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Abstract (English) 

Background: Quantification of liver tumor load in patients with liver metastases from 

neuroendocrine neoplasms is essential for therapeutic management. However, accurate 

measurement of three-dimensional (3D) volumes is time-consuming and difficult to achieve. 

Even though the common criteria for assessing treatment response have simplified the 

measurement of liver metastases, the workload of following up patients with neuroendocrine liver 

metastases (NELMs) remains heavy for radiologists due to their increased morbidity and 

prolonged survival. Among the many imaging methods, gadoxetic acid (Gd-EOB)-enhanced 

magnetic resonance imaging (MRI) has shown the highest accuracy.  

Methods: 3D-volumetric segmentation of NELM and livers were manually performed in 278 Gd-

EOB MRI scans from 118 patients. Eighty percent (222 scans) of them were randomly divided 

into training datasets and the other 20% (56 scans) were internal validation datasets. An additional 

33 patients from a different time period, who underwent Gd-EOB MRI at both baseline and 12-

month follow-up examinations, were collected for external and clinical validation (n = 66). Model 

measurement results (NELM volume; hepatic tumor load (HTL)) and the respective absolute 

(ΔabsNELM; ΔabsHTL) and relative changes (ΔrelNELM; ΔrelHTL) for baseline and follow-up-

imaging were used and correlated with multidisciplinary cancer conferences (MCC) decisions 

(treatment success/failure). Three readers manually segmented MRI images of each slice, blinded 

to clinical data and independently. All images were reviewed by another senior radiologist. 

Results: The model’s performance showed high accuracy between NELM and liver in both 

internal and external validation (Matthew’s correlation coefficient (ϕ): 0.76/0.95, 0.80/0.96, 

respectively). And in internal validation dataset, the group with higher NELM volume (> 16.17 

cm3) showed higher ϕ than the group with lower NELM volume (ϕ = 0.80 vs. 0.71; p = 0.0025). 

In the external validation dataset, all response variables (∆absNELM; ∆absHTL; ∆relNELM; 

∆relHTL) reflected significant differences across MCC decision groups (all p < 0.001). The AI 

model correctly detected the response trend based on ∆relNELM and ∆relHTL in all the 33 MCC 

patients and showed the optimal discrimination between treatment success and failure at +56.88% 

and +57.73%, respectively (AUC: 1.000; P < 0.001). 
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Conclusions: The created AI-based segmentation model performed well in the three-dimensional 

quantification of NELMs and HTL in Gd-EOB-MRI. Moreover, the model showed good 

agreement with the evaluation of treatment response of the MCC’s decision. 
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Abstrakt (Deutsch) 

Hintergrund: Die Quantifizierung der Lebertumorlast bei Patienten mit Lebermetastasen von 

neuroendokrinen Neoplasien ist für die Behandlung unerlässlich. Eine genaue Messung des 

dreidimensionalen (3D) Volumens ist jedoch zeitaufwändig und schwer zu erreichen. Obwohl 

standardisierte Kriterien für die Beurteilung des Ansprechens auf die Behandlung die Messung 

von Lebermetastasen vereinfacht haben, bleibt die Arbeitsbelastung für Radiologen bei der 

Nachbeobachtung von Patienten mit neuroendokrinen Lebermetastasen (NELMs) aufgrund der 

höheren Fallzahlen durch erhöhte Morbidität und verlängerter Überlebenszeit hoch. Unter den 

zahlreichen bildgebenden Verfahren hat die Gadoxetsäure (Gd-EOB)-verstärkte 

Magnetresonanztomographie (MRT) die höchste Genauigkeit gezeigt.  

Methoden: Manuelle 3D-Segmentierungen von NELM und Lebern wurden in 278 Gd-EOB-

MRT-Scans von 118 Patienten durchgeführt. 80% (222 Scans) davon wurden nach dem 

Zufallsprinzip in den Trainingsdatensatz eingeteilt, die übrigen 20% (56 Scans) waren interne 

Validierungsdatensätze. Zur externen und klinischen Validierung (n = 66) wurden weitere 33 

Patienten aus einer späteren Zeitspanne des Multidisziplinäre Krebskonferenzen (MCC) erfasst, 

welche sich sowohl bei der Erstuntersuchung als auch bei der Nachuntersuchung nach 12 

Monaten einer Gd-EOB-MRT unterzogen hatten. Die Messergebnisse des Modells (NELM-

Volumen; hepatische Tumorlast (HTL)) mit den entsprechenden absoluten (ΔabsNELM; ΔabsHTL) 

und relativen Veränderungen (ΔrelNELM; ΔrelHTL) bei der Erstuntersuchung und der 

Nachuntersuchung wurden zum Vergleich mit MCC-Entscheidungen (Behandlungserfolg/-

versagen) herangezogen. Drei Leser segmentierten die MRT-Bilder jeder Schicht manuell, 

geblindet und unabhängig. Alle Bilder wurden von einem weiteren Radiologen überprüft. 

Ergebnisse: Die Leistung des Modells zeigte sowohl bei der internen als auch bei der externen 

Validierung eine hohe Genauigkeit zwischen NELM und Leber (Matthew's 

Korrelationskoeffizient (ϕ): 0,76/0,95 bzw. 0,80/0,96). Und im internen Validierungsdatensatz 

zeigte die Gruppe mit höherem NELM-Volumen (> 16,17 cm3) einen höheren ϕ als die Gruppe 

mit geringerem NELM-Volumen (ϕ = 0,80 vs. 0,71; p = 0,0025). Im externen 

Validierungsdatensatz wiesen alle Antwortvariablen (∆absNELM; ∆absHTL; ∆relNELM; ∆relHTL) 
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signifikante Unterschiede zwischen den MCC-Entscheidungsgruppen auf (alle p < 0,001). Das 

KI-Modell erkannte das Therapieansprechen auf der Grundlage von ∆relNELM und ∆relHTL bei 

allen 33 MCC-Patienten korrekt und zeigte bei +56,88% bzw. +57,73% eine optimale 

Unterscheidung zwischen Behandlungserfolg und -versagen (AUC: 1,000; P < 0,001). 

Schlussfolgerungen: Das Modell zeigte eine hohe Genauigkeit bei der dreidimensionalen 

Quantifizierung des NELMs-Volumens und der HTL in der Gd-EOB-MRT. Darüber hinaus 

zeigte das Modell eine gute Übereinstimmung bei der Bewertung des Ansprechens auf die 

Behandlung mit der Entscheidung des Tumorboards. 
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1. Introduction 

1.1 Neuroendocrine Neoplasms (NENs) 

Neuroendocrine neoplasms (NENs) are the general term for a series of malignant tumors derived 

from neuroendocrine cells, with specific morphological and neuroendocrine characteristics (1). 

“Neuroendocrine”, as the name, represents both properties of endocrine and neuronal cells (2), 

therefore, NENs are observed not only in pure endocrine organs or nerve structures but also in 

organs with a diffuse neuroendocrine cell system (lung, bronchi, reproductive system, and 

digestive system) (3). However, they originate most often in the gastroenteropancreatic tract 

(GEP) and have become the second most common digestive cancer (4). 

Compared to other malignant solid tumors, NENs generally are considered indolent tumors with 

benign characteristics and tend to follow a prolonged clinical course even with distant metastases 

at first diagnosis (4,5), which account for 40-50% of NEN patients (6).  

1.1.1 Epidemiology 

NENs are rare, but in the last 3 decades, the incidence of NEN has steadily increased worldwide 

(4,7). Studies suggested that the age-adjusted incidence rate (AAIR, per 100.000 per year) of 

NENs increased 6.4-fold between 1973 and 2012 in the US (8), and increased 2.36-fold (from 

2.48 to 5.86) from 1994 to 2009 in Canada (9). Whereas, the AAIR of gastrointestinal NENs 

increased 23-fold in men and 47-fold in women from 1995 to 2006 in the UK (10). 

In the European database: In Germany, the AAIR of GEP-NENs increased significantly between 

1976 and 2006 from 0.44 to 2.33, resulting in a 5.28-fold increase (11); whereas the AAIRs of 

NENs increased from 13.3 in 1993 to 21.3 in 2010 in Norway (12), from 2.1 in 1990 to 4.9 in 

2010 in the Netherlands (13), and also increased both in male and female cohorts in Sweden 

(14,15).  

Meanwhile, there is the same trend in Asia: There is an approximately 1.2-fold increase in the 

number of patients of pancreatic NENs (pNENs) in Japan from 2005 to 2010 (16). In India, 
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compared to the diagnosed period from 2001 to 2005, the number of GEP-NEN patients who 

were diagnosed from 2011 to 2016 has increased more than 6.3-fold (17). 

Moreover, NENs, especially those of the intestine and pancreas, commonly present with 

metastases at initial diagnosis (5), which are most frequently located in the liver (6). “In the largest 

US epidemiological database (SEER), the analysis of all cases with available information, the 

metastatic status was 49% in localized, 24% in regional metastases, and 27% in distant metastases” 

(5), while the percentages of the study in Norway were 40.4%, 17.5%, and 42.1% respectively 

(12). However, “the five-year survival ranges from 60% to 100% for the localized disease to 25% 

for the metastatic disease for pNENs” (18). 

1.1.2 Prognostic factors 

The prognosis of patients with neuroendocrine tumors is affected by many factors. Among those, 

the presence of liver metastases is the factor with the worst prognosis for NENs patients (19). 

Moreover, the clinical occurrence, development of liver metastases, and 5-year survival rates of 

neuroendocrine tumor liver metastases (NELM) patients have been impacted by the primary sites, 

differentiation, grading, tumor load, functionalities, and treatment strategies (5,20). However, the 

functionalities and treatment strategies depend to some extent on other indicators. Here we mainly 

discuss the indicators other than treatment. 

1.1.2.1 Histologic differentiation and Grading  

The gold standard for the diagnosis of NEN is the histopathological analysis from biopsy samples 

(21), and the differentiation and grading have been suggested as the strongest predictors of survival 

by ENETS guidelines (5). 

“Well”- and “poorly”-differentiated are used to describe the difference between NEN cells and 

normal neuroendocrine cells. As long as the morphological features of NEN cells are highly similar 

to normal neuroendocrine cells and show a low degree of atypical cells, NEN is defined as well-

differentiated and is usually called neuroendocrine tumor (NET) of the digestive system (3). 

Conversely, NEN cells without the typical morphology of neuroendocrine cells (e.g. severe cell 

atypia), are labeled as poorly differentiated and are defined as neuroendocrine carcinoma (NEC) 

(3).  
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The nucleic cell cycle-dependent marker Ki67 (MIB1) antigen is used to determine the 

proliferative activity of NENs. Counting the mitoses per high-power field can also be used to 

define the grading, but not as reliable as Ki67 (21).  

The classification based on histologic differentiation and grading (proliferative activity) from the 

World Health Organization (WHO) provides a useful standard for clinicians. Although organ-

specific classifications have been historically developed and are in use, general classification 

principles for all NEN types were defined in 2019 (22,23). The current classification framework 

for GEP-NENs is provided in Table 1 (2,23). In this classification, NETs are further graded as 

grade 1 to grade 3, while NECs are always considered high grade, only subclassified into small- 

and large-cell (23). Moreover, NEC patients have more frequent distant metastases compared to 

NET patients (5), and the higher the grade the worse the patient’s outcome (2,8). 

Mixed neuroendocrine–non-neuroendocrine neoplasms (MiNENs), which were previously called 

mixed adenoneuroendocrine carcinomas (MANECs), combine a neuroendocrine component and 

a non-neuroendocrine component (generally an adenocarcinoma), and both of them account for 

at least 30% of the neoplasm (24). The prognosis of MiNEN lies in between that of “pure” NEN 

and that of “pure” adenocarcinoma of the same origin (24). 

