573 research outputs found

    Cuantificación automática de lesión ocupante de espacio a partir de tomografía computarizada contrastada del abdomen

    Get PDF
    Space-occupying lessions represent a healt higt risk of subjects affected by this kind of pathology. From a medical point of view, the volume occupied by each of these lesions constitutes the most important descriptor when addressing them, and especially for the respective decision-making process that guides their control, mitigation or elimination. In such context, this paper proposes a strategy based on computer-aided image processing techniques to extract the three-dimensional morphology of a space-occupying lesion, of the amoebic liver abscess type, and calculate its volume. In this sense, in order to attenuate poissonian noise and improve the abscess edge information, the abdominal contrast computed tomography images are preprocessed using a Gaussian filter, and edge detector and a median filter, sequentially. Then, a clustering algorithm based on region growing procedure is applied to the enhanced images, obtaining the space occupying lesion three-dimensional shape. Additionally, the Dice coefficient is considered as a metric to establish the correlation between the shapes, automatic and manual lesion, the latter described by a mastologist. Then, in order to characterize the liver abscess, its volume is quantified considering both the voxels occupied by the lesion obtained by applying of the computer-aided image processing, and the physical dimensions of the voxel. Finally, the automatically calculated volume is compared to that generated manually by the medical specialist. The results reveal an excellent correspondence between manual results and those produced by the proposed technique. This type of technique can be used as a resource not only to obtain, precisely, the value of the aforementioned descriptor, but also to monitor the process of the abscess evolution by means imaging control.Las lesiones que ocupan espacio representan un alto riesgo para la salud de los sujetos afectados por este tipo de patología. Desde el punto de vista médico, el volumen ocupado por cada una de estas lesiones constituye el descriptor más importante al abordarlas, y especialmente para el respectivo proceso de toma de decisiones que guía su control, mitigación o eliminación. En este contexto, este artículo propone una estrategia basada en técnicas de procesamiento de imágenes asistidas por computadora para extraer la morfología tridimensional de una lesión que ocupa espacio, del tipo de absceso hepático amebiano, y calcular su volumen. En este sentido, para atenuar el ruido poissoniano y mejorar la información del borde del absceso, las imágenes de tomografía computarizada de contraste abdominal se preprocesan utilizando un filtro gaussiano, un detector de borde y un filtro de mediana, secuencialmente. Luego, se aplica un algoritmo de agrupamiento basado en el procedimiento de crecimiento de regiones a las imágenes mejoradas, obteniendo la forma tridimensional de la lesión que ocupa espacio. Además, el coeficiente Dice se considera como una métrica para establecer la correlación entre las formas, lesión automática y manual, la última descrita por un mastólogo. Luego, para caracterizar el absceso hepático, su volumen se cuantifica considerando tanto los voxeles ocupados por la lesión obtenida mediante la aplicación del procesamiento de imágenes asistido por computadora, como las dimensiones físicas del voxel. Finalmente, el volumen calculado automáticamente se compara con el generado manualmente por el médico especialista. Los resultados revelan una excelente correspondencia entre los resultados manuales y los producidos por la técnica propuesta. Este tipo de técnica puede usarse como un recurso no solo para obtener, precisamente, el valor del descriptor mencionado anteriormente, sino también para monitorear el proceso de evolución del absceso mediante el control de imágenes

    Assessment of the response of hepatocellular carcinoma to interventional radiology treatments

    Get PDF
    According to Barcelona Clinic Liver Cancer (BCLC) guidelines, interventional radiology procedures are valuable treatment options for many hepatocellular carcinomas (HCCs) that are not amenable to resection or transplantation. Accurate assessment of the efficacy of therapies at earlier stages enables completion of treatment, optimal follow-up and to prevent potentially unnecessary treatments, side effects and costly failure. The goal of this review is to summarize and describe the radiological strategies that have been proposed to predict survival and to stratify HCC responses after interventional radiology therapies. New techniques currently in development are also described

