gated.

Finally all of the proposed algorithms in this thesis could be extended to provide semantic
content-based image retrieval. Working towards a semantics-based content-based image
retrieval engine is a very enticing goal. If the semantic gap was bridged effectively enough
to allow such a retrieval system, the way we search for images could change dramatically.
This is what the Sculpteur project is trying to achieve, and is very worthwhile to look
at.

Appendix A

Comparison of Texture Features

Performance

171

Appendix A Comparison of Texture Features Performance 172

Pyramidal Wavelet Transform

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 95 100 100 D057 96.67 100 100
D002 44.17 54.17 58.75 D058 15.83 25 31.67
D003 44.17 59.58 72.92 D059 20 29.17 36.25
D004 68.75 84.58 92.5 D060 34.17 46.67 54.58
D005 67.5 83.33 91.67 D061 47.08 58.75 67.08
D006 99.58 100 100 D062 65.83 81.25 86.25
D007 35 45 51.67 D063 42.5 55.42 62.92
D008 94.17 100 100 D064 94.17 99.58 100
D009 48.75 70.42 77.92 D065 99.58 100 100
D010 61.25 70 74.58 D066 71.25 85.42 91.67
D011 90 97.08 98.75 D067 47.08 56.67 65
D012 75 78.33 80.83 D068 100 100 100
D013 29.58 46.67 55.42 D069 34.58 41.67 47.08
D014 100 100 100 D070 59.58 74.17 88.33
D015 56.67 61.67 65.42 D071 68.33 89.58 97.08
D016 100 100 100 D072 72.92 80.83 85.83
D017 100 100 100 D073 35 49.17 58.33
D018 86.25 96.25 97.5 D074 74.58 89.58 95
D019 82.5 90.42 96.67 D075 88.75 97.92 99.17
D020 100 100 100 D076 99.17 99.58 100
D021 99.58 99.58 100 D077 100 100 100
D022 47.5 57.08 61.67 D078 87.08 95 96.67
D023 40.42 67.08 77.08 D079 100 100 100
D024 98.33 100 100 D080 77.92 99.17 100
D025 49.58 65 72.5 D081 87.08 98.75 99.58
D026 88.33 100 100 D082 95.42 100 100
D027 46.67 72.92 85.42 D083 90 99.58 100
D028 56.67 71.25 80.83 D084 98.75 99.58 100
D029 93.75 100 100 D085 60.83 72.92 78.75
D030 32.5 59.58 73.75 D086 55.42 74.17 85
D031 53.33 67.5 72.5 D087 94.17 100 100
D032 94.17 98.33 99.58 D088 43.75 69.17 81.25
D033 83.33 90.42 95.42 D089 27.92 42.92 55
D034 98.33 100 100 D090 27.5 35.83 41.25
D035 64.17 80.83 90 D091 39.17 55.42 63.75
D036 64.17 86.25 89.17 D092 75.42 99.58 100
D037 70 80.83 87.08 D093 54.58 68.75 76.67
D038 50.83 55.83 57.92 D094 91.25 100 100
D039 42.92 49.58 59.58 D095 59.17 69.17 77.08
D040 34.17 44.58 50.83 D096 55.42 68.75 76.25
D041 76.67 92.08 95.83 D097 22.08 34.58 46.25
D042 26.25 28.75 34.17 D098 77.08 97.5 99.58
D043 9.17 11.25 14.17 D099 42.92 70.42 90
D044 6.67 8.75 9.58 D100 36.25 50.83 60.42
D045 7.08 9.17 10.42 D101 67.92 90.42 95.83
D046 81.67 91.67 95 D102 53.33 83.75 93.75
D047 100 100 100 D103 70 98.75 100
D048 99.58 100 100 D104 81.67 100 100
D049 100 100 100 D105 47.08 93.75 100
D050 72.5 92.92 96.25 D106 47.08 98.33 100
D051 96.67 100 100 D107 49.17 67.5 78.75
D052 54.58 56.25 57.92 D108 13.75 20.42 24.58
D053 100 100 100 D109 35 52.5 63.75
D054 35 41.25 45.83 D110 38.75 66.25 82.08
D055 100 100 100 D111 66.67 85.83 90.42
D056 96.67 100 100 D112 46.67 56.25 62.5

Appendix A Comparison of Texture Features Performance 173

Tree-Structured Wavelet Transform

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 90 98.75 100 D057 98.33 100 100
D002 50 59.17 61.25 D058 21.67 27.5 35
D003 65.83 78.33 85.83 D059 25.42 35.42 42.92
D004 73.33 90.83 95.42 D060 41.67 60 69.17
D005 48.75 58.33 66.67 D061 48.75 62.5 69.58
D006 100 100 100 D062 66.67 74.58 78.75
D007 32.92 39.58 44.58 D063 49.58 64.17 70.42
D008 92.08 99.17 99.58 D064 93.75 98.33 100
D009 42.08 65.42 83.75 D065 100 100 100
D010 66.25 75 81.67 D066 60.42 77.08 87.5
D011 91.25 96.67 97.5 D067 52.08 65.83 70.83
D012 69.58 73.75 78.75 D068 100 100 100
D013 25.42 37.5 43.33 D069 48.75 64.17 66.67
D014 100 100 100 D070 68.75 86.25 97.5
D015 54.58 60.83 65 D071 80.42 96.25 98.33
D016 100 100 100 D072 54.58 68.33 77.08
D017 100 100 100 D073 27.92 37.5 45.83
D018 93.75 98.33 99.58 D074 67.5 80 87.08
D019 78.75 90 95.42 D075 84.17 96.25 99.17
D020 100 100 100 D076 96.25 100 100
D021 100 100 100 D077 100 100 100
D022 54.58 60.83 63.75 D078 95.83 99.17 99.58
D023 41.25 60.42 72.92 D079 100 100 100
D024 92.08 98.75 100 D080 88.33 100 100
D025 63.75 75.83 82.92 D081 90.42 98.75 99.17
D026 92.92 99.17 100 D082 100 100 100
D027 51.25 77.5 88.33 D083 99.58 100 100
D028 56.67 72.92 81.67 D084 97.08 99.58 100
D029 93.33 100 100 D085 86.25 91.67 94.58
D030 42.92 62.92 75.42 D086 64.17 80.83 86.67
D031 42.08 56.25 61.67 D087 87.92 97.92 99.17
D032 82.92 92.5 97.92 D088 39.58 60.83 70.42
D033 86.67 93.33 96.67 D089 27.92 43.33 55.42
D034 93.33 100 100 D090 31.25 38.33 42.92
D035 57.08 76.25 84.17 D091 51.25 67.92 77.5
D036 47.5 59.58 67.08 D092 75.42 93.33 97.08
D037 74.17 84.58 89.17 D093 43.75 53.33 56.67
D038 41.67 47.5 52.5 D094 92.08 99.17 100
D039 42.08 49.17 55.42 D095 81.25 93.75 97.08
D040 40 47.5 52.5 D096 64.17 73.33 77.08
D041 76.25 89.58 93.33 D097 29.58 47.08 58.33
D042 31.25 35.83 39.58 D098 67.92 90.42 98.33
D043 8.33 10.83 12.08 D099 40.42 69.17 90
D044 9.17 10.83 13.75 D100 23.33 31.67 41.25
D045 4.17 5.42 7.5 D101 68.75 89.17 93.75
D046 62.92 76.67 84.58 D102 57.08 77.92 91.25
D047 100 100 100 D103 66.67 98.33 100
D048 100 100 100 D104 69.58 99.17 100
D049 100 100 100 D105 55.42 99.17 100
D050 87.5 94.58 97.92 D106 40.42 91.67 99.58
D051 92.92 98.75 100 D107 50.42 64.58 72.92
D052 56.67 57.92 58.75 D108 13.33 16.67 22.5
D053 100 100 100 D109 32.5 52.08 66.25
D054 30 30.42 30.83 D110 30 62.92 84.58
D055 100 100 100 D111 50.83 68.33 75.42
D056 100 100 100 D112 48.33 53.75 58.75

