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Abstract 

With the advent of computer graphic processing units, improvement in mathematical 

models and availability of big data, artificial intelligence (AI) using machine learning 

(ML) and deep learning (DL) techniques have achieved robust performance for 

potential application across many industries, including social-media, the internet of 

things, the automotive industry and healthcare. DL systems provide capability in 

image, speech and motion recognition as well as in natural language processing. In 

medicine, most of the progress of AI, ML and DL systems has been demonstrated in 

image-centric specialties such as radiology, dermatology and pathology. There is 

increasing interest in AI in ophthalmology. New studies, including pre-registered 

prospective clinical trials, have shown DL systems are effective in detecting diabetic 

retinopathy (DR), glaucoma, age-related macular degeneration, retinopathy of 

prematurity, refractive error and in identifying cardiovascular risk factors and 

diseases, using image based data such as fundus photographs and optical 

coherence tomography. Additionally, the application of ML to Humphrey visual fields 

may be useful in detecting glaucoma progression. There are fewer studies that 

incorporate clinical data in AL algorithms and no prospective studies to demonstrate 

that AI algorithms can predict the development of eye disease. This article describes 

the current global eye disease burden, clinical unmet needs and selected common 

ophthalmic conditions of public health importance for which AI and DL systems may 

be applicable. Technical and clinical aspects to build a DL system to address those 

gaps, and the potential challenges for clinical adoption are discussed. AI, ML and DL 

likely will play a crucial role in clinical ophthalmology practice, with implications for 

screening, diagnosis and follow up of the major causes of vision impairment, in the 

setting of the ageing population globally.  

 

 

 

 

 

 

 

 

 



Introduction 

With the advent of graphic processing units (GPUs), advances in mathematical 

models, the availability of big datasets and low cost sensors, artificial intelligence (AI) 

using machine learning (ML) techniques initially and deep learning (DL) techniques 

subsequently, has sparked tremendous interest in many industries.1 These include 

application of AI in social-media, the internet of things, finance and banking, the 

automotive industry and healthcare. AI systems can be designed not only for 

image,2,3 speech4 and motion recognition,5 but also in natural language processing.6  

 

In medicine, the most robust AI algorithms have been demonstrated in image-centric 

specialties, including radiology, dermatology, pathology and increasingly so in 

ophthalmology. For example, Lakhani et al demonstrated excellent performance in 

detecting pulmonary tuberculosis from chest radiographs,7,8 while Esteva et al was 

able to differentiate malignant melanoma from benign lesions on skin photographs.9 

In ophthalmology, there have been two major areas in which AI and new DL systems 

have been applied. First, AI systems have been shown in new studies, including pre-

registered prospective clinical trials, to accurately detect diabetic retinopathy (DR),10-

13 glaucoma,10,14 age-related macular degeneration (AMD),10,15,16 retinopathy of 

prematurity (ROP),17 and refractive error, from digital fundus photographs.18 A range 

of cardiovascular risk factors19 have also been accurately predicted from fundus 

photographs. Second, several retinal conditions [e.g., neovascular AMD, earlier 

stages of AMD, and diabetic macular edema (DME)]20 has also be detected 

accurately using optical coherence tomography (OCT).21,22 There are relatively fewer 

AI studies using other data, such as studies which show good performance in 

detecting glaucoma progression from serial Humphrey visual fields (HVFs).23 

However, there are fewer studies that incorporate clinical and imaging data in AL 

algorithms, and no prospective studies to demonstrate that AI algorithms can predict 

the development of eye diseases over time. Furthermore, the implementation and 

adoption of AI into routine clinical care remains extremely challenging. These remain 

significant goals of AI research in ophthalmology  

 

This article describes basic concepts of AI, ML and DL and how such systems might 

address some of the global burdens created by common eye conditions. 



Furthermore, the technical and clinical aspects of developing and validating an AI/DL 

system, potential challenges and future directions are also discussed in this article.  

 

Artificial Intelligence, Machine Learning and Deep Learning 

AI was conceptualized in 1956, after a workshop at Dartmouth College (Figure 1).10 

In the workshop, many AI groups showed promising results in computer learning of 

checkers strategies, solving word problems in algebra and proving logical theorems. 

These tasks involved mostly pattern recognition and computational learning. All AI 

systems were designed to execute and maximise its chance of ‘winning’ within a 

constructed environment. The term ‘machine learning’ (ML) was subsequently 

coined by Arthur Samuel in 1959 and stated that “the computer should have the 

ability to learn using various statistical techniques, without being explicitly 

programmed”.11 Using ML, the algorithm can learn and make predictions based on 

the data that has been fed into the training phase, using either a supervised or un-

supervised approach. ML has been widely adopted in applications such as computer 

vision and predictive analytics using complex mathematical models. In supervised 

learning, the computer is trained with labelled examples, also known as ground truth, 

whereas for unsupervised learning, no labelling is required for the algorithm to find 

its own structure in the input. The majority of AI application in biomedical research 

uses supervised learning. 

 

DL utilizes multiple processing layers to learn representation of data with multiple 

levels of abstraction.20 Although some forms of deep neural networks have already 

been investigated in the past, the advent of graphic processing units (GPU) with 

improved processing power, larger annotated datasets, and other factors, have 

recently boosted its diagnostic performance in many domains. Using learning 

approaches such as backpropagation,24 a ML or DL system is able to discover 

intricate structure in large data sets, then changing its internal parameters that are 

used to compute the representation in each layer from the previous one. These 

approaches permit the use of regional samples to allow the network to learn to 

detect biomarkers; furthermore these approaches use complete images, and 

associate the entire image with a diagnostic output, thereby eliminating the use of 

“hand-engineered” image features. Given the much improved performance,11,12 DL 



has been widely adopted in image recognition, speech recognition and natural 

language processing.  

 

General Approach in Building a Robust AI system  

This section explains some common terminologies, software framework, network 

architectures, datasets selection, assistive vs. autonomous AI system, consideration 

factors to ensure the robustness of these algorithms (Table 1).1,25-30 In order to build 

a robust DL system, it is important to have 2 main components – the ‘brain’ 

(technical networks – Convolutional Neural Network (CNN) and the ‘dictionary’ (the 

datasets).  

 

1. What is a CNN? 

A CNN is a deep neural network consisting of a cascade of processing layers that 

resemble the biological processes of the animal visual cortex. It transforms the input 

volume into an output volume via a differentiable function. Inspired by Hubel and 

Weisel,31 each neuron in the visual cortex will respond to the stimulus that is specific 

to a region within an image, similar to how the brain neuron would respond to the 

visual stimuli, that will activate a particular region of the visual space, known as the 

receptive field. These receptive fields are tiled together to cover the entire visual field. 

Two classes of cells are found in this region – simple vs complex cells. The simple 

cells active when they detect edge-like patterns, while the more complex cells 

activate when they have a larger receptive field and are invariant to the position of 

the pattern.  

 

Broadly, the CNN can be divided into the input, hidden (also known as feature-

extraction layers) and output layers (Figure 2A). The hidden layers usually consist of 

convolutional, pooling, fully connected and normalization layers, and the number of 

hidden layers will differ for different CNNs. The input layer specifies the width, height 

and the number of channels (usually 3 channels – red, green and blue). The 

convolutional layer is the core building block of a CNN, transforming the input data 

by applying a set of filters (also known as kernels) that acts as the feature detectors. 

The filter will slide over the input image to produce a feature map (as the output). A 

CNN learns the values of these filters weights on its own during the training process, 

although the specific parameters such as number of filters, filter size, network 



architecture still need to be set prior to that. Additional operations called activations 

(for example ReLU or Rectified Linear Unit) are used after every convolution 

operation. For pooling, the aim is to reduce the dimensionality of each feature map 

and make it somewhat spatially invariant, and retain the most important information. 

Pooling can be divided into different types: maximum, average and minimum. In the 

case of maximum pooling, the largest element from the rectified feature map will be 

taken (Figure 2B). The output from the convolutional and pooling layers represent 

the high-level features of the input image. The purpose of the fully connected layer is 

to use these high-level features to classify the input image into various classes 

based on the training dataset. Following which, backpropagation is conducted to 

compute the network weights and uses the gradient descent to update all filters and 

parameter values to minimize the output error. This process will be repeated many 

times during the training process.  

 

2.  Software frameworks: Keras, TensorFlow, PyTorch  

Deep neural networks are commonly implemented in several popular software 

frameworks (e.g. Caffe, Tensorflow, PyTorch, etc). Early development in these past 

10 years was enabled by the availability of frameworks like Caffe74 (originally from 

UC Berkeley), Torch13 (built on top of Lua) and Theano75. These frameworks tend to 

be less used nowadays, although Caffe2 has been released with both C++ and 

Python front ends and has features such as ease of deployment for mobile 

application. More recently, Python-based frameworks such as TensorFlow76 (from 

Google) and PyTorch13 (an evolution of Torch in Python) have gained in popularity. 

High-level application programming interface (APIs) such as Keras12 or Lasagne 

have also made it much easier to develop DL systems, and should be considered 

the preferred starting point for implementation for new users. In particular, they 

simplify the reuse of existing networks architectures and pretrained weights, which is 

convenient for the purposes of transfer learning and fine tuning. Two recent 

important features of PyTorch are imperative programming (vs. declarative/symbolic 

for TensorFlow) and the use of dynamic graphs. These features make PyTorch 

easier to debug and inspect compared to other frameworks where graphs are static 

(although this feature has also now been made available in TensorFlow). 

 



3. Popular Network Architectures - AlexNet, VGGNet, Inception, ResNet and 

DenseNet 

AlexNet, first described in 2012 with 5 convolutional layers, has been the most 

widely used CNN, after winning the ImageNet Large Scale Visual Competition 

Recognition (ILSVCR).32 Following which, more CNNs with deeper layers and 

unique features were described subsequently. Each CNN can also have different 

versions and layers, for example VGGNet (16 or 19 layers), Inception V1 to V4 (27 

layers), ResNet (18, 50, 152 or even up to 1202 layers with stochastic depth) and 

DenseNet (40, 100, 121, 169 layers). Compared to AlexNet, the newer networks 

have unique features to help improve performance, including the addition of more 

layers, smaller convolutional filters, skip connections, repeated modules with more 

complex/parallel filters, bottleneck connection and dropout. Although deeper CNNs 

(e.g. ResNet and DenseNet) have been reported to achieve improved performance, 

older architectures (e.g. VGGNet and Inception) have consistently shown 

comparable outcomes in medical imaging analysis. In order to further boost 

performance, multiple deep neural networks are commonly trained and ensembled. 

Transfer learning with pretrained weights has also been reported to aid training and 

performance, especially with smaller datasets. 

 

Rather than training the CNN entirely from scratch (i.e. starting with randomly 

initialized values), it has been common practice in retinal image and many other DL 

applications to perform transfer learning. Transfer learning is the process of reusing 

models developed for other applications (e.g. for performing full image classification 

from ImageNet images) and further refining these weights for a different target 

domain (e.g. detection of age-related macular degeneration [AMD] on fundus 

images). The most popular transfer learning approach has been to use fine-

tuning.10,11,13,17-19,21,67-69 It has been shown that once a network weight is optimized to 

solve a certain problem, the weights for the resulting model, and especially those 

corresponding to lower-level layers can be largely reused or slightly modified for 

solving other tasks. In this approach, called ’fine-tuning’, the original network weights 

are used as a starting point and further optimized (fine-tuned) to solve another task 

(such as going from an original domain, i.e. common everyday images found in 

ImageNet, to retinal imaging). The approach may also involve selectively freezing 



some of the network layers’ weights (e.g. early layers usually encode low level 

feature computation that are likely to be universally applicable across domains), and 

selectively fine-tuning other layers (e.g. mid-level convolutional or higher-level fully 

connected layers, which encode more domain-specific features).   

 

4. Dataset splitting and evaluation  

As is usually done in ML, data is split into training, validation and testing datasets. 

These datasets must not intersect – in other words, an image that is in one of the 

datasets, must not appear in any of the other datasets. Ideally, this non-intersection 

should extend to patients. The general class distribution for the targeted condition 

should be maintained in all these datasets. 

 

Training of deep neural nets is generally done in batches (subsets) randomly 

sampled from the training dataset. The training dataset is what is used for optimizing 

the network weights via backpropagation. The validation dataset is used for 

hyperparameter selection and tuning, and is customarily also used to implement 

stopping conditions for training.  

 

Finally, the reported performance should be computed exclusively using the 

selected optimized model weights, on the testing datasets. It is also critical to test 

the AI system using independent datasets, captured using different devices, 

population and clinical settings. This will ensure the generalizability of the system in 

the clinical settings.  

 

5. Reporting of the datasets characteristics and diagnostic performance 

For any AI study in medical imaging analysis, it is important to demonstrate the 

population in which the DL system was developed and tested on. The reporting of 

dataset characteristics, including age, gender, ethnic groups, imaging platform, size 

of field of view, reference standard, are important, especially now that we know that 

DL system can predict additional features that are not discernable to manual 

inspection like gender and age.19 These characteristics might be augmented by 

including the systemic vascular risk factors (e.g. blood pressure, blood sugar level 

and etc.) for vascular conditions such as diabetic retinopathy (DR).  



 

In order to report the diagnostic performance of an AI system, it is important to first 

define the gold standard or reference standard (also known as ground truth). In 

ophthalmology, the reference standard can be the classifications rendered by a 

reading center, ophthalmologists, professional trained graders, or optometrists. In 

terms of the performance metrics, the most commonly used one is the area under 

the receiver’s operator characteristics curve (AUC), computed using sensitivity and 

specificity. In order to ascertain the true performance of an AI system, it is important 

to report the AUC of testing datasets (locally and externally), using either a pre-set 

sensitivity or specificity. If the operating threshold is not set suitably, an AI system 

with good AUC (e.g., >0.90) potentially could have suboptimal sensitivity or 

specificity, resulting in adverse events within clinical settings.  

 

Apart from the above-mentioned parameters, investigators could consider reporting 

positive predictive value (also known as precision), negative predictive value or 

Cohen Kappas. Lastly, many studies utilize accuracy as one of the main 

measurement outcomes. Similar to AUC, the reporting of accuracy could be 

potentially ‘over-optimistic’ given that it takes into account both true positive and true 

negative as the nominator, with true and false positive, and true and false negative 

as the denominator. If a dataset contains only a few positive images and the AI 

system under-detect them, the reported diagnostic accuracy will be high, although 

the sensitivity will be very poor. Thus, the above-mentioned reasons state the 

importance of including AUC, sensitivity and specificity as the bare minimum for any 

AI study for the literature. Directly comparing AUC, sensitivity and specificity 

between different CNNs is, however, misleading of the data do not stem from the 

same validation dataset. Usually the AUC is the higher the more severe cases are in 

the validation dataset. 

 

 

6. Methods to explain the diagnosis  

DL systems are commonly referred to as a ‘black-box’, and it could be a potential 

cause of low adoption of such technology within clinical settings. It is important for 

the patients to be informed of their diagnosis, and why the diagnosis was made. At 



present, the deep learning community is actively researching ways to rectify this. 