Table 1. 2019 WHO Classification for Neuroendocrine neoplasms (NENs) of the digestive system  

Terminology 
Histologic 

differentiation 
Grade 

Mitotic rate 

(mitoses/2 

mm2) a 

Ki-67 (%) b 

NET G1 

Well differentiated 

Low <2 ≤2 

NET G2 Intermediate 2-20 3-20 

NET G3 High >20 >20 

NEC G3, small-cell 

type (SCNEC) 
Poorly differentiated High >20 >20 

NEC G3, large-cell 

type (SCNEC) 

MiNEN  

Well or poorly 

differentiated (both 

components) c 

NA NA NA 



1. Introduction 

 17 

WHO, World Health Organization; NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma; 

MiNEN, Mixed neuroendocrine-non-neuroendocrine neoplasm; NA, not available. 

a at least 50 fields are evaluated at ×40 magnification in the area of highest mitotic density. 

b Percentage of at least 500 tumor cells in the area of highest Ki‐67 nuclear labeling (hot spot). 

c MiNEN tumors are not pure neuroendocrine neoplasms; grading is performed separately for the 

NEN component and the non-neuroendocrine counterpart by WHO 2019; The overall grading of 

NENs is based on the highest proliferation index.  

This table was created according to the original table in (23). 

1.1.2.2 Primary sites 

The primary site is considered as another important predictor of survival (8,25) since different 

primary sites have different tendencies in differentiation, grading, metastatic disease. Most 

midgut NENs are well-differentiated and grow slowly (20), whereas, pancreas and small intestine 

are more often, even at initial diagnosis, combined with liver metastases (5,6). Moreover, the liver 

metastases from NENs originating in the different primary sites represent a significant and 

frequent clinical occurrence, which negatively impacts prognosis (19).  

A study of 64971 patients with NENs from 1973 to 2021 in the US showed that the median overall 

survival (OS) of NENs ranged from 4 months to 30 years from different sites, with the best OS 

at sites of the small intestine and appendix; followed by the rectum, cecum, and pancreas; colon 

and liver had the worst prognosis (8). Another study from Spain of 2813 patients showed that the 

prognosis was good for the mid-gut-NENs (including appendix), intermediate for gastric or 

pancreatic NENs, and poor for colon, rectum, hepatobiliary, or esophageal and those of unknown 

primary (25). Whereas, a study from Norway showed that the overall 5-year survival rates of 

NENs from rectal, appendiceal, and small intestine were higher than 60%, while from the stomach, 

colon, and pancreas were lower than 60%, among which pancreatic NENs (pNENs) were the 

worst (26). 

NENs from different primary tumor locations present also with different hormonal symptoms and 

syndromes. Depending on their hormonal hypersecretion, they may present for example with a 

carcinoid syndrome, mostly seen in the case of a small intestinal NEN, which is often 

characterized by cardiac and gastrointestinal symptoms (diarrhea, flushing); whereas pNENs are 
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in the majority of cases hormonally silent (27) and therefore called nonfunctional in contrast to 

above given functional NEN. Functional pNEN present 10-40% of all pNENs and can produce 

insulin, gastrin, vasoactive intestinal polypeptide (VIP), glucagon, somatostatin, 

adrenocorticotropic hormone (ACTH), serotonin, and so forth, giving rise to the respective 

clinical syndromes, respectively, such as Whipple triad syndrome (Insulinomas), Zollinger-

Ellison syndrome (Gastrinomas), Verner-Morrison syndrome (VIPomas), hyperglycemia 

(Glucagonomas), steatorrhea, achlorhydria, diabetes mellitus, and cholelithiasis 

(Somatostatinomas), ACTHomas, and carcinoid syndrome, etc (4,28). Additionally, functional 

pNENs have a better long-term prognosis compared to nonfunctional pNENs (27). 

Moreover, the primary sites are associated with histology and grading, which were also affecting 

the prognosis (8,26). 

1.1.2.3 Biochemical Markers  

Biochemical markers have important roles in the diagnosis and follow-up of NEN patients, and 

several new biomarkers, e.g. circulating DNA, mRNA, or circulating tumor cells are investigated 

but still need more clinical trials to be evaluated (29). Those which have been used in the clinic 

for many years can be roughly divided into two categories: hormones or amines secreted by NEN 

cells have been used in functional NENs, while the “general markers” have been particularly used 

in non-functional NENs (29,30). However, their sensitivity, specificity, and possible effects of 

the co-existent disease(s) and/or drugs limit their accuracy in diagnosis, but they are considered 

as a method of auxiliary diagnosis and follow-up (31). The three most commonly used 

biochemical markers for the gut and pancreas are listed below. 

Chromogranin A (CgA), an acidic protein widely existing in neuroendocrine cells, is the most 

important general biochemical marker by far and can be used for prognosis and follow-up since 

its concentrations generally correlate with the tumor cell type, histological differentiation, and 

tumor burden of NENs (32–35). The sensitivity and specificity are generally between 60 and 90% 

(29,32,36) and may increase to 100% in metastatic NENs (37–39) or in combination with other 

diagnostic methods (40–42). Of note, it was also reported that there were some common 
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conditions – decreased renal function, treatment with PPIs, or treatment for hypertension – can 

slightly increase the levels of CgA and lead to false-positives (31,43). 

Urinary 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin, is mainly 

produced by midgut NENs and causes diarrhea and flushing in the form of carcinoid syndrome. 

Therefore, the 24-hour urinary 5-HIAA collection is recommended to monitor NENs with 

carcinoid -syndrome (31,32) rather than serum serotonin which showed unreliable for diagnosis 

and in follow-up because of large individual variation (30). Although 5-HIAA has a high 

specificity (90–100%) in the carcinoid syndrome, the reported low sensitivity (35–68%) limits its 

clinical use. Moreover, its level is not directly related to the severity of symptoms but is associated 

with an increased incidence and severity of carcinoid heart disease (31,32,44,45). Additionally, 

the level of 5-HIAA interferes also by some normal foods, drinks, and drugs thereby leading to 

false-positive findings (31). 

Insulinomas, which are the largest fractions in well-differentiated pNETs, secreted increasing 

insulin and cause hypoglycemia. The 72-hour fast test is the current gold standard for the 

diagnosis of insulinoma (30) with near 100% sensitivity and specificity by several studies (46–

48). However, endogenous hyperinsulinism and other causes of hypoglycemia, such as exogenous 

insulin, oral hypoglycemic drugs, or autoimmunity, should also be differentiated (32). 

1.1.2.4 Hepatic tumor load (HTL) 

“The presentation of metastatic disease represents the most important prognostic factor after 

tumor grading” (5). As the most common metastasis organ, the tumor burden or the number of 

metastases in the liver represent additional prognostic parameters (5), which are essential in the 

intervention of liver metastases (49).  

Hepatic tumor load (HTL), which is usually expressed as the ratio of liver tumor volume to total 

liver volume, is used to describe the extent of liver involvement with metastases (50). The 

European Neuroendocrine Tumor Society (ENETS) suggested HTL as an important negative 

prognostic factor and crucial information regarding tumor resectability in patients with 

neuroendocrine liver metastases (NELMs) for follow-up (5,6). “Macroscopically, depending on 

the therapeutic approach, three different patterns of liver metastases have to be differentiated” 
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(51). (A) “Simple pattern, whereby liver metastases occur only in one liver lobe or are confined 

to two neighboring liver segments. They can be found in 20–25% of the cases and can be removed 

by a standard anatomical resection. (B) Complex pattern, liver metastases occur predominantly 

in one lobe and with smaller satellites in the other lobe (10–15%). They can still be handled 

surgically, including ablative approaches. (C) Diffuse pattern, multifocal liver metastases are 

present in around 2/3 of the cases and should not be treated surgically” (5) (Figure 1). However, 

to date, no standardized quantitative method exists for fast and reliable measurement of HTL of 

all three metastatic types, so far (50). 

 

Figure 1. Three types of NEN-liver metastases 

1.1.3 Radiological Diagnosis of NELMs 

As the most common method of tracking treatment response and prompting key information about 

the tumor itself, the need for radiological diagnosis is becoming stronger, especially in the follow-

up of NELM patients. The choice of imaging methods varies depending on the purpose and the 

patient’s tumor status (52).  

1.1.3.1 MRI 

Magnetic resonance imaging (MRI) plays an important role in the diagnosis of focal and diffuse 

liver disease and has become a cornerstone in evaluating neuroendocrine liver metastases (NELMs) 

from diagnosis to follow-up (53,54). The high tissue contrast makes it the most sensitive technique 

for detecting NELMs in contrast to, ultrasound (US), computed tomography (CT), or somatostatin 

receptor scintigraphy (SRS), and lead to its use in first-line imaging (49,55,56). However, the sole 

application of non-contrast MRI often leads to missing small metastatic lesions. The use of MRI 

contrast agents strongly improves the detection of small hepatic metastases detection due to the 

higher tissue contrast of healthy vs. metastatic tissue (57).  
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Gadoxetic acid-enhanced MRI (Gd-EOB MRI), one of the hepatocyte-specific contrast agents, is 

recommended for detecting hepatic lesions based on its biodistribution characteristics among all 

the contrast agents (58). Gd-EOB can only be taken up by normal hepatocytes, thus a difference 

in intensity between normal and cancerous liver tissue can be observed (59,60). Although only a 

few studies on its role in detecting NELMs exist, all studies demonstrated excellent performance 

due to the additionally available hepatobiliary phase (HBP) (53,58,61–63). In patients with normal 

liver function, the absorption of Gd-EOB in the liver parenchyma reaches its peak 20 minutes after 

injection, corresponding to the HBP, also visualizing the biliary system at this phase (61,64–71). 

The pattern of NELMs in HBP is not different from other malignant hepatic tumors, with a strong 

contrast between the hyperintense liver and non-enhancing metastases (60,72–74). However, 

several studies showed that HBP not only aids in better lesion detection compared to other MRI 

sequences in NENs (58,61,68,75–77) but also enables a precise lesion segmentation due to a clear 

delineation between tumor and liver (61). Therefore, Gd-EOB MRI is considered routinely for 

diagnosis and follow-up of NELMs patients (56,59,78). 

On the other hand, diffusion-weighted imaging (DWI) has been also suggested as a good sequence 

for detecting NELMs without the disadvantages of intravenous contrast agents (79,80). In a recent 

study, the combination of DWI and HBP has been suggested as the most sensitive imaging method 

for NELMs (58). 

1.1.3.2 CT 

CT has been the standard technique and plays a key role in the diagnosis of NELMs, with the 

mean sensitivity of 84% and the mean specificity of 92% (49). Besides, CT is the preferred test 

when chest lesions are considered (49). It can reflect the location of the tumor, invasion of the 

area, surrounding tissues and organs, and plays an important role in determining the surgical plan 

and staging (81). 

1.1.3.3 Scintigraphy, SPECT and PET(/CT) 

Positron emission tomography (PET) is a highly sensitive method for nuclear medicine diagnosis. 

Positron emission tomography-computed tomography (PET-CT) performs PET and CT almost 

simultaneously and can fuse the information of these two complementary technologies: CT 

provides accurate anatomic information, while PET maps normal and abnormal tissue functions. 

PET-CT can be more accurate and faster to identify the type and exact location of NENs (82). In 
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general, PET-CT is used in NEN patients with unknown primary tumor sites or for staging to 

examine systemic spread. 