    AI-basierte volumetrische Analyse der Lebermetastasenlast bei Patienten mit neuroendokrinen Neoplasmen (NEN)

    Get PDF
    Background: Quantification of liver tumor load in patients with liver metastases from neuroendocrine neoplasms is essential for therapeutic management. However, accurate measurement of three-dimensional (3D) volumes is time-consuming and difficult to achieve. Even though the common criteria for assessing treatment response have simplified the measurement of liver metastases, the workload of following up patients with neuroendocrine liver metastases (NELMs) remains heavy for radiologists due to their increased morbidity and prolonged survival. Among the many imaging methods, gadoxetic acid (Gd-EOB)-enhanced magnetic resonance imaging (MRI) has shown the highest accuracy. Methods: 3D-volumetric segmentation of NELM and livers were manually performed in 278 Gd-EOB MRI scans from 118 patients. Eighty percent (222 scans) of them were randomly divided into training datasets and the other 20% (56 scans) were internal validation datasets. An additional 33 patients from a different time period, who underwent Gd-EOB MRI at both baseline and 12-month follow-up examinations, were collected for external and clinical validation (n = 66). Model measurement results (NELM volume; hepatic tumor load (HTL)) and the respective absolute (ΔabsNELM; ΔabsHTL) and relative changes (ΔrelNELM; ΔrelHTL) for baseline and follow-up-imaging were used and correlated with multidisciplinary cancer conferences (MCC) decisions (treatment success/failure). Three readers manually segmented MRI images of each slice, blinded to clinical data and independently. All images were reviewed by another senior radiologist. Results: The model’s performance showed high accuracy between NELM and liver in both internal and external validation (Matthew’s correlation coefficient (ϕ): 0.76/0.95, 0.80/0.96, respectively). And in internal validation dataset, the group with higher NELM volume (> 16.17 cm3) showed higher ϕ than the group with lower NELM volume (ϕ = 0.80 vs. 0.71; p = 0.0025). In the external validation dataset, all response variables (∆absNELM; ∆absHTL; ∆relNELM; ∆relHTL) reflected significant differences across MCC decision groups (all p < 0.001). The AI model correctly detected the response trend based on ∆relNELM and ∆relHTL in all the 33 MCC patients and showed the optimal discrimination between treatment success and failure at +56.88% and +57.73%, respectively (AUC: 1.000; P < 0.001). Conclusions: The created AI-based segmentation model performed well in the three-dimensional quantification of NELMs and HTL in Gd-EOB-MRI. Moreover, the model showed good agreement with the evaluation of treatment response of the MCC’s decision.Hintergrund: Die Quantifizierung der Lebertumorlast bei Patienten mit Lebermetastasen von neuroendokrinen Neoplasien ist für die Behandlung unerlässlich. Eine genaue Messung des dreidimensionalen (3D) Volumens ist jedoch zeitaufwändig und schwer zu erreichen. Obwohl standardisierte Kriterien für die Beurteilung des Ansprechens auf die Behandlung die Messung von Lebermetastasen vereinfacht haben, bleibt die Arbeitsbelastung für Radiologen bei der Nachbeobachtung von Patienten mit neuroendokrinen Lebermetastasen (NELMs) aufgrund der höheren Fallzahlen durch erhöhte Morbidität und verlängerter Überlebenszeit hoch. Unter den zahlreichen bildgebenden Verfahren hat die Gadoxetsäure (Gd-EOB)-verstärkte Magnetresonanztomographie (MRT) die höchste Genauigkeit gezeigt. Methoden: Manuelle 3D-Segmentierungen von NELM und Lebern wurden in 278 Gd-EOB-MRT-Scans von 118 Patienten durchgeführt. 80% (222 Scans) davon wurden nach dem Zufallsprinzip in den Trainingsdatensatz eingeteilt, die übrigen 20% (56 Scans) waren interne Validierungsdatensätze. Zur externen und klinischen Validierung (n = 66) wurden weitere 33 Patienten aus einer späteren Zeitspanne des Multidisziplinäre Krebskonferenzen (MCC) erfasst, welche sich sowohl bei der Erstuntersuchung als auch bei der Nachuntersuchung nach 12 Monaten einer Gd-EOB-MRT unterzogen hatten. Die Messergebnisse des Modells (NELM-Volumen; hepatische Tumorlast (HTL)) mit den entsprechenden absoluten (ΔabsNELM; ΔabsHTL) und relativen Veränderungen (ΔrelNELM; ΔrelHTL) bei der Erstuntersuchung und der Nachuntersuchung wurden zum Vergleich mit MCC-Entscheidungen (Behandlungserfolg/-versagen) herangezogen. Drei Leser segmentierten die MRT-Bilder jeder Schicht manuell, geblindet und unabhängig. Alle Bilder wurden von einem weiteren Radiologen überprüft. Ergebnisse: Die Leistung des Modells zeigte sowohl bei der internen als auch bei der externen Validierung eine hohe Genauigkeit zwischen NELM und Leber (Matthew's Korrelationskoeffizient (ϕ): 0,76/0,95 bzw. 0,80/0,96). Und im internen Validierungsdatensatz zeigte die Gruppe mit höherem NELM-Volumen (> 16,17 cm3) einen höheren ϕ als die Gruppe mit geringerem NELM-Volumen (ϕ = 0,80 vs. 0,71; p = 0,0025). Im externen Validierungsdatensatz wiesen alle Antwortvariablen (∆absNELM; ∆absHTL; ∆relNELM; ∆relHTL) signifikante Unterschiede zwischen den MCC-Entscheidungsgruppen auf (alle p < 0,001). Das KI-Modell erkannte das Therapieansprechen auf der Grundlage von ∆relNELM und ∆relHTL bei allen 33 MCC-Patienten korrekt und zeigte bei +56,88% bzw. +57,73% eine optimale Unterscheidung zwischen Behandlungserfolg und -versagen (AUC: 1,000; P < 0,001). Schlussfolgerungen: Das Modell zeigte eine hohe Genauigkeit bei der dreidimensionalen Quantifizierung des NELMs-Volumens und der HTL in der Gd-EOB-MRT. Darüber hinaus zeigte das Modell eine gute Übereinstimmung bei der Bewertung des Ansprechens auf die Behandlung mit der Entscheidung des Tumorboards

