

Abstract— Ant Colony Algorithms applied to difficult
combinatorial optimization problems such as the traveling
salesman problem (TSP) and the quadratic assignment
problem. In this paper we propose a grid-based ant colony
algorithm for automatic 3D hose routing. Algorithm uses the
tessellated format of the obstacles and the generated hoses in
order to detect collisions. The representation of obstacles and
hoses in the tessellated format greatly helps the algorithm
towards handling free-form objects and speed up the
computations. The performance of the algorithm has been
tested on a number of 3D models.

I. INTRODUCTION
ATH finding is an important problem for many

applications, including network traffic, robotic planning,
military simulations, computer games, vehicle routing,
electric circuit routing and hose routing. Path finding
involves analyzing a road map to find the best cost of
travelling from one point to another. Best can be a multi-
objective function and use such criteria as the shortest path,
least-cost path, safest path, etc.

Hose routing is a major research area in assembly design.

Almost all mechanical assemblies include pipes, cables and
hoses. Hose routing can be briefly defined as finding a
collision free path between the start and target points.

Most of the hose routing problems are difficult

combinatorial optimization problems and combinatorial
optimization techniques such as genetic algorithms, ant
colony algorithms can be used to produce a feasible set close
to the optimal solution.

In this paper, we present a grid based ant-colony

algorithm for automatic 3D hose routing. Algorithm uses
tessellated representation of the obstacles (which is available
for most of the CAD and computer graphics packages) for
collision detection and hence eliminates the restrictions on
shapes of the obstacles and their representations.

The structure of the algorithm is summarized in

Fig. 1.

The rest of the paper is structured as follows. Section II

describes the ant colony algorithm. Section III provides a
description of the tessellated format (or representation) of

This work was supported in part by the EPSRC.
The authors are with the Bio Inspired Intelligent System Group (BIIS),

School of Engineering and Design, Brunel University, Uxbridge,
Middlesex, UB8 3PH, UK (gishantha@ieee.org).

the CAD models and description of the collision detection
library RAPID. Section IV describes the implementation of
the grid-based ant colony algorithm. Section V presents the
simulation results of the algorithm. The results are discussed
in section VI and section VII concludes paper.

II. THE ANT SYSTEM
Ant algorithms were first proposed by Dorigo and his

colleagues [1, 4] as multi-agent approach to difficult
combinatorial problems such as the travelling salesman
problem (TSP) and the quadratic assignment problem. Later
scientists apply them to many different discrete optimization
problems summarized in [2, 3, 6]. In this paper, we apply ant
system for 3D hose routing in assemblies.

Fig. 1 Structure of the grid-based ant colony algorithm for automatic hose
routing

Real ants are able to find the shortest path between food

source and their nest. The communication between the ants
is based on pheromone trail deposited by individual ants. An
ant’s tendency to choose a specific path depends on the
intensity of the pheromone trail of the path. i.e., the stronger
pheromone trail path has higher probability that an ant will
follow that particular path. Over the time, the pheromone
trail evaporates, and it looses intensity if no more
pheromone is laid down by other ants. If a large number of

A Grid-based Ant Colony Algorithm for Automatic 3D Hose Routing
Gishantha Thantulage, Member, IEEE, Tatiana Kalganova, W.A.C. Fernando, Member, IEEE

P

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

48

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ants choose a specific path, the intensity of this trail
increases and more ants tend to choose that path.

Ants perform a complete tour (in our case tour is defined

as travelling from start point to the target point) by choosing
the grid points according to a probabilistic state transition
rule (random-proportional rule) which selects neighbouring
points that are closest to the target point and have a high
amount pheromone. Once all ants have completed certain
number of turns (Nturns) a global pheromone updating rule
(global updating rule, for short) is applied (See Fig. 2); a
fraction of the pheromone evaporates on all edges (edges
that are not refreshed become less desirable); each ant who
were able to finish a complete tour, deposits an amount of
pheromone on edges which belong to its tour in proportion
to how short its tour was (in other words, edges which
belong to many short tours are the edges which receive the
greater amount of pheromone). After the global updating,
current set of ants removed from the civilization, and
another set of ants starts from the start point to explore the
target point. The process is iterated until the number of turns
reach to the maximum number of turns (MAX_TURNS).
Note that, we set the parameter Nturns such that, most of the
ants in the initial set were able to reach the target point.