Highlighting the image features that add diagnostic value to a medical image could 

provide a relatively novel teaching opportunity in medicine. Visualization of the 

network workings and activation via saliency maps has allowed the generation of 

overlay highlights that show where the network is looking when it renders a 

classification. Figure 3 shows the example of the heat map detection for referable 

DR and advanced AMD. Visualization may be achieved using multiple methods, 

such as occlusion testing, integrated gradients and soft attention. Occlusion testing 

is performed by sliding an occluding window across an image and checking the 

resulting effect on output classification. Integrated gradients, on the other hand, 

perturbs continuously an image from a baseline image to the output image, while 

monitoring the activation out of the network to characterize the sensitivity of the 

output to each pixel input. Lastly, for soft attention, the saliency map outputs of 

convolutional layers are up-scaled via reverse max pooling and passed through 

additional convolutional layers. This method was used by Poplin et al to identify the 

locations in the fundus image that were predictive of cardiovascular risks or other 

information such as gender (Figure 4).19 

 

AI to Solve Clinical Unmet Need in Ophthalmology 

Global Eye Health Burden 

By 2050, the world’s population aged 60 years and older is estimated to be 2 billion, 

up from 900 million in 2015, with 80% of whom living in low- and middle-income 

countries.33 People are living longer, and the pace of ageing is much faster than in 

the past.34 Because of this, there is a need for longer disease surveillance for many 

ocular and systemic conditions like DR, glaucoma, AMD and cardiovascular 

conditions (Table 2).35 Population expansion also creates pressure to screen for 

important causes of childhood blindness such as retinopathy of prematurity (ROP), 

refractive error, and amblyopia.36 In view of these unmet needs, many groups have 

published the AI system, using retinal images, OCTs and other imaging modalities 

for glaucoma (e.g. HVF). 

 

1. AI for Diabetic Retinopathy 

1.1 Clinical Unmet Need 



Diabetes mellitus (DM) is one of the world’s fastest growing chronic diseases and a 

leading cause of acquired vision loss.37,38 According to the World Health 

Organization, it is estimated that the total number of people with diabetes will double 

from 171 million in 2000 to 422 million by 2040 (Table 2).39 DR, a specific 

microvascular complication of DM, remains the leading cause of acquired vision loss 

worldwide in middle-aged and therefore economically active people.37,40,41 With the 

increasing number of people with DM, the number of DR and vision-threatening DR 

(VTDR), which includes severe non-proliferative DR, proliferative DR (PDR) and 

diabetic macular edema (DME), has been estimated to rise to 191.0 million and 56.3 

million respectively by 2030.42 It is estimated that DR accounts for 4.8% of the 

number of cases of blindness (37 million) worldwide.43 A pooled analysis of 22,896 

people with DM from 35 population-based studies in the U.S., Australia, Europe and 

Asia (between 1980-2008) showed that the overall prevalence of any DR was 34.6% 

(95%CI 34.5-34.8), with 7% (6.9-7.0) suffering from VTDR.44 Screening for DR, 

coupled with timely referral and treatment, is a universally accepted strategy for 

blindness prevention. DR screening programs, however, are challenged by issues 

related to implementation, availability of human assessors and long-term financial 

sustainability. Thus, more novel and economical screening technologies are useful to 

screen for DR. 

 

The idea of automated DR detection is not a new one. In fact, the concept of using 

software to help with the heavy load of retinal images for DR screening was 

introduced 20 years ago.45 Prior to DL, many automated systems were built using ML 

algorithms operating on hand-crafted “features” to detect DR lesions,45-50 with overall 

performance that was lower than manual grading.51-54 Over the past few years, DL 

has been shown to greatly improve the performance of automated DR grading 

systems.12 In the review of DL papers, there are 3 major areas to consider: (1) What 

are the inputs and outputs of the model? (2) What is the reference standard? and (3) 

How well does the algorithm generalize?  

1.2 Algorithm Design 

Hybrid, or biomarker-based algorithms, use multiple partially dependent detectors for 

the biomarkers or lesions characteristic for DR, such as microaneurysms, 

hemorrhages and lipoprotein exudates.55 The outputs of these are then fused into a 



disease level output, using a separately trained and validated ML algorithm.56 The 

detectors themselves, are independently validated, and can be implemented as 

multilayer CNNs,57 wavelet filters, or both. 49,58  

 

As mentioned above, multilayer CNN,57 exploiting the spatial coherence that is 

characteristic of retinal images, and where all transformation levels are determined 

from training data, instead of being designed by experts,59 have been highly 

successful,11 and have been substantially outperforming classical image analysis 

techniques in many tasks. 57 Their greatest advantage is that their development only 

requires a dataset with sufficient quantity and quality of the training data, and not on 

a mathematical coding representative of DR lesions lesions.11 

 

1.3 Inputs of the algorithm for DR 

In terms of inputs, most of the published studies describe algorithms that have been 

trained to take in a single macula-centered or primary field of view 45-degree fundus 

image and gives an image-level read (Table 3). The exception to this is the recent 

work done by Abramoff et al and Ting et al,10,60 which actually requires 4 images, two 

from each eye -- one macula-centered and one disc-centered -- and returns a 

patient-level read. In terms of the model outputs, there are two major ways that the 

models have been trained to make predictions -- either as a binary or multi-class 

classification tasks. While many of the grading scales are usually based on a multi-

class clinical grading scale like the International Classification of DR (ICDR) severity 

scale, a majority of the studies stratify the prediction on a particular severity 

threshold. Most of these models have been trained to detect referable DR defined as 

moderate DR or worse and/or DME because it is at this threshold that many 

guidelines suggest closer follow up (rather than follow up in a year). For example, 

Abramoff et al.60, Gulshan et al.11, and Ting et al.10 all developed DL systems that 

were based on detecting referable DR while Gargeya and Leng13 trained a model to 

detect any DR.  

 

1.4 Gradeability 

One important but often under-appreciated output of the model is gradeability. Since 

ungradable images will also result in a referral, it is important that the models can 

accurately identify images that are not gradable. The performance metrics reported 



by Ting et al10 accounted for gradability issues by default. After accounting for 

ungradable images, the model in Gulshan et al11 had roughly the same sensitivity 

(97.5% vs 96.7%) but lower specificity (93.4% vs 84.0%) (Table 3). These studies 

were not preregistered, and so the datasets did not account for every subject the 

system is intended to screen. In a preregistered, prospective, intention to screen trial, 

Abramoff et al reported a sensitivity of 87.2% and specificity of 90.7% in detection of 

referable DR, with reference to reference standard graded by the Wisconsin Reading 

Center based on a 4 wide-field retinal images, twice the image area than the AI 

system ‘saw’, as well as optical coherence tomography in detecting diabetic macular 

edema. This demonstrates the importance of conducting a real-world clinical trial in 

testing an AI system, as this similar AI system also had comparable AUC in 

Messidor-2 dataset, achieving an extremely high AUC of 0.98 in the earlier study.12  

 

1.5 Reference standard 

These studies have consistently demonstrated that it is possible to train DL 

algorithms that recapitulate the reference standard with high performance metrics 

(sensitivity, specificity >90% and/or AUCs >0.95) (Table 3). Thus, if an algorithm that 

was trained to predict the majority decision of ophthalmologists, it will perform that 

task with high fidelity.11 Similarly if it were trained to predict the adjudicated grade 

from a panel of retinal specialists, the model will also recapitulate that classification 

very well.61 Finally, if it is designed and built to predict the same for the reference 

standard that has been used for over 3 decades to evaluate diagnosis and treatment 

of DR, the Early Treatment of Diabetic Retinopathy Severity Scale, that can be 

recapitulated well also.60 Nonetheless, many DR FDA pharmacological trials were 

performed using the reference standard from an established reading centers (e.g. 

Wisconsin Reading Center) or comprehensive slit lamp examination, using more 

fields (>2 fields) or stricter criteria (using OCT as the reference standard to 

determine whether this is presence of diabetic macular edema, as compared to a 2-

field non-stereoscopic fundus photographs). Hence, for reviewing papers about DL, it 

is very important to be able to clearly identify how the reference standard was 

established, and some performance may not be an apple-to-apple comparison. 

Performance numbers from studies with different reference standards may not be 

comparable. 

 



For example, Abramoff et al reported 96.8% sensitivity and 87.0% specificity in 

detection of referable DR on the Messidor-2 dataset for their DL-based system12 

when using three retinal specialist adjudication on a single macula-centered 45 

degree fundus image. Subsequently, the same group reported the performance of a 

similar algorithm but improved with deep learning based detectors, with a sensitivity 

of 96.8% (95% CI: 93.3%–98.8%), and specificity of 87.0% (95% CI: 84.2%–89.4%), 

and AUC of 0.980 (95% CI: 0.968–0.992), against 3 retinal specialists.12 Finally, in 

their FDA pivotal trial where the reference standard was based on a four widefield 

stereoscopic fundus images and OCT (for DME), read by the Wisconsin Reading 

Center, the standard for FDA drug trials, sensitivity of 87.2% (95% CI, 81.8–91.2%) 

(>85%), specificity of 90.7% (95% CI, 88.3–92.7%) (>82.5%), and imageability rate 

of 96.1% (95% CI, 94.6–97.3%) were reported.60 Similarly, the model in Gulshan et 

al had a sensitivity of 97.5% and 93.4% on the EyePACS-1 primary validation 

dataset where the reference standard was the majority decision of 

ophthalmologists.11 Subsequently, Krause et al demonstrated that compared to 

adjudication of retinal specialists, the majority decision of ophthalmologists had 83.8% 

sensitivity and 98.1% specificity.61 Not surprisingly, when DL was used to train a 

model that recapitulates the adjudication of retinal specialists, the new model 

performed well, with a sensitivity of 97.1% and specificity of 92.3%. In the study 

conducted by Ting et al, the reference standard varied but generally consisted of at 

two independent graders, with a 3rd senior grader to adjudicate disagreements.10 

 

1.7 Generalizability of the algorithm 

One of the most important considerations in training DL models is generalization -- 

that is how well do the models perform on new data, especially data that is derived 

from populations that are distinct from the population used for model training. Prior to 

validation, it is important to pre-set the desired operating threshold on the 

development dataset based on desired sensitivity and specificity. Subsequent 

validation at these pre-defined operating points will better represent performance in 

real-world settings. Validation in the same population as the development set 

(perhaps at a different time frame) is often called “primary validation.” Validation in a 

different population is often called “secondary validation.” Ting et al developed a 

model that was validated on 11 independent datasets.10 On the primary validation 

set, the model achieved a 90.5% sensitivity and 91.6% specificity. On the largest 



secondary validation dataset of more than 15,000 images, the algorithm had a 

sensitivity of 98.7% and specificity of 81.6%. The model also did well on the 9 other 

secondary validation datasets with high sensitivity (>90%) and acceptable specificity 

(>70%). 

 

1.8 Future Directions 

Despite the high performance metrics reported by numerous studies that leverage 

DL for DR detection, there is still much work ahead in terms of implementation in 

clinical practice. First, it would be important for screening programs considering the 

implementation of these systems to understand the steps to capturing the necessary 

data for the algorithms to be used. For example, what type of equipment would be 

required for the system to work? Is the model compatible with multiple imaging 

cameras? What is the recommended procedure to capture fundus images? How 

often will dilation be necessary? All of these could have important implications about 

whether the adoption of these algorithms is even feasible, especially in resource 

constrained settings. 

 

Next, performance verification of a trained model in the population where it is to be 

deployed will be required. This is particularly important for models that have been 

trained utilizing datasets from relatively homogenous populations, without secondary 

validation. Retinal images that could be used for training and inference can often be 

quite variable from one screening program to another. Variabilities like field of view, 

image magnification, image quality and participant ethnicities are all considerations 

that should be accounted for. Diversification of the training dataset would be critical 

in addressing this challenge.10  

 

Another consideration in the development of AI models for DR screening is how to 

address non-DR findings. It is common practice that if there are non-DR findings 

identified during DR screening that these findings are reported back to the clinic. 

However, there is still some uncertainty and heterogeneity about when these other 

findings should be considered referable. In addition, there can be substantial grader 

variability in the manual interpretation of fundus images for other disease. For 

example, when to refer a suspicious cup-to-disc ratio could vary from one screening 

program to another. Ting et al reported the development of additional models that 



also could detect AMD and the glaucoma-like disc.10 There are other publications 

(covered later in this review) focused on building models that detect non-DR 

diseases separately. Studies looking at both DR and non-DR findings would be an 

important area for future development. 

 

In addition to performance, impact on clinical workflow, model explainability may be 

an important aspect of the adoption of DL systems. Because DL models do not 

utilize explicit feature engineering, attention techniques can help visualize the 

regions of the image that is most relevant for the prediction. Large longitudinal 

clinical trials with AI systems implemented end-to-end with diverse hardware, 

population characteristics, and local environmental will be critical milestones in 

evaluating the actual safety and efficacy of AI systems. Furthermore, real-world 

deployment of these new systems in multiple settings will be critical in understanding 

the full impact of AI on clinical care. For example, increased number of screenings 

enabled by automated screening algorithms will increase demand for follow-up and 

treatment. Healthcare systems will have to adapt so that they can manage this 

additional volume. Moreover, real time feedback from a model might enable follow-

up actions to be initiated at the same visit. If a patient does not need to be referred, 

this would also be an opportunity to reinforce and commend the patient on efforts in 

managing their disease and emphasize the need for follow-up. If a patient is found to 

have referable disease, this allows for timely follow-up appointments to be scheduled 

before the patient leaves the office. There is limited information available regarding 

the potential success of such management. 

 

Despite the tremendous progress made in the application of DL for DR screening, 

there are still many challenges ahead -- from identifying image features that are 

critical to image classification to large scale implementation. However, the rapid 

progress and excitement in this field make it fairly clear that DL systems will have a 

profound impact on DR screening in the coming decades. 

 

2. AI for Glaucoma and Glaucoma Suspect 

2.1 Clinical Unmet Need 

Apart from DR, many screening programs also screen for the referable glaucoma 

suspect. The World Health Organization has declared Glaucoma to be the second 



largest cause of blindness worldwide, comprising 15% of the blindness cases 

globally, or 5.2 million patients. This number is expected to increase up to 111.8 

million by 2040 (Table 2).62 As glaucoma is an optic neuropathy, retinal features for 

referable glaucoma suspect include an increased vertical cup-to-disc ratio (CDR), 

neuro-retinal rim thinning, presence of optic disc haemorrhages and retinal nerve 

fibre layer defects. To date, there is no cost-effective screening strategy for detection 

of the high-risk glaucoma suspect, mainly due to the absence of an appropriate 

test.63 This sentiment is aligned with the most recent US Preventive Services Task 

Force 2013 position statement claiming that current evidence was insufficient to 

recommend screening for glaucoma in adults; nonetheless, there was a proviso that 

high-risk groups (e.g. positive family history, African American) might benefit from 

early screening with their primary care physicians.64,65  

 

The success of AI using DL system in glaucoma in the screening or the clinical 

setting is predicated on an agreed-upon structural and functional definition of the 

disease. Certainly, glaucoma is a heterogenous condition, especially considering the 

various anterior segment features that may be present in the disorder, with the 

convergent feature being a characteristic optic nerve appearance that corresponds 

to vision loss.  One way to characterize this optic neuropathy is to rely on excavation 

of the neuroretinal rim that can be quantified with the cup-to-disc-ratio (CDR). Since 

disc size and shape can vary among people in a population and these features also 

differ across populations, it is problematic to describe a CDR that defines glaucoma.  