    The Liver Tumor Segmentation Benchmark (LiTS)

    Full text link
    In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LITS) organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2016 and International Conference On Medical Image Computing Computer Assisted Intervention (MICCAI) 2017. Twenty four valid state-of-the-art liver and liver tumor segmentation algorithms were applied to a set of 131 computed tomography (CT) volumes with different types of tumor contrast levels (hyper-/hypo-intense), abnormalities in tissues (metastasectomie) size and varying amount of lesions. The submitted algorithms have been tested on 70 undisclosed volumes. The dataset is created in collaboration with seven hospitals and research institutions and manually reviewed by independent three radiologists. We found that not a single algorithm performed best for liver and tumors. The best liver segmentation algorithm achieved a Dice score of 0.96(MICCAI) whereas for tumor segmentation the best algorithm evaluated at 0.67(ISBI) and 0.70(MICCAI). The LITS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.Comment: conferenc

    Machine Learning/Deep Learning in Medical Image Processing

    Get PDF
    Many recent studies on medical image processing have involved the use of machine learning (ML) and deep learning (DL). This special issue, “Machine Learning/Deep Learning in Medical Image Processing”, has been launched to provide an opportunity for researchers in the area of medical image processing to highlight recent developments made in their fields with ML/DL. Seven excellent papers that cover a wide variety of medical/clinical aspects are selected in this special issue

    Quantitative magnetic resonance imaging for focal liver lesions: Bridging the gap between research and clinical practice