Neuroendocrine cells express somatostatin receptors (SSTRs) on their cell surface, especially in 

GEP-NETs with a high incidence and density, which make them turn into unique and specific 

molecular targets for nuclear imaging (49,83,84). Octreotide is a synthetic somatostatin-like 

molecule with a much longer half-life than that of somatostatin, therefore, OctreoscanTM (111In-

pentetreotide) has been widely used as the first nuclide label in somatostatin receptors scintigraphy 

(SRS) for NENs since the 1980s (83,85). In recent years, 68Ga-labeled somatostatin analogs-

PET/CT (68Ga-SSAs-PET/CT, i.e. 68Ga-DOTA-TOC/TATE/NOC-PET/CT) have gradually been 

used instead of 111In-labeled SRS and become the preferred modality for SSTR imaging due to 

their excellent biodistribution, pharmacokinetics, high sensitivity, low side effects, and better 

imaging quality (4,86–88). SRS still plays an important role in the search and localization of 

primary lesions, the detection of distant metastases, which helps to accurately determine the stage 

and biological behavior of NENs and guide the development of individualized treatment plans for 

NEN patients. From the guideline of ENETS, the mean sensitivities of 68Ga-SSAs-PET/CT for 

well-differentiated NET (G1-G2) detection was between 88 and 93%, and the specificities ranged 

between 88 and 95% (49). Notably, taking into account the physiological uptake during image 

analysis can avoid false positives. Before SSTR imaging, long-acting somatostatin should be 

paused for 3 to 4 weeks, and short-acting somatostatin analogs should be used for 24 to 48 hours 

(83). 

For high-grade NENs (normally G3), 18Fluorine-labeled fluorodeoxyglucose (18F-FDG) is the 

most commonly used positron-nuclide-labeled drug in clinical practice (49,89), since it reflects 

the glucose metabolism of tumors (90), which has been shown to be elevated in high-grade NENs 

(91). The high uptake of 18F-FDG often indicates a poor prognosis so that 18F-FDG positive NET 

G2 correlates to poor biological outcomes. However, the sensitivity of 18F-FDG-PET/CT for NET 

detection has been reported with the ranges from 37 to 72% (49). 

The demonstration of sufficient somatostatin receptor expression is a prerequisite of peptide 

receptor radionuclide therapy (PRRT) (49), which is considered an important treatment option. 
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Thereby, SRS positivity can be used to stratify the patients for eligibility for PRRT or monitor 

the therapeutic effect after PRRT.  

1.1.3.4 Ultrasound, Endoscopy, and Endoscopic ultrasound 

Ultrasound (US), known as an operator-sensitive modality, provides diagnostic information for 

limited parts of the abdomen, such as liver and pancreatic lesions (49,52). Although it has the 

advantages of being a radiation-free, real-time examination, and can guide biopsy, it is greatly 

restricted in the evaluation of efficacy and judgment of disease progression, which makes it only 

an auxiliary method in combination with other imaging techniques for the initial diagnosis of 

NELMs but is not suited for follow-up (92,93). Especially in obese patients, US is unreliable due 

to difficulties in performing the examination (52). 

The widespread use of endoscopy has led to a significant increase in the detection of rectal, gastric, 

and duodenal NENs (11,94). The detection of small bowel NETs may be made by capsule 

endoscopy (52). However, endoscopy can only observe luminal lesions, which helps detect the 

primary site of the NENs but has no role in staging and follow-up of liver metastases. 

Endoscopic ultrasound (EUS), a combination of endoscopic technology and ultrasound imaging, 

has the advantages of both, and is recommended as the most sensitive method for identifying 

pNEN (95–97). It also can be used for biopsy guidance to achieve histopathological diagnosis 

(98). However, EUS has the shortcomings of both US and endoscopy, making it unsuitable for 

the follow-up of patients with distant metastases.  

1.1.4 Response Evaluation Criteria in Solid Tumors (RECIST) 

The Response Evaluation Criteria in Solid Tumors (RECIST) are a tumor response assessment 

method, which mainly assesses the change in tumor size as the primary endpoint. It is an important 

feature for the clinical evaluation of the efficacy of NEN therapeutics. It divides response to 

treatment into four categories: complete remission (CR), partial remission (PR), stable disease 

(SD), and progressive disease (PD) (99). However, in the course of clinical practice, this standard 

also has some shortcomings: ① It is not suitable for diffuse NELMs (accounting for 60-70% 

(100)); ② In case of an irregular shape of the lesion measurement can be inaccurate; ③ Since 

only two lesions per organ are evaluated, in case of a higher number of metastases, RECIST can 
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be inaccurate due to mixed response. In addition, RECIST neglects HTL and its prognostic value. 

Therefore, RECIST in NELM patients can inaccurately lead to an over- or undertreatment of at 

least some NEN patients (101).  
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1.2 Clinical application of artificial intelligence (AI)  

Recently, artificial intelligence (AI) has developed rapidly in various fields. In the field of 

healthcare, AI technology, including its deep learning subtype, is becoming a major component 

of many applications. This extends to drug discovery, remote patient monitoring, medical 

diagnosis and imaging, risk management, wearable devices, virtual assistants, and hospital 

management (102).  

Radiologists usually assess medical images visually and report findings to diagnose or monitor 

diseases. This assessment is usually subjective. Meanwhile, with the increasing demand for 

imaging, radiologists are required to make more decisions in a shorter time, which inevitably 

increases the error rate (102). However, the judgment of treatment response relies upon the 

radiologists’ decision. Under these circumstances, AI has been integrated into the clinical 

workflow as a tool to assist doctors and has shown a reasonable performance in image-based 

diagnoses (103–107). Moreover, AI is better at recognizing complex patterns in image data, and 

can automatically provide quantitative assessments, which can be more accurate and repeatable 

for radiological assessments (102).  

Many studies have already shown that AI demonstrated excellent performance in segmentation, 

texture analysis, and classification in a variety of tumors such as brain tumors, prostate tumors, 

and breast cancer (108–112). Only a few studies have reported the application of AI in the 

pathology of NENs (113–117). 

The main challenge in radiological practice evaluating NELM is that the traditional indicators 

used to estimate tumor burden and determine treatment response, including the longest tumor 

diameter measured by established RECIST standards, are oversimplifying. Although several 

semiautomatic techniques to achieve 3D lesion segmentation has been proposed (110–112), this 

field is still in its infancy and is only being used in small clinical trials since the accurate 

segmentation of lesions remains time-intensive. A general application suitable for daily clinical 

practice has not yet been established. 

Like other image recognition approaches, the task of AI in medical imaging is to create models, 

which are deduced from training data, tuned to produce accurate predictions by an optimization 
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algorithm, to be able to deliver correct predictions for new, unseen data (118). Generally, the 

process can be divided into the following five steps: (1) Obtaining the target image data set and 

labeling information; (2) Image preprocessing; (3) Training the model on labeled data (4) 

Validating the model (5) Evaluation of the model on a test set. Segmentation is a basic but 

challenging task for such models. 

For the first step, the most common form and considered the ‘gold standard’ in clinical practice 

and research is supervised learning (119). That is, the images trained by AI have corresponding 

classification labels. Although unsupervised learning has been widely used in other fields, to our 

best knowledge, no study has investigated the fully automatic segmentation of hepatic tumor 

because of the following reasons: (i) the anatomy of the liver is complex and (ii) there are many 

types of treatments for patients with liver tumors, and the manifestations of tumor lesions are 

variable.  

Recently proposed deep learning architectures for segmentation include fully convolutional 

networks, U-net, and variants based on these model architectures (102).  

Convolutional neural networks (CNNs), which are far more ubiquitous in image analysis now, 

were first used in medical applications in 1995 (120) but had their major success hand writing 

recognition in 1998 (121). After these promising results, the CNNs were not commonly used until 

2012, in which year Krizhevsky A. et al. used CNNs to win the ImageNet challenge by a large 

margin (122). After that, not only did algorithmic developments lead to more efficient training, 

but advances were also made in terms of computing power enabling the widespread use of the 

technology. CNNs have now become the basis for many algorithms outperforming other 

techniques by a large margin. 

1.2.1 U-Net: 

The successful training of CNNs requires enormous, annotated training data, which is beyond 

reach in many biomedical tasks. To facilitate the training process, Ronneberger O. et al. (123) 

presented a network, called U-net due to its shape (shown in Figure 2), which has been specifically 

designed for the segmentation of medical images (102).  
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Figure 2. The structure of a U-Net (example for 32*32 pixels in the lowest resolution) (123). 

The U-net architecture involves two interconnected pathways: The contracting path (left side) is 

used to extract image features, capture context, and compress the image into feature maps 

composed of features, which followed the typical architecture of a CNN; Expanding path (right 

side) is used for precise localization and decode the extracted feature into a segmented prediction 

image with the same size as the original image. Every step in the expansive path includes an up-

sampling of the feature map and a concatenation cropping feature map from the contracting path, 

which mirrors the loss of border pixels in every convolution and gains the higher resolution 

feature maps (123). Remarkably, the different feature fusion method of a U-Net is very different 

from other common segmentation networks. 

Data augmentation, especially by applying elastic deformations, is critical to train the network 

with few training samples but can also be used to improve training accuracy in larger networks. 

It “augments” the number of available images by various distortions of the original images, such 

as rotation, skewing, noise filtering, or other geometric or voxel value transformations. Thereby 

a larger dataset, still representing the original ground truth can be created. In many applications, 

instead of using batches as input images, U-Net uses tiles of the images to reduce the 
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computational burden and to maximize usage of the GPU memory, and minimize the time of 

training (123). 

1.2.2 nnU-Net (no new-UNet) 

Although the U-Net architecture was swiftly considered the gold standard in medical image 

segmentation since it was presented in 2015, there was still a non-negligible issue that needed to 

be improved – the U-Net lacks the adaptability to novel problems – the overall performance will 

be affected by the choices of each step (including exact architecture, pre-processing, training, and 

inference) making the tuning of hyperparameters a tedious undertaking.  

To save solve this issue, Isensee F. et al. (124) proposed the no-new-Net (nnU-Net) in 2018, 

which is a model based on U-Net. They simplified the redundant structure of U-Net and focused 

on improving its performance and generalization by self-adaptation to the dataset at hand. The 

resulting nnU-Net architecture achieved good results in the Medical Segmentation Decathlon 

challenge in 2018.  

Moreover, the architecture of nnU-Net provided a way to solve 3D medical image segmentation 

tasks. The nnU-Net architecture consists of two-dimensional (2D) and 3D U-Nets which are then 

used in a U-Net cascade (124). In detail, during the nnU-Net training multiple low- and high-

resolution 2D and 3D U-Nets are generated, due to limitations in GPU memory with patches of 

the imaging as input images (architecture shown in Figure 3A) (125). During the inference 

process, the segmentation of the different U-Net models is concatenated and refined by a second 

3D U-Net. 
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Figure 3. The 3D U-Net architecture (A) (125) and U-Net cascade (B) (124). 

1.2.3 Assessment of the algorithm’s performance  

During the training process of a deep learning network, stopping at the right moment is crucial to 

avoid overfitting (training too long) and generalization (training too short) of the algorithm. 

In most segmentation tasks, the category of interest represents data points with special properties, 

which is termed the "positive" class, while another category acts as a "background" category, 

which includes everything else and is called the "negative" class (126). The results of prediction 

can be divided into 4 categories: true positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN) based on the comparison of actual and predicted conditions (126,127). 

(Shown in Table 2). Within this category, TP and TN are the correct classifications of positive and 

negative conditions, and conversely, FP and FN represent misclassification of positive and 

negative conditions, respectively. To evaluate the performance of the AI model in predictions, 
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several statistical measures are employed according to the goal of the study and the four kinds of 

predicated results.  

Table 2. Results of prediction. 

 
Predicted condition 

Positive Negative 

Actual condition 
Positive TP FN 

Negative FP TN 

TP = True Positive; FP = False Positive; TN = True Negative; FN = False Negative. 

1.2.3.1 Dice coefficient 

The Dice coefficient (DC), also called the F1 score, was first proposed by L. R. Dice in 1945 (128) 

and is now used to evaluate AI algorithms that perform segmentation on medical images by 

comparing the prediction with the ground truth (129–132). The DC is an ensemble similarity 

measurement function, defined as follows, and ranges in [0, 1], while 0 indicates that the prediction 

fails to match the ground truth completely, and conversely, 1 indicates that the prediction has 

perfectly matched the ground truth (128–132). 

DC (A, B) = 
2 |A ∩ B|

|A| + |B|
 

where A is the ground truth, B is the segmentation result (prediction), A ∩ B is the intersection 

of A and B, which presented the TP (shown in Figure 4). 

