81 research outputs found

    Retinal boundary segmentation in stargardt disease optical coherence tomography images using automated deep learning

    Get PDF
    Purpose: To use a deep learning model to develop a fully automated method (fully semantic network and graph search [FS-GS]) of retinal segmentation for optical coherence tomography (OCT) images from patients with Stargardt disease. Methods: Eighty-seven manually segmented (ground truth) OCT volume scan sets (5171 B-scans) from 22 patients with Stargardt disease were used for training, validation and testing of a novel retinal boundary detection approach (FS-GS) that combines a fully semantic deep learning segmentation method, which generates a per-pixel class prediction map with a graph-search method to extract retinal boundary positions. The performance was evaluated using the mean absolute boundary error and the differences in two clinical metrics (retinal thickness and volume) compared with the ground truth. The performance of a separate deep learning method and two publicly available software algorithms were also evaluated against the ground truth. Results: FS-GS showed an excellent agreement with the ground truth, with a boundary mean absolute error of 0.23 and 1.12 pixels for the internal limiting membrane and the base of retinal pigment epithelium or Bruch's membrane, respectively. The mean difference in thickness and volume across the central 6 mm zone were 2.10 µm and 0.059 mm3. The performance of the proposed method was more accurate and consistent than the publicly available OCTExplorer and AURA tools. Conclusions: The FS-GS method delivers good performance in segmentation of OCT images of pathologic retina in Stargardt disease. Translational Relevance: Deep learning models can provide a robust method for retinal segmentation and support a high-throughput analysis pipeline for measuring retinal thickness and volume in Stargardt disease

    Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning

    Get PDF
    The choroid layer is a vascular layer in human retina and its main function is to provide oxygen and support to the retina. Various studies have shown that the thickness of the choroid layer is correlated with the diagnosis of several ophthalmic diseases. For example, diabetic macular edema (DME) is a leading cause of vision loss in patients with diabetes. Despite contemporary advances, automatic segmentation of the choroid layer remains a challenging task due to low contrast, inhomogeneous intensity, inconsistent texture and ambiguous boundaries between the choroid and sclera in Optical Coherence Tomography (OCT) images. The majority of currently implemented methods manually or semi-automatically segment out the region of interest. While many fully automatic methods exist in the context of choroid layer segmentation, more effective and accurate automatic methods are required in order to employ these methods in the clinical sector. This paper proposed and implemented an automatic method for choroid layer segmentation in OCT images using deep learning and a series of morphological operations. The aim of this research was to segment out Bruch’s Membrane (BM) and choroid layer to calculate the thickness map. BM was segmented using a series of morphological operations, whereas the choroid layer was segmented using a deep learning approach as more image statistics were required to segment accurately. Several evaluation metrics were used to test and compare the proposed method against other existing methodologies. Experimental results showed that the proposed method greatly reduced the error rate when compared with the other state-of-the art methods

    Deep learning in ophthalmology: The technical and clinical considerations

    Get PDF
    The advent of computer graphic processing units, improvement in mathematical models and availability of big data has allowed artificial intelligence (AI) using machine learning (ML) and deep learning (DL) techniques to achieve robust performance for broad applications in social-media, the internet of things, the automotive industry and healthcare. DL systems in particular provide improved capability in image, speech and motion recognition as well as in natural language processing. In medicine, significant progress of AI and DL systems has been demonstrated in image-centric specialties such as radiology, dermatology, pathology and ophthalmology. New studies, including pre-registered prospective clinical trials, have shown DL systems are accurate and effective in detecting diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), retinopathy of prematurity, refractive error and in identifying cardiovascular risk factors and diseases, from digital fundus photographs. There is also increasing attention on the use of AI and DL systems in identifying disease features, progression and treatment response for retinal diseases such as neovascular AMD and diabetic macular edema using optical coherence tomography (OCT). Additionally, the application of ML to visual fields may be useful in detecting glaucoma progression. There are limited studies that incorporate clinical data including electronic health records, in AL and DL algorithms, and no prospective studies to demonstrate that AI and DL algorithms can predict the development of clinical eye disease. This article describes global eye disease burden, unmet needs and common conditions of public health importance for which AI and DL systems may be applicable. Technical and clinical aspects to build a DL system to address those needs, and the potential challenges for clinical adoption are discussed. AI, ML and DL will likely play a crucial role in clinical ophthalmology practice, with implications for screening, diagnosis and follow up of the major causes of vision impairment in the setting of ageing populations globally