    Get PDF
    Magnetic resonance imaging (MRI) is highly important for the detection, characterization, and follow-up of focal liver lesions. Several quantitative MRI-based methods have been proposed in addition to qualitative imaging interpretation to improve the diagnostic work-up and prognostics in patients with focal liver lesions. This includes DWI with apparent diffusion coefficient measurements, intravoxel incoherent motion, perfusion imaging, MR elastography, and radiomics. Multiple research studies have reported promising results with quantitative MRI methods in various clinical settings. Nevertheless, applications in everyday clinical practice are limited. This review describes the basic principles of quantitative MRI-based techniques and discusses the main current applications and limitations for the assessment of focal liver lesions

    Liver Tumors

    Get PDF
    This book is oriented towards clinicians and scientists in the field of the management of patients with liver tumors. As many unresolved problems regarding primary and metastatic liver cancer still await investigation, I hope this book can serve as a tiny step on a long way that we need to run on the battlefield of liver tumors

    The Liver Tumor Segmentation Benchmark (LiTS)

    Full text link
    In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094

    The Liver Tumor Segmentation Benchmark (LiTS)

    Get PDF
    In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094.Bjoern Menze is supported through the DFG funding (SFB 824, subproject B12) and a Helmut-Horten-Professorship for Biomedical Informatics by the Helmut-Horten-Foundation. Florian Kofler is Supported by Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE), GSC 81. An Tang was supported by the Fonds de recherche du Québec en Santé and Fondation de l’association des radiologistes du Québec (FRQS- ARQ 34939 Clinical Research Scholarship – Junior 2 Salary Award). Hongwei Bran Li is supported by Forschungskredit (Grant NO. FK-21- 125) from University of Zurich.Peer ReviewedArticle signat per 109 autors/es: Patrick Bilic 1,a,b, Patrick Christ 1,a,b, Hongwei Bran Li 1,2,∗,b, Eugene Vorontsov 3,a,b, Avi Ben-Cohen 5,a, Georgios Kaissis 10,12,15,a, Adi Szeskin 18,a, Colin Jacobs 4,a, Gabriel Efrain Humpire Mamani 4,a, Gabriel Chartrand 26,a, Fabian Lohöfer 12,a, Julian Walter Holch 29,30,69,a, Wieland Sommer 32,a, Felix Hofmann 31,32,a, Alexandre Hostettler 36,a, Naama Lev-Cohain 38,a, Michal Drozdzal 34,a, Michal Marianne Amitai 35,a, Refael Vivanti 37,a, Jacob Sosna 38,a, Ivan Ezhov 1, Anjany Sekuboyina 1,2, Fernando Navarro 1,76,78, Florian Kofler 1,13,57,78, Johannes C. Paetzold 15,16, Suprosanna Shit 1, Xiaobin Hu 1, Jana Lipková 17, Markus Rempfler 1, Marie Piraud 57,1, Jan Kirschke 13, Benedikt Wiestler 13, Zhiheng Zhang 14, Christian Hülsemeyer 1, Marcel Beetz 1, Florian Ettlinger 1, Michela Antonelli 9, Woong Bae 73, Míriam Bellver 43, Lei Bi 61, Hao Chen 39, Grzegorz Chlebus 62,64, Erik B. Dam 72, Qi Dou 41, Chi-Wing Fu 41, Bogdan Georgescu 60, Xavier Giró-i-Nieto 45, Felix Gruen 28, Xu Han 77, Pheng-Ann Heng 41, Jürgen Hesser 48,49,50, Jan Hendrik Moltz 62, Christian Igel 72, Fabian Isensee 69,70, Paul Jäger 69,70, Fucang Jia 75, Krishna Chaitanya Kaluva 21, Mahendra Khened 21, Ildoo Kim 73, Jae-Hun Kim 53, Sungwoong Kim 73, Simon Kohl 69, Tomasz Konopczynski 49, Avinash Kori 21, Ganapathy Krishnamurthi 21, Fan Li 22, Hongchao Li 11, Junbo Li 8, Xiaomeng Li 40, John Lowengrub 66,67,68, Jun Ma 54, Klaus Maier-Hein 69,70,7, Kevis-Kokitsi Maninis 44, Hans Meine 62,65, Dorit Merhof 74, Akshay Pai 72, Mathias Perslev 72, Jens Petersen 69, Jordi Pont-Tuset 44, Jin Qi 56, Xiaojuan Qi 40, Oliver Rippel 74, Karsten Roth 47, Ignacio Sarasua 51,12, Andrea Schenk 62,63, Zengming Shen 59,60, Jordi Torres 46,43, Christian Wachinger 51,12,1, Chunliang Wang 42, Leon Weninger 74, Jianrong Wu 25, Daguang Xu 71, Xiaoping Yang 55, Simon Chun-Ho Yu 58, Yading Yuan 52, Miao Yue 20, Liping Zhang 58, Jorge Cardoso 9, Spyridon Bakas 19,23,24, Rickmer Braren 6,12,30,a, Volker Heinemann 33,a, Christopher Pal 3,a, An Tang 27,a, Samuel Kadoury 3,a, Luc Soler 36,a, Bram van Ginneken 4,a, Hayit Greenspan 5,a, Leo Joskowicz 18,a, Bjoern Menze 1,2,a // 1 Department of Informatics, Technical University of Munich, Germany; 2 Department of Quantitative Biomedicine, University of Zurich, Switzerland; 3 Ecole Polytechnique de Montréal, Canada; 4 Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands; 5 Department of Biomedical Engineering, Tel-Aviv University, Israel; 6 German Cancer Consortium (DKTK), Germany; 7 Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; 8 Philips Research China, Philips China Innovation Campus, Shanghai, China; 9 School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK; 10 Institute for AI in Medicine, Technical University of Munich, Germany; 11 