The pseudo-code of the ant colony algorithm is presented

as follows:

1 Initialize
2 turn = 0, turnsRemaining = Nturns + 1
3 Loop
4 Release a new set of ants from the starting
 point
5 Loop
6 turn = turn + 1
7 turnsRemaining = turnsRemaining -1
8 For each ant ‘a’ in the current set
9 If ant ‘a’ does not reach to target point
10 Move to the next grid point using random
 propositional rule
11 Else
12 Ant ‘a’ stops exploring
13 Until (turnsRemaining = 0)
14 Apply the global pheromone update rule using
 ants that reached to the target point
15 Update optimal path best so far
16 Remove the current set of ants from the
 civilization
 turnsRemaining = Nturns + 1
17 Until (turn <= MAX_TURNS)

The state transition rule used by ant system, called a
random-proportional rule (probabilistic state transition rule),
is given by (1) and gives the probability with which ant k in
city r chooses to move to the city s [5],







 ∈
= ∑

∈

otherwise

rJsif
urur

srsr
srp

k

rJu
k

k

,0

)(,
)],()].[,([

)],()].[,([
),(

)(

β

β

ητ
ητ

 (1)

where τ is the pheromone, η = 1/δ is the inverse of the

distance (δ) from the point s to the target point, Jk(r) is the
set of neighbour points of r that remain to be visited by ant k
positioned on the point r (to make the solution feasible), and
β is a parameter which determines the relative importance of
pheromone versus distance (β > 0).

Fig. 2 Flow chart of the ant colony algorithm

In ant system, the global updating rule is implemented as

follows. Ants that were able to complete their tour within the
number of allocated turns (Nturns), allow to update
pheromone levels of their visited edges according to [5],

∑
=

∆+−←
m

k
k srsrsr

1

),(),().1(),(ττρτ (2)

where

49





 ∈=∆

otherwise

kantbydonetoursrif
Lsr

kk

,0

),(,1
),(τ

0 < ρ < 1 is a pheromone decay parameter, Lk is the length of
the tour performed by ant k, and m is the number of ants that
were able to complete their tour within the stipulated turns
Nturns.

Simple example for grid-based ant colony algorithm

Following simple example explains the grid-based ant
colony algorithm in 2D environment.

Fig. 3 Problem-solving of ants

Suppose that there 3 routes (two routes leading to the

target point T and one route leading to the grid point C2)
from the start point S: R1 (SA1A2A3T), R2 (SB1T) and R3
(SC1C2) such that length of R1 is double as R2. Assume that
initially 10 ants are at the start point S and initial pheromone
level for each edge is 100, Nturns = 20, ρ = 0.01, and β = 5.
These ants have to select one of the paths R1, R2, and R3
according to the random propositional rule (1). If the
distance between two neighboring grid points is 1 unit, then
C1T = A1T = 6.08 and B1T = 5.

Probability of selecting the grid point A1 (or route R1) p1
(from (1))

()
() () ()

5
1

5
110008.6

110008.6
1100

08.6
1100

1

555

5

1

≈

×+×+×

×
=

p

p

Similarly, the probabilities of selecting the grid points B1

(route R2) and C1 (route R3): p2 ≈ 3/5 and p3 ≈ 1/5 can be
calculated.

