
Towards multiple 3D bone surface 
identification and reconstruction 
using few 2D X-ray images for 
intraoperative applications  
Simant Prakoonwit 
Department of Computer Science and Technology, University of Bedfordshire, UK 
Email: Simant.Prakoonwit@ieee.org, Simant.Prakoonwit@beds.ac.uk  

ABSTRACT 

This article discusses a possible method to use a small number, e.g. 5, of conventional 2D X-ray 
images to reconstruct multiple 3D bone surfaces intraoperatively. Each bone’s edge contours in X-ray 
images are automatically identified. Sparse 3D landmark points of each bone are automatically 
reconstructed by pairing the 2D X-ray images. The reconstructed landmark point distribution on a 
surface is approximately optimal covering main characteristics of the surface. A statistical shape 
model, dense point distribution model (DPDM), is then used to fit the reconstructed optimal 
landmarks vertices to reconstruct a full surface of each bone separately. The reconstructed surfaces 
can then be visualised and manipulated by surgeons or used by surgical robotic systems. 

1. INTRODUCTION 

The ability to be able to access and update 3D patient-specific surface models of the bones and other 
structures during an operation is very valuable. It can augment the surgeon's view of the objects of 
interest and help with navigation, measurement and surgical planning. The 3D model can also be used 
with a surgical robot to accurately carry out surgical procedures on an up-to-date models of the 
structure of interest. However, a 3D reconstruction of bones and other structures during an operation 
is a nontrivial task. Most of existing technologies are not feasible to be implemented in an 
intraoperative environment. Normally, a 3D reconstruction has to be done by a CT or an MRI pre 
operation or post operation. Due to some physical constraints, it is not feasible to utilise such machine 
intraoperatively. The models have to be reconstructed before or after an operation. If the model is 
required to be updated during an operation, the patient has to be moved from the operating table to a 
CT or MRI machine before returning to the operating table again. A special type of MRI has been 
developed to overcome the problem. However, all normal surgical tools and instruments cannot be 
employed. This seriously limits the use in orthopaedic applications. Also any metal surgical robots 
cannot be utilised. In addition, they are expensive and/or induce high radiation doses (Rajamani, 
Styner et al. 2007). The costs associated with CT are MRI techniques are high. CT imaging can also 
produce radiation hazards.  

The main aim of this article is to propose a new design and possible method towards rapidly 
identifying, reconstructing and updating patient-specific 3D surface models of multiple bones using a 
small number of 2D conventional X-ray images feasible for intraoperative applications. The technique 
should be capable of reconstructing 3D bone surface models without having to move patient from the 
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operating table. This article is based on our preliminary work (Prakoonwit 2011) which can only deal 
with a single object. New effective methods on edge contour detection and multiple object 
identification are presented in this work.  

2. BACKGROUND 

In an intraoperative environment where the scanning geometry of a CT or MRI is not suitable, a C-
arm conventional X-ray system can be used to acquire a number of 2D images to reconstruct a full 3D 
volumetric description, in terms of voxels, of an object of interest, e.g. (Atesok, Finkelstein et al. 
2007; Ritter, Orman et al. 2007; Zbijewski and Stayman 2007). However, to reconstruct at a 
reasonable resolution, the number of 2D images required is very high, e.g. 40 to 180 images, and to 
extract the surface of an object from the reconstructed voxels is very computationally expensive. 
Moreover, due to the large number of 2D X-ray images required, the patient is inevitably subjected to 
high dose of radiation. 

Another approach is to use statistical shape analysis and modelling, e.g. (Cootes, Taylor et al. 1995; 
Dryden and Mardia 1998; Rajamani, Styner et al. 2007; Zheng, Dong et al. 2007; Prakoonwit 2011) 
and (Zhu and Li 2011), which has been an important tool in 3D model reconstruction from incomplete 
data. In this approach, only a small number of sparse landmark vertices on the surface of an object, 
e.g. a bone, are needed to be determined. Those sparse landmark vertices alone contain inadequate 
information for the complete 3D surface reconstruction of an object. Hence, a priori knowledge is 
required. A statistical model can be reconstructed from a set of training surfaces representing 
reasonable variations of the surfaces of an object of interest. In intraoperative applications, the 
statistical model is then used as prior knowledge in the reconstruction process to fit to the patient 
anatomy using intraoperatively acquired sparse landmark vertices. Thus, in conclusion, the aim of 
statistical shape model fitting is to extrapolate from an extremely sparse and incomplete set of 3D 
landmark vertices to a complete and reasonably accurate 3D anatomical surface. The fitting process 
aligns and deforms the statistical shape model to fit the sparse landmark vertices. Therefore the 
model-based approach is widely accepted due to their ability to effectively represent objects 
(Morooka, Nakamoto et al. 2013).    

