2,470 research outputs found

    Automated methods for tuberculosis detection/diagnosis : a literature review

    Get PDF
    Funding: Welcome Trust Institutional Strategic Support fund of the University of St Andrews, grant code 204821/Z/16/Z.Tuberculosis (TB) is one of the leading infectious causes of death worldwide. The effective management and public health control of this disease depends on early detection and careful treatment monitoring. For many years, the microscopy-based analysis of sputum smears has been the most common method to detect and quantify Mycobacterium tuberculosis (Mtb) bacteria. Nonetheless, this form of analysis is a challenging procedure since sputum examination can only be reliably performed by trained personnel with rigorous quality control systems in place. Additionally, it is affected by subjective judgement. Furthermore, although fluorescence-based sample staining methods have made the procedure easier in recent years, the microscopic examination of sputum is a time-consuming operation. Over the past two decades, attempts have been made to automate this practice. Most approaches have focused on establishing an automated method of diagnosis, while others have centred on measuring the bacterial load or detecting and localising Mtb cells for further research on the phenotypic characteristics of their morphology. The literature has incorporated machine learning (ML) and computer vision approaches as part of the methodology to achieve these goals. In this review, we first gathered publicly available TB sputum smear microscopy image sets and analysed the disparities in these datasets. Thereafter, we analysed the most common evaluation metrics used to assess the efficacy of each method in its particular field. Finally, we generated comprehensive summaries of prior work on ML and deep learning (DL) methods for automated TB detection, including a review of their limitations.Publisher PDFPeer reviewe

    Unsupervised CT lung image segmentation of a mycobacterium tuberculosis infection model

    Get PDF
    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that produces pulmonary damage. Radiological imaging is the preferred technique for the assessment of TB longitudinal course. Computer-assisted identification of biomarkers eases the work of the radiologist by providing a quantitative assessment of disease. Lung segmentation is the step before biomarker extraction. In this study, we present an automatic procedure that enables robust segmentation of damaged lungs that have lesions attached to the parenchyma and are affected by respiratory movement artifacts in a Mycobacterium Tuberculosis infection model. Its main steps are the extraction of the healthy lung tissue and the airway tree followed by elimination of the fuzzy boundaries. Its performance was compared with respect to a segmentation obtained using: (1) a semi-automatic tool and (2) an approach based on fuzzy connectedness. A consensus segmentation resulting from the majority voting of three experts' annotations was considered our ground truth. The proposed approach improves the overlap indicators (Dice similarity coefficient, 94% ± 4%) and the surface similarity coefficients (Hausdorff distance, 8.64 mm ± 7.36 mm) in the majority of the most difficult-to-segment slices. Results indicate that the refined lung segmentations generated could facilitate the extraction of meaningful quantitative data on disease burden.The research leading to these results received funding from the Innovative Medicines Initiative (www.imi.europa.eu) Joint Undertaking under grant agreement no. 115337, whose resources comprise funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in kind contribution. This work was partially funded by projects TEC2013-48552-C2-1-R, RTC-2015-3772-1, TEC2015-73064-EXP and TEC2016-78052-R from the Spanish Ministerio de EconomĂ­a, Industria y Competitividad, TOPUS S2013/MIT-3024 project from the regional government of Madrid and by the Department of Health, UK

    Unsupervised CT Lung Image Segmentation of a Mycobacterium Tuberculosis Infection Model