Appendix A Comparison of Texture Features Performance 174

Discrete Wavelet Frames

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 94.58 100 100 D057 98.75 100 100
D002 46.25 54.58 59.17 D058 17.92 27.08 32.5
D003 47.08 63.33 75.42 D059 20.42 29.58 38.33
D004 69.17 85 90.83 D060 35.42 45 53.75
D005 67.92 83.33 91.67 D061 46.67 59.17 68.75
D006 100 100 100 D062 66.25 80.42 86.67
D007 35.83 46.67 52.92 D063 42.5 52.92 62.08
D008 94.17 100 100 D064 95.42 99.58 100
D009 48.75 69.17 77.92 D065 100 100 100
D010 62.5 71.25 76.25 D066 73.33 85.42 90.42
D011 93.75 99.17 99.17 D067 47.08 56.67 64.17
D012 75.83 79.17 81.25 D068 100 100 100
D013 29.58 44.17 52.92 D069 33.33 41.25 45.42
D014 100 100 100 D070 59.17 73.75 89.58
D015 56.67 62.92 65 D071 69.17 89.58 97.08
D016 100 100 100 D072 74.17 80.42 85
D017 100 100 100 D073 36.25 49.17 59.17
D018 86.67 98.75 100 D074 73.75 87.92 93.33
D019 80 87.92 95.83 D075 89.17 98.75 99.17
D020 100 100 100 D076 98.75 100 100
D021 100 100 100 D077 100 100 100
D022 48.33 58.33 61.67 D078 89.58 95 96.67
D023 44.17 67.5 81.67 D079 100 100 100
D024 98.75 100 100 D080 76.67 99.58 100
D025 47.5 64.58 73.33 D081 86.67 98.33 99.58
D026 98.33 100 100 D082 95.42 100 100
D027 49.17 73.75 84.17 D083 93.75 100 100
D028 62.5 74.17 80.83 D084 98.75 100 100
D029 93.33 100 100 D085 61.25 70.83 77.08
D030 35.42 60.42 73.33 D086 58.33 74.58 86.25
D031 52.5 67.92 73.75 D087 92.92 100 100
D032 94.58 99.17 100 D088 42.5 69.58 82.5
D033 82.92 90.42 96.67 D089 27.92 43.33 53.75
D034 97.92 100 100 D090 27.08 35.42 40
D035 68.75 84.17 90.42 D091 41.25 56.25 62.92
D036 63.33 83.33 89.17 D092 78.75 99.58 100
D037 73.75 83.33 89.17 D093 57.08 71.67 81.25
D038 52.08 57.08 58.33 D094 97.92 100 100
D039 42.92 50 60 D095 60.83 70.42 76.25
D040 32.92 45 51.25 D096 56.67 68.33 75
D041 78.33 92.92 97.5 D097 21.67 36.25 46.67
D042 24.58 30 33.33 D098 74.58 97.92 99.58
D043 9.17 11.25 14.58 D099 41.25 75.83 91.67
D044 6.67 8.33 10 D100 39.17 51.67 62.08
D045 7.08 9.58 10.83 D101 76.25 95.42 100
D046 79.58 90.42 94.17 D102 80 99.17 100
D047 100 100 100 D103 74.58 99.17 100
D048 99.17 100 100 D104 81.25 100 100
D049 100 100 100 D105 47.08 94.58 100
D050 74.17 93.75 96.67 D106 45.83 98.33 100
D051 97.5 100 100 D107 50 70.42 79.17
D052 52.92 56.25 57.5 D108 12.08 21.67 25.83
D053 100 100 100 D109 32.92 51.67 63.75
D054 35.42 40.83 43.33 D110 40.83 67.08 81.25
D055 100 100 100 D111 67.5 86.67 90.83
D056 98.33 100 100 D112 44.58 55 62.92

Appendix A Comparison of Texture Features Performance 175

Gabor Transform with 6 Orientations and 3 Scales

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 94.58 99.17 99.58 D057 100 100 100
D002 52.92 58.33 60.83 D058 14.58 26.25 32.5
D003 91.67 98.75 99.58 D059 10.83 16.67 22.08
D004 99.58 100 100 D060 33.75 47.08 53.75
D005 74.58 88.33 92.92 D061 28.33 43.33 53.33
D006 100 100 100 D062 32.5 45.42 56.67
D007 40 50 57.5 D063 27.08 37.08 45
D008 94.17 100 100 D064 95 100 100
D009 66.67 85.42 93.75 D065 100 100 100
D010 69.17 77.5 83.33 D066 57.08 70.42 79.58
D011 100 100 100 D067 54.17 60.42 64.17
D012 78.33 83.33 86.25 D068 100 100 100
D013 51.67 62.08 69.58 D069 29.58 36.67 40.83
D014 100 100 100 D070 53.75 62.92 69.17
D015 56.67 62.92 67.92 D071 47.92 69.58 83.33
D016 100 100 100 D072 63.33 77.5 85.83
D017 100 100 100 D073 43.75 60.83 70.42
D018 95 99.17 100 D074 84.17 97.5 99.17
D019 80 90.83 95 D075 84.58 93.75 95.42
D020 100 100 100 D076 96.25 100 100
D021 100 100 100 D077 100 100 100
D022 46.25 58.75 66.67 D078 99.17 100 100
D023 30.83 48.33 61.25 D079 100 100 100
D024 93.75 98.33 98.33 D080 99.58 100 100
D025 49.17 62.5 70.83 D081 97.92 100 100
D026 98.33 99.58 100 D082 93.75 100 100
D027 39.58 56.25 65 D083 98.33 100 100
D028 63.33 75.83 80.42 D084 99.17 100 100
D029 96.25 100 100 D085 72.5 86.67 89.58
D030 27.08 39.58 46.25 D086 82.5 91.67 95.42
D031 42.92 60.42 70 D087 89.17 100 100
D032 99.58 100 100 D088 25.83 43.75 51.67
D033 87.08 96.25 97.5 D089 17.5 29.17 35.42
D034 99.58 100 100 D090 16.67 23.33 28.33
D035 60.42 70 75.42 D091 14.17 19.58 25.83
D036 54.58 75.42 84.58 D092 93.33 99.17 100
D037 91.25 99.17 100 D093 77.92 85.83 88.75
D038 54.58 64.17 72.5 D094 97.92 100 100
D039 41.25 52.08 59.58 D095 58.33 65.42 72.08
D040 27.92 39.58 47.92 D096 47.92 55.83 63.75
D041 65.83 83.33 91.67 D097 18.33 25.42 32.5
D042 21.67 28.75 32.5 D098 62.5 85.42 95.83
D043 12.92 15.42 16.67 D099 27.5 49.17 62.5
D044 7.08 10 10.83 D100 44.58 58.75 70
D045 2.08 4.17 4.58 D101 86.67 99.17 100
D046 97.08 100 100 D102 81.67 100 100
D047 96.25 98.33 99.58 D103 63.75 98.33 100
D048 64.17 78.75 83.33 D104 63.33 100 100
D049 100 100 100 D105 55.83 96.67 100
D050 68.75 84.58 87.92 D106 47.08 91.67 100
D051 99.17 100 100 D107 47.08 66.25 76.67
D052 63.33 66.25 72.08 D108 12.08 19.17 22.92
D053 100 100 100 D109 32.08 52.5 67.92
D054 39.17 51.25 58.75 D110 41.67 69.58 82.5
D055 100 100 100 D111 55 69.58 77.92
D056 99.58 100 100 D112 42.08 52.08 56.25

Appendix A Comparison of Texture Features Performance 176

Gabor Transform with 6 Orientations and 4 Scales

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 97.92 100 100 D057 100 100 100
D002 57.08 59.58 62.08 D058 20 34.17 43.33
D003 93.75 98.75 99.58 D059 20.83 32.92 40.42
D004 100 100 100 D060 40.42 55.42 65
D005 81.25 95.83 98.75 D061 36.25 50 67.08
D006 100 100 100 D062 48.33 65.42 76.67
D007 41.67 52.08 59.17 D063 37.92 49.17 59.58
D008 96.25 99.17 100 D064 94.17 100 100
D009 62.08 80.42 91.67 D065 100 100 100
D010 69.58 79.17 83.33 D066 54.17 73.33 80
D011 100 100 100 D067 53.75 63.33 69.17
D012 81.67 86.67 87.92 D068 100 100 100
D013 49.58 63.33 69.58 D069 34.17 42.92 47.92
D014 100 100 100 D070 63.33 83.33 90.83
D015 57.5 64.58 66.67 D071 55 82.92 93.75
D016 100 100 100 D072 54.17 68.33 74.58
D017 100 100 100 D073 42.08 60 68.75
D018 99.17 100 100 D074 86.25 97.92 99.58
D019 82.92 93.33 97.5 D075 95.42 100 100
D020 100 100 100 D076 98.33 100 100
D021 100 100 100 D077 100 100 100
D022 50.42 71.25 78.33 D078 100 100 100
D023 55.83 77.08 83.33 D079 100 100 100
D024 90 97.08 98.33 D080 100 100 100
D025 68.33 80.42 90 D081 98.75 100 100
D026 100 100 100 D082 100 100 100
D027 52.5 72.5 81.25 D083 100 100 100
D028 69.58 82.5 88.75 D084 100 100 100
D029 97.5 100 100 D085 89.58 95.42 97.92
D030 45.42 62.92 70.42 D086 88.33 97.5 99.58
D031 31.67 49.17 62.08 D087 90 100 100
D032 99.58 100 100 D088 26.25 45.83 62.08
D033 86.25 93.33 97.08 D089 25.42 40.83 52.5
D034 100 100 100 D090 26.67 32.08 39.17
D035 59.58 66.25 73.75 D091 43.75 53.75 60.83
D036 50.42 71.67 77.5 D092 89.17 98.75 100
D037 89.58 96.25 98.33 D093 81.67 90 93.33
D038 57.08 67.92 73.33 D094 98.75 100 100
D039 47.92 58.75 66.25 D095 68.75 78.75 85.83
D040 29.17 42.08 54.17 D096 61.25 72.08 78.75
D041 65.83 84.17 89.58 D097 19.58 30 35.42
D042 23.33 29.17 33.75 D098 60.83 87.92 98.75
D043 9.58 13.75 17.08 D099 31.25 60.42 80.83
D044 10.83 12.5 15.83 D100 41.25 56.67 68.75
D045 5.42 5.83 7.92 D101 82.08 99.58 100
D046 96.25 100 100 D102 73.33 98.75 100
D047 98.33 100 100 D103 62.5 97.08 100
D048 86.25 90 100 D104 60.42 99.58 100
D049 100 100 100 D105 57.5 98.75 100
D050 83.75 95.42 97.08 D106 45.83 91.25 100
D051 91.67 99.17 100 D107 43.75 60.42 72.92
D052 74.17 77.92 82.5 D108 17.5 22.5 27.5
D053 100 100 100 D109 32.92 54.17 70
D054 37.5 47.5 53.75 D110 43.33 72.5 84.58
D055 100 100 100 D111 60.42 76.25 85.83
D056 100 100 100 D112 44.58 58.75 63.75