Many researchers have presented methods for fitting statistical models to sparse vertices to create full 
patient-specific surfaces. The input data can be acquired from a small number of 2D X-ray images 
(Fleute and Lavallee 1999; benameur, Mignotte et al. 2003; Benameur, Mignotte et al. 2005; 
Lamecker, Wenckeback et al. 2006) or digitised sparse vertices (Fleute and Lavallee 1998; Fleute, 
Lavallee et al. 1999; Rajamani, Styner et al. 2004; Rajamani, Ballester et al. 2005). Principle 
Component Analysis (PCA) based statistical shape models have been widely used in surface 
extrapolation. In (Fleute, Lavallee et al. 1999), a joint optimisation technique is applied to fit the 
statistical model to intraoperatively digitised landmark vertices. In this method both pose and 
deformation are concurrently optimized. Later, Chan et al (Chan, Edwards et al. 2003), used a 
different approach by optimising deformation and pose separately and implementing the iterative 
closest point (ICP) method. Rajamani, et al (Rajamani, Styner et al. 2007), developed a new technique 
using a Mahalanobis distance weighted least square fit of the deformable model to the landmark 
vertices. The surface model of a proximal femur was reconstructed in (Zheng, Dong et al. 2007) by 
using a Dense-Point Distribution Model (DPDM) and employing two-stage deformation processes: 
statistical instantiation, which stably instatiates a surface model from the DPDM using a statistical 
approach; kernel-based deformation, which further refines the surface model. Two-view or multi-view 
2D X-ray images have also been used with statistical shape models to reconstruct femur and pelvis in 
(Lamecker, Wenckeback et al. 2006; Zheng, Ballester et al. 2006; Kurazume, Kakamura et al. 2009; 



Zheng, Gollmer et al. 2009). Pelvis and vertebra bones can also be reconstructed from uncalibrated X-
ray images as shown in (Zheng 2009; Zheng 2010; Zheng, Nolte et al. 2011). 3D models for Femur 
kinematics studies can also be reconstructed from biplane fluoroscopy (Baka, Bruijne et al. 2012). 
Those methods rely mostly on the information from 2D X-ray images without sparse 3D points on the 
surface of the objects. Hence, some surface information for the 3D reconstruction is not complete. 

The existing methods using sparse 3D points mentioned earlier are capable of producing 3D surface 
models. However, the performance of the algorithms and the accuracy of the resulting models very 
much depend on how well the input sparse landmark vertices are obtained and how well they can 
represent the important features of the surface. The existing methods of creating the input sparse 
landmark vertices are not fully automatic and the landmark vertices are not optimally distributed on 
the surfaces resulting in some important features may not be well captured or represented. In this 
article, a method is proposed to solve this problem. The main contributions of this work, therefore, 
are: a new design of scanning geometry; a novel automatic, without user intervention, method for 
determining 3D landmark vertices which are optimally distributed on a surface and multiple object 
identification. Some proof of concept computational experiments have been conducted to reconstruct 
a femur bone and a set of knee joint bones. The results show that the proposed method is capable of 
reconstructing an acceptable 3D surface. 

3. PROPOSED METHOD 

In our proposed method, a small number, e.g. 5, of X-ray images are taken at appropriate projection 
angles. Edges contours are then extracted and identified for each bone in the scene. The 3D landmark 
vertices are determined by paring all the edges in all images. Once the landmark vertices are found, a 
statistical shape model is employed to fit the landmarks to create a full 3D surface model.  

3.1 Edge detection and representation 

Each X-ray image is enhanced prior to edge detection to reduce the noise level, sharpen the edges and 
to enhance the contrast of the edges. Techniques such as adaptive smoothing and adaptive histogram 
equalization can be used to enhance the image. In this research, the grayscale enhancement method 
described in (Abidi, Mitckes et al. 2003) has been adopted. First, linear regression is applied to stretch 
the pixel range within the given image so that the maximum and minimum pixel values cover wider 
range. Then gamma intensity adjustment is performed followed by histogram equalization. Those 
procedures require manual parameter adjustment. However, a set of common parameters can be used 
for most of the X-ray images in the application. 

In our preliminary work (Prakoonwit 2011), the Gradient edge detector with relaxation labeling  
(Matalas 1996) to reinforce contours and suppressing invalid edges was used. To improve the quality 
of edge contours of bones in X-ray images, a new biologically-inspired contour detection method 
(Kang 2011) is therefore adopted. 

The method is based on human vision in perceiving of contours in images. According to (Westheimer 
1979), human vision is 5 to 10 times more perceptive to positions or phases than to magnitude 
differences in an image. Phase distortion reduces the ability of human visual system to recognise 
objects or contours in an image than intensity distortion. Edge contours in images can be interpreted 
as the points of maximum phase congruency in frequency domain (Morrone, Ross et al. 1986) which, 
to a large extend, correspond with edge contour features perceived by human visual system. By 
combining the biological findings with Gestalt theory (Desolneux, Moisan et al. 2008), PCTV method 
was developed (Kang 2011). The method can be used to detect edge contours in X-ray images with 
superior quality compared to other methods such as Canny edge detector (Canny 1986), SUSAN 
detector (Smith and Brady 1997), the compass operator (Ruzon and Tomasi 2001) and phase 



congruency (PC) method (Kovesi 1999) as demonstrated in (Kang 2011). Also edge contours detected 
by PCTV are of higher quality than those derived by the edge detection method in (Matalas 1996). 