 

Figure 4. The performance of AI. A: Ground Truth; B Prediction; A ∩ B: True positives. 

However, DC only compares the part that is predicted to be positive (B) with the truly positive 

part (A), which presents |TP+FP| and |TP+FN| respectively. Therefore, the equation of DC can be 

written as below, which does not consider the part of TN (133). 

B 

A ∩ B 

A 
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DC (A, B) = 
2 |A ∩ B|

|A| + |B|
 = 

2 TP

2TP+FN+FP
 

In some medical segmentation tasks, it is common that the target organ occupies only a small 

region of the scan, which makes the predictions strongly biased towards the background and results 

in a skewed prediction (134). 

1.2.3.2 Matthews correlation coefficient 

Recently, the Matthews correlation coefficient (ϕ) was suggested as a more reliable statistical 

measurement compared to DC since it considers the 4 categories (TP, TN, FP, FN) together, with 

more robust predictions on imbalanced datasets (135). The Matthews correlation coefficient will 

get a high score only when all 4 predicted categories are highly accurate. In this setting, the 

Matthews correlation coefficient is suggested to be the more robust metric in binary classification 

compared to the F1 score (135–137). The Matthews correlation coefficient ranges from -1 to 1, 

with -1, 0, and 1 indicating a complete misprediction, random prediction, and perfect prediction, 

respectively (135). The larger the Matthews correlation coefficient, the better the prediction. 

Matthews correlation coefficient (ϕ) =
TP∙TN−FP∙FN

√TP+FP)(TP+FN)(TN+FP)(TN+FN)
 

(worst value: –1; best value: +1) 

1.2.4 Application status of AI in imaging of liver metastases 

Although MRI was suggested as the most sensitive technique for detecting liver metastases, a 

review in 2017 indicated that CT was the most common medical imaging modality used for AI 

analysis (138), because AI model training on MRI is inherently more difficult due to the only 

semiquantitative nature or MRI images and other factors related to the image acquisition and 

underlying pathology (139). Thus, in comparison with CT images, automatic liver tumor 

segmentation in MRI is more challenging. However, the combination of the clear tumor-liver 

interface on the HBP sequence of Gd-EOB-MR and the excellent performance of nnU-Net in multi-

organ segmentation with a fully automatic manner seems to be the solution to these problems.   
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1.3 Aims of this study 

1.3.1 Establishing an AI model  

The first goal of the study was to establish an AI model with high accuracy and high robustness, 

which would allow the automatic delivery of the absolute 3D volume of the HTL. 

1.3.2 Application of the AI model  

Based on the obtained 3D-AI-model, the 3D volume and HTL of NELMs are automatically 

segmented and relevant response indicators are calculated for comparison with the MCC 

decisions, which is as part of our ENETS Center of Excellence. 
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2. Materials and methods 

The main data flow is shown in the flowchart below (Figure 5), and the details are reflected in 

the following subsections.  

 

Figure 5. Data flowchart of the study. 

2.1 Part 1: Establish a high-precision AI model 

As shown in Figure 5, all 398 MRI scans of 149 patients with NENs who underwent Gd-EOB 

(Primovist, Bayer, Berlin, Germany) enhanced MRI (1.5 T, Siemens Aera) between January 2015 

and August 2018 at the radiology department of Charité Campus Virchow-Klinikum were 

retrospectively identified from our radiology database as the AI development (AI dev) cohort, 

regardless of whether any therapeutic interventions had been done. Hepatobiliary phase images 

were acquired at minute 20 after injection of 0.025 mmol/kg (0.1 ml/kg) body weight of Gd-EOB 

at a rate of 2 ml/s, using the care bolus technique.  

Compare manual segmentation 

in HBP to DWI sequences 

AI dev cohort: 

Manual segment all 398 Gd-EOB-MRI 

scans from 149 NENs patients 

Exclusion: 

112 scans without evidence of LMs 

8 scans were non-standard protocols 

Training dataset: 

222 scans (80%) 

Testing dataset: 

56 scans (20%) 

well-trained AI model 

MCC cohort: 

66 Gd-EOB-MRI scans 

from 33 NENs patients 

Internal validation External validation 
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2.1.1 Manual segmentation on AI dev cohort  

The HBP sequences of all MRI scans were anonymized, and participants were blinded throughout 

the manual segmentation process and could only identify NELMs based on radiological 

experience (combined with T2, DWI sequences). All segmentations were refined by a radiologist 

with >5 years of experience in abdominal MRI. 

The task of segmentation is usually defined as identifying the contours of the object of interest in 

medical images. In our project, the borders of the metastases were defined between the contrast-

enhancing liver tissue and the non-enhancing metastases. The Medical Imaging Interactive 

Toolkit (MITK) was used during segmentation and volumetric 3D segmentation was performed 

of the liver and the liver metastases in the HBP. The segmentation was performed manually using 

the polygon region of interest (ROI) built into MITK. 

2.1.2.1 Manual segmentation for the liver in HBP sequences 

The first step in the segmentation task is liver segmentation. It is very important to divide the 

contours of the liver as perfectly as possible, slide-by-slide. Of note, vessels and biliary ducts 

should be excluded where feasible. An example of the different slices of the liver and the 

corresponding manual segmentation results are shown in Figure 6. In some slices, there is overlap 

between the liver and adjacent organs making it difficult to distinguish the boundaries 

(mediastinum in C, kidney in G). Or there are non-hepatic structures within the liver (hepatic 

ligament, portal vein, inferior vena cava in E) that need to be excluded from the target area. 
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Figure 6. Manual segmentation of the liver (red areas in B, D, F, H) on different slices of the HBP 

sequence 20 min post Gd-EOB-MRI (A, C, E, G). Yellow arrows indicate the mediastinum (C, D), 

hepatic ligament, portal vein, inferior vena cava (E, F), and kidney (G, H), respectively. 

2.1.2.2 Manual segmentation for NELMs in HBP sequences 

The second step in the segmentation task is NELMs segmentation. The boundary between the 

NELMs and normal liver tissue on the HBP sequence is shown as a contrast between hypointense 

and hyperintense images. Notably, the hepatic vessels are also hypodense in the HBP sequence. 

In cases of diffuse lesions, this is a complex and time-consuming process that requires absolute 

patience to differentiate small hepatic tumor lesions from hepatic vessels. Additionally, the 

distribution patterns of NELM were assessed as follows: singular (n=1), multiple (n≤10), and 

diffuse (n>10) and according to their localization: unilobar or bilobar.  

Manual segmentation of a patient with diffuse liver metastases (A, B, C) and a patient after right 

hemihepatectomy (D, E, F) is shown in Figure 7. In Figure 7A, the yellow and white arrows point 

to two adjacent low-density circular hypointense areas, for which it is difficult to determine 

whether it is a metastasis or a vessel from this slice alone. So, it is important to look dynamically 

at multiple consecutive slices: NELMs appear relatively fixed in position, whereas hepatic vessels 

show a sliding migration on successive slices. The difference between NELM (yellow arrow) and 

hepatic vessels (white arrow) is depicted in Figure 7B. An overlap image of the liver segmentation 

with the NELM segmentation is shown in Figure 7C. 

The yellow and white arrows in the right hemihepatectomy case (Figure 7D) point to NELMs and 

hepatic vessels respectively. The green area in Figure 7E is the result of the segmentation of the 

two NELMs, and the overlapping image of the liver segmentation with the NELM segmentation 

is shown in Figure 7F. From this slice alone, the distribution pattern of NELMs is multiple (2 

metastases), and unilobar (left).  

In addition to dynamic observation, it is also possible to discriminate NELMs from hepatic vessels 

simultaneously with the help of the T2-weighted phase and/or DWI phases. The NELMs are 

highlighted in the T2 and DWI phases can thus be distinguished from the vessels. 
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Figure 7． Examples of manual segmentation of NELMs (green areas in B, E) and the liver (red 

areas in C, F) on different slices of the HBP sequence on Gd-EOB-MRI (A, D). (A, B, C) diffuse 

pattern NELMs case; (D, E, F) post right hemihepatectomy case. Yellow arrows indicate the 

NELMs, whereas, white arrows indicate hepatic vessels (A, B, D, E). The HBP sequences were 

acquired 20 min after manual bolus injection of Gd-EOB-DTPA. 

2.1.2 Model training 

After checking all segmentation results and the corresponding clinical data, 120 out of 398 scans 

were excluded for missing evidence of NELM (n=112) [diagnosis of no NELM or CR after 
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treatment for NELM] or due to non-standard scan protocols (n=8). 222 out of the remaining 278 

(80%) MRI scans were randomly chosen for the model training. The nnU-Net deep learning 

framework was used as the basic algorithm, which is available open-source on Github 

(https://github.com/MIC-DKFZ/nnUNet).  

2.1.3.1 Preprocessing 

Image preprocessing aims to standardize different types of imaging, in preparation for model 

training. According to the nnU-Net framework, the general preprocessing of 3D medical image 

segmentation can be divided into four steps, which are data format conversion, cropping, 

resampling resamples, and normalization (124,140).  

Data format conversion: The data was converted from Dicom images to NIFTI/NRRD format 

for easier file handling and improved file loading using the dcm2niix conversion tool (141).  

Cropping: Image cropping is to crop a 3D medical image to its non-zero area. The specific 

method is to find the smallest 3D bounding box in the image. The value outside the bounding box 

area is 0, and the image is cropped using this bounding box. Compared with before cropping, the 

cropped image has no effect on the final segmentation result, but it can reduce the image size, 

avoid useless calculations, and improve calculation efficiency. In our case, this step was omitted, 

as the final segmentation task should be able to work with full abdominal field-of-view imaging. 

Resampling: The purpose of resampling is to solve the problem of inconsistency in the actual 

space size represented by a single voxel in different images in some 3D medical image data sets. 

Because the CNNs only operate in the voxel space, the size information in the actual physical 

space will be ignored. To avoid this difference, it is necessary to resize different image data in the 

voxel space to ensure that the actual physical space represented by each voxel is consistent in 

different image data. As our imaging was acquired using a standardized imaging protocol, 

resampling was not necessary in our case. 

Normalization: The purpose of normalization is to make the gray value of each image in the 

training set have the same distribution and is usually applied on a per-patient basis (z-score 

normalization). 

https://github.com/MIC-DKFZ/nnUNet
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2.1.3.2 Training Procedure 

The AI model was trained end-to-end on the dataset of liver scans from Gd-EOB MRI. Five-fold 

cross-validation was used in the training process. The AI’s segmentation performance in liver and 

NELMs was assessed using the Matthews correlation coefficient. 

2.1.3 Model testing (Internal validation) 

The remaining 56 scans (20%) were used as the internal validation to test the model’s accuracy. 

The original HBP sequences of Gd-EOB MRIs were fed into the trained AI model and 

segmentations and volumes of ROI (liver and NELMs) were automatically determined. Matthews 

correlation coefficient was then used to compare the results of the AI segmentation and the manual 

segmentation. 

2.2 Part 2: Application of the AI model 

2.2.1 MCC cohort (External validation): 

For the external validation, additional 33 patients diagnosed with NELMs were collected from our 

MCC between January 2019 and January 2020 which had received Gd-EOB MRI (1.5T or 3.0T) 

both at baseline (BL) and follow-up (FU, within 6 months), for a total of 66 MRIs as the MCC 

cohort. 

2.2.1.1 Manual segmentation for the liver and NELMs in HBP sequences 

All HBP sequences of the 66 MRIs in the MCC cohort were manually segmented, using the same 

methodology as for the AI dev cohort. 

2.2.1.2 Manual segmentation of liver and NELMs compared with AI in HBP sequences 

The model was applied to the external MCC cohort and the volumes of NELM and the liver at BL 

scan and FU scan were calculated and absolute and relative change in NELM volume and HTL 

were compared to the MCC decisions. Based on the images provided, MCC decisions were 

categorized as therapy success (stable disease (SD) or partial regression (PR)) or therapeutic 

failure (progressive disease (PD)).  
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Matthews correlation coefficients were used to compare the results of AI and manual segmentation. 