    Recent Developments in Detection of Central Serous Retinopathy through Imaging and Artificial Intelligence Techniques – A Review

    Get PDF
    Central Serous Retinopathy (CSR) or Central Serous Chorioretinopathy (CSC) is a significant disease that causes blindness and vision loss among millions of people worldwide. It transpires as a result of accumulation of watery fluids behind the retina. Therefore, detection of CSR at early stages allows preventive measures to avert any impairment to the human eye. Traditionally, several manual methods for detecting CSR have been developed in the past; however, they have shown to be imprecise and unreliable. Consequently, Artificial Intelligence (AI) services in the medical field, including automated CSR detection, are now possible to detect and cure this disease. This review assessed a variety of innovative technologies and researches that contribute to the automatic detection of CSR. In this review, various CSR disease detection techniques, broadly classified into two categories: a) CSR detection based on classical imaging technologies, and b) CSR detection based on Machine/Deep Learning methods, have been reviewed after an elaborated evaluation of 29 different relevant articles. Additionally, it also goes over the advantages, drawbacks and limitations of a variety of traditional imaging techniques, such as Optical Coherence Tomography Angiography (OCTA), Fundus Imaging and more recent approaches that utilize Artificial Intelligence techniques. Finally, it is concluded that the most recent Deep Learning (DL) classifiers deliver accurate, fast, and reliable CSR detection. However, more research needs to be conducted on publicly available datasets to improve computation complexity for the reliable detection and diagnosis of CSR disease

    Choroidalyzer: An open-source, end-to-end pipeline for choroidal analysis in optical coherence tomography

    Full text link
    Purpose: To develop Choroidalyzer, an open-source, end-to-end pipeline for segmenting the choroid region, vessels, and fovea, and deriving choroidal thickness, area, and vascular index. Methods: We used 5,600 OCT B-scans (233 subjects, 6 systemic disease cohorts, 3 device types, 2 manufacturers). To generate region and vessel ground-truths, we used state-of-the-art automatic methods following manual correction of inaccurate segmentations, with foveal positions manually annotated. We trained a U-Net deep-learning model to detect the region, vessels, and fovea to calculate choroid thickness, area, and vascular index in a fovea-centred region of interest. We analysed segmentation agreement (AUC, Dice) and choroid metrics agreement (Pearson, Spearman, mean absolute error (MAE)) in internal and external test sets. We compared Choroidalyzer to two manual graders on a small subset of external test images and examined cases of high error. Results: Choroidalyzer took 0.299 seconds per image on a standard laptop and achieved excellent region (Dice: internal 0.9789, external 0.9749), very good vessel segmentation performance (Dice: internal 0.8817, external 0.8703) and excellent fovea location prediction (MAE: internal 3.9 pixels, external 3.4 pixels). For thickness, area, and vascular index, Pearson correlations were 0.9754, 0.9815, and 0.8285 (internal) / 0.9831, 0.9779, 0.7948 (external), respectively (all p<0.0001). Choroidalyzer's agreement with graders was comparable to the inter-grader agreement across all metrics. Conclusions: Choroidalyzer is an open-source, end-to-end pipeline that accurately segments the choroid and reliably extracts thickness, area, and vascular index. Especially choroidal vessel segmentation is a difficult and subjective task, and fully-automatic methods like Choroidalyzer could provide objectivity and standardisation

    Detection of macular atrophy in age-related macular degeneration aided by artificial intelligence

    Get PDF
    INTRODUCTION: Age-related macular degeneration (AMD) is a leading cause of irreversible visual impairment worldwide. The endpoint of AMD, both in its dry or wet form, is macular atrophy (MA) which is characterized by the permanent loss of the RPE and overlying photoreceptors either in dry AMD or in wet AMD. A recognized unmet need in AMD is the early detection of MA development. AREAS COVERED: Artificial Intelligence (AI) has demonstrated great impact in detection of retinal diseases, especially with its robust ability to analyze big data afforded by ophthalmic imaging modalities, such as color fundus photography (CFP), fundus autofluorescence (FAF), near-infrared reflectance (NIR), and optical coherence tomography (OCT). Among these, OCT has been shown to have great promise in identifying early MA using the new criteria in 2018. EXPERT OPINION: There are few studies in which AI-OCT methods have been used to identify MA; however, results are very promising when compared to other imaging modalities. In this paper, we review the development and advances of ophthalmic imaging modalities and their combination with AI technology to detect MA in AMD. In addition, we emphasize the application of AI-OCT as an objective, cost-effective tool for the early detection and monitoring of the progression of MA in AMD
    corecore