To reconstruct landmark vertices, the most effective way is to represent edge contours analytically. 
Therefore, those edge contours are fitted with cubic B-spline curves. Each edge contour c  is 
represented by a sequence of 3rd order parametric curve segments. To detect edge contours and 
conduct B-spline curve fitting, we adopt the techniques described in (Matalas 1996). 

3.2 Landmark point reconstruction 

In this section, we consider how multiple 3D landmark points on a 3D surface can be found by pairing 
2D X-ray images, using the characteristics of epipolar geometry. The method is based on our previous 
work (Prakoonwit and Benjamin 2007). In contrast to current methods, e.g. (Rajamani, Ballester et al. 
2005; Zheng, Dong et al. 2006; Rajamani, Styner et al. 2007; Zheng, Dong et al. 2007), where 
landmark points have to be manually determined based on some specific features of the structures of 
interest, the proposed method automatically reconstructs landmark points and automatically captures 
the salient features of surfaces. 

As each point on the edge contours is generated by a ray from the relevant X-ray source, the epipolar 
plane contains the rays linking the X-ray sources to the epipolar tangents points on the image planes. 
The landmark point is therefore the intersection of a pair of rays from the two distinct X-ray sources. 
For example, consider a bone-shaped object in Figure 1. Landmark point 1f , and the corresponding 

epipolar tangent points 1t  and 2t  can be found from the known epipoles, derived from the 

intersections between the epipolar baseline and the image planes, and edge contours 1c , 2c . Two 

rays, 1r , 2r  from the X-ray sources are defined by linking 1X 1t  and 2X 2t  respectively. Then 

landmark point 1f  is the intersection of 1r  and 2r . Note that in practice, it is unlikely that 1r  and 2r  

will intersect exactly. This problem is solved by finding the shortest segment between the two rays 
and choosing the middle point on the line as the frontier point. 

While the plane rotates about the epipolar baseline and touches other parts of the surface, additional 
landmark points, e.g. 1f , 2f , 3f  , can be determined. The more complex the surface is, the more 

additional information is contained in the associated edge contours and therefore the more additional 
local epipolar tangent points are generated, thus providing the 3D locations of furthur landmark 
points. 
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Figure 1.  Epipolar plane  rotating about epipolar baseline creating epipolar tangent lines, 
epipolar tangent points and landmark points. 

So far, we have discussed pairing of two X-ray images to reconstructed 3D landmark points. The 
same fundamentals can further be applied to a set of more than two image. Consider a set of plN  X-

ray sources, irradiating surface S  from distinct directions, where no potential epipolar baseline passes 
through S . From this set, ( 1) / 2pl plN N   image pairs can be created. If a convex object is projected 

on to the image planes, then ( 1)pl plN N   landmark points will be determined. If the viewing angles 

are uniformly distributed in solid angle, smooth shapes, with monotonic change of gradient, result in 
epipolar tangent points at approximately equal increments of tangent angle on the corresponding edge 
contour. If plN = 10, on each 2D edge contour, interaction with nine other views will establish 18 

epipolar tangent points and 18 landmark points, each centered on an arc of 10 , for a total of 360 . 
A nonconvex object will generate more epipolar tangent points and landmark points from the pairing. 

Figure 2 shows an example, when 3plN   and the 2D X-ray images are 1I , 2I  and 3I . Three image 

pairs ( 1I , 2I ), ( 1I , 3I ) and ( 2I , 3I ) can be created. For simplicity, we assume that all the image planes 
are at right angle to one another. The X-ray sources are at   and all X-rays are parallel to the 
associated image plane’s normal. If the object is a sphere, the corresponding edge contours 1c , 2c and 

3c are all circles, Fig. 2(a). Six landmark points if , i = 1,2,3, ..., 6, can then be determined by the 

intersections of the relevant rays in the three image pairs as illustrated in Fig. 2(b). Image pairs ( 1I , 2I
), ( 1I , 3I ) and ( 2I , 3I ) generate landmark point pairs ( 1f , 2f ), ( 3f , 4f ) and ( 5f , 6f ) respectively. The 

related epipolar tangent lines and the epipolar tangents points jt , j = 1, 2, 3, ..., 12, on the image 

planes are shown in Fig. 2(c). 
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Figure 2. A simple three X-ray source system (a) a sphere is projected onto three image planes 1I , 2I  and 3I
containing edge contours 1c , 2c and 3c  (b) frontier points if , i = 1,2,3, ..., 6, are reconstructed from the 



corresponding edge contours (c) distribution of epipolar tangent points jt , j = 1, 2, 3, ..., 12, on the 

corresponding edge contours on the image planes. 