Two independent sample rank-sum tests were used to compare the change in tumor volume (both 

absolute and relative changes in NELM volume and HTL) between the treatment success and 

failure groups. ROC curves were used to explore the optimal threshold for disease progression. 

2.2.2 Comparison of HBP sequences with DWI sequences in the MCC cohort 

Additionally available free-breathing fat-suppressed single-echo planar DWI using b-factors of 50, 

400, and 800 s/mm2 were available in the liver MRI protocol. Manual segmentation of DWI images 

with b=400 s/mm2 was performed in the MCC cohort as an additional comparative study with the 

HBP sequence.  

2.2.2.1 Manual segmentation for the liver and NELMs in DWI sequences 

The liver is depicted hypointense on DWI sequences, while the NELMs are moderately 

hyperintense. The segmentation process was the same as for the HBP sequence, i.e., the contours 

of the liver and NELMs were distinguished as accurately as possible. Figure 8 shows an example 

of manual segmentation of the liver and NELMs on a DWI sequence.  
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Figure 8. Example of manual segmentation of the liver and NELMs on a DWI sequence. (A) 

Original DWI image, the white arrows indicate the NELMs (not fully listed); (B) manual 

segmentation of the NELMs (green); (C) the overlapping of the segmentation of the liver (red) and 

the NELMs (green). Manual segmentation was performed on the DWI images with b=400 s/mm2. 

2.2.2.1 Comparison of Manual segmentation for the liver and NELMs in DWI sequences 

with HBP sequences 

NELM and liver volumes, HTL, absolute and relevant changes in NELM volumes, and HTL in 

manual segmentations were calculated and correlated between the DWI and HBP sequences. 

2.3 Statistics: 

Statistical analysis was performed using SPSS Statistics (IBM, Version 25). Kolmogorov-

Smirnov testing was applied to determine the normal distribution and in case of a non-normal 

distribution of the data, nonparametric testing was performed. 
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Median and interquartile range (IQR) was used for descriptive data. Segmentations and their 

relative differences were calculated using the formula: 
model’s volume – radiologists’ volume

radiologists’ volume
. 

Matthew’s correlation coefficients (ϕ) were used for accuracy estimation. MCC decisions were 

compared to the AI-based segmentation in the following manner: HTL was calculated using the 

following formula: 
NELM volume

Liver volume – NELM volume
 × 100% . Absolute volume changes (Δabs) were 

calculated by the difference: VolumeFU − VolumeBL . Relative volume changes (Δrel) were 

calculated by the formula: 
VolumeFU – VolumeBL

VolumeBL
 × 100%. Statistical tests were performed using 

the Mann-Whitney U test (for continuous data), χ2 test or Fisher’s Exact Test (for numerical data), 

and sign test (for related samples). Correlation analysis of continuous variables was performed 

using Spearman's rank test and the corresponding correlation coefficients (rs) were calculated. 

ROC curve analysis was performed and the optimal cut-off value for disease progression was 

calculated by Youden indexes.  
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3. Results 

3.1 Patient cohorts 

After excluding 120 MRI scans from 31 patients, the characteristics of the 118 training patients 

in the AI cohort (278 imaging datasets) and 33 validation patients in the MCC cohort (66 imaging 

datasets) are presented in Table 3. The primary sites are significantly different between the two 

groups (P = 0.0003). The most common primary tumor sites in the AI dev cohort were the ileum 

(50.8%) and pancreas (44.9%), whereas in the MCC cohort ileum and pancreas each accounted 

for 36.4, 27.2% of the tumors originated from other sites. SR status was significantly different 

between the two cohorts (P = 0.047). Whereas there was no significant difference in gender, age, 

Ki67, grading, NET/NEC, functionality, or presence of extrahepatic metastases between the AI 

and MCC cohorts. 

Table 3. The characteristics of AI and MCC cohorts 

 AI dev cohort MCC cohort P-value 

Numbers of Patients 118 33 - 

Numbers of Scans 278 66 - 

Gender (M: F) 51:67 18:15 0.323 

Age(median) 59.14 (49.58-66.43) 56.45 (48.62-67.40) 0.613 

Ki67(%, median) 5.0 (2.0-10.0) 7.0 (2.5-13.0) 0.578 

Primary Site 

Pancreas 

Ileum 

Other 

 

53 (44.9%) 

60 (50.8%) 

5 (4.3%) 

 

12 (36.4%) 

12 (36.4%) 

9 (27.2%) 

0.0003 

Grading 

1 

2 

3 

 

35 (29.7%) 

73 (61.9%) 

10 (8.4%) 

 

8 (24.2%) 

23 (69.7%) 

2 (6.1%) 

0.703 

 

 

 

NET: NEC 115:3 31:2 0.300 

Functionality 

yes 

 

37 (31.4%) 

 

12 (36.4%) 

0.675 
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3.2 Validation of the model  

3.2.1 Internal validation (AI dev cohort) in HBP sequences 

Fifty-six scans of 278 (20%) from the AI dev cohort were randomly chosen for internal validation 

to test the model. The median NELM volume was 17.25 cm3 (IQR: 4.48–60.93 cm3) as calculated 

using the nnU-Net model and 16.17 cm3 (IQR: 4.87–58.16 cm3) for the manual segmentation (as 

target volume). The difference between the manual and automatic segmentation for the NELMs 

was -3.7% (IQR: -24.54–+11.83%). The median segmented liver volume was 1639.9 cm3 (IQR 

1366.1–1960.7 cm3, manual) and 1659.0 cm3 (IQR 1404.2–1966.9 cm3, automatic segmentation). 

The difference in median relative liver volume between the automatic and manual segmentation 

was +0.9% (IQR: -0.7–+4.2%). The automatic segmentation yielded a median ϕ of 0.76 (IQR: 

0.68–0.83) in the segmentation of metastases and 0.95 (IQR: 0.95–0.96) for the entire liver 

(Figure 9). 

no 81 (68.6%) 21 (63.6%) 

Extrahepatic metastases 83 (70.3%) 27 (81.8%) 0.268 

SR 

pos 

neg 

 

97 (82.2%) 

21 (17.8%) 

 

32 (97.0%) 

1 (3.0%)- 

0.047 

 

 

Values are presented as n (%) or median (IQR). χ2 test, Fisher’s Exact Test, or Mann–

Whitney U-test were used depending on data distribution. P < 0.05 was considered 

significant (bold) between AI dev and MCC cohorts. AI: artificial intelligence; MCC: 

multidisciplinary cancer conference; NET: neuroendocrine tumor; NEC: neuroendocrine 

carcinoma.  

Adapted from Fehrenbach et al. (142). 
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Figure 9. Distribution of Matthews correlation coefficients (ϕ) in NELM (blue) and liver (red) 

segmentations. Data are expressed using median and interquartile ranges (IQR). 

The case-wise comparison between Matthews correlation coefficient (ϕ) and manual target 

volumes is presented in Figure 10. The blue dots indicate ϕ in the liver, whereas the red triangles 

indicate ϕ in NELMs. A weak overlap (ϕ < 0.2, orange circled) was seen in only three out of 56 

patients (5.4%). A case-by-case analysis of these three cases revealed that two of the patients had 

very small NELM volumes (0.1 and 0.2 cm3). The metastases showed an atypical imaging 

morphology in the HBP with a hyperintense aspect and were therefore omitted by the automatic 

segmentation. In the remaining cases, a correlation coefficient of at least 0.45 (for NELMs) and 

at least 0.75 (for liver volume) was observed. 

 

Figure 10. Distribution of Matthews correlation coefficient (ϕ, x-axis) in comparison to the target 

volume (cm3, y-axis) in the liver (blue dots) and NELMs (red triangles). Orange circled three: two 

had very low NELM volume and one showed atypical, hyperintense signal intensities of the 

metastases. 
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When regarding high and low NELM volume patients (cut-off-point at the medial of 16.17 cm3), 

there was a significantly higher ϕ in the high NELM volume cases (median ϕ: 0.80; IQR: 0.73–

0.84) in comparison to the low NELM volume cases (median ϕ: 0.71, IQR: 0.64–0.78; p = 0.0025, 

Figure 11). 

 

Figure 11. Comparison of Matthews correlation coefficient (ϕ) between low (blue) and high (red) 

NELM volume (cm3). Data were shown in median and interquartile ranges (IQR). P-value is based 

on Mann–Whitney U-test. NELM: neuroendocrine liver metastases. 

3.2.2 External validation (MCC cohort) in HBP sequences 

Sixty-six scans of 33 patients (BL and FU) from the MCC cohort were used for external validation.  

In this dataset, the automatic segmentation yielded a median ϕ of 0.86 (IQR: 0.81–0.91) for NELM 

segmentation and of 0.96 (IQR: 0.95–0.96) for whole liver segmentation.  

A comparative example of manual and AI segmentations is shown in Figure 12. In the original 

image (A), there are two NELMs on the right side of the liver (white arrows indicated). The manual 

segmentation of the liver is shown in Figure 12B, whereas the AI segmentation is shown in Figure 

12C, and their overlap is shown in Figure 12D. Similarly, the segmentations of NELMs are listed 

in Figure 12E (manual), Figure 12F (AI’s), and Figure 12G (overlap). 
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Figure 12. Comparison between manual and AI segmentations. (A) Original HBP MRI, the white 

arrows indicate the NELMs; (B, E) manual segmentation of the liver and NELMs; (C, F) AI’s 

segmentation of the liver and NELMs; (D, G) overlapping the manually and AI’s segmentation of 

the liver and NELMs.  
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3.3 AI-based NELM Segmentation and Correlation with MCC decision 

3.3.1 Segmentation results from the AI model  

The segmentation results from the model on the MCC cohort are summarized in Table 4. The 

median NELM volume was increased from 23.48 cm3 (IQR: 10.45–113.17 cm3) at the baseline to 

86.93 cm3 (IQR: 12.08–204.50 cm3) at the follow-up, while the median liver volume was from 

1582.23 cm3 (IQR: 1336.25–2030.03 cm3) at the baseline to 1716.75 cm3 (IQR: 1477.12–2092.94 

cm3) at the follow-up, resulting in a median HTL of 1.57% (IQR: 0.55–7.05%) and 5.93 % (IQR: 

0.99–11.74 %), respectively. 

The therapeutic responses were classified by the MCC based on the RECIST 1.1 as stable 

disease/partial remission in 16 (48%) patients (SD: n=14; PR: n=2) and progression in 17 (PD, 

52%) of the patients. In patients classified as a therapeutic success, the median NELM volume, 

liver volume, and HTL were 75.45 cm3 (IQR: 12.35-141.65 cm3), 1692.26 cm3 (IQR: 1475.09–

2061.63 cm3), 4.41vol.-% (IQR: 0.87–7.83 vol.-%) at the baseline, and 66.78 cm3 (IQR: 11.64–

167.82 cm3), 1725.30 cm3 (IQR: 1471.78–2130.28 cm3), 3.75 vol.-% (IQR: 0.75–8.88 vol.-%) at 

the follow-up, respectively. Whereas the median absolute NELM volume changed (ΔabsNELM) 

+0.76 cm3 (IQR: -18.07–39.32 cm3), the median absolute HTL changed (ΔabsHTL) -0.03 vol.-% 

(IQR: -1.28–0.23 vol.-%), resulting in an increase in the median relative change of the NELM 

volume (ΔrelNELM, +3.93% (IQR -15.75–10.36%)), and a decrease in the median relative change 

of HTL (ΔrelHTL, -3.45% (IQR: -18.11–11.15%)).  