Appendix A Comparison of Texture Features Performance 177

Discrete Cosine Transform

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 95.83 99.58 100 D057 79.58 92.08 96.25
D002 32.08 42.08 47.08 D058 23.33 29.17 32.08
D003 38.75 55.42 67.08 D059 20.42 34.17 42.08
D004 45.42 69.58 87.08 D060 29.58 42.92 51.25
D005 31.67 42.08 49.17 D061 31.25 43.33 49.17
D006 90 99.17 99.58 D062 45.83 56.67 65
D007 16.67 21.25 24.58 D063 25 38.33 44.58
D008 80.42 91.67 93.75 D064 96.67 99.17 99.17
D009 41.67 70 92.92 D065 98.75 100 100
D010 37.92 51.25 61.25 D066 44.58 60 71.67
D011 67.92 82.5 89.58 D067 29.17 36.67 45
D012 54.17 57.08 62.5 D068 96.25 100 100
D013 9.58 17.5 24.17 D069 36.25 50 55.83
D014 100 100 100 D070 61.25 75.42 86.25
D015 46.25 55.83 60 D071 72.08 86.25 91.67
D016 100 100 100 D072 43.33 59.58 66.25
D017 91.25 99.17 99.58 D073 19.58 30.42 33.75
D018 59.17 77.92 85 D074 34.58 45.83 55.83
D019 51.25 62.92 72.92 D075 49.17 69.17 79.58
D020 100 100 100 D076 75 90.83 96.25
D021 100 100 100 D077 51.25 72.5 81.25
D022 25.42 31.67 34.17 D078 67.5 75 81.25
D023 27.92 45.42 55 D079 92.5 97.92 99.58
D024 89.17 96.67 98.33 D080 70.42 90.83 94.58
D025 54.58 60.42 65.83 D081 72.08 85 91.67
D026 79.17 87.5 92.08 D082 88.33 100 100
D027 43.33 64.17 76.67 D083 65.42 75.83 79.17
D028 41.25 58.33 71.25 D084 79.58 89.17 95
D029 70 88.75 96.25 D085 55.83 64.17 67.5
D030 31.67 50 62.5 D086 50.42 66.25 74.58
D031 19.58 31.25 41.67 D087 70 86.67 92.5
D032 46.25 67.92 78.33 D088 23.33 39.58 54.58
D033 51.25 66.25 74.58 D089 17.92 30.83 43.75
D034 77.08 87.92 91.25 D090 22.5 27.5 32.5
D035 39.17 55.83 68.33 D091 55 67.92 77.92
D036 35 49.17 60.83 D092 50 71.67 82.08
D037 61.25 71.25 78.33 D093 39.58 45.83 49.58
D038 30 36.25 43.75 D094 81.25 93.33 96.67
D039 33.33 40.83 43.33 D095 64.17 71.67 81.25
D040 26.67 30.42 34.58 D096 44.58 55 62.5
D041 57.92 71.67 80.83 D097 17.08 30.42 36.25
D042 17.5 24.58 31.67 D098 47.08 70.83 86.25
D043 5.83 6.25 8.33 D099 37.92 58.33 74.58
D044 7.5 9.17 10.42 D100 14.58 18.75 25
D045 4.17 6.25 7.08 D101 49.58 65.42 77.08
D046 53.33 71.67 79.17 D102 70.42 90.83 97.08
D047 70 82.92 90.42 D103 69.17 98.75 100
D048 85 100 100 D104 75.42 99.17 100
D049 100 100 100 D105 53.75 96.67 99.17
D050 55.42 71.67 80 D106 41.25 94.58 100
D051 72.5 83.75 87.92 D107 14.58 30 42.08
D052 33.33 35.42 40.83 D108 8.33 13.75 17.08
D053 99.58 100 100 D109 23.33 40.42 51.67
D054 24.58 27.92 29.17 D110 36.67 57.92 70.83
D055 92.5 98.75 100 D111 39.58 50 57.5
D056 98.33 100 100 D112 25 32.08 39.17

Appendix A Comparison of Texture Features Performance 178

Law’s Texture Feature

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 97.08 100 100 D057 78.33 95 97.92
D002 43.33 52.5 58.33 D058 23.33 27.5 33.33
D003 74.17 87.92 91.67 D059 30.42 40 47.5
D004 74.58 87.92 93.33 D060 35.83 50.83 59.17
D005 36.25 44.17 50.42 D061 46.67 56.25 63.75
D006 100 100 100 D062 46.67 62.5 68.75
D007 18.75 25.42 27.5 D063 39.58 52.08 60.83
D008 87.92 93.75 98.33 D064 97.08 100 100
D009 51.25 80.42 97.08 D065 100 100 100
D010 52.08 66.25 72.5 D066 65.42 87.08 93.33
D011 77.92 90.42 95 D067 35 42.08 46.25
D012 55 57.92 65.83 D068 98.33 100 100
D013 14.58 22.08 31.25 D069 48.75 58.75 64.17
D014 100 100 100 D070 62.92 80.42 87.92
D015 54.58 61.25 65.42 D071 84.58 93.75 96.67
D016 100 100 100 D072 47.08 58.33 65.83
D017 96.67 100 100 D073 22.92 32.08 39.58
D018 76.67 88.33 92.5 D074 40.42 52.08 63.75
D019 64.17 79.58 84.17 D075 55 76.25 85.83
D020 100 100 100 D076 87.08 97.08 98.75
D021 100 100 100 D077 80.42 89.17 93.33
D022 33.75 39.17 42.5 D078 87.08 92.08 92.92
D023 37.92 52.08 63.75 D079 95.83 99.58 100
D024 92.5 97.5 99.17 D080 82.08 94.17 95.83
D025 70 83.33 88.75 D081 74.17 85.83 90.42
D026 88.75 92.5 94.58 D082 96.25 100 100
D027 49.17 75.83 85.83 D083 76.67 82.5 87.92
D028 57.5 71.67 82.08 D084 95.83 97.92 99.17
D029 80.42 97.08 100 D085 65.83 76.25 77.92
D030 31.25 48.33 62.92 D086 62.92 74.17 82.5
D031 22.92 37.08 45 D087 72.5 89.17 94.58
D032 58.33 84.17 93.33 D088 32.5 55.42 68.33
D033 67.92 85.83 92.92 D089 32.5 44.17 54.17
D034 91.67 97.08 98.33 D090 20.83 30 34.17
D035 42.92 59.17 70.42 D091 54.58 69.58 79.58
D036 45 62.92 70.83 D092 66.67 84.58 90
D037 69.58 81.25 86.67 D093 39.58 45.42 49.58
D038 33.75 43.33 46.67 D094 87.08 93.33 97.08
D039 42.08 45.83 48.75 D095 69.58 79.58 90.42
D040 35 39.17 42.92 D096 60.42 69.17 75.42
D041 66.67 84.17 90 D097 28.75 39.17 47.5
D042 27.5 37.08 39.58 D098 62.92 83.33 92.08
D043 7.92 10 12.5 D099 52.92 74.17 88.33
D044 10 13.75 15 D100 17.08 26.67 31.67
D045 7.08 10 13.33 D101 64.17 78.75 89.58
D046 56.67 77.5 87.08 D102 86.25 99.17 99.58
D047 96.67 100 100 D103 71.67 99.17 100
D048 82.92 100 100 D104 79.17 99.17 100
D049 100 100 100 D105 64.17 97.92 99.58
D050 64.17 79.17 83.33 D106 44.58 92.5 99.17
D051 73.33 87.92 91.25 D107 23.33 41.25 53.75
D052 42.08 48.33 52.08 D108 17.92 26.25 31.67
D053 100 100 100 D109 41.67 53.75 63.33
D054 26.67 29.17 30.83 D110 46.67 70.83 81.67
D055 99.58 100 100 D111 46.25 60 67.08
D056 100 100 100 D112 36.67 47.08 48.33