 

3.3 Data acquisition system geometry design 

In (Prakoonwit and Benjamin 2007), Benjamin and the author presented a full surface reconstruction 
from a set of 2D conventional X-ray images taken from 10 to 15 projection directions. However, the 
number of projections is too high for intraoperative applications. Therefore, we propose to use only 
about 5 projections. This would create a set of surface points, but the information acquired from this 
limited set of images is not adequate to fully reconstruct a surface model using the method described 
in (Prakoonwit and Benjamin 2007). Instead, the reconstructed surface points will be used as a set of 
optimal landmark points which will be extrapolated to create a full surface model using a statistical 
model as prior knowledge. 

3.3.1 Designing of X-ray projection system 

To make the method feasible for intraoperative applications, we propose the X-ray scanning geometry  
shown in Figure 3. A single 2D X-ray array detector is located underneath the operating table 
covering the area of interest. The X-ray base can be installed on the ceiling of the operating theatre, or 
mounted on a mobile arm. It contains 5 X-ray sources with different projection directions as required. 
The X-ray sources are turn on in turn to sequentially create 2D X-ray images from different projection 

angles, defined by  and  . In some applications where multiple X-ray sources may not be 

economical, a single X-ray source can be used with a mechanism to adjust the X-ray source's position 
and direction to sequentially create the X-ray images from different projection directions. 
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Figure 3. Proposed scanning geometry. An X-ray projection direction is defined by angles  and 
in Xw, Yw, Zw coordinates system. 

3.3.2 X-ray projection angle determination 

In this section, the aim is to create a set of surface points optimally distributed on the object's surface. 
The optimal distribution means the surface points approximately cluster closely on highly curved 



parts of the surface and are widely spread on smooth or flat parts. To approximately create the optimal 

distribution of the landmark points, the following condition must be satisfied: 1/s  , where   = 

mean curvature and s  is a length of an arc on an edge contour c between any two consecutive 
epipolar tangent points. Thus the length of an arc must be inversely proportional to the local mean 
curvature. In other words, the higher curvature the shorter distance between two epipolar tangent 
points. Thus the epipolar tangent points cluster closely in highly curved parts (high  ) and widely 
spread in smooth flat parts (low  ) of the edge contour. If the normal vectors at epipolar tangent 
points are considered instead of the tangents, the gap angle between any two consecutive normal 

vectors must be a constant. Thus the gap angle   between normal vectors 1n  and 2n  of epipolar 

tangent points 1t  and 2t  must be equal to the angle between any other two consecutive normal 

vectors on a curve segment. Provided that this condition is satisfied, the reconstructed 3D frontier 
points on the object itself will also approximately gather closely on highly curved parts of the surface 
and the surface and broadly spread on smooth flat parts. 

In n-image system,  assuming that we select the positions of the X-ray sources optimally,   , the 
gap angle for any arc between consecutive epipolar tangent points, on any edge contour in any image 

plane, must be the same, i.e. / ( 1)plN   , where plN  is the number of X-ray sources. 

As the distribution of the reconstructed landmark points depends on the positions of the X-ray image 
planes and the associated X-ray sources, the problem is how to find a set of X-ray projection 
directions that create such optimal or near optimal distribution. Especially, when the positions and 
directions of the X-ray sources are restricted by the geometry of the scanning system such as the one 
shown in Figure 3. 
 

This problem is similar to the widely studied problems of camera network design and the next best 
view (Mason and Grun 1995; Mason 1997; Pito 1999; Olague and Mohr 2002). The optimization 
problem in that case is similar to our problem. The complexity of camera positions is in the class of 
NP-complete problems (Mason 1997; Olague and Mohr 2002). Many approaches have been 
developed to find a reasonable optimization method (Mason and Grun 1995; Mason 1997; Olague and 
Mohr 2002). One needs to search for the set that produces the optimal distribution condition on all 
image planes. The search space is enormous, non-linear, complex and poorly understood. The 
problem cannot be easily formulated in terms of mathematical equations in order to use traditional 
optimization techniques (Olague and Mohr 2002). 

Olague and Mohr (Olague and Mohr 2002) successfully used the multi-cellular genetic algorithm, a 
specialized variant of the standard genetic algorithm. It follows the tree-based genetic programming 
representation (Koza 1992; Kinner 1994), which is assumed to be known and fixed. In this method, 
each camera variable is partitioned into a cell. The evolutionary process is applied to each camera 
separately allowing the appearance of subpopulations with good quality individuals. Binary 
representation is used in order to allow the algorithm to randomly search the whole space. The multi-
cellular genetic algorithm evaluates the fitness of the whole system of multiple cameras, rather than 
the fitness of each cell individually. Since the camera placement problem and our X-ray source 
placement problem are similar, we adopt the same technique. 