The International Society for Geographical and Epidemiological Ophthalmology 

(ISGEO) proposes using the upper 97.5th percentile of vertical CDR or of CDR 

asymmetry as a standard definition of structural glaucomatous damage.66 This 

definition is, however, not sufficient for glaucoma diagnosis, because of the large 

influence of disc size67 and the issues in patients with abnormal anatomical 

configuration of the disc. In addition, measurement of CDR is biased by large grader-

variability because of a lack of a solid anatomic basis.68 On OCT retinal nerve fibre 

layer thickness and ganglion cell complex measurements are used to discriminate 

glaucoma from healthy.69 More recently minimum rim width as measured from 

Bruch’s membrane opening has been used as a novel diagnostic tool in glaucoma.70 

A proposed reference standard for functional loss from glaucoma is a glaucoma 

hemifield test (GHT) outside normal limits and a cluster of 3 contiguous points with 



assigned probability of 5% or less on the pattern deviation of a Humphrey visual field 

analyzer. These contiguous points should follow a nerve fiber layer distribution. 

Comparable functional loss on other visual field (VF) platforms could be considered. 

Patients with definite glaucoma would meet both structural and functional criteria 

while suspects might meet only the structural criterion. The ISGEO proposes that 

patients with disc haemorrhage, IOP at greater than the 97.5Th percentile or subjects 

with occludable angles but normal optic nerves, visual fields, IOP and no peripheral 

anterior synechiae also be regarded as suspects. While no definition of glaucoma is 

ideal, DL systems can potentially be trained to identify these phenotypic attributes.   

 

2.2 Optic Disc Imaging 

Using engineered software, researchers have attempted to auto-segment the disc 

and cup margin using hard-coded algorithms to ascertain the CDR.71-73 Peripapillary 

atrophy and vessel obscuration create major challenges to auto-segment the disc 

and cup margins. The problem is actually particularly pronounced in annotating the 

normal cup, which is generally small and with high vascular density. Errors in auto-

segmenting the disc and cup contours create challenges to accurately identify the 

glaucoma-like disc as defined by ISGEO criteria. Researchers have successfully 

circumvented auto-segmentation problems by training neural networks to recognize 

the disc with user-defined threshold features for glaucoma referral.10,14 As shown in 

Ting et al and Li et al,10,14 clinicians diagnose glaucoma suspect from the optic disc 

images for CDR and glaucomatous changes in a training set and a neural network 

can recognize those photos that meet a predefined threshold for cupping associated 

with glaucoma with >90% accuracy (Table 4). In this setting disc images do not 

require segmentation during an unsupervised assessment of whether or not they are 

glaucomatous (Figure 5). 

 

In 2018, the use of DL to detect a glaucoma suspect and glaucoma has moved 

beyond the use of optic nerve photos to detect eyes with CDRs above a pre-selected 

cutoff.  Shibota et al., using 3242 fundus images, was able to train a CNN to detect 

the definitively glaucomatous optic nerve with an AUC of 0.965.74 The CNN was 

trained to detect focal disc notching, cup excavation, retinal nerve fibre layer atrophy, 

disc haemorrhage and peripapillary atrophy, all signs which may occur at CDRs 

below pre-selected criteria. Using 1758 Spectral Domain OCT images Asaoka was 



able to detect early glaucoma with an AUC of 0.937 (Sensitivity = 82.5% and 

Specificity = 93.9%).75 Interestingly ultra-wide scanning laser ophthalmoscopy is 

gaining popularity in the detection of DR and fine optic disc details are captured in 

these images.  Masumoto et al. used 1379 Optomap images to detect glaucoma 

overall with 81.3% sensitivity and 80.2% specificity; values were higher for more 

severe glaucoma (Table 4).76 

 

2.3 Visual Fields 

Relative to optic disc photographs or OCT images, the data contained in visual field 

(VF) tests have low dimensionality and high noise. Nonetheless VFs represent an 

important endpoint in glaucoma clinical trials and VF findings will likely influence 

glaucoma diagnosis and guide clinical care for the foreseeable future. While the 

Glaucoma Hemifield Test (GHT) on the Humphrey VF represents a supervised 

algorithm that is useful in defining glaucoma, DL systems would be useful to define 

and quantify patterns of VF loss so that minimal thresholds for defining glaucoma 

could be established. Elze et al. developed an unsupervised algorithm termed 

archetype analysis to identify VF loss patterns that include glaucomatous and non-

glaucomatous deficits and provide weighting coefficients for these patterns.77 This 

algorithm has been validated78 and has proven useful in augmenting the GHT for the 

detection of early functional glaucomatous loss.79 Using an entirely different strategy, 

Li et al trained a CNN to learn the Pattern Deviation probability plots of normal and 

glaucomatous eyes and was able to detect glaucoma with 93.2% sensitivity and 82.6 

sensitivity.80 Yousefi et al. used an alternative Gaussian mixture and expectation 

maximization method to decompose VFs along different axes to detect VF 

progression.23 This approach was as good or superior to current algorithms, 

including Glaucoma Progression Analysis, Visual field Index and Mean Deviation 

slope, in detecting VF progression.  

 

2.4 Clinical forecasting   

Kalman filtering (KF) is a ML technique that filters out noise in serial measures of a 

parameter to forecast trends over time.  Glaucoma is generally a chronic slowly 

progressive disease whose trajectory is influenced by serial IOP, as well as changes 

in functional and structural data.  Researchers at University of Michigan used 

longitudinal data on IOP and VFs to accurately forecast VF progression for 



participants in the Collaborative Initial Glaucoma Treatment Study.81 Using a similar 

approach on a clinical based sample of Japanese normal tension glaucoma patients, 

KF was better able to predict 2-year MD forecast than linear regression of MD.82 

 

2.5 Clinical and technical challenges in translating the technology 

Care is needed to implement promising DL algorithms in the clinic setting so as to 

empower rather than entangle doctors as well as address patient concerns and 

improve their clinical care experience. In the screening environment there will be 

concerns about whether DL algorithms will be robust across the various platforms 

used to acquire information on glaucoma patients. The role of tonometric data and 

how to acquire data about the filtration apparatus in the screening setting could be 

important in populations where the prevalence of elevated IOP83 and angle closure is 

high.62 Furthermore, as is true in DR screening, there will be concerns about whether 

the algorithms will be applicable to the specific patient populations where they are 

employed. These challenges seem surmountable if careful planning and beta testing 

is employed. 

 

2.6 Future directions  

Currently, much work is needed to improve AI glaucoma detection algorithms.  In the 

area of imaging, OCT technology demonstrates that the disc edge is best defined 

based on Bruch’s membrane opening (BMO) and clinicians are not well trained to 

find this landmark on fundus photos.84 Thus validation of DL systems to detect the 

glaucoma-like disc may require that training sets contain paired OCT images so that 

proper ground truth regarding disc margin contour be established.  This will help 

establish the most accurate standardized assessment of CDR. DL systems should 

account for disc color and textural information embedded in pixel-rich fundus images 

so that they can detect non-glaucomatous optic nerve disease and leverage the fact 

that nerve fibre layer atrophy accompanies optic nerve degeneration. Rather than 

detect the disc with arbitrary CDR cutoffs, more work is needed to calibrate DL 

systems to detect the disc with manifest VF loss is also needed.  Finally, more work 

on incorporating OCT data into DL algorithms to detect pathologic optic nerves as 

well as progressive structural damage is needed.85 Algorithms that not only ascertain 

if there is optic nerve pathology but the regional location of pathology would be 

widely accepted. 



 

With respect to VFs, more work is needed on unsupervised approaches to detect VF 

progression, which is important in the clinical setting. In addition, glaucoma 

forecasting will also be useful in the clinical setting and could be refined by 

considering factors other than serial IOP and HVFs, like patient demographics, 

family history, past medical history, genetic risk scores as well as other ocular 

parameters.  Ultimately, we are likely to see hybrid methods that incorporate 

structure, function, and non-ophthalmic parameters like genetic risk score into 

algorithms that predict diagnosis, guide treat and offer prognosis for glaucoma 

patients. 

 

3. AI for Age-related Macular Degeneration (AMD) 

3.1  Clinical Unmet Need 

AMD is another major cause of vision impairment, accounting for 8.7% of all 

blindness worldwide (Table 2).86-89 The age-related eye disease study (AREDS) 

classified AMD stages into none, early, intermediate and late AMD. In a systematic 

review consisting of ~130,000 individuals from 39 studies, the pooled prevalence of 

any, early and late AMD were 8.69% (95% CI 4.26-17.4), 8.01% (3.98-15.5), 0.37% 

(0.18-0.77), respectively.88 It is projected that 288 million may have some forms of 

AMD by 2040, with approximately 10% having intermediate AMD or worse.88 The 

treatment for neovascular AMD patients has been revolutionized with the advent of 

anti-vascular endothelial growth factors (VEGF),90,91 with many countries, e.g. US, 

Australia, reporting a significant drop in incident blindness by >50%. 92,93 With the 

ageing population, there is an urgent clinical need to have a robust DL system in 

detection of these patients for further evaluation in the tertiary eye care centers.  

 

The intermediate stage of AMD is often asymptomatic, characterized by numerous 

medium-sized drusen or at least 1 large druse or geographic atrophy of retina 

pigment epithelium that does not involve the fovea. Left untreated, the advanced 

choroidal neovascular form of AMD can lead to substantial central vision loss in most 

individuals with at least half having fellow eye involvement in the advanced stage 

within five years of the first eye involvement. The clinical presentation of AMD 

includes drusen, retinal pigment epithelium (RPE) abnormalities, geographic atrophy 



(GA) or choroidal neovascularization (CNV) with subsequent scarring. The Age-

related Eye Diseases Study (AREDS) classified AMD stages into early, intermediate 

and late stages, based on drusen and other characteristics.94 The American 

Academy of Ophthalmology (AAO) recommends an examination for those with the 

intermediate stage of AMD at least every 2 years, as most of these patients are 

usually visually asymptomatic, but have a higher risk of developing advanced AMD 

than individuals without the intermediate stage. An automated AMD screening 

algorithm for detecting cases of AMD that require management, i.e., either the 

intermediate stage or advanced stages for which follow-up is therefore desirable.  

 

3.2 AREDS dataset 

Many of the AI systems for AMD were built using the AREDS dataset,16,95 while 

some utilized other datasets (e.g. Singapore Eye Research Institute).10 The AREDS 

was a multi-center double-masked clinical trial, involving 4613 participants, recruited 

across 11 clinical centers designed to assess the clinical course, prognosis, and risk 

factors for AMD and cataract.94 A total of 66,943 macula-centered images (baseline 

and follow-up) were used from this study. Based on the retinal lesions, AREDS 

classification proposed 2 classification scales: 1) 4-step - none, early, intermediate 

and late AMD; and 2) 9-step severity scale, which was based on outcome data, 

provided predictive variables for 4-year risk of developing choroidal 

neovascularisation, central geography atrophy or both.96,97 AREDS grade 1 indicates 

that fundus images with little or no AMD changes, while AREDS grade 2 through 9 

represent changes associated with early or intermediate AMD. AREDS grades 10 

through 12 represent late-stage AMD, namely GA, neovascular AMD and images 

with both late-stage forms. Of these, 44.6% had referable AMD, defined as 

intermediate AMD or worse.  

 

3.3 Fundus images-based DL systems 

In the AREDS 1 dataset, Burlina et al reported an AUC between 0.94 and 0.96 with 

accuracy between 88.4% and 91.6% in detection of referable AMD, using a 5-fold 

cross validation and pre-trained AlexNet and Overfeat CNNs (Table 5). Using the 

same dataset, they estimated 5-year risk of AMD progression, with weighted k 

scores of 0.77 for 4-step severity scales and overall mean estimation error between 

3.5% and 5.3%.95  



 

Similarly, Grassmann et al built a DL system for detection of early and late AMD, 

using 6 different CNNs.16 Early AMD was defined as AREDS grade 2 to 9, while late 

AMD was defined as AREDS grade 10-12 (GA and neovascular AMD). Using the 9-

step AREDS severity scale, the authors reported an accuracy of 63.3% in predicting 

13 classes in the AREDS test set with a quadratic weighted k of 92% (95% CI: 89%-

92%). This algorithm was validated using the Augsburg dataset, consisting of 5,555 

fundus images that were collected as part of the collaborative health research in the 

region of Augsburg, Germany. There was a reduction in weighted and unweighted k 

values due to the 313 false positive fundus images, that are deemed to have 

neovascular AMD (AREDS class 11), but that were actually images from healthy 

individuals, with most showing dominant macula reflexes. These patients were 

detected as ‘abnormal’ as the inclusion criteria for AREDS datasets were individuals 

aged 55 years or older. This, again, shows the importance of selecting the right 

screening population for the AMD algorithm in the clinical setting.  

 

Developed using VGGNet and Singaporean population-based cohort, Ting et al 

reported an AUC, sensitivity and specificity of 0.931 (0.928-0.935), 93.2% (91.1%-

99.8%) and 88.7% (88.3-89.0), respectively, in detection of referable AMD on the 

testing dataset, on a 2-year diabetic cohort (2014 and 2015) recruited from 

Singapore National DR Screening Program.10 This algorithm, however, was not 

tested on a white population. Vice versa, the former 2 groups also did not validate 

their algorithms in Asian populations. In terms of the technical methodologies, 

Burlina et al15,95 performed auto-segmentation on the macular region while the latter 

2 DL systems analyse the entire retinal image,10,16 although diagnostic performance 

were still comparable between the 3 DL systems using the respective testing 

datasets. Future research is important to evaluate the generalizability and cost-

effectiveness of these DL systems in a larger international multi-ethnic cohort.  

 
 
4. AI for Retinopathy of Prematurity  
 
4.1 Clinical Unmet Need 

ROP is a retinal vascular disease affecting premature infants, characterized by 

abnormal fibrovascular proliferation at the boundary of the vascularized and 



avascular peripheral developing retina. Globally, it is estimated that 15 million babies 

are born prematurely each year.98 In US, the incidence of ROP was 19.9% (Table 

2).99 ROP accounts for 6 to 18% of childhood blindness,100 causing significant 

psycho-social impact on the child and the family.101 According to the Early Treatment 

for ROP (ETROP) trial,102 early treatment has shown to be beneficial to improve the 

visual acuity of high-risk ROP patients, although 9% still eventually became blind. 

Thus, early screening with regular monitoring is crucial.  