    Get PDF
    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that produces pulmonary damage. Radiological imaging is the preferred technique for the assessment of TB longitudinal course. Computer-assisted identification of biomarkers eases the work of the radiologist by providing a quantitative assessment of disease. Lung segmentation is the step before biomarker extraction. In this study, we present an automatic procedure that enables robust segmentation of damaged lungs that have lesions attached to the parenchyma and are affected by respiratory movement artifacts in a Mycobacterium Tuberculosis infection model. Its main steps are the extraction of the healthy lung tissue and the airway tree followed by elimination of the fuzzy boundaries. Its performance was compared with respect to a segmentation obtained using: (1) a semi-automatic tool and (2) an approach based on fuzzy connectedness. A consensus segmentation resulting from the majority voting of three experts' annotations was considered our ground truth. The proposed approach improves the overlap indicators (Dice similarity coefficient, 94\% +/- 4\%) and the surface similarity coefficients (Hausdorff distance, 8.64 mm +/- 7.36 mm) in the majority of the most difficult-to-segment slices. Results indicate that the refined lung segmentations generated could facilitate the extraction of meaningful quantitative data on disease burden.We thank Estibaliz Gomez de Mariscal, Paula Martin Gonzalez and Mario Gonzalez Arjona for helping with the manual lung annotation. The research leading to these results received funding from the Innovative Medicines Initiative (www.imi.europa.eu) Joint Undertaking under grant agreement no. 115337, whose resources comprise funding from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. This work was partially funded by projects TEC2013-48552-C2-1-R, RTC-2015-3772-1, TEC2015-73064-EXP and TEC2016-78052-R from the Spanish Ministerio de Economia, Industria y Competitividad, TOPUS S2013/MIT-3024 project from the regional government of Madrid and by the Department of Health, UK.S

    Computer-Aided Assessment of Tuberculosis with Radiological Imaging: From rule-based methods to Deep Learning

    Get PDF
    MenciĂłn Internacional en el tĂ­tulo de doctorTuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb.) that produces pulmonary damage due to its airborne nature. This fact facilitates the disease fast-spreading, which, according to the World Health Organization (WHO), in 2021 caused 1.2 million deaths and 9.9 million new cases. Traditionally, TB has been considered a binary disease (latent/active) due to the limited specificity of the traditional diagnostic tests. Such a simple model causes difficulties in the longitudinal assessment of pulmonary affectation needed for the development of novel drugs and to control the spread of the disease. Fortunately, X-Ray Computed Tomography (CT) images enable capturing specific manifestations of TB that are undetectable using regular diagnostic tests, which suffer from limited specificity. In conventional workflows, expert radiologists inspect the CT images. However, this procedure is unfeasible to process the thousands of volume images belonging to the different TB animal models and humans required for a suitable (pre-)clinical trial. To achieve suitable results, automatization of different image analysis processes is a must to quantify TB. It is also advisable to measure the uncertainty associated with this process and model causal relationships between the specific mechanisms that characterize each animal model and its level of damage. Thus, in this thesis, we introduce a set of novel methods based on the state of the art Artificial Intelligence (AI) and Computer Vision (CV). Initially, we present an algorithm to assess Pathological Lung Segmentation (PLS) employing an unsupervised rule-based model which was traditionally considered a needed step before biomarker extraction. This procedure allows robust segmentation in a Mtb. infection model (Dice Similarity Coefficient, DSC, 94%±4%, Hausdorff Distance, HD, 8.64mm±7.36mm) of damaged lungs with lesions attached to the parenchyma and affected by respiratory movement artefacts. Next, a Gaussian Mixture Model ruled by an Expectation-Maximization (EM) algorithm is employed to automatically quantify the burden of Mtb.using biomarkers extracted from the segmented CT images. This approach achieves a strong correlation (R2 ≈ 0.8) between our automatic method and manual extraction. Consequently, Chapter 3 introduces a model to automate the identification of TB lesions and the characterization of disease progression. To this aim, the method employs the Statistical Region Merging algorithm to detect lesions subsequently characterized by texture features that feed a Random Forest (RF) estimator. The proposed procedure enables a selection of a simple but powerful model able to classify abnormal tissue. The latest works base their methodology on Deep Learning (DL). Chapter 4 extends the classification of TB lesions. Namely, we introduce a computational model to infer TB manifestations present in each lung lobe of CT scans by employing the associated radiologist reports as ground truth. We do so instead of using the classical manually delimited segmentation masks. The model adjusts the three-dimensional architecture, V-Net, to a multitask classification context in which loss function is weighted by homoscedastic uncertainty. Besides, the method employs Self-Normalizing Neural Networks (SNNs) for regularization. Our results are promising with a Root Mean Square Error of 1.14 in the number of nodules and F1-scores above 0.85 for the most prevalent TB lesions (i.e., conglomerations, cavitations, consolidations, trees in bud) when considering the whole lung. In Chapter 5, we present a DL model capable of extracting disentangled information from images of different animal models, as well as information of the mechanisms that generate the CT volumes. The method provides the segmentation mask of axial slices from three animal models of different species employing a single trained architecture. It also infers the level of TB damage and generates counterfactual images. So, with this methodology, we offer an alternative to promote generalization and explainable AI models. To sum up, the thesis presents a collection of valuable tools to automate the quantification of pathological lungs and moreover extend the methodology to provide more explainable results which are vital for drug development purposes. Chapter 6 elaborates on these conclusions.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidenta: MarĂ­a JesĂșs Ledesma Carbayo.- Secretario: David ExpĂłsito Singh.- Vocal: Clarisa SĂĄnchez GutiĂ©rre