Appendix A Comparison of Texture Features Performance 179

Grey Level Co-occurrence Matrix

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 40 48.33 53.33 D057 52.92 73.75 83.75
D002 24.17 31.25 34.58 D058 15.83 20.83 22.92
D003 51.67 68.33 76.67 D059 7.92 10 14.17
D004 59.17 78.33 92.08 D060 15.83 25.42 33.75
D005 13.75 20 25.83 D061 15 28.75 35.42
D006 57.08 66.25 70.42 D062 17.5 22.92 29.17
D007 11.67 14.17 17.08 D063 13.75 18.75 23.75
D008 62.5 81.25 90.83 D064 66.25 77.08 80.42
D009 47.5 64.58 76.25 D065 90.42 98.75 99.17
D010 43.75 49.17 51.67 D066 41.67 51.67 55.83
D011 58.75 70.42 79.58 D067 39.17 56.67 68.75
D012 44.58 47.08 47.5 D068 73.33 87.92 92.5
D013 15 22.92 31.25 D069 41.25 56.67 63.33
D014 65 77.5 85 D070 43.33 47.92 50
D015 38.33 48.75 53.33 D071 62.92 83.75 91.25
D016 100 100 100 D072 41.25 50.83 57.08
D017 72.5 80.42 83.75 D073 19.58 30 36.67
D018 41.25 55.42 62.08 D074 47.92 70.42 80
D019 48.75 67.5 77.5 D075 31.25 37.08 44.58
D020 75.83 84.17 92.92 D076 71.25 82.92 89.17
D021 100 100 100 D077 79.17 90 92.08
D022 16.25 28.33 32.92 D078 36.67 42.5 46.25
D023 23.75 40.83 51.67 D079 77.5 91.25 94.58
D024 68.33 85 94.17 D080 33.33 51.25 60
D025 15 22.08 25.42 D081 31.67 46.25 54.17
D026 60.83 72.5 79.17 D082 61.25 83.75 92.5
D027 32.5 50.42 62.92 D083 41.25 47.5 57.08
D028 40 52.08 57.92 D084 35.42 46.67 60.83
D029 62.92 88.75 97.92 D085 31.25 38.75 45
D030 13.33 25 33.75 D086 47.08 58.33 66.25
D031 27.92 40.42 46.67 D087 50 67.5 77.08
D032 30.83 39.17 43.75 D088 14.58 22.5 27.08
D033 31.25 42.92 45 D089 12.92 20 23.75
D034 41.67 51.25 58.75 D090 11.25 14.58 15.83
D035 22.5 34.58 42.08 D091 10 17.5 21.67
D036 23.33 35.42 44.58 D092 64.58 81.25 90
D037 54.17 66.67 75.42 D093 25.42 32.92 36.67
D038 20.83 27.92 31.25 D094 73.75 87.08 92.08
D039 22.08 29.17 37.92 D095 35.83 44.58 51.25
D040 18.33 25 29.17 D096 31.25 45 50.83
D041 40.83 47.92 53.75 D097 22.08 35.83 44.17
D042 13.33 15.42 18.75 D098 50.83 67.92 81.25
D043 12.92 20.42 28.33 D099 26.25 39.58 50.42
D044 6.67 12.5 16.25 D100 16.25 24.58 32.5
D045 17.92 27.5 34.58 D101 62.08 77.08 88.33
D046 42.5 52.5 63.33 D102 72.92 82.08 88.75
D047 33.75 39.17 44.58 D103 92.08 99.58 100
D048 35.83 40.42 46.67 D104 92.92 99.58 100
D049 100 100 100 D105 68.75 89.58 92.5
D050 14.58 26.67 31.25 D106 87.08 99.58 99.58
D051 32.92 47.08 52.92 D107 41.25 55 62.5
D052 24.17 29.58 34.58 D108 26.67 36.25 40
D053 64.58 82.5 86.25 D109 38.33 51.67 59.58
D054 11.67 18.33 22.92 D110 62.92 75 84.58
D055 57.08 69.58 77.5 D111 26.25 37.08 47.5
D056 68.75 86.67 93.33 D112 14.58 19.17 23.33

Appendix A Comparison of Texture Features Performance 180

Multiresolution Simultaneous Autoregressive

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 100 100 100 D057 99.17 100 100
D002 74.58 85 89.58 D058 34.58 40.83 52.92
D003 83.33 92.5 95.42 D059 15 28.75 37.08
D004 99.58 100 100 D060 65.42 81.25 89.58
D005 70 88.33 93.33 D061 66.25 80 85
D006 82.92 96.67 96.67 D062 55 73.33 84.17
D007 49.17 64.58 76.67 D063 40.42 59.58 73.75
D008 95 98.75 99.17 D064 99.17 100 100
D009 82.08 99.17 100 D065 98.75 100 100
D010 61.67 80 87.08 D066 96.67 100 100
D011 99.58 100 100 D067 52.5 63.33 67.08
D012 69.17 80.42 88.75 D068 97.92 100 100
D013 35 48.75 56.25 D069 24.17 27.08 31.67
D014 97.92 100 100 D070 99.17 100 100
D015 35.83 42.5 45 D071 40 53.75 61.67
D016 100 100 100 D072 54.58 75 85
D017 100 100 100 D073 45.83 59.58 66.25
D018 80.83 95.83 97.92 D074 77.5 92.5 95
D019 95.42 100 100 D075 83.33 94.58 99.58
D020 100 100 100 D076 98.75 100 100
D021 100 100 100 D077 100 100 100
D022 36.25 47.92 53.33 D078 97.08 99.58 100
D023 50 73.75 85.83 D079 96.25 100 100
D024 95.42 100 100 D080 95.42 100 100
D025 90.42 97.5 98.33 D081 89.58 98.75 100
D026 99.17 100 100 D082 99.17 100 100
D027 58.75 76.25 87.5 D083 100 100 100
D028 79.58 97.92 100 D084 99.17 100 100
D029 97.92 100 100 D085 95.42 99.58 100
D030 43.75 59.58 72.92 D086 89.17 97.08 98.33
D031 21.25 35.42 47.08 D087 81.25 95.83 99.58
D032 97.92 100 100 D088 24.58 41.67 50.42
D033 89.58 100 100 D089 25 50.42 59.17
D034 98.75 100 100 D090 46.25 54.58 62.08
D035 51.67 75.83 89.17 D091 54.58 65.42 80
D036 28.33 39.17 48.75 D092 68.75 86.25 94.17
D037 90.42 100 100 D093 61.25 67.92 70.42
D038 29.58 45 55 D094 100 100 100
D039 50 56.25 63.33 D095 100 100 100
D040 62.92 77.08 82.92 D096 76.67 90.42 94.58
D041 70.83 80.42 84.58 D097 23.75 34.17 43.75
D042 32.92 42.5 50 D098 50.42 73.33 87.08
D043 8.75 10.42 12.08 D099 27.08 42.92 53.33
D044 11.67 13.75 15.83 D100 48.75 65.42 72.92
D045 9.58 12.08 16.25 D101 84.58 97.92 99.58
D046 61.67 70.83 75.42 D102 84.17 99.17 100
D047 78.33 93.33 95.83 D103 67.92 99.17 100
D048 93.33 100 100 D104 72.5 100 100
D049 100 100 100 D105 49.17 72.08 78.75
D050 84.17 96.25 99.17 D106 39.58 60.83 76.67
D051 56.67 75.42 87.92 D107 39.17 52.92 64.58
D052 62.5 70.42 74.17 D108 27.5 35.83 45.42
D053 100 100 100 D109 41.67 69.17 87.5
D054 45 52.92 57.5 D110 50.83 83.33 96.67
D055 100 100 100 D111 69.58 83.33 90
D056 99.58 100 100 D112 53.75 69.58 78.75

Appendix B

Retrieval Rate of Brodatz

Textures Using the Final DWF

181

Appendix B Retrieval Rate of Brodatz Textures Using the Final DWF 182

Texture ID Top matches considered Texture ID Top matches considered
Top 15 Top 30 Top 45 Top 15 Top 30 Top 45