 

ROP diagnosis is traditionally performed by indirect ophthalmoscopy at the neonatal 

intensive care unit (NICU) bedside, and is increasingly being performed by 

telemedicine interpretation of wide-angle retinal images.103-105 Clinical diagnosis is 

based on parameters defined by the international classification of ROP (ICROP): 

zone, stage, clock hour extent, and plus disease. “Plus disease” is defined as 

venous dilatation and arteriolar tortuosity in central retinal vessels greater than or 

equal to that of a standard published photograph.106-108 The 2005 revised ICROP 

defined a newer “pre-plus” category as posterior pole vessels that are not normal but 

with less than the required amount of vascular abnormality.108 Based on findings 

from the NIH-sponsored multicenter Cryotherapy for ROP (CRYO-ROP) and Early 

Treatment for ROP (ETROP) trials, presence of plus disease has been shown to be 

the key factor in identifying infants with severe treatment-requiring disease at risk for 

blindness.102,106  Figure 6 displays examples of normal vessels, pre-plus disease, 

and plus disease. Therefore, it is critical to diagnose plus disease accurately and 

reproducibly. 

 

4.2 Challenges in ROP Diagnosis 

There are a number of challenges with the current approach to ROP diagnosis. From 

a public health perspective, the number of premature infants at risk for ROP is 

increasing due to a rising number of preterm births and increased neonatal survival, 

particularly in the developing world.109 Meanwhile, the supply of clinicians who 

perform ROP management is limited by logistical challenges of coordinating 

examination at the NICU bedside, low physician reimbursements, and extensive 

medicolegal liability. From an educational perspective, training in ROP diagnosis is 

often inadequate, further limiting the workforce of ophthalmologists trained to 

manage this disease.110-113 



 

In particular regarding clinical care, there are a number of real-world challenges 

regarding plus disease diagnosis: (1) There is often significant variability in 

diagnostic classification (plus vs. pre-plus vs. normal), even among experts,114-118 

leading to inconsistent application of evidence-based practice.119 This has occurred 

even in NIH-funded multicenter trials. For example, in the CRYO-ROP protocol, 

confirmation of threshold disease was required by a second unmasked certified 

examiner performing dilated ophthalmoscopy. In that setting, the second examiner 

disagreed with the first examiner regarding clinical diagnosis of threshold disease in 

12% of cases.120 Also, in a multi-center study of telemedicine for ROP diagnosis, 

nearly 25% of examinations by certified study graders required adjudication because 

the graders disagreed on one of three criteria for clinically-significant ROP.121 (2) 

There is significant variability in diagnostic process among experts, who have been 

shown in observational studies to consider different retinal vascular features during 

assessment of disease severity.122 (3) There is evidence that experts frequently 

deviate from the published definition of plus disease when assessing ROP, for 

example by considering factors such as venous tortuosity and peripheral retinal 

vascular features.122-125 (4) The published standard photograph for plus disease was 

from the 1980s, and has a much smaller field of view and larger magnification than 

clinicians are accustomed to seeing during standard examination methods using 

indirect ophthalmoscopy or wide-angle retinal images. There is evidence that this 

causes bias and inconsistency in diagnosis.126 (5) Studies have shown that there is 

geographical variation in plus disease diagnosis possibly related to differences in 

training,119 and that there may be chronological drift showing a tendency to diagnose 

“plus disease” more frequently than in the past.127 (6) The multicenter Supplemental 

Therapeutic Oxygen for Prethreshold ROP (STOP-ROP) study defined that plus 

disease is present if there is sufficient venous dilation and arterial tortuosity in at 

least 2 quadrants, and this definition was incorporated into the 2005 revised 

ICROP.108,128 However, there is variability in how this definition is interpreted,115-

117,122 and evidence that this variability may lead to clinically-significant differences in 

diagnosis.116,129 (7) The ICROP definition of pre-plus disease108 is somewhat vague. 

Studies have found significant levels of variability in diagnosis of pre-plus disease 

among experts.114,115 (8) Vascular abnormality in ROP reflects a continuous 

spectrum of disease,108,130,131 whereas clinical management is based on a discrete 



classification (e.g. “plus disease” vs. “not plus”) from findings of clinical trials, which 

requires determining cut-points for abnormality.106,120  Research suggests that 

diagnostic discrepancy results from individual clinicians having different cut-points 

(e.g. “is this plus or pre-plus disease”), despite having better agreement on relative 

disease severity (e.g. “which retina looks worse”).132,133 

 

4.3  Early Approaches to Image Analysis for ROP 

Early approaches to computer-based image analysis for plus disease diagnosis were 

based on quantification of vascular tortuosity and dilation (RetCam; Natus Medical 

Incorporated, Pleasanton, CA).134 Three such systems have been developed and 

validated for wide-angle RetCam images: ROPTool, Retinal Image multiScale 

Analysis (RISA), and Computer-Assisted Image Analysis of the Retina (CAIAR).135-

137 These systems have been evaluated against expert diagnostic performance, but 

have not had real-world application because of limitations such as being semi-

automated (e.g. requiring manual identification of optic disc or key vascular 

segments), or having limited correlation with two-level expert diagnosis (plus disease 

vs. not plus). 

 

More recently, one system (Imaging & Informatics in ROP, i-ROP) was developed 

based on machine learning methods, in which a vascular metric termed “acceleration” 

was found to have best diagnostic performance in a 6 disc-diameter circular crop of 

wide-angle RetCam images considering all retinal vessels combined.138 This system 

had 95% accuracy for 3-level plus disease diagnosis (vs. pre-plus or normal) in a 

test set of 77 images, compared to a reference standard defined by combining 

ophthalmoscopic examination by 1 expert with image-based examination by 3 

experts. For the same test set of 77 images, 3 individual experts had accuracy of 92-

96%, and 31 non-experts had mean accuracy of 81%. However, real-world 

application of this system has been limited by the requirement for manual 

segmentation of images.138 

 

4.4 Deep Learning for ROP 

DL has been applied for automated diagnosis of ROP, which could potentially 

address barriers to ROP screening on a larger scale.139 Most recently, Brown et al 

developed and validated a fully-automated DL system (i-ROP DL) for 3-level plus 



disease diagnosis (plus vs. pre-plus vs. normal) with an area under the ROC curve 

of 0.98 for plus disease diagnosis compared to a reference standard defined by 

combining ophthalmoscopic examination by 1 expert with image-based examination 

by 3 experts. When evaluated in an independent test set of 100 wide-angle RetCam 

images, the i-ROP DL system achieved 93% sensitivity and 94% specificity for 

diagnosis of plus disease, and 100% sensitivity and 94% specificity for diagnosis of 

pre-plus or worse disease. When compared to 8 international ROP experts 

evaluating the same 100-image test set, the i-ROP DL system agreed with the 

consensus diagnosis more frequently than 6 of the 8 experts.17 

 

4.5 Future Directions 

AI has potential to create assistive technologies to improve the accuracy and 

consistency of ROP diagnosis by clinicians. In the future, this could produce 

quantitative ROP severity scores to facilitate objective monitoring of disease 

progression and treatment response. Future automated systems might provide initial 

readings of images captured by neonatal intensive care unit nurses, thereby 

reducing the requirement for traditional ophthalmoscopic examinations in the 

majority of infants without clinically-relevant disease. These methods may be 

particularly applicable to the developing world, where the availability of 

ophthalmology and neonatology expertise may be insufficient to manage the number 

of premature infants at risk for ROP. 

 
 
5. AI for Cardiovascular Disease 
5.1 Clinical Unmet Need 

Cardiovascular diseases (CVDs) is the largest cause of non-communicable deaths 

worldwide. For 2018, World Health Organization (WHO) estimated that 17.9 million 

people died of CVD worldwide in 2012, accounting for an estimated 31% of global 

mortality (Table 2).140 Of those, ischemic heart disease (IHD) and stroke are the top 

cause of mortality, responsible for approximately 85% CVD deaths, with >75% 

occurring in low- to middle-income countries.141,142 To prevent heart attacks, strokes, 

and other adverse cardiovascular events, it is important to identify the systemic risk 

factors, that can be divided into non-modifiable (e.g. age, sex) and modifiable factors 

(e.g. smoking, hypertension, hyperlipidemia). In the routine clinical setting, many 

physicians utilized risk calculators, such as the Pooled Cohort equations,143 



Framingham144-146 and SCORE,147,148 aiming to perform risk assessment and stratify 

individual risk to inform treatment decisions. If existing CVD risk assessment tools 

could be improved, more patients can benefit from early treatment, while minimizing 

the harms of screening.149 

 

Given the ageing population, the clinical unmet need will continue to rise over the 

next few decades. Most screening programs will face shortage of manpower and 

infrastructure, especially in the low-to-middle income countries. Thus, there is an 

urgent call for action in exploring novel and economical screening technologies for 

these conditions. Cardiovascular disease (CVD) risk assessment is a critical first 

step in managing and preventing heart attacks, strokes, and other adverse 

cardiovascular events. Clinicians often utilize risk calculators, such as the Pooled 

Cohort equations,143  Framingham144,145,150 and SCORE,147,151 which is based on 

various factors from patient history (e.g. age, self-reported sex, smoking status) and 

blood samples (e.g. lipid panels).152 Given that obtaining these values require a 

blood draw and fasting prior to the procedure, some of these parameters such as 

cholesterol values may be sparsely available153. 

 

5.2 Manual grading for retinal vascular Imaging to predict CVD risks 

There have been many efforts to improve risk prediction, particularly in incorporating 

phenotypic information to further refine risk prediction such as the addition of 

coronary artery calcium154 or retinal imaging. The retina is unique in that it is one of 

the only places in the body where vascular tissue can be visualized quickly and 

noninvasively. Conditions associated with CVD, such as hypertensive retinopathy 

and cholesterol emboli, can often manifest in the eye. Previous studies have shown 

that various retinal features may be predictive of cardiovascular events, stroke155 or 

chronic kidney disease.156 These features include vessel caliber,157-159 bifurcation or 

tortuosity,160 Currently, the assessment of such features requires expert assessors 

going through a fairly long and detailed procedure. For example, to measure vessel 

diameters, expert assessors must segment vessels, identify specific segments and 

adjudicate variations, a fairly time-consuming process to measure just one feature of 

the image. While the previous work in this field is promising, the clinical utility of such 

features still requires further study.  

 



5. CVD risk prediction using Retinal Imaging and DL 

One of the key benefits of DL is the ability to learn the appropriate predictive features 

directly from the raw examples, rather than requiring features to be hand-engineered. 

In the context of retinal imaging, what this means is that we can provide all the pixel 

values from a retinal fundus image with minimal processing as the input to a deep 

learning model, and train it to predict the desired label (for example the ICDR DR 

Grade) for that image.  

 

In a recent study, Poplin and Varadarjan et al19 used DL to build a model that 

predicted cardiovascular risk factors using retinal fundus images (Table 6) from 

48,101 patients from the UK Biobank study161 and 236,234 from the EyePACS 

population.162 The UK Biobank population was predominantly Caucasian without 

diabetes while the EyePACS patients were predominantly Hispanic with diabetes. 

These models were then validated using images from 12,026 patients from UK 

Biobank, 999 patients from EyePACS, and on an independent cohort of Asian 

patients (Table 8).163 The model was fairly accurate for some predictions such as 

age, self-reported sex, blood pressure, and smoking status. In addition, the authors 

also trained a model to predict the onset of major adverse cardiovascular events 

(MACE) within 5 years using the UK Biobank study. For this, MACE was defined as 

the presence of billing codes for unstable angina, myocardial infarction, or stroke or 

death from cardiovascular causes. Participants that had a MACE prior to the retinal 

imaging were excluded. Because the UK Biobank recruited relatively healthy 

participants, MACE were rare (631 events occurred within 5 years of retinal imaging-

-105 of which were in the clinical validation set). Despite the limited number of 

events the model achieved an AUC of 0.70 (95% CI: 0.65, 0.74) from retinal fundus 

images alone (Table 8), comparable to the AUC of 0.72 (0.67, 0.76) for the 

European SCORE risk calculator. Because cholesterol levels were not available at 

the time of the study, BMI was used as a proxy while calculating the SCORE risk.164-

166  

 

An explanation technique for DL models called soft-attention was used to identify 

relevant anatomical regions that the model may be using to make its predictions. 

This generated a heat map showing the most predictive pixels in the image. A 



representative example of a single retinal fundus image with accompanying attention 

maps167 for a few predictions is shown in Figure 4.  

 

5.4 Future direction 

Despite these promising results, efforts to improve the performance and 

interpretability of these DL models seems indicated, especially for MACE. First, the 

Poplin and Varadarajan et al study did not include blood tests such as lipid panels in 

the analysis because it was not available for the study.19 Future work should include 

these important clinical factors. A substantially larger dataset or a population with 

more cardiovascular events may enable more accurate DL models to be trained and 

evaluated with high confidence. Training with larger datasets and more clinical 

validation will help determine whether retinal fundus images may be able to augment 

or replace some of the other markers, such as lipid panels, to yield more accurate 

predictions.  

 

6. AI for refractive error  

6.1 Clinical Unmet Need 

Uncorrected refractive error is a major cause of visual impairment that affects a large 

proportion of the world population.168 Uncorrected refractive error is commonly 

defined as visual acuity of less than 6/12 in the better eye with improvement of at 

least 0.2 logMAR (equivalent to 2 lines) after refraction. According to the global 

burden of disease study, 101.2 million cases of moderate and severe visual 

impairment and 6.8 million cases of blindness were due to uncorrected refractive 

error (Table 2).169 It is estimated that visual impairment secondary to refractive error 

resulted in close to 269 billion international dollars loss on the potential productivity 

cost, mainly attributable to lack of awareness and shortage of optometry expertise. 

Given its implication, the screening and correction of refractive error is important.  

 

6.2 AI in predicting refractive error 

As discussed in the previous examples with cardiovascular disease and retinal 

imaging, DL has also shown great promise in discovering new associations from 

imaging or quantifying known associations to a high level of accuracy. Another 

example of this is the recent work done in applying DL for refractive error. While 

physicians would generally have difficulty predicting refractive error from a retinal 



fundus image, DL techniques are able to predict this fairly accurately. Varadarajan 

and Popin et al170 showed that deep learning can be used to train algorithms with a 

mean absolute error (MAE) of 0.56 D (95% CI: 0.55, 0.56), and R2 of 0.90 (95% CI: 

0.90, 0.91) using images taken with a 45 degree field of view as the input data 

(Table 9). Given this somewhat surprising finding, the authors also went on to 

leverage attention maps to determine the parts of an image most relevant for the 

prediction. They found that the attention maps consistently highlighted the fovea as a 

feature that was important for the prediction (Figure 7). The model also frequently 

highlighted retinal vessels and cracks in retinal pigment. The model seemed to 

predict only the spherical component of refractive error well (Table 9). The accuracy 

of the refractive error prediction seemed to decrease with a smaller field of view, 

poorer image quality, and possibly macular lesions.  

 

6.3 Future Directions 

The ability to train accurate models without feature engineering combined with 

explanation techniques make DL an attractive tool for scientific discovery. 

Improvements in and experimentation with other explanation methods for DL models 

will help us understand these novel signals. While these heatmaps can serve as 

starting points, other techniques can be leveraged to further help explain model 

predictions -- such as selectively including or excluding parts of the images during 

training to measure the relative importance of each of these regions to the prediction 

task. The identification of new features creates new research opportunities for better 

understanding of the development and management of disease. For researchers, 

instead of first guessing and then testing hypotheses one by one, they could use 

neural networks to directly make the prediction of interest and then utilize attention 

techniques to generate targeted hypotheses. For clinicians, this work also suggests 

that large datasets could be leveraged to fuel the development of new non-invasive 

imaging biomarkers for a variety of diseases, from ophthalmological to systemic 

diseases.  