    Hardware and software integration and testing for the automation of bright-field microscopy for tuberculosis detection

    Get PDF
    Automated microscopy for the detection of tuberculosis (TB) in sputum smears would reduce the load on technicians, especially in countries with a high TB burden. This dissertation reports on the development and testing of an automated system built around a conventional microscope for the detection of TB in Ziehl-Neelsen (ZN) stained sputum smears. Microscope auto-focusing, image analysis and stage movement were integrated. Images were captured at 40x magnification

    A Enhanced Approach for Identification of Tuberculosis for Chest X-Ray Image using Machine Learning

    Get PDF
    Lungs are the primary organs affected by the infectious illness tuberculosis (TB). Mycobacterium tuberculosis, often known as Mtb, is the bacterium that causes tuberculosis. When a person speaks, spits, coughs, or breathes in, active tuberculosis can quickly spread through the air. Early TB diagnosis takes some time. Early detection of the bacilli allows for straightforward therapy. Chest X-ray images, sputum images, computer-assisted identification, feature selection, neural networks, and active contour technologies are used to diagnose human tuberculosis. Even when several approaches are used in conjunction, a more accurate early TB diagnosis can still be made. Worldwide, this leads to a large number of fatalities. An efficient technology known as the Deep Learning approach is used to diagnose tuberculosis microorganisms. Because this technology outperforms the present methods for early TB diagnosis, Despite the fact that death cannot be prevented, it is possible to lessen its effects

    Structural Insights into the Quinolone Resistance Mechanism of Mycobacterium tuberculosis DNA Gyrase

    Get PDF
    Mycobacterium tuberculosis DNA gyrase, an indispensable nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and is hence the sole target for quinolone action, a crucial drug active against multidrug-resistant tuberculosis. To understand at an atomic level the quinolone resistance mechanism, which emerges in extensively drug resistant tuberculosis, we performed combined functional, biophysical and structural studies of the two individual domains constituting the catalytic DNA gyrase reaction core, namely the Toprim and the breakage-reunion domains. This allowed us to produce a model of the catalytic reaction core in complex with DNA and a quinolone molecule, identifying original mechanistic properties of quinolone binding and clarifying the relationships between amino acid mutations and resistance phenotype of M. tuberculosis DNA gyrase. These results are compatible with our previous studies on quinolone resistance. Interestingly, the structure of the entire breakage-reunion domain revealed a new interaction, in which the Quinolone-Binding Pocket (QBP) is blocked by the N-terminal helix of a symmetry-related molecule. This interaction provides useful starting points for designing peptide based inhibitors that target DNA gyrase to prevent its binding to DNA

    Mycobacterium tuberculosis Glucosyl-3-Phosphoglycerate Synthase: Structure of a Key Enzyme in Methylglucose Lipopolysaccharide Biosynthesis