The objective is to minimise the error function for the multi-cellular genetic algorithm is defined by 

     
1

1 N

i
iN
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

              (1) 

where i is the angle between the normal vectors at the two ends of the ith arc between two 

consecutive epipolar tangent points, and N is a total number of the arcs on all edge contours on all 

image planes in the set. In ideal case,  is equal to zero. The value of i  depends on the projection 

angles  and  . It can be calculated using the method explained in the previous section. The ranges 

of  and   are 90a    , 0 360   where a is a constant depending on the shape and size 

of the X-ray scanning geometry. Assuming that the projection distance is defined by the fix geometry 
of the scanning system and the corresponding projection angles, the parameters to be encoded in the 
multi-cellular algorithm are  and  . The detailed method on how to implement the multi-cellular 

algorithm can be found in (Olague and Mohr 2002). 

3.4 Surface reconstruction 

From the previous section, we now have a set of landmark points distributed on the surface. The next 
stage is to extrapolate those points to a complete 3D surface model of a bone. The problem statement 
is shown in Figure 4. However, reconstructing an acceptable 3D surface model from such sparse data 
is a challenging task as reviewed in Section 1. Normally, without prior knowledge, it is rather 
impossible or it is not computationally viable to accurately reconstruct a full surface description for 
our applications. Therefore, a statistically based shape model is considered to be used as prior 
knowledge. Based on such model, the reconstructed landmark points can be applied to infer the full 
anatomical information in a robust way. 

There are many approaches for constructing statistical shape models. Staib and Duncan (Staib and 
Duncan 1992) and Szekelely, et al (Szelely, Lelemen et al. 1996) applied Fourier representations for 
statistical models. Modal analysis can also be applied to create a decomposition of shapes into a basis 
of fundamental deformations, e.g. (Pentland and Scalroff 1991). It is also feasible to use surface 
features such as crest-lines and to perform modal analysis on the features (Subsol, Thirion et al. 
1996). Another approach is to consider a statistical model with modal representation based on 
Principal Component Analysis (PCA). This method was first proposed by Cootes, et al (Cootes, 
Taylor et al. 1995). Since then, it has been widely used in model reconstruction and object 
recognition. The method has been proven to be suitable for many orthopaedic applications, e.g. 
(Fleute, Lavallee et al. 1999; Rajamani, Styner et al. 2007; Zheng, Dong et al. 2007). This article is, 
therefore, based on the statistical shape model approach (Cootes, Taylor et al. 1995; Zheng, Dong et 
al. 2007).  



extrapolate

 

Figure 4. Problem: how to extrapolate sparse surface points to a complete bone surface? 

3.4.1 Dense-point distribution model construction 

In this work, we use a dense-point distribution model (DPDM) (Zheng, Dong et al. 2007), which is a 
type of statistical shape models, in our surface reconstruction. Building the statistical dense-point 
distribution model requires the following steps: acquiring, aligning, matching the training shapes; and 
Dense-Point Distribution model construction using PCA. The two steps are detailed as follows. 

(i) Acquiring, aligning and matching the training shapes. A set of 30 computer-generated surface 
models of femurs and knee joint bones with randomly varied shapes and sizes are used as the training 
shapes for building the statistical shape model representing femurs and knee joint bones. Each 
individual computer-generated surface model is represented by a set of triangle mesh containing 4484 
triangular facets and 2244 vertices. The shapes of the bones are randomly deformed to represent the 
possible variations in the real population. Some of the femurs models are shown in Figure 5. 

 

Figure 5. Some computer generated femurs in the training set. 

Let ,0 ,0 ,0 ,1 ,1 ,1 , 1 , 1 , 1, , , , , ,..., , ,
T

i i i i i i i i Nr i Nr i Nrxr yr zr xr yr zr xr yr zr     vr , 0,1,..., 1i M  , be a vector 

representing Nr vertices of the ith surface model in the set of M  training models where, in this case, M 

= 30 and Nr = 2244. The 3D position of nth vertex of surface model ith is defined by , , ,, ,i n i n i nxr yr zr   .  

However, DPDM requires more vertices to create a dense cloud of vertices on the surface. This can be 
obtained by iteratively refining the training computer-generated surface models to create the DPDM. 
The refining method proposed in (Zheng, Dong et al. 2007) is adopted in this work. It uses a simple 



subdivision scheme call loop scheme, (Loop 1987), to guarantee that the surface mesh is smooth. The 
level of subdivision and the number of dense vertices required depend on the application. Zhen, et al, 
(Zheng, Dong et al. 2007) recommends that, for this type of applications, the maximum edge length of 
all triangles should be less than 1.5mm. Therefore, approximately one-level or two-level subdivision 
is found to be adequate. 