D001 88.33 97.92 100 D057 99.17 100 100
D002 51.25 62.5 69.58 D058 24.17 38.33 46.67
D003 51.25 58.33 62.08 D059 32.92 42.08 47.5
D004 65 85.42 96.25 D060 60.83 79.17 86.67
D005 65.83 82.92 87.5 D061 75.42 92.92 96.67
D006 100 100 100 D062 76.67 91.25 94.17
D007 69.17 84.17 90 D063 54.58 72.92 80.42
D008 89.17 95 97.92 D064 98.75 99.58 100
D009 69.17 87.5 95.42 D065 99.58 100 100
D010 88.33 93.33 95.42 D066 86.67 95.83 97.92
D011 100 100 100 D067 60.42 67.5 70
D012 92.08 97.92 99.17 D068 100 100 100
D013 38.75 55.42 60.42 D069 35 42.08 47.08
D014 100 100 100 D070 65.83 90 97.08
D015 55.42 66.25 70 D071 72.08 89.17 95
D016 100 100 100 D072 85 90.42 92.5
D017 100 100 100 D073 45.83 57.92 64.17
D018 66.25 77.08 82.08 D074 96.25 100 100
D019 99.17 100 100 D075 99.58 100 100
D020 100 100 100 D076 100 100 100
D021 100 100 100 D077 100 100 100
D022 63.33 77.08 80 D078 97.5 98.33 99.17
D023 44.17 69.17 82.92 D079 91.67 96.25 97.92
D024 99.17 100 100 D080 73.75 99.58 100
D025 74.58 83.33 87.92 D081 88.33 99.17 100
D026 100 100 100 D082 100 100 100
D027 55.83 77.08 89.17 D083 100 100 100
D028 79.58 94.17 97.5 D084 100 100 100
D029 98.75 100 100 D085 97.5 99.58 100
D030 56.67 76.67 85.42 D086 63.33 72.92 79.17
D031 64.17 84.58 88.33 D087 93.33 100 100
D032 100 100 100 D088 57.92 80 90.83
D033 97.08 100 100 D089 47.92 67.08 78.75
D034 99.58 100 100 D090 51.25 57.5 59.58
D035 92.92 96.25 97.92 D091 45.83 57.5 69.17
D036 66.67 74.17 77.08 D092 95 100 100
D037 67.5 87.92 92.5 D093 75.42 87.92 92.08
D038 57.92 62.92 64.58 D094 100 100 100
D039 78.75 91.25 93.33 D095 84.58 100 100
D040 80.42 93.33 98.33 D096 81.25 92.5 95.83
D041 83.33 93.33 95.42 D097 27.92 37.92 42.08
D042 49.17 55 56.67 D098 88.33 100 100
D043 8.75 12.08 13.75 D099 42.92 70.83 88.75
D044 18.75 24.58 26.25 D100 57.5 68.33 73.33
D045 23.75 32.5 43.75 D101 77.08 99.58 100
D046 97.92 99.58 100 D102 78.33 100 100
D047 100 100 100 D103 67.92 98.75 100
D048 99.58 100 100 D104 74.17 98.75 100
D049 100 100 100 D105 56.67 95.83 100
D050 94.58 100 100 D106 40 95.83 100
D051 99.58 100 100 D107 82.08 97.5 99.17
D052 67.08 74.17 76.67 D108 57.5 70.83 80.42
D053 100 100 100 D109 59.17 94.58 99.58
D054 50.42 59.58 63.75 D110 55.42 96.67 100
D055 89.58 95 96.67 D111 87.92 96.67 98.75
D056 100 100 100 D112 83.33 94.58 97.5

Appendix C

Classes of Vision Textures

The following textures from VisTex textures database are regarded as the same class.
Each line represents a class of textures that can be barely discriminated by human vision.

Bark.0001 Bark.0001
Bark.0009 Bark.0010
Bark.0011 Bark.0012
Brick.0000 Brick.0001
Clouds.0000 Clouds.0001
Fabric.0000 Fabric.0001
Fabric.0002 Fabric.0003
Fabric.0004 Fabric.0005
Fabric.0008 Fabric.0010
Fabric.0013 Fabric.0014
Fabric.0015 Fabric.0016
Fabric.0018 Fabric.0019
Food.0002 Food.0004
Food.0006 Food.0007 Food.0008 Food.0009
Grass.0001 Grass.0002
Leaves.0006 Leaves.0007
Metal.0000 Metal.0001
Metal.0002 Metal.0003
Metal.0004 Metal.0005
Sand.0001 Sand.0002
Sand.0003 Sand.0004
Stone.0004 Stone.0005
Tile.0007 Tile.0008 Tile.0009 Tile.0010
Water.0001 Water.0005
Water.0003 Water.0006
Waldo.0001 Waldo.0002
Wood.0000 Wood.0001
Paintings.4.0000 Paintings.4.0001
All Terrain

183

Appendix C Classes of Vision Textures 184

The following textures are highly nonhomogeneous and will not be used as texture query.

All Buildings
All Painting except Paintings.2.0001, Paintings.4.0000 and Paintings.4.0001
Stone.0000
Tile.0005
Tile.0006
Waldo.0000

Appendix D

Retrieval Rate of Vision Textures

Using the Final DWF

185

Appendix D Retrieval Rate of Vision Textures Using the Final DWF 186

Texture ID Recall Rate Texture ID Recall Rate Texture ID Recall Rate
Bark.0000 43.75 Flowers.0004 59.17 Paintings.4.0001 53.33
Bark.0001 97.5 Flowers.0005 58.33 Sand.0000 79.58
Bark.0002 95.42 Flowers.0006 86.67 Sand.0001 100
Bark.0003 39.17 Flowers.0007 52.08 Sand.0002 95.83
Bark.0004 62.5 Food.0000 82.5 Sand.0003 96.25
Bark.0005 35.42 Food.0001 99.17 Sand.0004 47.5
Bark.0006 52.5 Food.0002 74.58 Sand.0005 40
Bark.0007 50.42 Food.0003 81.25 Sand.0006 57.92
Bark.0008 42.5 Food.0004 50.42 Stone.0008 55.83
Bark.0009 52.08 Food.0005 79.58 Stone.0009 86.67
Bark.0010 34.17 Food.0006 99.17 Stone.0010 36.25
Bark.0011 70 Food.0007 100 Stone.0011 87.08
Bark.0012 48.33 Food.0008 100 Stone.0012 85
Brick.0000 92.08 Food.0009 100 Terrain.0000 72.5
Brick.0001 90.83 Food.0010 52.08 Terrain.0001 67.5
Brick.0002 81.25 Food.0011 96.67 Terrain.0002 59.58
Brick.0003 53.75 Grass.0000 30.42 Terrain.0003 85.83
Brick.0004 72.08 Grass.0001 97.92 Terrain.0004 79.17
Brick.0005 57.5 Grass.0002 96.67 Terrain.0005 74.58
Brick.0006 36.67 Leaves.0000 50.83 Terrain.0006 90
Brick.0007 16.25 Leaves.0001 46.67 Terrain.0007 90
Brick.0008 9.58 Leaves.0002 68.33 Terrain.0008 47.92

Clouds.0000 84.58 Leaves.0003 92.08 Terrain.0009 92.08
Clouds.0001 65.83 Leaves.0004 75.42 Terrain.0010 75
Fabrics.0000 68.33 Leaves.0005 19.17 Tile.0000 45
Fabrics.0001 97.5 Leaves.0006 58.75 Tile.0001 32.08
Fabrics.0002 79.17 Leaves.0007 70.42 Tile.0002 37.08
Fabrics.0003 60 Leaves.0008 81.25 Tile.0003 41.67
Fabrics.0004 68.33 Leaves.0009 30.83 Tile.0004 88.33
Fabrics.0005 59.17 Leaves.0010 38.33 Tile.0007 100
Fabrics.0006 61.25 Leaves.0011 70 Tile.0008 99.58
Fabrics.0007 100 Leaves.0012 52.08 Tile.0009 100
Fabrics.0008 73.33 Leaves.0013 61.25 Tile.0010 100
Fabrics.0009 84.58 Leaves.0014 63.75 Water.0000 52.92
Fabrics.0010 86.67 Leaves.0015 30.83 Water.0001 60
Fabrics.0011 60.42 Leaves.0016 36.67 Water.0002 40
Fabrics.0012 54.17 Metal.0000 93.75 Water.0003 90
Fabrics.0013 97.92 Metal.0001 95.42 Water.0004 54.58
Fabrics.0014 100 Metal.0002 100 Water.0005 78.75
Fabrics.0015 99.58 Metal.0003 100 Water.0006 80
Fabrics.0016 98.33 Metal.0004 91.67 Water.0007 47.08
Fabrics.0017 100 Metal.0005 85 Waldo.0001 47.92
Fabrics.0018 99.58 Misc.0000 76.25 Waldo.0002 30
Fabrics.0019 99.58 Misc.0001 76.25 Wood.0000 27.5
Flowers.0000 73.75 Misc.0002 73.33 Wood.0001 33.33
Flowers.0001 50 Misc.0003 44.17 Wood.0002 86.25
Flowers.0002 45 Paintings.2.0001 33.33
Flowers.0003 58.75 Paintings.4.0000 94.58

Bibliography

[1] eVision Global, “A new vision for internet search - a technical white paper from
evision,” tech. rep., Available at http://www.evisionglobal.com, July 2001.