1. According to these probabilities, there are more
chances to select route R2 by 6 ants, R1 and R3 by 2
ants each.

2. After 20 turns (Nturns = 20), algorithm updates
pheromone levels (2) as follows:

a. Each edge on the route R2
 = (1 – 0.01) ×100 + 6×(1/6)
 = 100
b. Each edge on the route R1
 = (1 – 0.01) ×100 + 2×(1/12)
 = 99.17
c. Each edge on the route R3
 = (1 – 0.01) ×100
 = 99

Since ants that followed the route R3 get lost
(unable to find the target point), the algorithm only
evaporates the pheromone levels of the edges on
that route.

In this example, the algorithm set a higher pheromone
level for the shortest path (R2) than the path (R1). Further,
the pheromone levels of lost path also decrease.

III. THE TESSELLATED REPRESENTATION AND RAPID
The proposed algorithm accepts only the tessellated

format of the solid model. Generating the tessellated format
of solid model is supported by most of the CAD packages
(including Pro/Engineer and AutoCAD). This helps the
algorithm to accept any solid model generated by any CAD
packages. Further, most of the collision detection programs
(including RAPID) accept only the approximated triangular
facets of the original model.

The .stl (STereoLithography) format or tessellated format

[7] is an ASCII or binary file used in manufacturing. It is a
list of triangular planes that approximates a computer
generated solid model. This is the standard input for most
rapid prototyping machines. A .stl file defines an object’s
surfaces as a set of adjacent triangles as shown in the Fig. 4.
This file is basically contained X, Y and Z cartesian
coordinates of the each vertex of the triangle, as well as the
coordinates of normal vector to the triangle. With the
tessellated format, each edge is shared only by two triangles.
The tessellated model is an approximation to the real model
and the accuracy of the tessellated model depends on the
number of triangles used. In most CAD packages the
number of triangles generated for the tessellated model can
be controlled. Models were generated using the CAD
package Pro/Engineer and its programming toolkit
Pro/Toolkit.

50

Fig. 4 Tessellated representation of objects

The proposed algorithm is based on identification of

available paths in the given 3D model represented by .stl
format. The availability of paths can be determined by the
collision detection library RAPID.

RAPID (Robust and Accurate Polygon Interface

Detection) [8] is a C++ library developed at Department of
Computer Science, University of North Carolina for
interference detection (or collision detection) of large
environments composed of unstructured models.

 It is applicable to polygon soups [8] - models which

contain no adjacency information, and obey no
topological constraints. The models may contain
cracks, holes, self-intersections, and non-generic (e.g.
coplanar and collinear) configurations.

 It is numerically robust - the algorithm is not subject
to conditioning problems, and requires no special
handling of non-generic cases (such as parallel faces).

 The RAPID, library is free for non-commercial use. It
has a very simple user interface: the user needs to be
familiar with only about five function calls.

RAPID accepts only polygonal models composed entirely

of triangles, but does not require the model to have any
particular structure. For example, for some collision
detection systems require the shapes to be well-formed
solids – the surfaces must “closed” so that there is a well-
defined inside and outside.

IV. ALGORITHM IMPLEMENTATION
The algorithm was implemented in three steps. In the first

step, tessellated representation of the obstacles is obtained as
a text file from the CAD package. This file was passed to
our C++ program which is incorporated the collision
detection library RAPID. The following inputs must be
supplied to the program also:

 grid size

 Grid: [Xmin (∆x) Xmax, Ymin (∆y) Ymax, Zmin (∆z) Zmax]
where (Xmin, Ymin, Zmin) and (Xmax, Ymax, Zmax)
represents the minimum and maximum coordinates of
the world where the paths should be explored and ∆x,

∆y, ∆z defines the increment on x, y, z coordinates
respectively,

 coordinates of the start point S(XS, YS, ZS) and target
point T(XT, YT, ZT),

 number of ants to be released,
 values for the parameters ρ (pheromone decay

parameter) and β,
 initial pheromone levels of the edges (constant),
 number of turns algorithm is to be run

(MAX_TURNS),
 frequency at which the global pheromone update rule

is applied (Nturns),
 Radius (r) of the hose or pipe segment.