Among the patients classified as therapeutic failures, the median NELM volume, liver volume, 

and HTL were 19.15 cm3 (IQR: 7.04–78.44 cm3), 1580.35 cm3 (IQR: 1290.13–1902.53 cm3), 1.46 

vol.-% (IQR: 0.34–5.97 vol.-%) at the baseline and were 86.93 cm3 (IQR: 24.40–253.32 cm3), 

1716.75 cm3 (IQR: 1451.10–2106.81 cm3), 5.93 vol.-% (IQR: 1.47–16.78 vol.-%) at the follow-

up, respectively. The median ΔabsNELM was +59.70 cm3 (IQR: 16.49–156.59 cm3) and the median 

ΔabsHTL was +4.94 vol.-% (IQR: 1.07–9.78 vol.-%). In therapeutic failure, median ΔrelNELM was 

+242.68% (IQR: 124.56–463.87%) and median ΔrelHTL was +204.49% (IQR: 109.39–490.19%). 

Table 4. Aggregate statistics of the AI segmentation results for the MCC cohort.  

Variable Overall 



3. Results 

 49 

 BL FU 

N 33 33 

NELM (cm3) 23.48 (10.45–113.17) 86.93 (12.08–204.50) 

Liver (cm3) 1582.23 (1336.25–2030.03) 1716.75 (1477.12–2092.94) 

HTL (vol.-%) 1.57 (0.55–7.05) 5.93 (0.99–11.74) 

∆absNELM (%) 14.70 (0.76–96.35) 

∆absHTL (%) 0.98 (-0.03–5.41) 

∆relNELM (%) 58.51 (3.93–245.64) 

∆relHTL (%) 64.97 (-3.44–223.31) 

 Therapy Success Therapy Failure 

 BL FU BL FU 

N 16 16 17 17 

NELM (cm3) 

75.45 

(12.35-

141.65) 

66.78 

(11.64–167.82) 

19.15 

(7.04–78.44) 

86.93 

(24.40–253.32) 

Liver (cm3) 

1692.26 

(1475.09–

2061.63) 

1725.30 

(1471.78–

2130.28) 

1580.35 

(1290.13–

1902.53) 

1716.75 

(1451.10–

2106.81) 

HTL (vol.-%) 
4.41  

(0.87–7.83) 

3.75  

(0.75–8.88) 

1.46  

(0.34–5.97) 

5.93  

(1.47–16.78) 

∆absNELM (%) 0.76 (-18.07–39.32) 59.70 (16.49–156.59) 

∆absHTL (%) -0.03 (-1.28–0.23) 4.94 (1.07–9.78) 

∆relNELM (%) 3.93 (-15.75–10.36) 242.68 (124.56–463.87) 

∆relHTL (%) -3.45 (-18.11–11.15) 204.49 (109.39–490.19) 

Values are shown as median and interquartile ranges (IQR). P-values are based on Mann–

Whitney U-test. BL: baseline; FU: follow-up; NELM: neuroendocrine liver metastases; HTL: 

hepatic tumor load; ∆absNELM: absolute NELM volume change; ∆absHTL: absolute HTL 

change; ∆relNELM: relative NELM volume change; ∆relHTL: relative HTL change.  

Table adapted from Fehrenbach et al. (142). 

There was a significant difference in patients with stable disease/partial remission (therapeutic 

success) and progressive disease (therapeutic failure) in all response variables: Patients with 

stable disease/partial remission had significantly lower changes in median absolute NELM 
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volume (∆absNELM), median absolute HTL (∆absHTL), median relative NELM volume 

(∆relNELM) and median relative HTL (∆relHTL) compared to patients with progressive disease 

(all p < 0.001, shown in Figure 13).  

 

Figure 13. Correlation of MCC board decisions with a relative and absolute change of NELM and 

NELM proportion. Data are expressed using median and interquartile range (IQR); p-values 

(Mann-Whitney-U). A: ΔabsNELM; B: ΔrelNELM; C: ΔabsHTL; D: ΔrelHTL. PR: partial response; 

SD: stable disease; PD: progressive disease; MCC: multidisciplinary cancer conference; 

∆absNELM: absolute NELM volume change; ∆absHTL: absolute HTL change; ∆relNELM: relative 

NELM volume change; ∆relHTL: relative HTL change.  
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The case-wise analysis of the 33 MCC patients is shown in Table 5. In patient NO.8 (ID-0008), 

for example, the output of the AI model at baseline was 1597.5 cm3 and 137.5 cm3 for the volumes 

of liver and NELMs respectively, with a calculated HTLbaseline of 9.4%. In contrast, at follow-up, 

the volume of the liver and NELMs increased to 1977.1 cm3 and 299.1 cm3, respectively, which 

resulted in an increase in HTLfollow-up to 17.8%. Thereby, we obtained an absolute volume change 

of 161.7 cm3 and 8.4% for NELMs and HTL, respectively, while the relative volume change was 

117.6% for NELMs and 89.3% for HTL. 

Table 5. Case-by-case results of the AI segmentation results and response variables (MCC 

cohort). 

 Baseline  Follow-up  Response 

ID 

Liver 

Volume 

(cm3) 

NEL

M 

Volu

me 

(cm3) 

HTL 

(vol.-

%) 

 

Liver 

Volume 

(cm3) 

NELM 

Volum

e (cm3) 

HTL 

(vol.-

%) 

 

MCC 

ΔabsNE

LM 

(cm3) 

ΔabsH

TL 

(vol.-

%) 

ΔrelNE

LM 

(%) 

ΔrelHTL 

(%) 

0001 1649.3 100.5 6.5  1796.0 232.7 14.9  PD 132.2 8.4 131.6 129.5 

0002 1582.2 69.5 4.6  1783.7 242.4 15.7  PD 172.9 11.1 248.6 242.1 

0003 1516.3 23.5 1.6  1766.8 160.7 10.0  PD 137.2 8.4 584.3 536.1 

0004 1476.7 2.5 0.2  1487.8 2.0 0.1  SD -0.5 -0.0 -20.2 -20.8 

0005 1304.2 9.5 0.7  1350.2 10.5 0.8  SD 0.9 0.1 9.8 6.1 

0006 1247.6 87.3 7.5  1656.0 308.8 22.9  PD 221.5 15.4 253.5 204.5 

0007 1092.4 0.6 0.1  1111.6 7.0 0.6  PD 6.4 0.6 1080.0 1066.3 

0008 1597.5 137.5 9.4  1977.1 299.1 17.8  PD 161.7 8.4 117.6 89.3 

0009 1474.5 21.2 1.5  1567.0 22.1 1.4  SD 0.9 -0.0 4.2 -2.0 

0010 1579.1 3.3 0.2  1610.6 6.3 0.4  PD 3.0 0.2 91.9 88.5 

0011 2067.7 148.0 7.7  2167.6 124.1 6.1  SD -23.9 -1.6 -16.1 -21.2 

0012 1959.7 46.5 2.4  1689.6 11.8 0.7  PR -34.8 -1.7 -74.7 -71.1 

0013 1695.2 111.4 7.0  1817.3 173.0 10.5  SD 61.6 3.5 55.3 49.5 

0014 1332.6 19.2 1.5  3216.9 883.6 37.9  PD 864.5 36.4 4513.6 2497.2 

0015 2209.1 9.4 0.4  2236.5 47.0 2.2  PD 37.6 1.7 398.2 400.5 

0016 2326.4 13.0 0.6  2421.6 12.4 0.5  SD -0.6 -0.1 -4.5 -8.3 

0017 969.3 12.1 1.3  972.4 11.6 1.2  SD -0.6 -0.1 -4.5 -4.9 
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0018 2523.2 17.7 0.7  2364.0 43.3 1.9  PD 25.5 1.2 144.2 163.6 

0019 1580.4 54.8 3.6  1552.8 86.9 5.9  PD 32.1 2.3 58.5 65.0 

0020 1703.4 244.9 16.8  1572.5 209.2 15.3  SD -35.7 -1.5 -14.9 -8.6 

0021 1575.0 114.9 7.9  1801.2 119.2 7.1  SD 4.2 -0.8 3.7 -10.0 

0022 1082.3 14.0 1.3  1071.6 14.6 1.4  SD 0.6 0.1 4.5 5.7 

0023 2016.6 133.1 7.1  2303.4 264.3 13.0  PD 131.1 5.9 98.5 83.4 

0024 1788.5 4.7 0.3  1639.5 22.9 1.4  PD 18.3 1.2 393.3 444.3 

0025 2043.5 122.5 6.4  2018.2 152.3 8.2  SD 29.8 1.8 24.3 28.0 

0026 2416.2 180.8 8.1  2389.9 199.9 9.1  SD 19.1 1.0 10.5 12.8 

0027 1339.9 11.3 0.9  1297.2 71.0 5.8  PD 59.7 4.9 529.6 582.1 

0028 2653.8 549.0 26.1  2386.0 199.4 9.1  PR -349.6 -17.0 -63.7 -65.0 

0029 1477.6 7.2 0.5  1466.5 10.8 0.7  SD 3.5 0.3 49.0 50.5 

0030 2054.2 11.2 0.6  1716.8 25.9 1.5  PD 14.7 1.0 131.5 179.8 

0031 1689.3 104.4 6.6  1761.0 111.5 6.8  SD 7.1 0.2 6.8 2.6 

0032 1207.2 62.4 5.5  1322.4 214.0 19.3  PD 151.5 13.9 242.7 253.9 

0033 1146.0 2.1 0.2  1349.4 6.7 0.5  PD 4.6 0.3 222.3 174.6 

PR: partial response; SD: stable disease; PD: progressive disease; MCC: multidisciplinary cancer 

conference; ∆absNELM: absolute NELM volume change; ∆absHTL: absolute HTL change; 

∆relNELM: relative NELM volume change; ∆relHTL: relative HTL change.  

Table adapted from Fehrenbach et al. (142). 

The case-wise illustration of the relative volume change variables (Figure 14) showed that the 

model correctly detected the response trend based on ∆relNELM and ∆relHTL in all 33 MCC 

patients, and especially detected the increased NELM volume of all 17 patients with therapeutic 

failure and the decreased NELM volume of all 2 patients with PR.  

In these therapeutic failure patients, the increase in ∆absNELM ranged from +3.0 cm3 to +864.5 

cm3 and ∆absHTL ranged from +0.2 vol.-% to +36.4 vol.-%. The increase in ∆relNELM ranged 

from +58.5% to +4513.6% and in ∆relHTL from +65.0% to +2497.2%. In patients with therapeutic 

success, the ∆absNELM ranged from −349.6 cm3 to −34.8 cm3 (in PR) and −35.7 cm3 to +61.6 

cm3 (in SD) and the ∆absHTL from −17.0 vol.-% to −1.7 vol.-% (in PR) and −1.6 vol.-% to +3.5 

vol.-% (in SD). The ∆relNELM varied from −74.7% to −63.7% (in PR) and from −20.2% to 55.3% 
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(in SD), and the ∆relHTL varied from −71.1% to −65.0% (in PR) and from −21.2% to +50.5% (in 

SD) (data shown in Table 5 and Figure 14).  
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Figure 14. Case-by-case tabulation of relative volume changes (ΔrelNELM and ΔrelHTL) from 

baseline to follow-up (MCC cohort). The top bar shows the distribution of patients with treatment 

success and the bottom bar shows the distribution of patients with treatment failure. The grey bars 

indicate ∆relNELM and the black bars indicate ΔrelHTL. PR: partial response; SD: stable disease; 

PD: progressive disease. 

3.3.2 Calculating a cut-off value for progressive disease 

In order to estimate the optimal cut-off values for progressive disease, ROC curve analysis based 

on MCC decisions were performed and the Youden indexes were calculated. The relative changes 

(ΔrelNELM and ΔrelHTL) yielded a receiver-AUC of 1.000 (p<0.001) (green dotted line and blue-

green dotted line for ΔrelNELM and ΔrelHTL, respectively). The absolute volumetric measures 

yielded an AUC of 0.908 for ΔabsNELM (blue dotted line) and of 0.925 for ΔabsHTL (red dotted 

line) (p<0.001). When calculating the optimal cut-off point for ΔrelNELM using the Youden index 

(1.000; 100% sensitivity and 100% specificity), the optimal cut-off-point was +56.88%. For 

ΔrelHTL, the optimal cut-off was +57.73% (shown in Figure 15). 
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Figure 15. Receiver-Operator-Curveof the absolute and relative change in NELM and %NELM 

compared to the MCC decisions. AUC ΔabsNELM: 0.908 (blue dotted line); AUC ΔabsHTL: 0.925 

(red dotted line); AUC ΔrelNELM: 1.000 (green dotted line); AUC ΔrelHTL: 1.000 (blue-green 

dotted line); p < 0.001. 