[2] Y. Rui and T. S. Huang, “Image retrieval: Current techniques, promising direc-
tions, and open issues,” Journal of Visual Communication and Image representa-
tion, vol. 10, no. 1, pp. 39–62, 1999.

[3] A. W. M. Smeulders, M. L. Kersten, and T. Gevers, “Crossing the divide between
computer vision and data bases in search of image databases,” in Proceedings
Fourth Working Conference Visual Database Systems, pp. 223–239, 1998.

[4] C. S. McCamy, H. Marcus, and J. G. Davidson, “A color rendition chart,” Journal
of Applied Photographic Engineering, vol. 2, no. 3, 1976.

[5] M. Miyahara, “Mathematical transform of (r,g,b) color data to mulsel (h,s,v) color
data,” SPIE Visual Communication Image Processing, vol. 1001, 1988.

[6] J. Wang, W.-J. Yang, and R. Acharya, “Color clustering techniques for color-
content-based image retrieval from image databases,” in Proceeding IEEE Confer-
ence on Multimedia Computing and Systems, 1997.

[7] M. Swain and D. Ballard, “Color indexing,” International Journal of Computer
Vision, vol. 7, no. 1, 1991.

[8] M. Ioka, “A method of determing the similarity of images on the basis of color
information,” Tech. Rep. RT-0030, IBM Research, Tokyo Research Laboratory,
November 1989.

[9] W. Niblack, R. Barber, and et al., “The qbic project: Querying images by content
using color, texture and shape,” in Proceeding SPIE Storage and Retrieval for
Image and Video Databases, February 1994.

[10] M. Stricker and M. Orengo, “Similarity of color images,” in Proceeding SPIE Stor-
age and Retrieval for Image and Video Databases, 1995.

[11] J. R. Smith and S.-F. Chang, “Single color extraction and image query,” in Pro-
ceeding IEEE International Conference on Image Processing, 1995.

187

BIBLIOGRAPHY 188

[12] G. Pass, R. Zabeh, and J. Miller, “Comparing images using color coherence vec-
tor,” ACM Multimedia, pp. 65–73, 1996.

[13] Y. Rui, A. C. She, and T. S. Huang, “Modified fourier descriptors for shape
representation-a practical approach,” in Proceeding First International Workshop
on Image Databases and Multimedia Research, 1996.

[14] E. Person and K. S. Fu, “Shape discrimination using fourier descriptors,” IEEE
Transaction on System, Man and Cybernetics, 1977.

[15] M. K. Hu, “Visual pattern recognition by moments invariants, computer methods
in image analysis,” IRE Transactions on Information Theory, vol. 8, 1962.

[16] M. R. Teague, “Image analysis via the general theory of moments,” Journal of the
Optical Society of America, vol. 70, no. 8, pp. 920–930, 1979.

[17] A. Pentland, R. W. Pickard, and S. Sclaroff, “Photobook: Content-based manip-
ulation of image databases,” International Journal of Computer Vision, 1996.

[18] E. M. Arkin, L. Chew, D. Huttenlocher, K. Kedem, and J. Mitchell, “An efficiently
computable metric for comparing polygonal shapes,” IEEE Transaction on Pattern
Recognition and Machine Intelligence, vol. 13, no. 3, 1991.

[19] C. C.-H. Chuang and C.-C. J. Kuo, “Wavelet descriptor of planar curves: Theory
and applications,” IEEE Transactions on Image Processing, vol. 5, no. 1, pp. 56–
70, 1996.

[20] D. White and R. Jain, “Similarity indexing: Algorithm and performance,” in
Proceeding SPIE Storage and Retrieval for Image and Video Databases, 1996.

[21] A. Guttman, “R-tree: A dynamic index structure for spatial searching,” in Pro-
ceeding ACM SIGMOD, 1984.

[22] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The r+-tree: A dynamic index for
multi-dimensional objects,” in Proceeding 12th VLDB, 1987.

[23] D. Greene, “An implementation and performance analysis of spatial data access,”
in Proceeding ACM SIGMOD, 1989.

[24] N. Beckman, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An effi-
cient and robust access method for points and rectangles,” in Proceeding ACM
SIGMOD, 1990.

[25] Y. Rui, K. Chakrabarti, S. Mehrotra, Y. Zhao, and T. S. Huang, “Dynamic cluster-
ing for optimal retrieval in high dimensional multimedia databases,” TR-MARS-
10-97, 1997.

[26] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. Wiley,
New York, 1973.

BIBLIOGRAPHY 189

[27] H. J. Zhang and D. Zhong, “A scheme for visual feature based image retrieval,”
in Proceeding SPIE Storage and Retrieval for Image and Video Databases, 1995.

[28] V. Gaede and O. Gunther, “Multidimensional access methods,” Tech. Rep. 16,
Institut fur Wirtschaftsinformatik Humboldt-Universitat zu Berlin, August 1995.
Information System Series.

[29] C. Faloutsos, M. Flickner, W. Niblack, D. Petkovic, W. Equitz, and R. Barber,
“Efficient and effective querying by image content,” tech. rep., IBM Research
Report, 1993.

[30] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in sequence
databases,” in Proceeding 4th International Conference on Foundations of Data
Organization and Algorithm, pp. 69–84, 1993.

[31] C. Faloutsos and K.-I. Lin, “Fastmap: A fast algorithm for indexing, data-mining
and visualisation of traditional and multimedia datasets,” Tech. Rep. CS-TR-3383,
Dept. of Computer Science, University of Maryland at College Park, January 1995.

[32] R. Ng and A. Sedighian, “Evaluating multidimensional indexing structures for
images transformed by principal component analysis,” in Proceeding SPIE Storage
and Retrieval for Image and Video Databases, 1996.

[33] C. Faloutsos and K.-I. Lin, “Fastmap: A fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets,” in Proceeding SIGMOD,
pp. 163–174, 1995.

[34] S. Chandrasekaran, B. S. Manjunath, Y. F. Wang, and et al., “An eigenspace
update algorithm for image analysis,” CVGIP:Graphical Models and Image Pro-
cessing, 1997.

[35] G. Salton and M. J. McGill, Introduction to modern information retrieval.
McGraw-Hill, NewYork, 1983.

[36] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-
based image retrieval at the end of the early years,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1349–1380, 2000.

[37] J. Eakins and M. Graham, “Content-based image retrieval: A report to the jisc
technology applications programme,” Tech. Rep. JTAP-039, Institute for Image
and Data Research, University of Northumbria at Newcastle, January 1999.

[38] C. Venters and M. Cooper, “Content-based image retrieval,” Tech. Rep. JTAP-
054, JISC Technology Application Program, 2000.

[39] M. Flickner, H. Sawhney, W. Niblack, and et al., “Query by image and video
content: The qbic system,” IEEE Computer, vol. 28, pp. 23–32, September 1995.

BIBLIOGRAPHY 190

[40] W. Niblack, Z. Xiaoming, J. L. Hafner, and et al., “Updates to the qbic system,”
in Proceeding SPIE Storage and Retrieval for Image and Video databases, pp. 150–
161, 1998.

[41] H. Tamura, S. Mori, and T. Yamawaki, “Textural features corresponding to visual
perception,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-8,
pp. 460–473, June 1978.

[42] J. R. Bach, C. Fuller, A. Gupta, and et al., “Virage image search engine: An open
framework for image management,” in Proceeding SPIE Storage and Retrieval for
Image and Video Databases, pp. 76–87, 1996.

[43] A. Hampapur, A. Gupta, B. Horrowitz, and et al., “Virage video engine,” in
Proceeding SPIE Storage and Retrieval for Image and Video Databases, pp. 188–
197, 1997.

[44] J. Dowe, “Content-based retrieval in multimedia imaging,” in Proceeding SPIE
Storage and Retrieval for Image and Video Databases, 1993.

[45] RetrievalWare, “Demo page.” http://vrw/excalib.com/cgi-bin/sdk/cst/cst2.bat,
1997.

[46] J. R. Smith and S.-F. Chang, “Visualseek: A fully automated content-based image
query system,” in Proceeding ACM Multimedia, pp. 87–98, 1996.

[47] W. Y. Ma and B. S. Manjunath, “Netra: A toolbox for navigating large image
databases,” in Proceeding IEEE International Conference on Image Processing,
1997.

[48] T. S. Huang, S. Mehrotra, and K. Ramachandran, “Multimedia analysis and re-
trieval system (mars) project,” in Proceeding 33rd Annual Clinic on Library Ap-
plication of Data Processing-Digital Image Access and Retrieval, 1996.

[49] T. Gevers and A. W. M. Smeulders, “Pictoseek: A color invariant retrieval sys-
tem,” in Image Databases and Multimedia Search, pp. 25–37, 1997.