Department of Computer Science, Guangdong University of Foreign Studies, China; 12 Institute for diagnostic and interventional radiology, Klinikum rechts der Isar, Technical University of Munich, Germany; 13 Institute for diagnostic and interventional neuroradiology, Klinikum rechts der Isar,Technical University of Munich, Germany; 14 Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China; 15 Department of Computing, Imperial College London, London, United Kingdom; 16 Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany; 17 Brigham and Women’s Hospital, Harvard Medical School, USA; 18 School of Computer Science and Engineering, the Hebrew University of Jerusalem, Israel; 19 Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, PA, USA; 20 CGG Services (Singapore) Pte. Ltd., Singapore; 21 Medical Imaging and Reconstruction Lab, Department of Engineering Design, Indian Institute of Technology Madras, India; 22 Sensetime, Shanghai, China; 23 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, USA; 24 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA; 25 Tencent Healthcare (Shenzhen) Co., Ltd, China; 26 The University of Montréal Hospital Research Centre (CRCHUM) Montréal, Québec, Canada; 27 Department of Radiology, Radiation Oncology and Nuclear Medicine, University of Montréal, Canada; 28 Institute of Control Engineering, Technische Universität Braunschweig, Germany; 29 Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; 30 Comprehensive Cancer Center Munich, Munich, Germany; 31 Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Germany; 32 Department of Radiology, University Hospital, LMU Munich, Germany; 33 Department of Hematology/Oncology & Comprehensive Cancer Center Munich, LMU Klinikum Munich, Germany; 34 Polytechnique Montréal, Mila, QC, Canada; 35 Department of Diagnostic Radiology, Sheba Medical Center, Tel Aviv university, Israel; 36 Department of Surgical Data Science, Institut de Recherche contre les Cancers de l’Appareil Digestif (IRCAD), France; 37 Rafael Advanced Defense System, Israel; 38 Department of Radiology, Hadassah University Medical Center, Jerusalem, Israel; 39 Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, China; 40 Department of Electrical and Electronic Engineering, The University of Hong Kong, China; 41 Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China; 42 Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Sweden; 43 Barcelona Supercomputing Center, Barcelona, Spain; 44 Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland; 45 Signal Theory and Communications Department, Universitat Politecnica de Catalunya, Catalonia, Spain; 46 Universitat Politecnica de Catalunya, Catalonia, Spain; 47 University of Tuebingen, Germany; 48 Mannheim Institute for Intelligent Systems in Medicine, department of Medicine Mannheim, Heidelberg University, Germany; 49 Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany; 50 Central Institute for Computer Engineering (ZITI), Heidelberg University, Germany; 51 Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany; 52 Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, NY, USA; 53 Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, South Korea; 54 Department of Mathematics, Nanjing University of Science and Technology, China; 55 Department of Mathematics, Nanjing University, China; 56 School of Information and Communication Engineering, University of Electronic Science and Technology of China, China; 57 Helmholtz AI, Helmholtz Zentrum München, Neuherberg, Germany; 58 Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong, China; 59 Beckman Institute, University of Illinois at Urbana-Champaign, USA; 60 Siemens Healthineers, USA; 61 School of Computer Science, the University of Sydney, Australia; 62 Fraunhofer MEVIS, Bremen, Germany; 63 Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany; 64 Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands; 65 Medical Image Computing Group, FB3, University of Bremen, Germany; 66 Departments of Mathematics, Biomedical Engineering, University of California, Irvine, USA; 67 Center for Complex Biological Systems, University of California, Irvine, USA; 68 Chao Family Comprehensive Cancer Center, University of California, Irvine, USA; 69 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany; 70 Helmholtz Imaging, Germany; 71 NVIDIA, Santa Clara, CA, USA; 72 Department of Computer Science, University of Copenhagen, Denmark; 73 Kakao Brain, Republic of Korea; 74 Institute of Imaging & Computer Vision, RWTH Aachen University, Germany; 75 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; 76 Department of Radiation Oncology and Radiotherapy, Klinikum rechts der Isar, Technical University of Munich, Germany; 77 Department of computer science, UNC Chapel Hill, USA; 78 TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, GermanyPostprint (published version

