19,892 research outputs found

    A grid-based ant colony algorithm for automatic 3D hose routing

    Get PDF
    Ant Colony Algorithms applied to difficult combinatorial optimization problems such as the traveling salesman problem (TSP) and the quadratic assignment problem. In this paper we propose a grid-based ant colony algorithm for automatic 3D hose routing. Algorithm uses the tessellated format of the obstacles and the generated hoses in order to detect collisions. The representation of obstacles and hoses in the tessellated format greatly helps the algorithm towards handling free-form objects and speed up the computations. The performance of the algorithm has been tested on a number of 3D models

    Towards multiple 3D bone surface identification and reconstruction using few 2D X-ray images for intraoperative applications

    Get PDF
    This article discusses a possible method to use a small number, e.g. 5, of conventional 2D X-ray images to reconstruct multiple 3D bone surfaces intraoperatively. Each bone’s edge contours in X-ray images are automatically identified. Sparse 3D landmark points of each bone are automatically reconstructed by pairing the 2D X-ray images. The reconstructed landmark point distribution on a surface is approximately optimal covering main characteristics of the surface. A statistical shape model, dense point distribution model (DPDM), is then used to fit the reconstructed optimal landmarks vertices to reconstruct a full surface of each bone separately. The reconstructed surfaces can then be visualised and manipulated by surgeons or used by surgical robotic systems

    Multi-resolution dental image registration based on genetic algorithm

    Get PDF
    The Automated Dental Identification System (ADIS) is a Post Mortem Dental Identification System. This thesis presents dental image registration, required for the preprocessing steps of the image comparison component of ADIS. We proposed a multi resolution dental image registration based on genetic algorithms. The main objective of this research is to develop techniques for registration of extracted subject regions of interest with corresponding reference regions of interest.;We investigated and implemented registration using two multi resolution techniques namely image sub sampling and wavelet decomposition. Multi resolution techniques help in the reduction of search data since initial registration is carried at lower levels and results are updated as the levels of resolutions increase. We adopted edges as image features that needed to be aligned. Affine transformations were selected to transform the subject dental region of interest to achieve better alignment with the reference region of interest. These transformations are known to capture complex image distortions. The similarity between subject and reference image has been computed using Oriented Hausdorff Similarity measure that is robust to severe noise and image degradations. A genetic algorithm was adopted to search for the best transformation parameters that give maximum similarity score.;Testing results show that the developed registration algorithm yielded reasonable results in accuracy for dental test cases that contained slight misalignments. The relative percentage errors between the known and estimated transformation parameters were less than 20% with a termination criterion of a ten minute time limit. Further research is needed for dental cases that contain high degree of misalignment, noise and distortions

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Dynamic spot analysis in the 2D electrophoresis gels images

    Get PDF
    Práce shrnuje faktory a parametry, které ovlivňují výsledky 2D elektroforézy, se zaměřením na zpracování obrazu jako jeden ze způsobů snížení nesprávné interpretace jejích výstupů. Proces zpracování obrazu využívá jako zdroj dat především obrazů z opakovaných provedení téhož pokusu, neboli víceplik. Pomocí analýzy obrazů víceplik je možno pozorovat nebo korigovat změny jednoho pokusu a také porovnávat je s výstupy jiných pokusů. Cílem práce je poskytnout podporu specialistovi, který má na starosti popsat vlastnosti struktur nacházejících se v elektroforetických obrazech.The text briefly describes factors and parameters which influence the results of 2D electrophoresis focusing on image processing as one manner to reduce incorrect interpretation of its outputs. As dataset, image processing performance uses images from repeated execution of one experiment also known as multiplicates. Using multiplicates analysis it is possible to observe or lower the changes of one experiment and to compare them with outputs of other experiments. The aim of this work is to provide support for specialist who takes care about describing the character patterns located in electrophoretic images.

    A Tabu Search Based Approach for Graph Layout

    Get PDF
    This paper describes an automated tabu search based method for drawing general graph layouts with straight lines. To our knowledge, this is the first time tabu methods have been applied to graph drawing. We formulated the task as a multi-criteria optimization problem with a number of metrics which are used in a weighted fitness function to measure the aesthetic quality of the graph layout. The main goal of this work is to speed up the graph layout process without sacrificing layout quality. To achieve this, we use a tabu search based method that goes through a predefined number of iterations to minimize the value of the fitness function. Tabu search always chooses the best solution in the neighbourhood. This may lead to cycling, so a tabu list is used to store moves that are not permitted, meaning that the algorithm does not choose previous solutions for a set period of time. We evaluate the method according to the time spent to draw a graph and the quality of the drawn graphs. We give experimental results applied on random graphs and we provide statistical evidence that our method outperforms a fast search-based drawing method (hill climbing) in execution time while it produces comparably good graph layouts.We also demonstrate the method on real world graph datasets to show that we can reproduce similar results in a real world setting
    corecore