[50] I. K. Sethi, I. Coman, B. Day, and et al., “Color-wise: A system for image similarity
retrieval using color,” in Proceeding SPIE Storage and Retrieval for Image and
Video databases, pp. 140–149, 1998.

[51] D. Forsyth, J. Malik, and R. Wilensky, “Searching for digital pictures,” in Scien-
tific American, pp. 72–77, July 1997.

[52] P. Alsuth, T. Hermes, and J. Kreyss, “Image-miner - intelligent retrieval for images
and videos,” in Image Databases and Multimedia Search, pp. 241–251, 1997.

[53] K. Hirata and T. Kato, “Query by visual example,” in Proceeding 3rd International
Conference on Extending Database Technology, 1992.

BIBLIOGRAPHY 191

[54] H. H. Yu and W. Wolf, “Hierarchical, multiresolution algorithm for dictionary-
driven cbir,” in Proceeding IEEE International Conference on Image Processing,
1997.

[55] “Imatch by mwlabs.” http://www.photools.com, http://www.mwlabs.de.

[56] “Dart by at&t.” http://www.uk.research.att.com/dart.

[57] W. Wang, Y. Song, and A. Zhang, “Semantics-based image retrieval by region
saliency,” in Proceeding International Conference on Image and Video Retrieval
(LNCS 2382), pp. 29–37, 2002.

[58] K. Barnard, “Recognition as translating images into text,” in Proceeding SPIE
Internet Imaging IV, 2003.

[59] K. Kim, J. Choi, N. Kim, and P. Kim, “Extracting semantic information from
basketball video based on audio-visual features,” in Proceeding International Con-
ference on Image and Video Retrieval (LNCS 2382), pp. 278–288, 2002.

[60] P. Rubens, “Fax - the technology that refuses to die.”
http://news.bbc.co.uk/2/hi/uk news/magazine/3320515.stm.

[61] J. M. Coggins, A framework for texture analysis based on spatial filtering. PhD
thesis, Computer Science Department, Michigan State University, 1982.

[62] J. Sklansky, “Image segmentation and feature extraction,” IEEE Transactions on
Systems. man and Cybernetics, vol. SMC-8, pp. 237–247, 1978.

[63] R. M. Haralick, “Statistical and structural approach to texture,” Proceeding of the
IEEE, vol. 67, pp. 786–804, 1979.

[64] J. K. Hawkins, “Textural properties for pattern recognition,” Picture Processing
and Psychopictorics, 1969. Academic Press.

[65] M. Tuceryan and A. K. Jain, “Texture analysis,” The Handbook of Pattern Recog-
nition and Computer Vision (2nd Edition), pp. 207–248, 1998. World Scientific
Publishing Co.

[66] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image
classification,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-
3, pp. 610–621, November 1973.

[67] B. S. Manjunath and R. Chellappa, “Unsupervised texture segmentation using
markov random fields models,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 13, pp. 478–482, May 1991.

[68] R. Chellappa and S. Chatterjee, “Classification of textures using gaussian markov
random fields,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. ASSP-33, pp. 959–963, August 1985.

BIBLIOGRAPHY 192

[69] R. L. Kashyap and R. Chellappa, “Estimation and choice of neighbors in spatial-
interaction models of images,” IEEE Transactions on Information theory, vol. 29,
pp. 60–72, January 1983.

[70] J. C. Mao and A. K. Jain, “Texture classification and segmentation using multires-
olution simultaneous autoregressive models,” Pattern Recognition, vol. 25, no. 2,
pp. 173–188, 1992.

[71] A. P. Pentland, “Fractal-based description of natural scenes,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-6, pp. 661–674, Novem-
ber 1984.

[72] L. M. Kaplan, “Extended fractal analysis for texture classification and segmenta-
tion,” IEEE Transactions on Image Processing, vol. 8, pp. 1572–1585, November
1999.

[73] B. B. Chaudhuri and N. Sarkar, “Texture segmentation using fractal dimension,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 72–
77, January 1995.

[74] D. Dunn and W. E. Higgins, “Optimal gabor filters for texture segmentation,”
IEEE Transactions on Image Processing, vol. 4, pp. 947–964, July 1995.

[75] T. P. Weldon and W. E. Higgins, “Design of multiple gabor filters for texture
segmentation,” in IEEE International Conference on Accoustics, Speech and Signal
Processing, vol. 4, pp. 2243–2246, 1996.

[76] J. R. Smith and S.-F. Chang, “Transform features for texture classification and
discrimination in large image databases,” in Proceedings of IEEE International
Conference on Image Processing (ICIP ’94), vol. 3, pp. 407–411, 1994.

[77] T. Chang and C. J. Kuo, “Texture analysis and classification with tree-structured
wavelet transform,” IEEE Transactions on Image Processing, vol. 2, pp. 429–441,
October 1993.

[78] M. Unser, “Texture classification and segmentation using wavelet frames,” IEEE
Transactions on Image Processing, vol. 4, pp. 1549–1560, November 1995.

[79] K. S. Thygarajan, T. Nguyen, and C. E. Persons, “A maximum likelihood ap-
proach to texture classification using wavelet transform,” in Proceedings of IEEE
International Conference on Image Processing, vol. 2, pp. 64–644, 1994.

[80] A. Kundu and J.-L. Chen, “Texture classification using qmf bank-based subband
decomposition,” CVGIP: Graphical Models and Image Processing, vol. 54, pp. 369–
384, September 1992.

BIBLIOGRAPHY 193

[81] V. Manian, R. Vasquez, and P. Katiyar, “Texture classification using logical op-
erators,” IEEE Transaction on Image Processing, vol. 9, pp. 1693–1703, October
2000.

[82] D. Coltuc, J.-M. Becker, and V. Buzuloiu, “Jordan features for texture segmen-
tation,” in Proceedings of the 3rd IEEE International Conference on Electronic
Circuits and Systems, vol. 1, pp. 195–198, 1996.

[83] Y. Q. Chen, M. S. Nixon, and D. W. Thomas, “Texture classification using sta-
tistical geometrical features,” in Proceedings of IEEE International Conference on
Image Processing, vol. 3, pp. 446–450, 1994.

[84] C.-M. Wu, Y.-C. Chen, and K. S. Hsieh, “Texture features for classification of
ultrasonic liver images,” IEEE Transactions on Medical Imaging, vol. 11, pp. 141–
152, June 1992.

[85] K. I. Kim, K. Jung, S. H. Park, and H. J. Kim, “Texture classification with kernel
principal component analysi,” Electronics Letters, vol. 36, pp. 1021–1022, June
2000.

[86] N. Paragios and R. Deriche, “Geodasic active contours for supervised texture
segmentation,” in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. 422–427, 1999.

[87] M. Tuceryan, A. K. Jain, and Y. Lee, “Texture segmentation using voronoi poly-
gon,” in Proceedings of Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 94–99, 1988.

[88] J. Kuan, Image texture analysis with fast similarity search for content based re-
trieval and navigation. Phd thesis, University of Southampton, 1998.

[89] J. S. Weszka, C. R. Dyer, and A. Rosenfeld, “A comparative study of texture
measures for terrain classification,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-6, pp. 269–285, April 1976.

[90] P. P. Ohanian and R. C. Dubes, “Performance evaluation for four classes of textural
features,” Pattern Recognition, vol. 25, no. 8, pp. 819–833, 1992.

[91] W. Y. Ma and B. S. Manjunath, “A comparison of wavelet transform features for
texture image annotation,” in Proceedings of IEEE International Conference on
Image Processing, vol. 2, pp. 256–259, 1995.

[92] N. Ahmed and K. R. Rao, Orthogonal transform for digital signal processing.
Springer, NewYork, 1975.

[93] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet rep-
resentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 11, pp. 674–693, July 1989.

BIBLIOGRAPHY 194

[94] I. Daubechies, “The wavelet transform, time-frequency localization and signal
analysis,” IEEE Transactions on Information Theory, vol. 36, pp. 961–1005,
September 1990.

[95] A. Graps, “An introduction to wavelets,” in IEEE Computational Science and
Engineering, vol. 2, pp. 50–61, 1995.

[96] “Wavelet toolbox for matlab version 6.1.”

[97] R. C. Gonzales and R. E. Woods, Digital Image Processing. Addison-Wesley,
3rd ed., 1992.

[98] M. Nachtegael, D. V. der Weken, D. V. D. Ville, E. Kerre, W. Philips, and
I. Lemahieu, “A comparative study of classical and fuzzy filters for noise re-
duction,” in Proceedings of The 10th IEEE International Conference on Fuzzy
Systems, pp. 11–14, 2001.

[99] R. A. Peters, “A new algorithm for image noise reduction using mathematical
morphology,” IEEE Transactions on Image Processing, vol. 4, pp. 554–568, May
1995.

[100] M. Yoshioka and S. Omatu, “Noise reduction method for image processing using
genetic algorithm,” in Proceedings of IEEE International Conference on Systems,
Man, and Cybernetics, pp. 2650–2655, 1997.