It was not possible to find a benchmark for a comparison

study from the previous work of pipe routing. Automatic
pipe routing has previously been addressed in [7]; the
authors used genetic algorithms and RAPID for pipe routing
and applied them only to one real world application and took
hours of time to obtain the optimal path or near optimal path.
Therefore, at the initial stage, the implementation of the
algorithm was restricted to models specifically generated for
the experiments. Further, the main goal was to conduct a
feasibility study of applying the ant colony algorithm for
automatic 3D hose/pipe routing. In future work, the
algorithm will be applied to some real world applications.

In the second step, program implements three tasks.

Firstly, it creates the whole road map using the

rectangular grids. When connecting two points, the program
checked, with aid of the C++ library, RAPID, that the path
between the two points was collision free (the axis of the
hose cylinder lies on the line connecting the two points). For
simplicity, a rectangular hexahedron was used that was
centered on the line segment between the two points such
that the cylindrical hose could be laid within it. When trying
to connect a grid point to another, the algorithm considered
only north, west, south, east, top and bottom neighbours (6-
way connection) as this may reduce the number of routes
needs to be stored in the memory. The road map was stored
in a text file which can be used again if the algorithm needs
to be executed another time.

Secondly, the program searched for the optimal path or

near optimal path between the start and the target points
using the ant colony and the road maps created earlier. If
path contained cycles, these were removed before applying
global updating of the pheromone. Initially, a constant
pheromone value was set for each edge. Before applying the
global updating, the program found the optimal path for the
current set of ants and if this was an improvement on the
path for the previous set of ants, it sets this path as the
optimum path found so far.

Thirdly, at the end of MAX_TURNS, the (optimal) path

obtained was further refined to eliminate some ‘staircases’

51

(See Fig. 5). Again, when refining the optimal path, before
connecting two points, the algorithm RAPID was used to
detect any collisions.

In the third step, the program generated the list of points

needed for moving from the start point to the target point.

In the final step, the list of points needs to be connected

for the optimal path passes into CAD software for drawing
the pipe segments.

V. SIMULATIONS
The effectiveness of the algorithm was demonstrated by

simulations. CAD package Pro/Engineer was used for
generating the 3D models and its programming toolkit
Pro/Toolkit was used for obtaining the tessellated format of
the generated models.

(a) Before refinement (b) After refinement

(c) Before refinement (d) After refinement

Fig. 5 Refining the path

The parameter settings for the ant colony algorithm were:

the number of ants = 10, initial pheromone level for each
edge = 100, number of turns for which the algorithm is to be
run, MAX_TURNS = 10,000, pheromone decay parameter ρ
= 0.01, and β = 5. Sizes of the grids of the world are selected
depending on the problem at hand.

All the simulations were conducted on a Pentium IV PC

(Processor speed = 3.0 GHz, Memory = 512 MB) in the
Microsoft Windows XP environment using Microsoft Visual
C++ (Version 6.0).

The following simulations were carried out for testing the
efficiency of the propose algorithm.

A. Hose routing in an environment with a hole in a cube

The proposed grid base ant colony algorithm was tested in

an environment consisting of cube containing a hole (Fig. 6).
Hose segments needed to be laid inside this hole in order to
obtain the optimal path. Fig. 6(a) shows the optimal path
generated by ant colony algorithm. As the algorithm was
used only north, east, west, south, top, and bottom neighbour
points, this optimal path had some ‘staircases’ like pipe
segments. Fig. 6(b) shows the refined path which is the
optimum path and number of bends reduced to 2 from 8.

(a) Optimum path given by the ant colony algorithm

(b) Refined path

Fig. 6 Hole in a cube
{Grid: [-250 (25) 150, -50 (25) 150, -200 (25) 0];

S: (-200, 150, -100); T: (-100, -50, -150);
Radius: 5; Nturns: 100; Time: 29 secs.}

Fig. 7 shows the obtained optimal path for the same 3D

model as in Fig. 6, but the ∆ values are doubled. However,
the time taken to find the path was reduced; it is not the
desired optimal path. This simulation shows that selection of
the right grid size is an important part of the algorithm.