Having been subdivided, each surface model is now represented by a set of dense vertices 

,0 ,0 ,0 ,0 ,0 ,0 , 1 , 1 , 1, , , , , ,..., , ,
T

i i i i i i i i N i N i Nx y z x y z x y z      v where 0,1,..., 1i M   and N = number of 

vertices after the subdivision process, rN N . 

The next stage is to align all the femur surfaces in the training set. The alignment method used in 
(Szelely, Lelemen et al. 1996; Fleute, Lavallee et al. 1999) is implemented in this work. The method 
performs least-squares minimisation of the distances between a sparse and unorganised set of vertices 
and a dense set of vertices. Therefore, only the template model is required to be dense-point model, 
the rest can be the original models. This would reduce the computational workload in the alignment 

process. Therefore, suppose surface 0v  is selected to be a template, then surfaces jvr , j = 1,2,...,M-1 

can be aligned with 0v , one by one. The alignment parameters, can then be used to align all the 

dense-point shapes iv , i = 1,2,...,M-1, creating a new set of training 3D shapes represented by iv , i = 

0,1,2,...,M-1 where 0 0v v . The details of the alignment algorithm can be found in (Fleute, Lavallee 

et al. 1999). 

(ii) Dense-point distribution model construction using PCA. Once all the surface vertices of the 
models in the training set have been aligned, the statistics of the set of aligned 3D models can be 

captured by a dense-point distribution model. The DPDM is created by applying PCA on aligned iv  

as described in (Cootes, Taylor et al. 1995; Fleute, Lavallee et al. 1999; Zheng, Dong et al. 2007). The 

covariance matrix, S , can be calculated using 
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principle axes are described by the unit eigenvectors, ip , of S such that 

 i i i  S p p , 0,..., 1i M     (3) 

where i  is the ith eigenvectors of S, 1i i    and 1M M   . 

A 3D model in the training set can be approximated using the mean model and a linear combinations 

with weights  0 1 1, ,...,
T

mw w w w , 3 3i i iw    (Cootes, Taylor et al. 1995), obtained 

from the first M   modes: 
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3.4.2 Model fitting 

Given reconstructed landmark points 
T

j j j jx y z   f , 0,1,..., 1j Nf   and Nf N , the 

whole surface can be reconstructed by fitting the DPDM represented by equation (4) to the landmark 

points f . However, before model fitting can be done, the affine registration has to be employed to 
align the reconstructed frontier points to the mean surface model of the DPDM. 

This kind of registration is a well-known problem. There are many different methods available. In this 
work, the ICP algorithm (Besl and McKay 1992; Chen and Medioni 1992; Zheng, Dong et al. 2006; 
Zheng, Dong et al. 2007), which is one of the most widely used methods, is implemented. The ICP 
algorithm relies on the search of pairs of closest vertices, and the computation of a paired-point 
matching transformation. The resulting transformation is then applied to one set of points. The 
process is progress iteratively until convergence. To prevent the ICP algorithm from converging to a 
local minimum, we use a set of landmark points on the mean surface model and the reconstructed 
landmark points, to initialise the registration procedure. The aligned reconstructed frontier points are 

represented by 
T

j j j jx y z    f , 0,1,..., 1j Nf   . 

After the reconstructed frontier points have been aligned with the mean surface model, the 
homologous points of the aligned reconstructed landmark points on the dense mean surface model of 
the DPDM can be determined. Hence the DPDM can be use to represent the reconstructed surface by 
minimising the following error function (Rajamani, Styner et al. 2004; Zheng, Dong et al. 2007). 
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             (5) 

where  = a factor that controls the relative weighting between the two terms,  k j
v represents the kth 

point kv  on the mean surface model v  of the DPDM is the closest point to the jth aligned 

reconstructed frontier point jf  . The details on how to determine   and optimise Eq D to estimate 

the full surface model which fits the reconstructed frontier points can be found in (Zheng, Dong et al. 
2007).     

4. Multiple bones: bone and edge contour identification 

So far, we have considered only a single bone in the volume of interest. The object can easily be 
identified and all the edges can be assumed to be part of the object. In practical circumstances, there 
are many bones and other objects in the volume of interest. The situation is more complicated. This is 
not a trivial task. Objects in X-ray images are overlapped and superimposed. To automatically extract 
and reconstruct only the object of interest, an effective and robust object identification method has to 
be developed to identify only the object’s edges among others in the images. In our earlier work 
(Prakoonwit and Benjamin 2007), an algorithm was proposed. However, the method was developed 
for general object reconstruction without object prior knowledge and the computational cost to 
implement the method is high. This make it unsuitable for intraoperative applications. 

In this case, prior knowledge about each bone to be reconstructed is known. A new method to identify 
each bone’s edge contours can be developed using this prior knowledge. Each computer generated 3D 



bone training model described in Section 3.4.1 can be used to identify appropriate edge contours in 
2D images.  