 

7. AI for Optical Coherence Tomography for Retinal Diseases 

7.1 Clinical Unmet Need 

OCT has established itself as the dominant imaging modality across ophthalmic 

disciplines, particularly for the diagnosis and management of retinal disease.171 30 



million ophthalmic OCT procedures are now performed every year, a figure 

comparable in scale to other medical imaging such as magnetic resonance imaging 

(MRI) or computed tomography (CT), and which is more than the sum of all other 

ophthalmic imaging modalities combined.172 By allowing personalized therapy for just 

one retinal disease – neovascular AMD – it is estimated that OCT imaging has saved 

the United States government at least $9 billion.173 OCT imaging is increasingly 

being used in other areas of ophthalmology also, with applications for the care of 

patients with cataract, corneal disease, uveitis, oculoplastics, and glaucoma. On the 

commercial side, by 2016, the estimated revenues from ophthalmic OCT systems 

had reached $1 billion per year.173 Although widely adopted first in ophthalmology, 

the use of OCT is expanding to other medical specialties, including neurology, 

dermatology, cardiology, and gastroenterology, as well as non-medical fields such as 

archeology, art conservation, and industrial non-destructive testing. Since 2013, 

there has even been an ophthalmic OCT system on the International Space Station 

(ISS) as part of the NASA Optical Health Study, investigating the visual impairment 

that commonly occurs in those exposed to microgravity for long duration space 

flight.174  

 

From an early point in its commercial development OCT imaging has been 

innovative in its incorporation of automated medical image analysis techniques.175 

Unlike other ophthalmic imaging modalities, which have typically only allowed, at 

best, semi-quantitative assessments of disease, OCT provides automated 

measurements of retinal thickness for macular disease and of retinal nerve fiber 

layer (RNFL) thickness for glaucoma. Ophthalmic clinical trials quickly adopted these 

measures as inclusion- and retreatment-criteria, and their application in applied 

clinical research has both clarified many aspects of retinal disease pathophysiology 

and elucidated many hitherto unrecognized disease characteristics. As our 

knowledge of OCT image analysis has grown, however, it has become increasingly 

clear that accurate measurements of retinal thickness may fail to predict visual 

outcomes.176,177 Much of the focus of recent research has been on the identification 

of more novel OCT-derived anatomic biomarkers. The discovery of such biomarkers 

may provide valuable information regarding therapeutic mechanisms of action, 

pharmacodynamics, and pharmacokinetics for clinical trials.178,179 If such biomarkers 

are shown to predict clinical benefit, they could also serve as surrogate endpoints in 



these trials, potentially leading to increased accuracy, reduced costs, and shortened 

trial duration. DL systems would appear to have the most potential at present as the 

tool that can unlock these advances.  

 

While OCT imaging has clearly revolutionized ophthalmology, its widespread usage 

also presents challenges and risks for healthcare delivery. In large tertiary referral 

hospital eye services, OCT imaging may be performed 1000s of times per week and 

the timely review and actioning of scans can be logistically challenging.180 This is 

particularly important for diseases such as neovascular AMD where irreversible 

visual loss may occur if there are delays in the early initiation of treatment (in the 

United Kingdom alone, nearly 200 people develop the severe forms of AMD every 

single day; the Royal College of Ophthalmologists recommends that such patients 

should be seen and treated within two weeks of their referral to an 

ophthalmologist).181,182 These pressures are likely to increase as OCT becomes 

used increasingly in the community and – in the future – potentially even in the home. 

In May 2017, one of the world’s leading optometry chains, Specsavers, announced 

that they would be rolling out OCT imaging devices across all of their branches.183 

Given that Specsavers have 740 branches in the UK alone, and perform nine million 

eye examinations per year, this may place additional pressure on an already 

overstretched healthcare system unless systems can be put in place to appropriately 

triage those patients with suspected eye disease. Of course, if such systems can be 

established, it will likely have huge benefits for patients as diseases are picked up at 

an earlier stage and thus treated promptly. It seems likely that DL systems, along 

with the implementation of appropriate referral pathways, will be crucial to these 

changes.    

 

7.2 Lesion Detection and Segmentation 

Much of the initial work in the application of DL to OCT image sets has related to 

lesion detection (the process of starting with an unlabelled OCT B-scan or volume 

and marking potential abnormalities) and segmentation (the delineation of margins of 

any structure, abnormal or otherwise). The term “semantic segmentation” is often 

used to describe the analysis of every data-point (pixel/voxel) in an image set and its 

assignment to a specific label class. From an early stage in its development, 

automated segmentation of OCT images – using classical computer vision 



techniques such as thresholding and graph search – has provided objective, 

reproducible, and quantitative measurements of central retinal thickness.175 

Unfortunately, however, these approaches are prone to error, particularly in cases of 

retinal disease where there is severe disruption of the normal retinal morphology, 

such as neovascular AMD.184,185 Aside from retinal thickness, the segmentation of 

more specific disease features requires expensive, time-consuming, manual 

segmentation of OCT scans in dedicated image reading centers, an approach 

typically only possible in the context of large-scale clinical trials and not at all in 

routine patient care. In recent years, the introduction of DL systems for such tasks 

has shown great promise in addressing this issue. 

 

Generic CNN architectures are now commonly customised for medical image 

segmentation tasks. One such adaptation, the U-net, has achieved particular 

success due to its flexibility in input sizes and dimensionality and its ability to 

produce good results even with relatively small amounts of training data.186 A 

number of methods are typically used to assess segmentation accuracy. In the 

computer vision and machine learning literature, the most common metrics used are 

the Dice coefficient, which measures the overlap between automated and “gold 

standard” manual segmentation, or the Jaccard index (“intersection over union”), 

which measures the similarity between two datasets.187 By contrast, in the clinical 

literature, particularly in ophthalmology, the agreement between automated and 

manual segmentation is most commonly measured using Bland-Altman plots.188 

These approaches assume that a high-quality, ground-truth measurement can be 

ascertained. In many cases, segmentation of retinal OCT images is challenging, 

even following an adjudication process between the best human experts. This 

problem may also be more pronounced when novel biomarkers, without well 

establishment grading protocols (e.g., subretinal hyperreflective material (SHRM)), 

are being evaluated. In such situations, it is important that the variability of manual 

segmentation between experts is well defined as a comparator. Finally, it is 

important that DL segmentations approaches are externally validated on large, 

heterogeneous real-world clinical datasets that will be representative of their ultimate 

clinical use case. 

 

7.3 Retinal and choroidal thickness segmentation 



Segmentation of the neurosensory retina and its sublayers is not only important for 

the assessment of macular diseases but also for patients with glaucoma and other 

neuro-ophthalmic diseases. In May 2017, Fang et al. described the combination of a 

DL system with a more traditional graph theory approach for the delineation of nine 

retinal sublayer boundaries on Spectralis OCT (Heidelberg Engineering, Germany) 

images.189 A CNN was used to generate class labels and probability maps for each 

of the layer boundaries – the graph search approach was then used to create the 

final boundaries. The model segmentation outputs were compared against a semi-

automated gold standard (initial automated segmentation using the existing 

DOCTRAP software, followed by manual corrections of errors by a human expert). 

For all layers, the mean difference (in pixels) between the automated and manual 

segmentation outputs was then calculated – although useful for algorithm 

development the clinical significance of such a measure is harder to determine. In 

July 2017, Venhuizen et al. described an approach which removed the need for an 

additional graph search step, and which had been trained on a larger dataset of 

patients with more advanced AMD (the authors term their approach “robust” total 

retinal thickness segmentation as existing automated segmentation systems have 

often been shown to fail in this setting).190 Their system utilises a generalized U-net 

architecture to provide automated segmentation of the inner and outer retinal 

boundaries and hence allows automated measurements of central macular thickness. 

The authors report that their DL system accurately estimated macular thickness with 

an error of 14.0 ± 22.1 μm when compared with manual segmentation (versus 42.9 ± 

116.0 μm and 27.1 ± 69.3 μm for existing commercial and research algorithms that 

provide automated segmentation, respectively).  

 

In July 2018, Hamwood et al. evaluated the effect of retinal image patch size and 

network architecture on the performance of a model trained to segment retinal 

sublayer thicknesses.191 To address the issue of label imbalances (i.e., the 

predominance of non-lesion pixels/voxels in medical images), image “patches” are 

commonly used rather than single slices or whole volumes. This has a further 

advantage of increasing the amount of data available for training, a fundamental 

requirement for DL systems. Hamwood et al., demonstrated how increasing patch 

size (65 x 65 versus the 33 x 33 pixel patch described by Fang et al.) can improve 

the performance of the segmentation. 



 

Commercially available OCT systems – especially those that provide greater depth 

penetration through the use of longer wavelength swept source lasers - have begun 

to offer automated segmentation of the choroid, with choroidal thickness maps. Deep 

learning-based approaches to choroidal segmentation have recently been reported. 

Chen et al., described the use of two CNNs – one to delineate the inner boundary of 

the choroid (Bruch membrane) and one to identify the outer boundary (the choroid-

sclera interface).192 They reported good results (a Dice score of 0.82) in a small 

cohort of patients with AMD. Considerable further work will be required to develop 

and validate such algorithms for automated choroidal thickness measurement, 

particularly in diseases where this parameter is likely to be of most direct clinical 

benefit such as posterior uveitis, central serous chorioretinopathy, and polypoidal 

choroidal vasculopathy. 

 

7.4 Disease Detection 

7.4.1. Macular edema 

Segmentation of macular oedema – the accumulation of fluid in the extracellular 

space of the retina (intraretinal fluid (IRF)) and between the retina and retinal 

pigment epithelium (subretinal fluid (SRF)) - is likely to have greater importance in 

retinal diseases such as DME, retinal venous occlusion (RVO), and neovascular 

(“wet”) AMD. In July 2017, Lee et al., described the use of DL for segmentation of 

IRF in OCT images (Table 10).193 They collected a large cohort of Heidelberg 

Spectralis OCT images from eyes most likely to have IRF, including DME, RVO, and 

AMD. For OCT volume, they selected a central slice for manual segmentation; for 

this, they defined IRF as “an intraretinal hyporeflective space surrounded by 

reflective septate”. 934 manually segmented OCT images, divided into 1,919,680 

images patches, were then used as a training set on a modified U-net architecture. A 

final test set of 30 images were segmented by four independent clinicians. Good 

results were then seen, with Dice coefficients for human interrater reliability and the 

DL system being 0.750 and 0.729, respectively. Roy et al. have also reported good 

results using a U-net architecture for IRF segmentation, albeit using a smaller 

dataset of 110 manually segmented OCT B-scans solely from 10 patients with 

DME.194 In April 2018, Venhuizen et al. described use of a U-net architecture to 

provide automated segmentation of a wide variety of intraretinal cystoid spaces, 



ranging from small micro-cysts to larger intraretinal cystoid spaces spanning a wide 

area of any given OCT B-scan.190 Importantly, they showed that their system was 

capable of being applied with good results to OCT scans from four OCT systems of 

four different OCT vendors. 

 

In April 2018, Schlegl et al., reported a DL system capable of providing automated 

segmentation of both IRF and SRF, across three different macular diseases 

(neovascular AMD, DME, RVO), and imaged with two commonly used systems 

(Zeiss Cirrus and Heidelberg Spectralis).195 They trained a separate model for each 

OCT system, using 200 cases for the three disease categories, achieving accuracies 

in the range of interobserver variability reported for experts in the literature. They 

evaluated both the binary detection of fluid (present versus not present) as well as its 

quantification. Training cases were selected from clinical trial data at the Vienna 

Reading Centre rather than real-world clinic data. A limitation of this work is that only 

scans with a clear consensus annotation between Vienna Reading Centre graders 

were taken into the sample; furthermore, scans with low image quality were also 

excluded.   

 

7.4.2 Pigment epithelium detachment, subretinal hyperreflective material, and the 

retinal pigment epithelium 

More recently, some groups have extended their models to perform segmentation of 

pigment epithelium detachment (PED), the formation of a potential space between 

the retinal pigment epithelium (RPE) and Bruch’s membrane.196,197 Schmidt-Erfurth 

et al. have reported the correlation of PED metrics with visual acuity in patients with 

neovascular AMD using a DL-based system.198 Detailed description and validation of 

this PED segmentation approach has not yet been published but it appears to treat 

PED as a single entity rather than a range of specific subtypes. This single PED 

entity was not found to significantly affect visual acuity in these cases.  

 

In August 2018, de Fauw et al., reported a DL system which considerable extends 

the range of clinically relevant retinal parameters from that previously described.22 

Rather than taking as input image patches from single OCT B-scans, this model 

utilized nine contiguous slices from the OCT volume. A three-dimensional U-net 

architecture was then used to output automated segmentations across 15 different 



label classes, and across the three most commonly used OCT platforms (Topcon 

3D-OCT, Heidelberg Spectralis, Zeiss Cirrus). These labels encompass a range of 

novel OCT biomarkers, including three forms of PED (fibrovascular, serous, and 

drusenoid) and subretinal hyperreflective material (SHRM), an emerging 

morphologic parameter which may be central to the fibrotic process in neovascular 

AMD. This model also segments the posterior hyaloid and epiretinal membrane 

(ERM), to allow enhanced assessment of vitreomacular interface disorders, as well 

as the RPE, allowing for the quantification of retinal degeneration and atrophic 

changes (Figure 8). The authors also leverage the intermediate tissue 

representation created to perform image classification tasks across a range of OCT 

systems from different vendors, described in detail below.  

 

7.4.3 Other Morphologic Parameters and Approaches 

A number of other retinal OCT features are in the early stages of exploration using 

DL systems. These include retinal hyperreflective foci in patients with AMD,199 a 

biomarker that is increasingly recognized as important to the progression of AMD, 

and the photoreceptor ellipsoid zone, a biomarker vital to the assessment of patients 

with inherited retinal dystrophies and rare conditions such as macular telangiectasia 

(MacTel) type 2.200,201 For the photoreceptor ellipsoid zone segmentation, training 

labels can be generated from manual segmentation of en face OCT images, a 

potentially quicker process than dense segmentation of OCT B-scans.  

 

7.5 Image-based Classification 

DL is very well suited to image classification tasks – in a medical imaging application 

this can refer to multiple domains, including screening, triage, diagnosis, and 

monitoring of disease activity.  