    Get PDF
    Tuberculosis constitutes today a serious threat to human health worldwide, aggravated by the increasing number of identified multi-resistant strains of Mycobacterium tuberculosis, its causative agent, as well as by the lack of development of novel mycobactericidal compounds for the last few decades. The increased resilience of this pathogen is due, to a great extent, to its complex, polysaccharide-rich, and unusually impermeable cell wall. The synthesis of this essential structure is still poorly understood despite the fact that enzymes involved in glycosidic bond synthesis represent more than 1% of all M. tuberculosis ORFs identified to date. One of them is GpgS, a retaining glycosyltransferase (GT) with low sequence homology to any other GTs of known structure, which has been identified in two species of mycobacteria and shown to be essential for the survival of M. tuberculosis. To further understand the biochemical properties of M. tuberculosis GpgS, we determined the three-dimensional structure of the apo enzyme, as well as of its ternary complex with UDP and 3-phosphoglycerate, by X-ray crystallography, to a resolution of 2.5 and 2.7 Å, respectively. GpgS, the first enzyme from the newly established GT-81 family to be structurally characterized, displays a dimeric architecture with an overall fold similar to that of other GT-A-type glycosyltransferases. These three-dimensional structures provide a molecular explanation for the enzyme's preference for UDP-containing donor substrates, as well as for its glucose versus mannose discrimination, and uncover the structural determinants for acceptor substrate selectivity. Glycosyltransferases constitute a growing family of enzymes for which structural and mechanistic data urges. The three-dimensional structures of M. tuberculosis GpgS now determined provide such data for a novel enzyme family, clearly establishing the molecular determinants for substrate recognition and catalysis, while providing an experimental scaffold for the structure-based rational design of specific inhibitors, which lay the foundation for the development of novel anti-tuberculosis therapies

    Semantic systems biology of prokaryotes : heterogeneous data integration to understand bacterial metabolism