[101] Q. Zhang, P. A. Mlsna, and J. J. Rodriguez, “A recursive technique for 3-d his-
togram enhancement of color images,” in Proceedings of IEEE Southwest Sympo-
sium on Image Analysis and Interpretation, pp. 218–223, 1996.

[102] H.-S. Wong and J.-H. Wang, “Contrast enhancement based on divided histogram
manipulation,” in Proceedings of IEEE International Conference on Systems, Man,
and Cybernetics, pp. 1551–1555, 2000.

[103] M. F. A. Fauzi and P. H. Lewis, “Query by fax for content-based image retrieval,”
in Proceedings of International Conference on the Challenge of Image and Video
Retrieval (Springer’s Lecture Notes in Computer Science vol. 2383), pp. 91–99,
2002.

[104] P. H. Lewis, K. Martinez, F. S. Abas, M. F. A. Fauzi, and et al., “An integrated
content and metadata-based retrieval system for art,” IEEE Transactions on Im-
age Processing, vol. 13, pp. 302–313, March 2004.

[105] M. D. Swanson and A. H. Tewfik, “A binary wavelet decomposition of binary
images,” IEEE Transactions on Image Processing, vol. 5, pp. 1637–1650, December
1996.

BIBLIOGRAPHY 195

[106] L. S. Davis, S. A. John, and J. K. Agrawal, “Texture analysis using generalized
co-occurrence matrix,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. PAMI-1, pp. 251–259, July 1979.

[107] G. R. Cross and A. K. Jain, “Markov random field texture models,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. PAMI-5, pp. 25–39,
January 1983.

[108] B. B. Mandelbrot and J. V. Ness, “Fractional brownian motion, fractional noise
and applications,” SIAM Review, vol. 10, 1968.

[109] J. M. Keller, S. Chen, and R. M. Crownover, “Texture description and segmenta-
tion through fractal geometry,” Computer Vision, Graphics, and Image Processing,
vol. 45, no. 2, pp. 150–166, 1989.

[110] B. B. Chaudhuri and N. Sarkar, “An efficient approach to estimate fractal di-
mension of textural images,” Pattern Recognition, vol. 25, no. 9, pp. 1035–1041,
1992.

[111] K. I. Laws, Textured Image Segmentation. Phd thesis, University of Southern
California, 1980.

[112] T. A. Ramstad, S. O. Aase, and J. H. Husoy, Subband Compression of Images -
Principles and Examples. ELSEVIER Science Publishers, 1995.

[113] I. Ng, T. Tan, and J. Kittler, “On local linear transform and gabor filter represen-
tation of texture,” in Proceeding International Conference on Pattern Recognition,
pp. 627–631, 1992.

[114] B. S. Manjunath and W. Y. Ma, “Texture features for browsing and retrieval of
image data,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 18, pp. 837–842, August 1996.

[115] A. Mojsilovic, S. Markovic, and M. Popovic, “Texture analysis and classification
with the nonseparable wavelet transform,” in Proceedings of International Confer-
ence on Image Processing, vol. 3, pp. 182–185, 1997.

[116] P. de Rivaz and N. Kingsbury, “Complex wavelet features for fast texture image
retrieval,” in Proceeding of International Conference on Image Processing (ICIP
’98), vol. 1, pp. 109–113, 1999.

[117] N.-D. Kim and S. Udpa, “Texture classification using rotated wavelet filters,”
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 30, pp. 847–852, November 2000.

[118] A. Laine and J. Fan, “Texture classification by wavelet packet signatures,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp. 1186–
1191, November 1993.

BIBLIOGRAPHY 196

[119] T.-H. Chang, Y.-C. Lin, and C. C. J. Kuo, “Techniques in texture analysis,” Med-
ical Imaging Systems Techniques and Applications: Computational Techniques,
pp. 207–248, 1998. Gordon and Breach Science Publishers.

[120] S. Mallat, “Zero crossings of a wavelet transform,” IEEE Transactions on Infor-
mation Theory, vol. 37, July 1991.

[121] S. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, July 1992.

[122] A. Rosenfeld and S. Thurston, “Edge and curve detection for visual scene analysis,”
IEEE Transactions on Computers, vol. C-20, 1971.

[123] R. Picard, C. Graczyk, S. Mann, and et al., “Vision texture
1.0,” tech. rep., Media Laboratory, MIT, 1995. http://www-
white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.

[124] J. R. Smith and S.-F. Chang, “Quad-tree segmentation for texture based image
query,” in Proceedings of the 2nd Annual ACM Multimedia Conference, (San Fran-
cisco), 1994.

[125] A. Natsev, R. Rastogi, and K. Shim, “Walrus: A similarity retrieval algorithm for
image databases,” in Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 395–406, 1999.

[126] J. Guo and A. Zhang, “Image decomposition and representation in large image
database systems,” Journal of Visual Communication and Image Representation,
vol. 8, pp. 167–181, June 1997.

[127] S. Chan, K. Martinez, P. Lewis, C. Lahanier, and J. Stevenson, “Handling sub-
image queries in content-based retrieval of high resolution art images,” in Proceed-
ings of International Conference in Cultural Heritage and Technologies, pp. 157–
163, 2001.

[128] M. F. A. Fauzi and P. H. Lewis, “Texture-based image retrieval using multiscale
sub-image matching,” in Proceedings of IST/SPIE Symposium on Electronic Imag-
ing: Image and Video Communications and Processing 2003 (SPIE vol. 5022),
pp. 407–416, 2003.

[129] S. N. Talbar, R. S. Holambe, and T. R. Sontakke, “Supervised texture classification
using wavelet transform,” in Proceedings of the 4th International Conference on
Signal Processing (ICSP ’98), vol. 2, pp. 1177–1180, 1998.

[130] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using gabor
filters,” Pattern Recognition, vol. 24, no. 12, pp. 1167–1186, 1991.

BIBLIOGRAPHY 197

[131] M. Tuceryan and A. K. Jain, “Texture segmentation using voronoi polygon,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 211–216,
February 1990.

[132] I. Ng, J. Kittler, and J. Illingworth, “Supervised segmentation using a multireso-
lution data representation,” Signal Processing, vol. 3, p. March, 133–163 1993.

[133] E. Salari and Z. Ling, “Texture segmentation using hierarchical wavelet decompo-
sition,” in Proceedings of the IEEE International Symposium on Industrial Elec-
tronics, vol. 1, pp. 216–220, 1995.

[134] T. Chang and C. C. J. Kuo, “Texture segmentation with tree-structured wavelet
transform,” in Proceedings of the IEEE-SP International Symposium on Tine-
Frequency and Time-Scale Analysis, pp. 543–546, 1992.

[135] S. Krishnamachari and R. Chellappa, “Multiresolution gauss-markov random field
models for texture segmentation,” IEEE Transactions on Image Processing, vol. 6,
pp. 251–267, February 1997.

[136] A. Perry and D. G. Lowe, “Segmentation of textured images,” in Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR ’89), pp. 319–325, 1989.

[137] R. Porter and N. Canagarajah, “A robust automatic clustering scheme for image
segmentation using wavelets,” IEEE Transactions on Image Processing, vol. 5,
pp. 662–665, April 1996.

[138] J. D. Buf, M. Kardan, and M. Spann, “Texture feature performance for image
segmentation,” Pattern recognition, vol. 23, no. 3/4, pp. 291–309, 1990.

[139] K. I. Chang, K. W. Bowyer, and M. Sivagurunath, “Evaluation of texture seg-
mentation algorithms,” in IEEE Conference on Computer Vision and Pattern
Recognition, pp. 294–299, 1999.

[140] O. Pichler, A. Teuner, and B. J. Hosticka, “A comparison of texture feature extrac-
tion using adaptive gabor filtering, pyramidal and tree structured wavelet trans-
form,” Pattern Recognition, vol. 29, no. 5, pp. 733–742, 1996.

[141] M. F. A. Fauzi and P. H. Lewis, “A fully unsupervised texture segmentation
algorithm,” in Proceedings of British Machine Vision Conference 2003, pp. 519–
528, 2003.

[142] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature
space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, pp. 603–619, 2002.

[143] D. Comaniciu and P. Meer, “Distribution free decomposition of multivariate data,”
Pattern Analysis and Applications, vol. 2, pp. 22–30, 1999.

BIBLIOGRAPHY 198

[144] D. Comaniciu and P. Meer, “Mean shift analysis and applications,” in Proceedings
of International Conference on Computer Vision, pp. 1197–1203, 1999.

[145] K. Fukunaga and L. D. Hostetler, “The estimation of the gradient of a density
function, with applications in pattern recognition,” IEEE Transactions on Infor-
mation Theory, vol. IT-21, pp. 32–40, January 1975.

[146] “Artiste project.” http://www.artisteweb.org.

[147] “Sculpteur project.” http://www.sculpteurweb.org.