 

The first application of DL for ophthalmic OCT classification was reported by Lee et 

al. in 2017.202 They aggregated 10 years of Heidelberg Spectralis macular OCT 

scans, acquired during routine clinical practice at their institution, and each 

consisting of 61 individual OCT B-scans. They then linked these images to clinical 

data from their electronic health record (EHR) in an automated fashion, before 

curating a cohort of “normal” and “AMD” scans. A normal patient was defined as 

having visual acuity >20/30 in both eyes and no ICD-9 recorded disease diagnosis in 



the EHR. An AMD patient was defined as having an ICD-9 diagnosis of AMD by a 

retina specialist, at least one intravitreal injection in either eye, and worse than 20/30 

vision in the better seeing eye. Of note, patients with other macular pathology by 

ICD-9 code were excluded. The central 11 OCT B-scans from each macular OCT set 

were selected, labelled en bloc as either normal or as AMD, and then used 

independently for development of the classification model. As a result, 48,312 

normal OCT B-scans (4392 OCT volumes) and 52,690 AMD B-scans (6364 OCT 

volumes) were included. Each image was downsized to 192 x 124 pixels due to 

memory limitations. At the level of each individual image, the authors achieved an 

87.6% accuracy with a sensitivity of 84.6% and a specificity of 91.5%. The 

performance improved when they grouped images from the same OCT volume, 

and/or the same patient, and averaged the probabilities from each image. The 

authors also performed occlusion testing –systematically covering every location in 

the image with a blank 20x20 pixel area and evaluating the effect on model 

performance – to try to gain some insights into model decision making. Using this 

approach, the resulting saliency maps identified key areas of interest on the OCT 

images which corresponded to areas of known pathology.  

 

Several groups have adopted similar methodologies to that pioneered by Lee et al., 

namely the mass extraction of real-world imaging data with automated labelling from 

EHRs, and the subsequent training of DL systems on simple, binary classification 

tasks. In many cases, they employ transfer learning – the use of neural networks that 

have been pre-trained on millions of non-medical images and which only require 

training of one additional layer on the medical image classification task. Using this 

approach, Treder et al., similarly reported good results for the classification between 

neovascular AMD and normal OCT scans.203 Using the publicly-available Duke OCT 

dataset, Karri et al., were able to distinguish between OCT scans with AMD, DME, or 

with no retinal pathology.204 In 2018, using OCT scans from a larger dataset of 4686 

patients, Kermany et al., similarly used transfer learning to classify images as: 1) 

normal, 2) CNV, 3) DME, or 4) drusen, as well as making a referral decision.21 A 

triage decision could then be made, consisting of: 1) urgent (CNV and DME), 2) 

routine (drusen), and 3) observation (normal). Prahs et al. did a similar mass 

extraction of ~30,000 OCT image sets (in their case, radial lines scans) from their 

EHR and trained a DL system to distinguish between an “injection” and “non-



injection” group.205 The former was defined as the delivery of an intravitreal injection, 

for any indication, within 21 days of the OCT scan acquisition. They reported good 

sensitivity and specificity on this task but correctly caution that it would not be 

possible to use this as a treatment recommendation. Finally, Sonobe et al., 

developed a DL model to classify between OCT images with epiretinal membrane 

(ERM) and those without.206 These preliminary works represent important first steps, 

especially given that they are typically performed using relatively lightweight compute 

resources, and – in many cases – by clinicians without extensive DL expertise. 

However, in real world settings patients often present with more than one pathology 

at any given time so their ultimate clinical use case is less clear.  

 

To allow true real-world clinical applicability on retinal OCT imaging, in our opinion, 

DL systems should fulfil a number of criteria. They should be designed with a 

specific clinical pathway in mind, be trained on large and heterogeneous image sets 

that are representative of this use case. They should also be capable of providing 

multi-class classifications to allow for co-existence of multiple retinal pathologies. 

Most importantly, they should be able to achieve performance on par with retinal 

specialists as well as being able to provide some measure of classification certainty 

for challenging and ambiguous cases. In August 2018, Moorfields Eye Hospital and 

DeepMind (de Fauw et al.) reported a novel DL framework which utilises one CNN 

for retinal OCT segmentation following by another CNN for OCT classification.22 In 

this approach, a three-dimensional U-net is first used to segment a range of 15 

different retinal morphologic parameters and OCT image acquisition artefacts. The 

output of this network is then passed to a classification network which make a 

referral triage decision from four categories (urgent, semi-urgent, routine, 

observation), and classifies the presence of 10 different OCT pathologies (choroidal 

neovascularization (CNV), macular oedema without CNV, drusen, geographic 

atrophy, epiretinal membrane (ERM), vitreomacular traction (VMT), full-thickness 

macular hole, partial thickness macular hole, central serous retinopathy, and 

“normal”. The performance of this system was then evaluated on a retrospective 

dataset of 1000 patients newly referred to Moorfields Eye Hospital where a macular 

OCT scan was performed. On the central task of referral triage, the DL system 

achieved an accuracy rate of 94.5% - a performance on par with experienced retinal 

specialists at the institution. The generation of an intermediate tissue representation 



by the segmentation network also brings a number of advantages. Firstly, it provides 

some element of interpretability to the retinal specialist when he or she reviews the 

triage decision and makes the final diagnosis (Figure 9). For example, if the clinician 

suspects that the classification network has reached the wrong decision, they may 

be able to visualize if this has occurred due to a segmentation error. By providing 

instant feedback, such information may also be useful to accelerate the training of 

ophthalmologists in OCT image interpretation. Secondly, the segmentation of 

numerous retinal morphologic parameters provides objective, quantitative 

information for monitoring of response to treatment in routine clinical practice and in 

clinical trials. Finally, the generation of an intermediate tissue representation by the 

segmentation network means that the framework can be generalized across OCT 

systems from multiple different vendors without prohibitive requirements for 

retraining (when moving to new system, only the segmentation network requires 

retraining). The first application of this system will be in the rapid access “virtual” 

clinics widely used for macular disease triage in the UK,207 while the longer-term goal 

will be the use of such a system in community settings. Prior to this, further validation 

of the system will be required and multi-center prospective clinical trials are planned 

to begin recruitment in 2019.  

 

7.6 Prediction 

Outside ophthalmology, DL is being applied increasingly to predict events such as 

mortality, sepsis, length of stay in hospital and other clinical parameters.208 Such 

tasks may be more challenging than straightforward image segmentation or 

classification tasks and, therefore, are at a less mature stage in development. This is 

particularly the case for real world dataset which are constantly evolving and which 

differ significantly between healthcare institutions. Currently to our knowledge, there 

are no prospective clinical studies that evaluate DL models in this regard in any field 

of medicine. Nevertheless, the capability of DL systems to model high-dimensional 

data – such as an OCT scan – has great potential for retinal disease. For example, it 

may allow prediction of disease onset or progression in AMD, or provide much better 

prognostic information at an individual patient-level.  Preliminary work has thus far 

used a combination of deep learning for OCT image segmentation with classical 

machine learning/statistical techniques for the prediction task. 

 



Schmidt-Erfurth et al., used the HARBOR data to develop ML models to predict 

visual acuity in patients receiving ranibizumab for neovascular AMD.198 They began 

by selecting 70% of the HARBOR dataset for analysis. They next applied automated 

segmentation algorithms (using both graph-based and deep learning approaches) to 

the OCT scans, allowing segmentation of total retinal thickness, IRF, SRF, and PED. 

This allowed them to generate four morphologic maps and thus a wide range of 

quantitative structural variables. They then used classical ML techniques (random 

forest regression) to predict visual acuity at baseline and at 12 months. For the latter, 

they constructed separate models for the visits at baseline and then for months one 

to three. Of note, the ranibizumab dose and treatment regimens were included in the 

model as fixed effects. Their study involved 614 eyes. At baseline, the extracted 

OCT biomarkers – in particular, the extent of IRF – were found to predict the visual 

acuity with an R2 of 21% (i.e., these variables accounted only for 21% of the 

variation in baseline visual acuity). As with previous studies, they found that SRF and 

PED did not contribute to baseline visual acuity to any meaningful extent. They also 

predicted visual acuity at 12 months following initiation of therapy. At baseline, their 

model accounted for 36% of the variation of visual acuity. As expected, the 

performance of the model improved with each additional month added, so that, by 

month three, it accounted for 70% of the variation. In other words, patients with good 

visual acuity at baseline, and then at each follow-up for three months, were likely to 

have good visual acuity at 12 months.  

 

This work combining DL for partial OCT segmentation, with conventional statistical 

techniques for prediction, is an important first step to prognosticate the AMD 

treatment outcome. End-to-end approaches using DL are likely to provide additional 

insights, particularly if large, well-labelled datasets can be used for training. However, 

a potential challenge in this regard will likely be the significant compute resources 

that will be required to train such models using a high-resolution three-dimensional 

dataset containing OCTs. It will also be important to make sure that the resulting 

model is clinically meaningful. For example, it may be possible to predict visual 

outcomes to high accuracy after 12 months of treatment, but this will be less useful 

for the patient if it involves incorporation of multiple time series data immediately 

prior to this. It will also be important to determine what balance of sensitivity and 

specificity is likely to be clinically meaningful and thus potentially actionable (for 



example, in potential prophylactic treatment of retinal disease prior to onset or 

progression). Finally, perhaps even more so than with image classification tasks, it 

will be important to prove that any models produced can be generalized for wide-

spread usage, either in clinical trials or in real-world clinical practice.  

 

Implementation of in clinical settings 

Given the ageing population and the ever-increasing expenditure for health care 

there is a need to innovations. Three main areas are the targets for such solutions: 

To improve the general health of a population, to lower the costs of healthcare, and 

to improve patient’s perception. AI solutions are among the most promising solutions 

to tackle these issues.  

 

Providing healthcare is logistically complex and solutions differ significantly between 

different countries. Implementing AI-based solution into such workflow is challenging 

and requires sufficient connectivity. A concerted efforts from all stakeholders is 

required including regulators, insurances, hospital managers, IT teams, physicians, 

and patients. Implementation needs to be easy and straightforward without 

administrative hurdles to be accepted. Quick dissemination of results is an important 

aspect in this respect. 

 

Another step for AI being implemented into a clinical setting is a realistic business 

model that needs to consider the specific interest of the patient, the payer, and the 

provider. Main factors to be considered in this respect are reimbursement, efficiency, 

and unmet clinical need. The business model also needs to consider the long-term 

implications, because continuous connectivity and the capacity to learn is associated 

with the ability to improve clinical performance over time.  

 

In the recent years AI solutions were focussed mainly towards cancer, neurology, 

and cardiovascular disease (PMID: 29507784). Given the global burden that arises 

from these conditions it is that AI solutions are required. In ophthalmology the field is 

relatively new. Ophthalmology may, however, in some respects be an optimal field 

for implementing deep learning. Major blinding diseases such as DR, AMD and 

glaucoma can be treated and the incidence of blindness can be largely reduced 

when treatment is initiated early. Moreover, ocular imaging is cheap and fast when 



compared to other imaging modalities such as computer tomography or magnetic 

resonance imaging. As such cost effectiveness may be reached easier than in other 

medical disciplines. Moreover, ocular images may contain significant information on 

systemic disease and will as such most likely spread to other sub-specialities in the 

next years. 

 

Potential challenges  

AI approaches in ocular disease require a large number of images. Data sharing 

from different centers is an obvious approach to increase the number of input data 

for network training. However, Increasing the number of data elements does not 

necessarily enhance the performance of a network. For example, adding large 

amounts of data from healthy subjects will most likely not improve the classification 

of disease. Moreover, very large datasets for training may increase the likelihood of 

making spurious connections.209 For use of retinal images to predict and classify 

ocular and systemic disease a clear guideline for the optimal number of cases for 

training is needed.  

 

When data are to be shared between different centers regulations and state privacy 

rules need to be considered. These may differ between different countries and while 

they are aimed to ensure patients’ privacy they sometimes form barriers for effective 

research initiatives and patient’s care. Generally, there is agreement that images and 

all other patient-related data need to be anonymized and patients’ consent has to be 

obtained before sharing is possible. This requires technical solutions including data 

storage, management, and analysis. The implementation of such solutions is time 

and cost-intensive. It requires hardware and software investments, expertise and is 

labor-intensive. Investing on data-sharing is a difficult decision, because the financial 

requirements are high and the benefit is not immediate. The decision for data 

sharing can sometimes be influenced by the fear that competitors explore novel 

results first. This can even occur within an institution and usually it is the weaker 

members of a collaborative team that fear about their career opportunities. Indeed, 

key performance indicators as defined by funding bodies or universities including 

number of publications, impact factor and citation metrics may represent major 

hurdles for effective data sharing. On an institutional level the filing of collaboration 

agreements with other partners is a long and labor-intensive procedure that slows 



down analysis of shared data. Such periods may even be prolonged when IP issues 

are to be negotiated. Given that these are usually multiple-institution agreements 

time spans of one year or more are common. This is associated with the risk that 

other teams are faster and that collaborators loose interest in the topic.  

 

In the training set a large number of images is required that need to be well 

phenotyped. The performance of the network will depend on the number of images, 

the quality of the images, and how representative the data are for the entire 

spectrum of the disease. In addition, the applicability in clinical practice will depend 

on the quality of the phenotyping system and the ability of the human graders to 

follow this system. In DR, most of the classification systems rely of fundus 

photographs except for classification of macular edema.  Popular classification 

systems include the ETDRS severity scales,210 the Modified Airlie House 

Classification211 and the International Clinical Disease Severity Scale for DR212. 

Based on these classification systems DL networks usually aim to detect cases with 

referable and vision threatening DR, particularly when used in screening situations. 

In principle DL may be a good approach to define such novel staging approaches, 

but clinical outcome trials are required to validate such strategies. 

 

During the Early Treatment of DR Study it was recognized that some features of DR 

such as foveal avascular zone (FAZ), capillary loss, capillary dilatation, arteriolar and 

RPE abnormalities as well as fluorescein leakage, fluorescein leakage cystoid 

changes could be detected better with fluorescein angiography213. The technique is, 

however, time-consuming, has a mortality of 1:230,000 and inclusion of dye-based 

angiography into a DR screening program is not feasible. Recently introduced OCT 

angiography technology identifies some of these features and is an attractive 

alternative due to its non-invasive nature214-216. In addition, OCT angiography may be 

able to identify additional features such as deep capillary plexus nonperfusion 

associated with macular photoreceptor damage217,218. This is compatible with studies 

showing that the long-term recovery of photoreceptor integrity and visual outcome in 

DME is dependent on perfusion status of the deep capillary plexus219. OCT 

angiography has, however, only recently been commercialized and rapid technology 

development and limited experience currently hampers inclusion into deep learning 

networks for DR. 



 

Multiple classification systems have been proposed for AMD including the recent 

Clinical Classification as worked out by the Beckman Initiative for Macular Research 

Classification Committee220 and the Three Continent AMD Consortium Severity 

Scale221 developed by harmonizing the grading of three large-scale population-

based studies. Significant differences among these grading systems have been 

reported in distinguishing early from intermediate AMD when classifying according to 

the defined criteria222. DL-based classification systems have been developed for 

referability223, severity characterization and estimation of 5-year risk95  and disease 

conversion224.  In addition, a severity classification based on fundus photography 

was developed16. Again, OCT angiography was not included in classification 

systems as yet, although a wide variety of studies indicate that choroidal perfusion 

abnormalities are associated with the risk of disease progression225-229. 