3.4 3D and 2D visualization of the segmentation results from the AI model 

3.4.1 3D visualization of the segmentation 

The 3D segmentation of the liver and NELMs from the AI model are exemplarily illustrated in 

Figure 16 (taking patients ID-0008 and ID-00011 as examples).  

In patient ID-00011, identified as having an SD response based on MCC, the absolute NELM 

volume and HTL changed from 148.02 cm3 and 7.71 vol.-% to 124.12 cm3 and 6.07 vol.-%, 

respectively, resulting in a ΔrelNELM of -16.14% and a ΔrelHTL of -21.23% (Figure 16 A, B). 
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In contrast, as an example of treatment failure, patient ID-0008 showed an increase in both 

absolute NELM volume and HTL from 137.48 cm3 and 9.42 vol.-% at the baseline to 299.14 cm3 

and 17.83 vol.-% at the follow-up, respectively, resulting in a +117.58% increase in ΔrelNELM 

and +89.32% increase in ΔrelHTL (Figure 16 C, D).  

 

Figure 16. nnU-Net 3D segmentation of liver and NELMs. Top: Exemplary case of therapy 

success with stable NELMs in baseline (A) and follow-up-imaging (B); Bottom: Exemplary case 

of therapy failure with progressive NELMs from baseline (C) to follow-up-imaging (D); Yellow 

arrows indicated NELMs. SD: stable disease; PD: progressive disease; BL: baseline; FU: follow-

up; NELM: neuroendocrine liver metastases; HTL: hepatic tumor load. 

3.4.2 2D visualization of segmentations 

The internal 2D versions of the segmentation results of these two cases are shown in Figure 17. 

Three levels (30%, 50%, 80%) of MR scans from the baseline (Figure 17 a, b, c, d, e, f, g) and 

follow-up (Figure 17 A, B, C, D, E, F, G) were chosen to present the results. The red lines showed 
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the segmentation results of the liver, while the green lines showed the segmentation results of the 

NELMs. 
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Figure 17. 2D views of the segmentation of the AI model for patients ID-0008 (a, b, c and A, B, 

C) and ID-00011 (d, e, f and D, E, F). a, b, c, d, e, f are images of the baseline and A, B, C, D, E, 

F are images of the follow-up. L30%, L50%, L80% are the scan slices at 30%, 50%, 80% of the 

MR scan respectively. The red lines showed the segmentation results of the liver, while the green 

lines showed the segmentation results of the NELMs. BL: baseline, FU: follow-up.  

3.5 Comparison of 3D Volumetric Analysis between Hepatobiliary and Diffusion-Weighted 

Imaging 

The results of the manual segmentation in HBP and DWI sequences are summarised in Table 6. 

There were no significant differences in ∆absNELM, ∆relNELM, ∆absHTL, and ∆relHTL in 

measurements for neither DWI nor the HBP sequence (p = 0.072 to 0.719). However, when 

comparing the manually segmented volumes for NELM, liver volume and HTL significant 

differences between HBP and DWI could be found (all p < 0.01).  

When assessing the correlations, NELM (rs: 0.981; p < 0.001), livers (rs: 0.966; p < 0.001) and 

HTL (rs: 0.956, p < 0.001), as well as ∆absNELM (rs: 0.919; p < 0.001), ∆relNELM (rs: 0.960; p < 

0.001), ∆absHTL (rs: 0.883, p < 0.001) and ∆relHTL (rs: 0.952; p < 0.001) between HBP and DWI 

sequences are highly correlated [data not shown]. 

Table 6. Comparison of 3D Volumetric Analysis between Hepatobiliary and Diffusion-

Weighted Imaging.  

Variable HBP DWI Significance (p) 

NELM volume 

(cm3) 

63.24 

(12.12–174.23) 

76.28 

(12.61–182.48) 
0.002 

Liver volume (cm3) 
1659.28 

(1387.73–2052.00) 

1595.00 

(1324.17–1977.54) 
< 0.001 

HTL (vol %) 4.05 (0.76–9.23) 5.45 (0.88–11.49) < 0.001 

∆absNELM (cm3) 19.57 (17.27–132.52) 30.06 (18.91–142.13) 0.072 

∆relNELM (%) 107.76 (5.28–245.04) 78.35 (11.22–221.21) 0.719 

∆absHTL (vol %) 1.20 (−0.01–8.87) 1.25 (0.10–10.47) 0.151 

∆relHTL (%) 111.36 (−0.36–254.49) 67.76 (4.20–198.88) 0.151 
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Values are displayed as median and interquartile ranges. P-values are based on the sign test. 

HBP: hepatobiliary phase; DWI: diffusion-weighted imaging; NELM: neuroendocrine liver 

metastasis; HTL: hepatic tumor load; ∆absNELM: absolute NELM volume change; ∆absHTL: 

absolute HTL change; ∆relNELM: relative NELM volume change; ∆relHTL: relative HTL 

change.  

Adapted from Fehrenbach et al. (142) 

The example in Figure 18 shows the comparison of manual segmentation in HBP and DWI 

sequences. Figures 18A, B, C and D, E, F show the original image, the NELMs segmentation, and 

the overlapping images of the NELMs and the liver segmentation in one of the same slices in the 

HBP sequence and the DWI sequence, respectively. The segmentation of the two sequences was 

performed completely independently of each other. The white arrows in Figure 18B point out two 

tiny NELMs found in HBP but not observed in the same slice of DWI; the white arrows in Figure 

18C, F point out the difference in liver segmentation results between the two different sequences. 
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Figure 18. Comparison of manual segmentations between HBP and DWI sequences. (A, B, C) 

original image, liver segmentation, and NELMs segmentations in HBP sequences, respectively; 

(D, E, F) original image, liver segmentation, and NELMs segmentations in DWI sequences, 

respectively; the white arrows indicate the differences in manual segmentation results between 

HBP and DWI sequences: (B) two tiny NELMs were found in HBP but not observed in DWI; (C, 

F) the contour segmentation of the liver is different. Manual segmentation was performed on the 

DWI images with b=400 s/mm2. 
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4. Discussion 

Previous epidemiological studies have reported an increase in the incidence of NENs worldwide 

(4,7–17). Meanwhile, the clinical course of NEN patients continues to be prolonged with 

advances in treatment strategies. These have led to an explosive increase in the imaging workload 

of patients with NELMs. The importance of imaging technology is not only present in the 

diagnosis, but also in the follow-up, especially in the response to the treatment. As the response 

evaluation guidelines of all solid tumors, the RECIST 1.1 guidelines in its newest version 

published in 2009 represent the most commonly used response evaluation criteria. The diameter 

change of two target lesions per organ is used as the primary response variable. However, it is 

considered by numerous scientists to be too simplistic and insufficient to accurately assess 

changes in disease (143–149). More problematically, current standards are difficult to apply for 

the diffuse pattern NELMs, which can account for more than 60% of the cases (51). 

Additionally, the accurate measurement of HTL is an important prognostic factor for effective 

treatment. In an ideal world, the exact HTL would be calculated to guide the treatment strategy 

accordingly. In daily practice, however, HTL measurement is too time-consuming and most of the 

time only visual assessments of HTL are used, leading to bias, and potentially affecting the 

patient's optimal treatment timepoint.  

The development of deep learning in the field of image recognition, especially with the proposal 

of nnU-Net in 2018, provides a practical model for 3D segmentation that could be a solution to 

these problems. Therefore, the overall aim of this thesis was to train a nnU-Net for Gd-EOB MRI 

segmentation to obtain a high-precision AI algorithm for 3D quantification of HTL and NELMs 

volumes, providing a useful tool for clinical decision making. 

The study consists of four parts: In the first part, we established a cohort of NELM patients who 

underwent Gd-EOB enhanced MRI (1.5 T) between January 2015 and August 2018 for the training 

of the AI model. In the second part, we selected 66 Gd-EOB enhanced MRI scans (1.5 or 3.0 T) 

from an additional 33 NET patients at the MCC between January 2019 and January 2020 as an 

external validation cohort to evaluate the robustness of the AI model. In the third section, the 

model’s clinical utility was evaluated. We compared the automatically measured 3D volumes of 



4. Discussion 

 63 

the AI model in the MCC cohort with the response to the MCC decision and establish an optimal 

threshold for disease progression. In the fourth part, we compared the manual segmentation in 

HBP and DWI sequences.  

The data in this study uses AI for segmenting the NELMs automatically, which not only provides 

a viable tool to replace the one-dimensional (1D) diameter change with a full 3D volume change 

as a treatment response criterion but could also help to establish a cut-off value for disease 

progression in volumetric tumor assessment. 

4.1 Methodology 

A recent systematic review of imaging practices with AI for PNENs concluded that none of the 

currently published methods was considered to have a low risk of bias in all areas (143). To 

minimize the risk of selective bias, we collected all MRI images from patients who were 

diagnosed with NENs and underwent Gd-EOB-enhanced liver MRI between January 2015 and 

August 2018 and blinded the staff involved in performing the manual segmentation. The 

reviewers were blinded to all information, including whether the patient had NELM, patient 

history, laboratory results, and pathological findings and treatment. To date, in contrast to some 

studies (144,150–152), we did not limit the number and size of NELMs nor the treatment 

measures, but included all Gd-EOB-enhanced liver MRI during the study time period in the 

manually segmented dataset, in order to train the model as realistically as possible. 

4.2 Patients cohorts 

We collected all patients with NENs who underwent Gd-EOB enhanced MRI (1.5 T, Siemens 

Aera) between January 2015 and August 2018 as the AI develop cohort, regardless of whether the 

NELMs had surgery or not. This allows for a more realistic picture of NELMs that may be 

encountered in clinical work. 120 scans were excluded due to lack of evidence of NELM or non-

standard scan protocols, the rest 278 scans were divided into the training (80%) and internal testing 

(20%) database.  

In order to train a generic AI model, both internal and external validations are required (129,132). 

Typically, internal validation comes from the same cohort as the training data, with both cross-

validation and split-sample validation, of which the latter is considered to be superior (129). Hence, 
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in our study, we chose a random assignment in the ratio of 2:8, that is, 20% of the AI dev cohort 

as the internal validation dataset and 80% as the training dataset.  

The external validation is defined as a dataset originating from the different time periods, cohorts, 

protocols, or clinics (129), which is ultimately used to determine the generic performance of the 

algorithm. However, a systematic review about the performance of AI algorithms used for the 

diagnostic analysis of medical images in 2019 showed that only 6% of the algorithms were 

externally validated (153). Thereby, we collected an additional 66 scans from MCC between 

January 2019 and January 2020 who received a Gd-EOB MRI (1.5T or 3.0T, different scanners 

and imaging protocols than in the training cohort) both at baseline and follow-up as the external 

validation database (MCC cohort), to avoid measuring an overfitting bias when assessing the AI 

performance. There were significant differences in primary sites and SR status (P=0.0003 and 

0.047, respectively), from that respect the MCC cohort is not similar to the AI cohort, further 

adding to the robustness of the external validation. Combined with the different time points and 

different MRI units (1.5 T/ 3.0T versus 1.5 T), the MCC cohort was considered suitable as an 

external validation of the model. 