In this paper, a new method for bone edge contour identification is presented. The edge contours on a 
2D X-ray image from a 3D bone training model should be approximately similar to those edge 
contours from a real bone of the same type with approximately the same position and direction. The 
information can then be used to identify edge contours from different objects in the volume of 
interest. For example, in Figure 6, there are edge contours (solid lines) from a femur and a patella. To 
identify that contour C2 belongs to the femur, not the patella, the edge contours C1 (dotted line) from 
a computer generated 3D femur model can be created on the 2D image. Contour C1 is more similar to 
C2 than C3, therefore, C2 can be identified as the femur contour. Patella contour C3 can be identified 
in the same manner. 

To measure the similarity between two edged contours, the distance between the contours can be used 
(Bingham and Li 2006; Zhu and Li 2011). Note that to be able to measure the similarity, it is 
necessary to find the approximate 3D rigid transformation (rotation R and translation T), (Markelj, 
Tomazvic et al. 2012), so that the 3D model can be approximately aligned with the real bone which 
generates the edge contours to be identified. This is done simultaneously with the contour 
identification process. The objective function to be minimised can be established as follows: 

      min min m cnE C C       (6) 

where m cnC C is the distance between edge contours mC and cnC , mC is the edge contour of the 3D 

training model and , 1,2,3...cnC cn  are contours from real bones on the image. As described earlier, 

a 3D computer generated training surface model is represented by a set of triangular mesh. mC can, 

therefore, be approximately determined by projecting the edges shared by two triangles with normal 
pointing toward and the other pointing away from the X-ray source. The 3D rigid transformation (R 

and T) is also found simultaneously in the minimisation process with    vr R vr T , where vr is 
the model’s set of vertices as described in Section 3.4.1. 

In this work, there are plN 2D X-ray images used. To integrate all information from all images, the 

objective function is then formulated as: 

     
1

min min
Npl

pl pl
m cn

pl

E C C


       (7) 

where Npl is the number of views or 2D X-ray images used and pl represents plth 2D image. cnC

which produces min E can be identified as the edge contours of the same type of bone as the model 

which generates mC  and can be used to reconstruct the corresponding full 3D surface model. 



 

Figure 6. Edge contours from multiple objects (Femur and Patella) can be identified by using the 
prior knowledge about the shape of the object. Edge contour C1 from a computer generated 3D model 
can be used to identify C2 as a Femur contour, not a Patella contour. 

4.1 Distance between edge contours 

To measure the distance between two edge contours, a large number of points along the contours are 
selected (Zhu and Li 2011; Baka, Bruijne et al. 2012) to calculate the distance. However, this is a 
computationally expensive step in the minimisation process. As the main aim is identifying edge 
contours, to decrease computational load, the number of points used is reduced by employing 
appropriately distributed clusters of smaller numbers of points along the edge contours. To include 
significant features of the edge contours in the process, the points should gather closely on highly 
curved parts and broadly smooth spread on smooth flat parts. This is the same condition described in 

Section 3.3.2 where 1/s  , where   = mean curvature and s  is a length of an arc on an edge 

contour C between any two consecutive points. Thus the gap angle   between the two normal 
vectors of two any consecutive points on the contour must be constant. The number of points can be 

adjusted by varying  . The similarity between the two edge contours can then be approximated by 
measuring the distances between the two set of point clusters.  

4.2 Complex cases 

In most cases, the proposed use of the point clusters is sufficient to identify edge contours. However, 
there may be a situation where edge contours are complex or heavily super imposed. The clustering 
method alone may not produce satisfactory results or the value E of the objective function is not 

sufficiently low.   can be decreased to increase the number of matching points. If this still does not 
suffice, the method suggested in (Baka, Bruijne et al. 2012) can be modified and adopted as an extra 
process. 

In this case, the corresponding vertices in the training 3D model set used in the statistical shape 
building are employed to calculate matching scores. Instead of the function in Eq 7, The objective 
function to be minimised can then be defined as follows (Baka, Bruijne et al. 2012): 

   
1 1

1
min min ( )

pl cvN N
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i jpl cv

E p
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 
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where plN is the number of 2D X-ray, and cvN  is the number of corresponding vertices jp .  is the 

matching score defined as 

( ) 1 ( ) ( ) ( )j i j i j i jp o p w p Dist p     , 

where 
0, if 90

cos( ),otherwise
w



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 




 , ( ) [0,1]i jw p   and 

( )
( ) exp i j

i j

d p
Dist p

s

 
  

 
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( )i jo p marks the points on the occluding contours on the 3D surface model such that it results in 1 if 

the projections of the points are within the field of view of projection i, otherwise it will be zero. The 
points on the occluding contours are the points where X-rays are tangential to the surface. On the 
model, the occluding points can be approximated by the points on the triangular facets’ edges which 
are shared by two facets with on normal vector pointing toward and the other pointing away from the 

X-ray source. ( )i jd p is the distance in 3D from vertex jp  to the ray connecting the nearest point on 

the corresponding edge contour of the projected jp  with the X-ray source. Parameter v controls the 

smoothness of the function and  denotes the angle between the gradient of the X-ray image at the 

edge contour location and the projected normal vector of the 3D model surface at jp . More details 

can be found in (Baka, Bruijne et al. 2012). 