The issue is most complicated when DL approaches shall be applied to the 

classification of glaucoma. This is related to the difficulties in defining and diagnosing 

early stages of the disease. A clear diagnosis of early cases is often difficult and 

patients that show signs of structural disease without visual field defects are called 

glaucoma suspects230. Confirmation of the diagnosis is only possible longitudinally 

when the patient is either developing corresponding functional loss as identified with 

visual field testing or progression of structural loss that exceeds the age-related loss 

of tissue over time. Under these circumstances, it is of course difficult to train a 

glaucoma network for early cases of glaucoma detection. On the other hand, this is 

also a chance for AI to be implemented into glaucoma care, but strong longitudinal 

data are required to train the network for correctly identifying those who will develop 

glaucoma. Obviously, predictions of incidence are more difficult than simple 

classification or staging. In glaucoma there is an urgent clinical need for such 

networks because treatment is possible231 and advanced visual field defect is an 

important risk factor for transitioning to functional blind232.  Although progression of 

glaucoma cannot be halted with current therapeutic interventions slowing down 

progression is of utmost importance because it can shift the time to blindness 

beyond the life expectancy of a patient.  

 

In patients with more advanced stages of glaucoma the classification may be an 

easier task, although the wide inter-individual variability of optic nerve anatomy, 



particularly in myopic eyes, needs to be considered233,234. As such the training data 

set needs to consist of a large dataset including a wide variety of different anatomical 

configurations of the optic nerve head. DL may also have applications in glaucoma 

progression analysis that likely needs to include structure and function. If clinical 

decision-making is based on artificial network progression analysis the general 

acceptance will also depend on the availability of outcome data.  

 

Whereas the number of images that are available for diseases such as glaucoma, 

DR and AMD is sufficient to train networks orphan diseases represent a problem 

because of the lack of cases. One approach is to create synthetic fundus images 

that mimic the disease. This is, however, a difficult task and current approaches 

have not proven to be successful235,236. In addition, it is doubtful that competent 

authorities would approve an approach where data do not stem from real patients. 

Nevertheless, generation of synthetic images is an interesting approach that may 

have potential for future applications.  

 

The capabilities of DL should not be construed as competence. What networks can 

provide is excellent performance in a well-defined task. Networks are able to classify 

DR and detect risk factors for AMD but they are not a substitute for a retina specialist. 

As such the inclusion of novel technology into DL systems is difficult, because it will 

require again a large number of data with this novel technology. As mentioned above 

this is the reason why networks that include OCT angiography have not yet been 

realized, although it may potentially increase their performance. Inclusion of novel 

technology into network based classification systems is a long and costly effort. 

Given that there are many novel imaging approaches on the horizon including 

adaptive optics237,238, adaptive optics OCT239,240, polarization-sensitive OCT241, 

Doppler OCT242,243, oximetry244,245, measurement of oxygen extraction246,247, and 

detection of apoptosing retinal cells248, which may have considerable potential for 

diagnosis, classification and progression analysis, this is an important challenge for 

the future. For instance, if imaging of single retinal ganglion cells249,250 becomes 

clinically available this may prompt a paradigm shift for glaucoma diagnosis. 

Generally speaking, a diagnostic tool that as a stand-alone technique provides 

excellent sensitivity and specificity does not require a DL approach.  

 



To ensure that AI provides an acceptable patient safety profile, it must be tested in a 

relevant clinical context. The patient sample, the operators, the reference standard, 

and patient recruitment all need to be primary-care-clinic biased to avoid selection 

and spectrum bias.251 Recruitment methods, exclusion criteria, and a statistical 

analysis plan must be documented before the recruitment of the first subject, a 

design called preregistration. Results must focus on the intent-to-screen population, 

in which every recruited subject is important, so that opportunistic exclusion of 

subjects and endpoints can be avoided.252 Reference standards, also called ‘truth’, 

can be, in order of increasing external validity and decreasing intra- and inter-

observer variability, created by individual clinicians, aggregated clinician opinion (via 

adjudication or voting), or reading centers. 253,254 

 

The reference standard can be derived from the same images- in the case of a 

clinician based reference standard -, the same modality - i.e. widefield stereo fundus 

images in the case of a reading center), or different or additional modalities, such as 

optical coherence tomography.255 . It is worthwhile to note that when, instead of 

using the same images, a reference standard derived from the same or different 

modality – such as wide-field imaging – but different images, will capture diabetic 

retinopathy lesions outside of the field of view or outside the resolution of the images 

which the AI uses as input. This will lead to different – typically lower measured 

sensitivity and specificity characteristics. 

 

In summary, autonomous AI enables the delivery of real-time, point-of-care-

diagnosis in primary care clinics. It also diminishes the risk of human interference, 

which has proved problematic in hybrid assistive AI-specialist models.256 Strong 

diagnostic accuracy, easy access to high quality diagnostics and gains in productivity, 

can best be realized by autonomous AI, but requires rigorous patient safety testing 

before. 

 

 

Conclusions 

AI using DL system has the potential to revolutionize how we live and practice 

medicine. It likely will change the field rapidly in the next few decades, although 

several challenges need to be resolved to increase AI adoption in healthcare. Many 



techniques have been described in attempt to unravel the ‘black box’ nature of DL 

systems, but more need to be done. Furthermore, it is also useful to develop more 

predictive algorithms to better stratify patients into different risks groups and 

treatment arms, aiming to deliver personalized medicine to the global population.  
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TABLES 

Table 1: Ten steps in building an artificial intelligence system for medical imaging 

analysis 

1. Identify a clinical unmet need or research question 

2. Selection of datasets - splitting of training, validation and testing  

3. Selection of CNNs (e.g. AlexNet, VGGNet, ResNet, DenseNet, Ensemble) 

4. Selection of software to build the DL systems - Keras, Tensorflow, Cafe, Python 

5. The use of transfer learning/pre-training on ImageNet  

6. The use of backpropagation for tuning and optimization  

7. Reporting of the characteristics of datasets - patients' demographics, retinal image and 

disease characteristics 

8. Reporting of the diagnostic performance on local and external validation datasets - area 

under curve, sensitivity and specificity, accuracy and kappa 

9. The use of heat map to explain the diagnosis - different types of heat map (occlusion 

test, soft attention map, integrated gradient method) 

10. Novel methods in retinal imaging - GAN, VAE and its potential clinical applications 

*GAN – generative adversarial network; VAE – variational autoencoder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Global prevalence of major eye disease burden 

 

Global Eye Health Burden 
Number of people 

(Millions) Prevalence 

Diabetes (>18 years) 422 8.50% 

Glaucoma (aged 40-80 years) 111.8 3.54% 
Age-related macular 
degeneration (aged 30-97 
years) 288 8.69% 

Retinopathy of prematurity  15 30%*99  

Refractive error 108 1.11% 

Cardiovascular Disease140 442.7   

*In newborns with a birth weight <1kg 

 



Table 3: A summary of artificial intelligence systems using deep learning in the detection of referable diabetic retinopathy 

 

DL 
systems 

Year 
Development 
Dataset 

CNN 

Clinical  
Mydriatic 
or 

Granularity Ground Truth 

Total n  %  
Referable 
AUC 

Referable 
DR  

Referable 
DR  

Validation 
 Non-
Mydriatic 

(including ungradable   Sensitivity Specificity 

    
 
ungradable) 

        

Abramoff 
et al12 

2016 

10,000 to 
1,250,000 
unique samples 
of each lesion 
type graded by 
one or more 
experts 

Algorithm is 
hybrid with 
CNN-based 
lesion 
predictors 
and classical 
non-deep 
learning 
algorithms 

Messidor-2 Mydriatic 

Patient-
level 

Adjudication by 3 
retinal 
specialistis until 
full consensus for 
all cases using a 
single 45 degree 
FOV image 

874 4.00% 0.98 96.80% 87.00% 

          
 

  

Gulshan et 
al11 

2016 
128,175 images 
graded 3-7 
times 

  

EyePACS-
1* 

Mostly 
Non-
Mydriatic Image-level 

Majority decision 
of 7 or 8 
ophthalmologists 
for all cases 
using single 
macula-centered 
image with 45 
degree FOV 

9963 11.60% 0.991 97.50% 93.40% 

        (0.974)* (96.7%)* (84%)* 

Inception-V3 
Messidor-2 Mydriatic 

Image-level 
1748 0.17% 0.94 96.10% 93.90% 

              

Gargeya 
and Leng13 

2017 

75,137 images 
from Kaggle 
competition 
graded by "a 
panel of retinal 
specialists" 
(with no 
additonal detail) 

  

Messidor-2 Mydriatic 

Image-level Not clearly 
described, likely 
the lesion-based 
grading that 
came with the 
public datasets 
using a single 45 
degree FOV 
image 

-- -- 0.99 -- -- 

          
 

  

          
 

  

Customized 
CNN 

E-Ophtha 
Likely Non-
Mydriatic 

Image-level 

-- -- 0.96 -- -- 

          
 

  

          
 

  

          
 

  

Ting et al10 2017 

76,370 images 
from multiple 
screening 
program and 
clinical studies 
graded by a 
minimum of 2 

  
SiDRP 14-
15* 

Mydriatic 

Image-level 

Two trained 
graders for all 
cases, using 45 
degree FOV a 
single image. If 
there is a 
disagreement, a 

35,948 1.10% 0.94* 90.50%* 91.60%* 

            
 

  

            
 

  

VGG-19           
 

  



graders, often 
with a retinal 
specialist for 
arbitration 

retinal specialist 
generated final 
grade 

  
Guangdong 

Non-
mydriatic Image-level 

2 graders; 
arbitration by 1 
retinal specialist 

15,798 1.40% 0.949* 98.70%* 81.60%* 

          
 

  

  
SIMES Mydriatic 

Image-level 
1 grader; 1 
retinal specialist 

3052 1.80% 0.889* 97.10%* 82%* 

          
 

  

  
SINDI Mydriatic 

Image-level 
1 grader; 1 
retinal specialist 

4512 2.10% 0.917* 99.30%* 73.30%* 

          
 

  

  
SCES Mydriatic 

Image-level 
1 grader; 1 
retinal specialist 

1936 1.00% 0.919* 100%* 76.30%* 

          
 

  

  
BES Mydriatic 

Image-level 
2 
ophthalmologists 

1052 0.40% 0.929* 94.40%* 88.50%* 

          
 

  

  
AFEDS Mydriatic 

Image-level 
2 retinal 
specialists 

1968 4.20% 0.98* 98.80%* 86.50%* 

          
 

  

  
RVEEH Mydriatic 

Image-level 2 graders 
2302 10.90% 0.983* 98.90%* 92.20%* 

          
 

  

  
Mexican Mydriatic 

Image-level 
2 retinal 
specialists 

1172 0.50% 0.95* 91.80%* 84.80%* 

          
 

  

  
CUHK Mydriatic 

Image-level 
2 retinal 
specialists 

1254 0.00% 0.948* 99.30%* 83.10%* 

          
 

  

  
HKU Mydriatic 

Image-level 2 optometrists 
7706 0.00% 0.964* 100%* 81.30%* 

              

Krause et 
al257 

2018 

1.67M images 
with clinical 
grades for train 
set 3,737 fully 
adjudicated 
images for tune 
set 

Inception-V3 

EyePACS-
2* 

Mostly 
Non-
Mydriatic 

Image-level 

Adjudication by 3 
retinal 
specialistis until 
full consensus for 
all cases using a 
single 45 degree 
FOV image 

-- 0% 0.986 97.1% 92.3% 

        
 

  

        
 

  

            

Abramoff 
et al60 

2018 
10,000 to 
1,250,000 

Customized 
CNN 

FDA Pivotal 
Trial 

23.6% 
Mydriatic 

Patient-
level  

Reading center 
grading of 

892 8.20% - 87.2% 90.7% 



unique samples 
of each lesion 
type graded by 
one or more 
experts 

  

stereoscopic, 4W 
field equivalent of 
ETDRS, with 
OCT for DME  

      80.70%* 89.80%* 

        
 

  

Li et al258 2018 

58,790  images 
from 

ZhongShan 
Ophthalmic Eye 

Center 

Inception-v3 

ZhongShan  
Mostly 
Non-
Mydriatic 

Image-level 

Panel of 21 
ophthalmologists, 
reference 
standard was 
made when 
consistent 
grading 
outcomes 
achieved by 3 
graders.  VTDR 
= ≥severe DR 
and/or  DME 

8,000 6.10% 0.989 97% 91.4% 

NIEHS 
Mostly 
Non-
Mydriatic 

  
2 
ophthalmologists 

7,181 

1.9%** 0.955** 92.5%** 98.5%** 

SIMES Mydriatic   1 grader; 1 
retinal specialist 

15,679 

AusDiab Mydriatic   12,341 

 
*The results included the ungradable images (and the performance is often lower compared to those who excluded the ungradable images from the analysis) 

**Combined performance for 3 external validation studies, the individual diagnostic performance was not reported in the study  

 

 

 

 

 

 

 



Table 4: A summary of artificial intelligence system using deep learning for detection of glaucoma suspect and glaucoma  

 

Author Year 
Disease  
definition 

Development 
Dataset 

CNN 
Clincial 
Validation 

Mydriatic 
or  
non-myd 

Granularity Ground Truth 
Imaging 
Modality 

Number 
of  
images 

AUC  Sensitivity  Specificity  

Li et al.14 2018 
CDR 0.7 and 
glaucomatous 
changes 

31,745 images  
(LabelMe) 

Inception-
V3 

8,000 
images  
(LabelMe) 

-- Image-level 

Panel of 21 
ophthalmologists, 
reference 
standard was 
made when 
consistent grading 
outcomes 
achieved by 3 
graders 

Fundus 
photos 

48,116 0.986 95.60% 92.00% 

Ting et al.10 2017 
CDR 0.8 and 
glaucomatous 
changes 

125,189 images  
(SiDRP 10-13, 
SIMES, SCES, 
SINDI and 
SNEC 
Glaucoma 
datasets) 

VGG-19 

71,896 
images  
(SiDRP 14-
15) 

Mydriatic Image-level 
1 retinal 
specialist; 2 
senior graders 

Fundus 
photos 

197,085 0.942 96.40% 87.20% 

Shibata et al74 2018 Glaucoma 
3,150 eyes  
(Matsue Red 
Cross Hospital) 

ResNet 

110 eyes  
(Matsue 
Red Cross 
Hospital) 

Non-
mydriatic 

Eye-level 
3 resident 
ophthalmologists 

Fundus 
photos 

3,260 0.965 NR NR 

Asaoka et al.75 2018 
Early 
glaucoma 

1936 eyes  
(Pretraining: 
JAMIGO; 
Training: Tokyo 
University 
Hospital, Tajimi 
Iwase eye 
clinic) 

Customized 
CNN 

196 eyes 
(Tokyo 
University 
Hospital, 
Kitasato 
University 
Hospital, 
Tajimi 
Iwase eye 
clinic) 

Mydriatic Eye-level 

Panel of 3 
glaucoma 
specialists; 
glaucomatous VF 
change defined 
by Anderson 
Patella Criteria 

SD OCT 2,132 0.937 82.50% 93.90% 



Masumoto et 
al.76 

2018 Glaucoma 
1,117 images 
(Tsukazaki 
Hospital) 

Customized 
CNN 

282 images 
(Tsukazaki 
Hospital) 

Non-
mydriatic 

Image-level 
2 glaucoma 
specialists 

Optos 
wide-field 
fundus 
photos 

1,399 0.872* 81.3%* 80.2%* 

Li et al.80 2018 Glaucoma 

3,712 images 
(3 ophthalmic 
centers in 
China) 