F A B

C D

E A B E F

F

A B

C D

E F

A

E

52

Fig. 7 Hole in a cube with a larger grid size
{Grid: [-250 (50) 150, -50 (50) 150, -200 (50) 0];

S: (-200, 150, -100); T: (-100, -50, -150);
Radius: 5; Nturns: 100; Time: 2 secs.}

B. Hose routing in an environment with a hole in a cube and
the optimal path is block with an obstacle

In this simulation, the optimal path found in the earlier

case was blocked by a cubic obstacle and the target point
was placed behind the obstacle (see Fig. 8).

Fig. 8 Optimal path is blocked by a cubic obstacle
{Grid: [-250 (25) 150, -50 (25) 150, -200 (25) 0];

S: (-200, 150, -100); T: (-200, -100, -150);
Radius: 5; Nturns: 100; Time: 39 secs.}

C. Hose routing in an environment with a U-shape obstacle

In this experiment, a U-shape obstacle was placed in the

environment and the environment was made more complex
by introducing other objects (see Fig. 9). Furthermore, the
start and target points were placed such that only one path
existed between them. Note that, z coordinates of the search
space were restricted to the top and bottom of the obstacles.

Fig. 9 U-shaped obstacle
{Grid: [-300 (25) 400, 0 (25) 100, -300 (25) 400];

S: (50, 25, -50); T: (350, 25, -50);
Radius: 5; Nturns: 100; Time: 109 secs.}

D. Hose routing in an environment with a U-shape obstacle
and the optimal path is block with two obstacles

Fig. 10 U-shaped obstacle and optimal path is blocked by two obstacles
{Grid: [-300 (25) 400, 0 (25) 100, -300 (25) 400];

S: (50, 25, -50); T: (350, 25, -50);
Radius: 5; Nturns: 100; Time: 117 secs.}

In this simulation, the optimal path found in the earlier

case was blocked by two cubic obstacles (see Fig. 10).

E. Hose routing in an environment with parallel walls

In this experiment, two 3D points were selected and the

shortest path between them was blocked by 5 parallel walls
(see Fig. 11).

53

Fig. 11 Parallel walls
{Grid: [-300 (25) 300, 0 (25) 100, -300 (25) 300];

S: (-300, 25, 0); T: (300, 50, -25);
Radius: 5; Nturns: 200; Time: 162 secs.;

MAX_TURNS = 20,000; No of ants = 20}

VI. DISCUSSION
Previously, scientists have applied the ant colony

algorithm for many real-world problems such as travelling
salesman problem, quadratic assignment problem, and job
shop scheduling. In this paper, it has been applied to
automatic 3D hose/pipe routing where the world is
represented as rectangular grid.

The problem presented in this paper and the TSP are quite

similar; however there are also some differences. In the TSP,
paths must be found such that each ant must travel to each
city once and must finally come back to the start city. In the
case described in this paper, ants must start from the start
point and need to finally reach the target point. The
constraints that each ant must travel to each point and that
ants must finally come back to the start point are not
imposed. However, it must be guaranteed that when an ant
has visited to a point, it must not visit that point again. To
this, cycles were removed from the ants’ paths before
applying the global updating rule. For the TSP, the global
updating rule is applied after all ants completed a tour (i.e.
each and every ant must come back to the start city). Hence,
for the TSP, the algorithm knows when to apply the global
updating rule. In the experiment described above, this is not
always possible, as some may get lost. Thus, a new
parameter, Nturns, was introduced into the algorithm. This
parameter was set such that most of the ants of the current
set were able to reach the target point.