    Get PDF
    The goal of this thesis is to improve the prediction of genotype to phenotypeassociations with a focus on metabolic phenotypes of prokaryotes. This goal isachieved through data integration, which in turn required the development ofsupporting solutions based on semantic web technologies. Chapter 1 providesan introduction to the challenges associated to data integration. Semantic webtechnologies provide solutions to some of these challenges and the basics ofthese technologies are explained in the Introduction. Furthermore, the ba-sics of constraint based metabolic modeling and construction of genome scalemodels (GEM) are also provided. The chapters in the thesis are separated inthree related topics: chapters 2, 3 and 4 focus on data integration based onheterogeneous networks and their application to the human pathogen M. tu-berculosis; chapters 5, 6, 7, 8 and 9 focus on the semantic web based solutionsto genome annotation and applications thereof; and chapter 10 focus on thefinal goal to associate genotypes to phenotypes using GEMs. Chapter 2 provides the prototype of a workflow to efficiently analyze in-formation generated by different inference and prediction methods. This me-thod relies on providing the user the means to simultaneously visualize andanalyze the coexisting networks generated by different algorithms, heteroge-neous data sets, and a suite of analysis tools. As a show case, we have ana-lyzed the gene co-expression networks of M. tuberculosis generated using over600 expression experiments. Hereby we gained new knowledge about theregulation of the DNA repair, dormancy, iron uptake and zinc uptake sys-tems. Furthermore, it enabled us to develop a pipeline to integrate ChIP-seqdat and a tool to uncover multiple regulatory layers. In chapter 3 the prototype presented in chapter 2 is further developedinto the Synchronous Network Data Integration (SyNDI) framework, whichis based on Cytoscape and Galaxy. The functionality and usability of theframework is highlighted with three biological examples. We analyzed thedistinct connectivity of plasma metabolites in networks associated with highor low latent cardiovascular disease risk. We obtained deeper insights froma few similar inflammatory response pathways in Staphylococcus aureus infec-tion common to human and mouse. We identified not yet reported regulatorymotifs associated with transcriptional adaptations of M. tuberculosis.In chapter 4 we present a review providing a systems level overview ofthe molecular and cellular components involved in divalent metal homeosta-sis and their role in regulating the three main virulence strategies of M. tu-berculosis: immune modulation, dormancy and phagosome escape. With theuse of the tools presented in chapter 2 and 3 we identified a single regulatorycascade for these three virulence strategies that respond to limited availabilityof divalent metals in the phagosome. The tools presented in chapter 2 and 3 achieve data integration throughthe use of multiple similarity, coexistence, coexpression and interaction geneand protein networks. However, the presented tools cannot store additional(genome) annotations. Therefore, we applied semantic web technologies tostore and integrate heterogeneous annotation data sets. An increasing num-ber of widely used biological resources are already available in the RDF datamodel. There are however, no tools available that provide structural overviewsof these resources. Such structural overviews are essential to efficiently querythese resources and to assess their structural integrity and design. There-fore, in chapter 5, I present RDF2Graph, a tool that automatically recoversthe structure of an RDF resource. The generated overview enables users tocreate complex queries on these resources and to structurally validate newlycreated resources. Direct functional comparison support genotype to phenotype predictions.A prerequisite for a direct functional comparison is consistent annotation ofthe genetic elements with evidence statements. However, the standard struc-tured formats used by the public sequence databases to present genome an-notations provide limited support for data mining, hampering comparativeanalyses at large scale. To enable interoperability of genome annotations fordata mining application, we have developed the Genome Biology OntologyLanguage (GBOL) and associated infrastructure (GBOL stack), which is pre-sented in chapter 6. GBOL is provenance aware and thus provides a consistentrepresentation of functional genome annotations linked to the provenance.The provenance of a genome annotation describes the contextual details andderivation history of the process that resulted in the annotation. GBOL is mod-ular in design, extensible and linked to existing ontologies. The GBOL stackof supporting tools enforces consistency within and between the GBOL defi-nitions in the ontology. Based on GBOL, we developed the genome annotation pipeline SAPP (Se-mantic Annotation Platform with Provenance) presented in chapter 7. SAPPautomatically predicts, tracks and stores structural and functional annotationsand associated dataset- and element-wise provenance in a Linked Data for-mat, thereby enabling information mining and retrieval with Semantic Webtechnologies. This greatly reduces the administrative burden of handling mul-tiple analysis tools and versions thereof and facilitates multi-level large scalecomparative analysis. In turn this can be used to make genotype to phenotypepredictions. The development of GBOL and SAPP was done simultaneously. Duringthe development we realized that we had to constantly validated the data ex-ported to RDF to ensure coherence with the ontology. This was an extremelytime consuming process and prone to error, therefore we developed the Em-pusa code generator. Empusa is presented in chapter 8. SAPP has been successfully used to annotate 432 sequenced Pseudomonas strains and integrate the resulting annotation in a large scale functional com-parison using protein domains. This comparison is presented in chapter 9.Additionally, data from six metabolic models, nearly a thousand transcrip-tome measurements and four large scale transposon mutagenesis experimentswere integrated with the genome annotations. In this way, we linked gene es-sentiality, persistence and expression variability. This gave us insight into thediversity, versatility and evolutionary history of the Pseudomonas genus, whichcontains some important pathogens as well some useful species for bioengi-neering and bioremediation purposes. Genome annotation can be used to create GEM, which can be used to betterlink genotypes to phenotypes. Bio-Growmatch, presented in chapter 10, istool that can automatically suggest modification to improve a GEM based onphenotype data. Thereby integrating growth data into the complete processof modelling the metabolism of an organism. Chapter 11 presents a general discussion on how the chapters contributedthe central goal. After which I discuss provenance requirements for data reuseand integration. I further discuss how this can be used to further improveknowledge generation. The acquired knowledge could, in turn, be used to de-sign new experiments. The principles of the dry-lab cycle and how semantictechnologies can contribute to establish these cycles are discussed in chapter11. Finally a discussion is presented on how to apply these principles to im-prove the creation and usability of GEM’s.</p
    • 

    corecore