VGG-15 300 images -- Image-level 

9 opthalmologists 
(3 glaucoma 
experts, 3 
attending 
ophthalmologists, 
3 resident 
opthalmologists) 

HVF PD 
probability 
plots 

4,012 0.966 93.20% 82.60% 

 
Abbreviations used: CDR=cup-disc ratio; AUC=Area under the receiver operator curve; SD OCT= Spectral domain ocular coherence tomography; HVF PD = 
Humphrey visual field pattern deviation. For definition of glaucoma see source references. Some form of convoluted neural network was used in all of these 
deep learning algorithms. 
*This represents glaucoma overall averaged over mild, moderate and severe cases. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: A summary of artificial intelligence system using deep learning for detection of age-related macular degeneration (AMD)  

Author Year Disease 
Development 
Dataset  

CNN 
Clincial 
Validation 

Mydriatic 
or non-
mydriatic 

Granularity Ground Truth 
Number of 
retinal 
images 

AUC  Sensitivity  Specificity  Remark 

Burlina et 
al15 

2017 
Referable 
AMD 

107057 images 
(AREDS 1) 

AlexNet 
DCNN/ 
OverFeat 
DCNN 

26764 images  
(AREDS 2) 

Mydriatic Image-Level 

AREDS 
photograph 
reading center 
(trained and 
certified 
graders) 

133,821 0.94-0.96 
71.00-
88.40% 

91.40-
94.10% 

0.764-
0.829 
(Kappa) 

Burlina et 
al95 

2018 

5-year risk 
of AMD 
Progression 
to Advanced 
Stage 

59313 images 
(AREDS 1) 

ResNet-50 
8088 images 
(AREDS 2) 

Mydriatic Image-Level 

AREDS 
photograph 
reading center 
(trained and 
certified 
graders) 

67,401 - - - 

Overall 
mean 
estimation 
error = 
3.5% to 
5.3% 

Ting et al10 

2017 
Referable 
AMD 

38185 images 
(SIDRP 10-13)  

VGG-19 
71896 
(SiDRP 14-
15)  

Mydriatic Image-Level 
1 Retinal 
Specialist 

108,558 0.931 93.20% 88.70%   

  
 

2180 images  
(SNEC AMD 
Phenotype 
Study)  

 
  

 
  

 
  

 
  

 
  

  
 

16182 images  
(SCES)  

  
 

  
 

  
 

  
 

  

  
 

8616 images  
(SMES)  

  
 

  
 

  
 

  
 

  

    
7447 images  
(SINDI) 

                    

Grassmann 
et al16 

2018 Any AMD 
86,770 images  
(AREDS 1) 

7 CNN 
(AlexNet; 
GoogLeNet; 
VGG; 
Inception-
v3; ResNet; 
Inception-
ResNet-v2; 
Ensemble: 
random 
forest) 

33886 images  
(AREDS 2)  

Non-
Mydriatic 

Image-Level 

AREDS 
photograph 
reading center 
(trained and 
certified 
graders) 

120,656 - 

100% 
(Late 
Stage 
AMD) 

96.5% 
(Late Stage 
AMD) 

  

          
5555 images  
(Kora) 

                



Table 6. Baseline characteristics of patients in the development and validation 

sets using the UK Biobank and EyePACS dataset for the deep learning system 

in detecting cardiovascular risk factors.19 

 Development Set Clinical Validation Set 

Characteristics UK Biobank  EyePACS  UK Biobank EyePACS-2K 

Number of Patients 48,101 236,234 12,026 999 

Number of Images 96,082 1,682,938 24,008 1,958 

Age: Mean, years 
(SD) 

56.8 (8.2) 53.6 (11.6) 56.9 (8.2) 54.9 (10.9) 

Self-reported Sex 
(% male) 

44.9 39.2 44.9 39.2 

Ethnicity 1.2% Black, 
3.4% Asian/PI, 
90.6% White, 
4.1% Other 

4.9% Black, 
5.5% Asian/PI,  
7.7% White, 
58.1% Hispanic, 
1.2% Native Am, 
1.7% Other 

1.3% Black, 
3.6% Asian/PI, 
90.1% White, 
4.2% Other 

6.4% Black, 
5.7% Asian/PI, 
11.3% White, 
57.2% Hispanic, 
0.7% Native Am, 
2% Other 

BMI: Mean (SD) 27.31 (4.78) n/a 27.37 (4.79) n/a 

Systolic BP: Mean, 
mmHg (SD) 

136.82 (18.41) n/a 136.89 (18.3) n/a 

Diastolic BP: Mean, 
mmHg (SD) 

81.78 (10.08) n/a 81.76 (9.87) n/a 

HbA1c: Mean, % 
(SD) 

n/a 8.23 (2.14) n/a 8.2 (2.13) 

Current Smoker: % 9.53% n/a 9.87% n/a 

 

 

 

 

 

 

 

 

 

 

 



Table 7. Algorithm performance on predicting cardiovascular risk factors on 
three validation sets. 95% confidence intervals on the metrics were calculated 
with 2000 bootstrap samples (Methods). MAE: Mean Absolute Error; R2: R-
squared, AUC: Area under the Receiver Operator Curve (c-statistic). For 
continuous risk factors (like age), the baseline value is the Mean Absolute Error 
of predicting the mean value for all patients.19 
 

 
 

 

 

 

 

Predicted Risk Factor 
(Evaluation Metric) 

UK Biobank 
Validation Set  
(n=12,026 patients) 

EyePACS-2K 
Validation Set 
(n=999 patients) 

Independent 
Validation Set of 
Asian Patients 
(n=239 patients) 

Age (MAE in years) 3.26  
(3.22-3.31) 

3.42 
(3.23-3.61)  

3.42  
(3.06,3.78) 

Age (R2) 0.74 
(0.73-0.75) 

0.82 
(0.79-0.84) 

0.79  
(0.74-0.83) 

Self-reported sex (AUC) 0.97 
(0.966-0.971) 

0.97 
(0.96-0.98) 

0.98  
(0.96-0.99) 

Current Smoker (AUC) 0.71 
(0.70-0.73) 

n/a 0.79  
(0.70-0.88) 

HbA1c (MAE in %) n/a 1.39 
(1.29-1.50)  

0.92  
(0.83-1.00) 

HbA1c (R2) n/a 0.09 
(0.03-0.16) 

0.24  
(0.10-0.39) 

Systolic BP (MAE in 
mmHg) 

11.35 
(11.18-11.51)  

n/a 14.31  
(12.96-15.66) 

Systolic BP (R2) 0.36 
(0.35-0.37) 

n/a 0.34  
(0.25-0.44) 

Diastolic BP (MAE in 
mmHg) 

6.42 
(6.33-6.52)  

n/a 7.93  
(7.25-8.61) 

Diastolic BP (R2) 0.32 
(0.30-0.33) 

n/a 0.36  
(0.26-0.45) 

BMI (MAE) 3.29 
(3.24-3.34)  

n/a 3.57  
(3.21-3.94) 

BMI (R2) 0.13 
(0.11-0.14) 

n/a 0.16  
(0.06-0.28) 



Table 8. Predicting 5-year major adverse cardiovascular events (MACE) on 
biobank validation set. Of the 12,026 patients in the UK Biobank validation 
dataset, 91 experience a previous cardiac event prior to retinal imaging and 
were excluded from the analysis. Of the 11,835 patients in the validation set 
without a previous cardiac event, 105 patients experienced a MACE within 5 
years of retinal imaging. 95% confidence intervals were calculated using 2000 
bootstrap samples. 
 

Model AUC (95% CI) 

Age 0.66 (0.61-0.71) 

Systolic blood pressure (SBP) 0.66 (0.61-0.71) 

Body mass index (BMI) 0.62 (0.56-0.67) 

Gender 0.57 (0.53-0.62) 

Current smoker 0.55 (0.52-0.59) 

Algorithm 0.70 (0.65-0.74) 

Age + SBP + BMI + gender + current smoker 0.72 (0.68-0.76) 

Algorithm + age + SBP + BMI + gender + current smoker 0.73 (0.69-0.77) 

Systematic Coronary Risk Evaluation (SCORE)6,7 0.72 (0.67-0.76) 

Algorithm + SCORE 0.72 (0.67-0.76) 
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Table 9: Mean absolute error (MAE) and coefficient of determination (R2) of 
algorithm vs baseline for predicting the refractive error in the UK Biobank 
dataset. Baseline metrics are calculated by predicting mean values of the 
validation set. The 95% confidence intervals are shown in square brackets; all 
the values are in units of diopters. 
 

 MAE R2 

Model Baseline Model Baseline 

Spherical 

Equivalent 

0.56 

[0.55, 0.56] 

1.81 

[1.79-1.84] 

0.90 

[0.90, 0.91] 

0.0 

[0.0, 0.0] 

Cylindrical 

Component 

 

0.43 

[0.42, 0.43] 

0.48 

[0.47-0.49] 

0.05 

[0.04, 0.06] 

0.0 

[0.0, 0.0] 

Spherical 

Component 

 

0.63 

[0.63, 0.64] 

1.89 

[1.87-1.92] 

0.88 

[0.88, 0.89] 

0.0 

[0.0, 0.0] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 10: A summary of artificial intelligence system using deep learning for optical coherence tomography for different retinal 

diseases  

DL systems Year Disease 
OCT 
machines 

Development 
Dataset 

CNN Test Images AUC Accuracy Sensitivity Specificity 

Disease 
Detection 

                    

Lee et al202 2017 
Exudative 
AMD 

Spectralis 80,839 images VGG-16 20613 images 0.928 87.60% 84.60% 91.50% 

Treder et al203 2018 
Exudative 
AMD 

Spectralis 

1,012 images  
(University of 
Muenster 
Medical 
Center) 

Inception-
V3 

100 images NR 100% 92% 96% 

Kermany et al21 

2018 CNV Spectralis 
108,312 
images 

Inception-
V3 

1,000 images   
 

    

  DME   
 

  
 

  
 

    

  Drusen   
 

  
 

  
 

    

  
1. Multi-class 
comparison 

  
 

  
 

0.999 96.60% 97.80% 97.40% 

  
2. Limited 
model 

  
 

  
 

0.988 93.40% 96.60% 94.00% 

  
3. Binary 
model  

  
 

  
 

  
 

    

  
CNV vs 
normal 

  
 

  
 

1 100% 100% 100% 

  
DME vs 
normal 

  
 

  
 

0.999 98.20% 96.80% 99.60% 

  
Drusen vs 
normal 

  
 

  
 

0.999 99.00% 98.00% 99.20% 

De Fauw et al22 2018 

Urgent, semi-
urgent, 
routine, and 
observation 
only 

Topcon  
(device 1) 

877 manually 
segmented 
scans Segmentati

on network 
U-Net 

997 scans 
0.992  
(Urgent 
referral) 

94.50%     

Spectralis  
(retrained 
device 2) 

152 manually 
segmented 
scans 

116 scans 
0.999  
(Urgent 
referral) 

96.60%     



Normal, CNV, 
Macular 
Edema, 
FTMH, PTMH, 
CSR, VMT, 
GA, Drusen, 
ERM 

Topcon  
(device 1) 

14,884 scans  

Classificatio
n network 
using a 
custom 29 
CNN layers 
with 5 
pooling 
layers  

 
  

 
    

                

Disease 
Prediction 

                    

Ursula 
Schmidth224 

2018 AMD Spectralis HARBOR Trial 
Other - 
Random 
Forest 

614 patients - 

Predictive 
Accuracy of 
BCVA 
R2=0.7 

- - 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FIGURES 

Figure 1: The introduction of artificial intelligence (AI) in 1950’s, followed by machine learning in 1980’s and deep learning (DL) in 
2010’s. Machine learning is a subset of AI, involving using statistical techniques to help computers to learn without being explicitly 
programmed. With the advent of graphic processing unit with much improved processing power, DL is the state-of-art technique 
that has revolutionized the machine learning field over the past few years. It has now been widely adopted in image recognition, 
speech recognition and natural language processing domains.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 2A: The input, feature-extraction layers (hidden layer) and classification (output) layers of a convolutional neural network 
(CNN). The feature extraction layers consist of convolution layer, Rectified Linear Unit (ReLU) layer and Pooling. Figure 2B: For 
max pooling, the largest number within a 2x2 rectified feature map will be chosen to be the representative number on the feature 
map (output).  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2A: The general architecture of a CNN Figure 2B: Max pooling 



Figure 3: The workflow of a deep learning system in detecting referable diabetic retinopathy and age-related macular 

degeneration, further demonstrated by the heat map 

 

  

 

 

 

 

 

 



 Figure 4: Attention maps for a single retinal fundus image. The left-most image is a sample retinal image in color from the UK 
Biobank dataset. The remaining images show the same retinal image, but in black and white. The soft attention heat map for each 
prediction is overlaid in green, indicating the areas of the heat map that the neural-network model is using to make that particular 
prediction for the image. 
 

 

 

 

Original Age Smoking Status Systolic BP 

    

 Actual: 53.0 years 

Predicted: 53.8 years 

Actual: Nonsmoker 

Predicted: Nonsmoker 

Actual: 128.5 mmHg 

Predicted: 130.1 mmHg 



Figure 5: Deep learning system for detection of glaucomatous optic disc using optic disc imaging

 



Figure 6: Continuous spectrum of retinal vascular findings in retinopathy of prematurity (ROP). (A) shows normal posterior retinal 

vessels. (B) shows pre-plus disease with mild retinal vascular dilation and tortuosity. (C) shows plus disease with significant retinal 

vascular dilation and tortuosity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6A  Figure 6C  Figure 6B  



Figure 7. Mean attention map over 1000 images from UK Biobank for severely 

myopic (SE worse than -6.0), neutral (SE between -0.5 and 0.5), and severely 

hyperopic (SE worse than 5.0) eyes conditioned on eye position. Scale bar on 

right denotes attention pixel values, which are between 0 and 1 (exclusive), with 

the sum of all values equal to one.



 
 
Figure 8: The application of deep learning to the segmentation of retinal optical 
coherence tomography (OCT) images – the prototype OCT viewer for the 
Moorfields-DeepMind deep learning system. In this case, the system correctly 
segments loss of the retinal pigment epithelium (RPE) highlighting an area of 
geographic atrophy (GA) in age-related macular degeneration (AMD). The GA is 
surrounded by numerous foci of drusenoid pigment epithelium detachment 
(PED). The partially detached posterior hyaloid is also clearly delineated.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 9: The application of deep learning to the segmentation of retinal optical 
coherence tomography (OCT) images – the prototype OCT viewer for the 
Moorfields-DeepMind deep learning system. In this challenging case of retinal 
angiomatous proliferation (RAP), the system correctly segments an area of 
intraretinal fluid (IRF) overlying an area of subretinal hyperreflective material 
(SHRM). It classifies the presence of both macular retinal edema and choroidal 
neovascularization, but recommends urgent referral to an ophthalmologist. 
Through the creation of an intermediate tissue representation (seen here as 2D 
thickness maps for each morphologic parameter), the system provides 
“interpretability” for the ophthalmologist. 
 
 
 

 

 
 