5. Experimental results and discussion 

Computational experiments have been performed to demonstrate the capability of the proposed 
method. Femur bones and a set of knee joint bones have been selected as test objects. The ranges of 

projection angle used are 50 90    and 0 360   .  

5.1 Single bone 

A set of 30 computer generated femurs are used as a training set as described earlier. A computer 
generated test femur to be reconstructed is shown in Figure 7 (a). Note that, the test femur is different 

from those in the training set. 

2D X-ray images of the test femur taken at 5 different projection angles determined by the method 
described in section 3.3.2 are simulated. The edge contours of the femur on all images are determined 
by the method described in Section 3.1. The edge contours are used for the landmark vertex 
reconstruction as explained in Section 3.2. The reconstructed landmark vertices and the 3D surface 
reconstruction using the DPDM to fit the landmark vertices can be found in Figure 7(b). It 
demonstrates that the landmark vertices are approximately well distributed on the surface. The error 
distance distribution of the reconstructed 3D surface is shown in Figure 8. The error distance is 
defined as the shortest distance from the all vertices of the reconstructed femur to the original test 
femur. 

 



 

Figure 7. (a) Test femur to be reconstructed (b) 3D reconstructed surface and the reconstructed 
landmark vertices viewed from different directions. 

 

Figure 8. Error distribution of the reconstructed femur compared with the original test femur. 

 

5.2 Multiple bones 

In case multiple objects, a set of 30 computer generated knee joint consisting of Femurs, Patellas, 
Tibias and Fibulas are used as a training set. A computer generated test knee joint to be reconstructed, 
which is different from those in the training set, is shown in Figure 9 (a). As the joint consists of 
multiple objects, their overlapped and superimposed edge contours in the corresponding X-ray images 



have to be identified by the new method described in Section 4. The resulting edge contours for the 
Femurs, Tibia, Patella and Fibula successfully identified by the method are shown in Figure 9 (b)-(e) 
respectively. 

 

Figure 9. (a) Test knee joint to be reconstructed. (b)-(e) Corresponding edge contours for each bone 
on the five 2D X-ray images. 

The 3D surface reconstruction for each bone using the DPDM to fit the landmark vertices can be 
found in Figure 10. The error distance distribution of all the reconstructed 3D surface is presented in 
Fig 11. 

 

     

Figure 10. 3D reconstructed surfaces of the Femur, Tibia, Patella, Fibula and the reconstructed 
landmark vertices. 



 

Figure 11. Error distribution of the reconstructed femur compared with the original test femur. 

The results show that the proposed method could produce reasonable 3D surfaces of the test objects. 
The results are more accurate than those reported in our previous work (Prakoonwit 2011). The 
landmark vertices are automatically generated and adapted to effectively capture the salient features 
of the bones. In most cases, there are approximately more landmark vertices on the detailed or highly 
curved parts of the surface and less landmark vertices on the less detailed or flat parts of the surface. 
This is to guarantee that all the important features of the surface are captured and represented for the 
model fitting process.  However, the distribution of the landmark vertices depends on the ranges of 

the projection angles  and  . Ideally, the ranges should be 0 90    and 0 360   . Due to 

the scanning geometry, the full range of   would not be feasible for intraoperative applications. The 

results show that the rage of 50 90   is still feasible, even though the distribution of landmark 
vertices are not completely perfect. 

6. Future research direction 

In this article, a novel approach towards 3D reconstruction using conventional X-ray images for 
intraoperative orthopaedic applications is presented. The method still has some main limitations 
which require some future research in the following aspects. 

6.1 Object identification and segmentation 

There is still room for improvement in this part. There are cases where only some parts of objects are 
visible in X-ray images. The current algorithm proposed in this article may not produce accurate 
results. This requires further studies. In addition, the method also relies heavily on the edge contours 
of objects. Therefore, it should work well only on high density objects or tissues such as bones where 
edges clearly appear on a 2D X-ray image. Poor quality X-ray may not contain all edge contours 
required by the method proposed. 

6.2 Statistical shape model fitting 



Even though Statistical shape modelling is a robust tool for 3D surface reconstruction from sparse 
vertices, there is a major limitation. Instances of the model can only be deformed in ways found in the 
training set. That means the method cannot reconstruct any pathological conditions or deformations 
which are not included in the training set. Any substantial changes to a bone during an operation may 
also cause the reconstruction process to fail. To solve this problem, it is suggested that the edges 
contours from 2D X-ray images can be used to adjust the statistical shape model before fitting it to 
landmark vertices. 

Key Terms 

3D reconstruction, X-ray, intraoperative, statistical model, sparse vertices, surface, epipolar 
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