The above simulation results show the strength of the

propose grid based ant colony algorithm for automatic 3D
hose/pipe routing. Simulation results show that the algorithm
can be applied for any shape which can be generated using
any CAD package.. The use of the RAPID library greatly

helps the algorithm to detect collisions when laying the
hoses.

Simulation study also indicates that the proposed grid

based ant colony algorithm is of practical use because the
required computational times are reasonably low.

However, the resolution or the size of the grid plays an

important role in the determination of the optimal path and
affects the computational time. If none of the grid line falls
on the optimal path when constructing the road map,
algorithm fails to obtain the optimal path (See Fig. 6 and
Fig. 7). Thus, selecting the right size of the grid is an
important part of the algorithm.

VII. CONCLUSION
In this paper, a grid-based ant colony algorithm has been

proposed for automatic 3D hose routing. The algorithm
generates the optimal set of the pipe segments linking the
start and the target points. The C++ library, RAPID, is
incorporated into the program for collision detections. The
.stl format of the obstacles is passed to the algorithm as the
RAPID can handle only the triangular shapes. However, the
accuracy of the collision detection depends on the number of
triangles used to approximate the obstacles. The
effectiveness of the algorithm is demonstrated by simulation
studies. The simulation results shows that proposed
algorithm can handle complex environments and any shape
that can be generated using any CAD package. The
computational efficiency suggests that the algorithm can be
applied to real-world hose/pipe routing problems.

The selection of the right resolution (or size of the grid)

plays an important part of the algorithm and it is dependent
on the problem at hand (See Fig. 6 and Fig. 7). When the
resolution is increased, the algorithm requires higher amount
of memory and more time to compute the results. The
algorithm can be improved, if the domain knowledge of the
problem is incorporated into the algorithm. For this,
selecting random points from the free space and use them to
create the road map will be investigated. Another solution to
this problem is use of multi-resolution algorithm instead of
uniform resolution.

At the initial stage of the experiment, the algorithm has

been implemented only for optimizing the distance between
the start and the target points. In the next stage, other hose
routing knowledge will be incorporated into the algorithm,
such as, the selection of pipe bends from a pre-specified
catalogue of angles of bends, the minimizing cost of pipes,
the avoidance of hot, sensitive and moving objects. Other
combinatorial optimization algorithms will also be
implemented, such as genetic algorithms and quantum-
inspired genetic algorithms for automatic 3D hose routing
and these will be compared to the results with the ant colony
algorithm presented here.

54

ACKNOWLEDGMENT
The authors thank BIIS research group at Brunel

University, UK for providing valuable comments during the
course of this research work.

REFERENCES
[1] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The Ant System:

Optimization by a colony of cooperating agents. IEEE Transactions on
Systems, Man, and Cybernetics-Part B, Vol. 26, No. 1, pp. 1-13.

[2] Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). From natural to
artificial swarm intelligence. New York: Oxford University Press.

[3] Corne, D. Dorigo, M., & Glover, F. (Eds.). (1999). New ideas in
optimization. Maidnhead, UK: McGraw-Hill.

[4] Gambardella, L.M., & Dorigo, M. (1996). Solving symmetric and
Asymmetric TSPs by ant colonies. Proceedings of IEEE International
Conference. pp. 622-627.

[5] Gambardella, L.M., & Dorigo, M. (1997). Ant Colony System: A
cooperative learning approach to the travelling salesman problem.
Evolutionary Computation, IEEE Transactions. pp. 53-66.

[6] Gambardella, L.M., & Dorigo, M. (1999). Ant algorithms for discrete
optimization. Artificial Life 5: Massachusetts Institute of Technology.
pp. 137-172.

[7] Sandurkar, S., & Chen, W. (1998). GAPRUS – Genetic algorithms
based pipe routing using tessellated objects. The journal of computers
in industry.

[8] Gottschalk, S., Lin, M.C., & Manocha, D. RAPID (Robust and
Accurate Polygon Interface Detection).
<http://www.cs.unc.edu/~geom/OBB/OBBT.html>.

55