4.3 Performance of the model 

Matthews correlation coefficient (ϕ) was used in both internal and external validation datasets to 

demonstrate the performance of the model. In the internal validation dataset, ϕ were 0.76 (IQR: 

0.68–0.83) in the segmentation of NELMs and 0.95 (IQR: 0.95–0.96) in liver segmentation 

(Figure 9). It is hard to compare the performance of our AI model with other data sets because 

MRI sequences and evaluation metrics are different. Rough statistics of the recently proposed 

automatic liver and/or liver tumor MRI segmentation algorithms show that the reported DC for 

liver and hepatic lesions ranged from 0.87 to 0.91 and 0.68 to 0.84, respectively (150,154–157). 

In the external validation dataset of our study, the model achieved a median ϕ of 0.86 (IQR: 0.81–

0.91) in the segmentation of NELM and of 0.96 (IQR: 0.95–0.96) in liver segmentation. However, 

there are few studies on the performance of liver and/or liver tumor MRI segmentation algorithms 

in external validation datasets. 
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In the internal validation, there are three cases (orange circled in Figure 10) in which the 

segmentation performance is low due to small or atypical tumor volumes. Therefore, we divided 

the patients of the internal validation dataset into two groups according to the median target NELM 

volume (16.17 cm3): low volume and high volume. The comparison shows that the Matthews 

correlation coefficient was significantly higher in the high-volume group than in the low-volume 

group (P = 0.0025, in Figure 11).  

This, however, does not necessarily suggest that patients with low NELM volumes are not suitable 

for this model, because low Matthews correlation coefficient scores may also be due to inaccurate 

target volume. During manual segmentation, we found that the accuracy of manual segmentation 

of small-sized tumors, especially cornified tumors which were considered to be the target lesion, 

was reduced. 

In figure 12, which shows the comparison between our well-trained AI segmentation and manual 

segmentation in a patient from the MCC cohort with a small tumor volume, we can see that there 

are only two small tumors at this slice, and the AI segmentation (Figure 12 F) results in more 

accurate edges than the manual segmentation (Figure 12 E). Similarly, AI segmentation of the 

liver (Figure 12 C) was slightly better than manual segmentation (Figure 12 B), as demonstrated 

by the margins and the region of the hepatic portal vein that should be excluded. From this, we 

can see that our AI model performs well at least for segmentation on this small tumor volume case.  

The segmentation performance of the AI model on entire liver is stable and accurate in both 

internal and external validation datasets (ϕ: 0.95 and 0.96 respectively). 

4.4 AI-based NELM Segmentation and Correlation with MCC decision 

The patients of the MCC cohort have been determined as having different treatment responses 

(PR, SD, PD) according to RECIST 1.1 criteria in the MCC meeting. Since the number of cases 

with PR was low (n = 2 cases) and the next treatment option was similar as for patients with SD; 

PR and SD were defined as the treatment success group (n=16 cases), while PD was defined as 

the treatment failure group (n=17 cases). The relative and absolute changes in 3D volume output 

by AI automatically reflected significant differences between the two groups: the treatment failure 

group showed significantly higher ∆absNELM (cm2), ∆absHTL (%), ∆relNELM (%), and ∆relHTL 
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(%) than the treatment success group (all p < 0.001, Figure 13). This reflects the consistency of 

our AI model with MCC decision-making.  

To compare the accuracy of 3D volume and 1D diameter for response determination, we then 

analyzed case-by-case the correlation of changes in tumor volume and HTL with MCC decisions. 

The case-wise analysis showed that the model correctly detected trends in ΔrelNELM and ΔrelHTL-

based responses in all 33 patients (Figure 14). However, individual data trends in ΔabsNELM and 

ΔabsHTL were disrupted (Table 4), for example, the ΔabsNELM and ΔabsHTL of case-ID0010, 

which was determined as PD, were lower than for cases ID0029 and ID0021 (ΔabsNELM :3 cm2 

vs. 3.5 cm2 and 4.2 cm2, ΔabsHTL: 0.2% vs. 0.3% and -0.8%, respectively), which were determined 

as SD. This is explainable due to the fact that the MCC decision was based on a 20% increase in 

diameter, which is a relative change rather than an absolute change. Moreover, in clinical work, 

the need for follow-up of patients with NELMs is much more than a single volumetric 

measurement, that is, changes in tumor load-related indicators are more important.  

Since our model perfectly classifies the treatment outcomes of patients in the MCC cohort, it 

demonstrates the ability of our model to upgrade the original RECIST1.1 criteria from a 1D to a 

3D metric. Therefore, the cutoff values for determining disease progression need to be redefined.  

ROC curves analysis based on MCC decision were performed in ΔrelNELM, ΔrelHTL, ΔabsNELM, 

and ΔabsHTL (Figure 15). The results showed that high AUC values were achieved for all 

indicators (Figure 15, AUC: ΔabsNELM 0.908, ΔabsHTL 0.925, ΔrelNELM 1.000, ΔrelHTL 1.000, 

all p < 0.001), whereas, a rough comparison with recently proposed automated 3D liver tumor 

MRI segmentation algorithms, the reported AUCs ranged from 0.78 to 0.94 (150,154). 

Due to indicators of relative change being more meaningful in clinical practice, we searched for 

the optimal cut-off value in ΔrelNELM and ΔrelHTL to determine disease progression. The highest 

Youden index (1.000; 100% sensitivity and 100% specificity) was found at the cut-off value 

+56.88% and +57.73% in ΔrelNELM and ΔrelHTL, respectively. Assuming the patient has only one 

spherical target lesion, the ΔrelNELM should increase by approximately 73% according to the 

RECIST 1.1 criteria (sum of the diameter of the target lesions increases by at least 20%), whereas 

our suggested cut-off value is 56.88%, which modified this indicator by approximately 16%. 
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4.5 3D and 2D versions of the segmentation results from the AI model 

Our model is based on a 3D volume segmentation algorithm, and two examples of its 3D 

segmentation results are presented in Figure 16. We can see that the 3D volumes of NELMs are 

irregular, which on the other hand proves the current standard RECIST 1.1, measured only by the 

maximum diameter in one slice, could be insufficient. It is even more challenging when two 

relevant lesions are located close to each other, in that case, they are likely to merge and become 

difficult to distinguish, which introduced another inaccuracy when using 1D diameter to define the 

response.  

After obtaining the 3D volume segmentation results, we still want to confirm the AI segmentation 

in the internal 2D plane of these two cases. In figure 17 we can see that the liver is well segmented, 

with larger NELMs segmented better than small NELMs. At the 50% (Figure 17 b, B) and 80% 

(Figure 17 c, C) levels of case ID-0008, not all the diffuse NELMs were segmented, meanwhile, 

at the 50% level of case ID-00011 (Figure 17 e, E), the hepatic vein area was mistakenly considered 

to be a NELM.  

Small NELMs are indeed difficult to distinguish from a single cross-section of the hepatic blood 

vessel. This might be because both hepatic tumor and vessel are non-enhancing in the HBP 

sequence, and they are very similar in morphology. Even manually, other methods must assist in 

the identification, e.g., by anterior-posterior contiguous scrolling: the NELM remains fixed in 

position, while the blood vessels show movement trajectories on continuous levels due to their 

tubular structure.  

However, this degree of mis-segmentation is probably acceptable because the omission of these 

partially small tumors has minimal impact on the overall tumor volume, and it has an even lower 

impact on the relevant changes. Therefore, the accuracy of our model for the classification of 

therapy response evaluation remains high.  

4.6 Comparison of 3D Volumetric Analysis between Hepatobiliary and Diffusion-Weighted 

Imaging 

DWI has been highly suggested for detecting NELMs for its advantages as a non-contrast imaging 

technique (79,80). Previous studies also suggested that the combination of DWI and HBP 
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sequences with Gd-EOB is more sensitive than each of them alone to detect hepatic lesions (58). 

To date, most studies of DWI discussed their ability to detect lesions, and only a few articles used 

DWI sequences as the basis for segmentation (158–162). Therefore, to explore its suitability for 

3D segmentation, the DWI sequences of the MCC cohort were also manually segmented in our 

study to compare with the manual segmentation of HBP sequences. 

Compared to the HBP in Gd-EOB-MRI the boundaries of NELMs and liver are not that clearly 

depicted due to the low resolution of the DWI imaging(163), whereas identification of NELM is 

excellent in DWI. This is slightly different from the results of another study (162), which claimed 

that DW-MRI was superior to non-enhanced MRI for obtaining accurate segmentation of the liver 

margins. 

Figure 18 demonstrates the results of the manual segmentation of the HBP sequence compared to 

the DWI sequence on the same slice, from which it can be seen that the HBP sequence (left side) 

has an obviously higher resolution than the DWI sequence (right side). In addition, there are two 

small NELMs in figure 18B which are not discernible in the corresponding DWI sequence (Figure 

18E), and the results of liver segmentation in HBP sequences were also more accurate compared 

to the DWI sequences (Figure 18C vs. 18Figure 18F, white arrows).  

When comparing the overall results of HBP and DWI manual segmentation in the MCC cohort 

(Table 6), it showed that the exact volume of liver, NELM, and HTL in DWI sequences are 

significantly different from the HBP sequence (all p < 0.01). This indicates that the DWI sequence 

might be not suitable for calculating the exact tumor size and tumor load at only one-time point, 

and it leads to significant differences in results from the more accurate HBP sequence. However, 

the absolute/relevant volume changes of liver, NELM, HTL are not different from the HBP 

sequence. This suggests that DWI sequences at multiple time points can also be used to assess 

changes in relevant indicators to determine disease progression status. This is of interest for clinical 

centers where only DWI sequences are available for follow-up, or when the cost of follow-up is 

considered. 
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4.7 Strengths and Limitations of the Study 

There are several strengths in our study. First of all, to date, our study is the second study of 3D 

volume segmentation based on GOB-MRI of NELMs (157), but the first to compare manual 

segmentation comparisons on HBP sequences and DWI sequences. Secondly, manual 

segmentation is considered to be the most difficult challenge in supervised deep learning (119), 

especially in heterogeneous and diffuse lesions. However, in this thesis, we manually segmented 

398 scans with a considerable number of metastases, which is to date the largest number of manual 

segmentation studies of focal liver lesions (151,157). We also include a variety of treatment 

sequelae (e.g., prior liver resection, excessive pretreatment, ablative therapy, or prior intra-arterial 

therapy), which improves the robustness of our model in preparation for routine clinical use. 

Thirdly, although HTL is considered an important prognostic imaging indicator (5,6,49), in clinical 

practice, total HTL is not routinely quantified, and in most cases, tumor load is estimated visually. 

In contrast, our model not only provides more robust information on lesion distribution, but we 

further propose a cutoff point for determining disease progression, providing a standardized basis 

for 3D volume measurement. Finally, our model is not limited to the segmentation of NELM. We 

choose NELM as the disease model since it has a long tumor-bearing lifetime and reflects well the 

distinctive features of liver metastases. It is more suitable as a basic disease model than other 

origins of liver metastases, and the optimized model can be extended to other origins of liver 

metastases for segmentation tasks and calculation of liver tumor burden, as liver metastases from 

various primary tumors exhibit the same typical imaging features in HBP sequences (164). 

Our study has some limitations as well. First of all, the ground truth for accuracy is based on 

manual segmentation of liver metastases (119), which could be not perfect due to the sometimes 

pronounced, even small foci of liver metastases. Second, 3D assessment methods need to be 

further evaluated in a larger clinical collective, compared directly with 1D measurements, and to 

assess the impact on clinical endpoints. Third, our study was single-center and retrospective which 

was considered to have a limited level of evidence (143), so our next step will be to consider 

further validation in a prospective patient dataset. 
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5. Conclusion 

In conclusion, the AI model presented in this thesis shows the high accuracy of NELM 3D 

volumes and HTL measurements in HBP sequences on Gd-EOB MRI, providing a usable 

algorithm for fully automated 3D assessment of neoplastic lesions in the liver. 

The model also provides useful information about HTL and NELM volumes and can be used to 

assist physicians in the assessment of treatment response of hepatic neoplastic lesions, paving the 

way for precise treatment. 
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