    A systematic review of clinical value of three-dimensional printing in renal disease

    Get PDF
    The aim of this systematic review is to analyse current literature related to the clinical value of three-dimensional (3D) printed models in renal disease. A literature search of PubMed and Scopus databases was performed to identify studies reporting the clinical application and usefulness of 3D printed models in renal disease. Fifteen studies were found to meet the selection criteria and were included in the analysis. Eight of them provided quantitative assessments with five studies focusing on dimensional accuracy of 3D printed models in replicating renal anatomy and tumour, and on measuring tumour volume between 3D printed models and original source images and surgical specimens, with mean difference less than 10%. The other three studies reported that the use of 3D printed models significantly enhanced medical students and specialists’ ability to identify anatomical structures when compared to two-dimensional (2D) images alone; and significantly shortened intraoperative ultrasound duration compared to without use of 3D printed models. Seven studies provided qualitative assessments of the usefulness of 3D printed kidney models with findings showing that 3D printed models improved patient’s understanding of renal anatomy and pathology; improved medical trainees’ understanding of renal malignant tumours when compared to viewing medical images alone; and assisted surgical planning and simulation of renal surgical procedures with significant reductions of intraoperative complications. The cost and time associated with 3D printed kidney model production was reported in 10 studies, with costs ranging from USD100toUSD100 to USD1,000, and duration of 3D printing production up to 31 h. The entire process of 3D printing could take up to a few days. This review shows that 3D printed kidney models are accurate in delineating renal anatomical structures and renal tumours with high accuracy. Patient-specific 3D printed models serve as a useful tool in preoperative planning and simulation of surgical procedures for treatment of renal tumours. Further studies with inclusion of more cases and with a focus on reducing the cost and 3D model production time deserve to be investigated
    corecore