


Propositions

1. A term ontology is not a schema, therefore the GO 
ontology is not a schema.
(this thesis)

2. Scientific data needs provenance for reproducibility.
(this thesis)

3. In the life sciences, the dry lab cycle can improve wet 
lab cycles thereby reducing the cost per unit of 
knowledge gained.

4. The biggest gain in the field of data analyses can be 
achieved in the data preparation phase.

5. Repetition of scientific statements does not prove that 
something is true.

6. Semantic, web-based and decentralized data solutions 
that rely on continuous information flows will suddenly
bring an end to the current social media platforms in the
world.

7. The generation of data, creation of tools and extraction 
of knowledge needs different people, attitudes and 
infrastructures for optimal results. 

8. To be green and sustainable we have to take control 
over evolution.
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Preface

In 2009 my brother got me interested in processing microarray data. We no-
ticed that a lot of the expensive data was only used to answer the question of
its creators, which we found a waste of resources, because we had the feel-
ing that the data contained much more valuable information. A method to
extract this information would be to combine all the data sets to find genes
related to each other. So, we started to create large scale mutual information
networks and we tried to make a useful network visualization to gain new in-
sights. With a lot of enthusiasm and in my free time, I worked to push past the
hairballs we got from the initial mutual information networks. In doing so, I
came close to reinvent the CLR[161] and Aracne[48] methods. This process
captured so much my interest that in 2010 I started my master in Bioinformat-
ics, which allowed me to apply my knowledge from the field of information
technology to biology.

In 2011 I started my master thesis with the objective of gaining knowledge
from omics expression data. The project exploited data of more than 200 en-
vironmental and gene knockout perturbations of Mycobacterium tuberculosis
(MTB). In my master thesis I started to further extend my network based ap-
proach. I started using this approach to integrate other types of information,
such as gene neighborhood, gene co-occurrence, BLAST similarity obtained
from the STRING website [246] and a metabolic pathway map obtained from
Pathway Tools (PT) [264]. Once the large amount of available information was
represented as networks, I started to focus on the data integration process and
started developing a graphical user interface to compare networks.

In the spring of 2012 I started my internship in Leiden at LUMC in the
group of Bio-Semantics, working on the nano publication system. There I
got to know about data reuse and integration issues and about semantic web
technologies and their potential to solve these issues.

In the summer of 2012 I started my PhD in the laboratory of Systems and
Synthetic Biology at Wageningen UR. The goal was to apply these concepts
to genome scale modeling of metabolism and its regulation. At the start of
my PhD, I continued with the work of my master thesis and to integrate more
resources and information, for instance by adding cluster data obtained from
cMonkey [409]. However, I noticed that pre-generated data was not enough
and started to directly integrate analysis methods. One of these was a method
to find motifs within a selected set of genes, the motif was subsequently used
to find new genes that could be integrated in the cluster. In the process, we
noticed that we needed to include additional data, such as genome annotation
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in order to answer more complex biological questions. At this point, the pro-
cess became too cumbersome and too time consuming to continue any further
as it would have taken weeks of coding to answer one single biological ques-
tion. For example, what are all known cofactors used to transfer electrons and
which (set of) domains are specifically associated to one type of cofactor or
type of substrate. Therefore, I started to develop solutions based on semantic
web technologies that would help overcome this problem and would allow
me continue on my conquest to reuse and integrate more and more data.

Within the field of biology I am particular interested in the apparent mod-
ularity and systematic setup of the metabolic and regulatory systems within
prokaryotic organisms. To understand these systems more deeply one can
use genome scale metabolic models. Therefor, I continued my efforts to reuse
and integrate more and more omics data for the generation of genome scale
metabolic models of prokaryotes. It is this interest which resulted in the work
presented in this thesis.
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Chapter 1

Introduction

Systems Biology advocates for a system-wide perspective in which we
try to comprehend the functions of the components and their relationships
in their cellular embedding within the living organism. With the advance
of sequence technologies, the amount of omics data available in public data
repositories is growing exponentially [450]. The exponential growing volume
of available omics data empowers top-down approaches, combining system-
wide data with modeling to gain insights into the molecular networks under
study [84]

Increasing concern regarding climate change is prompting society to move
from the oil-based economy [117]. Emergence of extensive resistant strains
also requires the development of new intervention strategies [208]. Systems
biology approaches are currently used to gain knowledge on microbial organ-
isms with the goal of developing more efficient mechanisms to kill pathogenic
bacteria or to develop new strains for microbial production. Systems biol-
ogy approaches have also been used, among others, to identify mechanisms
related to pathophysiology; select novel drug targets and biomarkers; assess
patient risk; and to develop interventions aimed at recovering homeostasis
within complex communities [109].

Top-down approaches entail (omics) data processing and modeling to turn
it into actionable knowledge. This process can be described using the Data-
Information-Knowledge-Wisdom (DIKW) pyramid model depicted in Figure
1.1. This model is used in the Information Sciences field [517]. The DIKW
model describes four steps in the overall process of data value extraction:
data collection, data to information conversion, from information to knowl-
edge and from knowledge to wisdom. The review by Rowley [421] includes
definitions from multiple authors for data, information, knowledge and wis-
dom. In the following I will provide definitions for these concepts that will be
used through this thesis. It should be noted that still there is no firm agree-
ment on these terms and differences could appear between the definitions here
provided and those of other authors.

Data are unprocessed experimental measurements that are accessible in a
digital system associated with a set of meta data. Information is processed and
structured data that can be integrated, processed, queried and curated. Knowl-
edge is the actionable set of information, that can be used to inform decisions
needed for new applications, for the generation of new data, information and
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WISDOM

KNOWLEDGE

INFORMATION

DATA FastQ reads of sequenced genome

Annotated genome 

Discovered protein domain

Best practice protocol for annotation

FIGURE 1.1: DIKW pyramid model for knowledge management. An example per-
taining biological data is given on the right. For example data can be FastQ reads of
a sequenced genome; information can be an annotated genome; knowledge can be a
discovered protein, with a functional description; and wisdom can be a best practice
protocol for annotating a genome.

knowledge or for the development of tools that do so. Three classes of knowl-
edge can be distinguished: Human based knowledge: knowledge stored in the
brain. This includes the practical knowledge one gains when working on a
given topic for a long time or after analyzing a new set of data and informa-
tion. Text based knowledge: knowledge that is stored in any form of human lan-
guage. Computer based knowledge: structured knowledge that can be used by
computer based tools. Examples of this last type of knowledge are the UniProt
database [50], the set of HMM models in InterPro [170] or the set of GEMs in
the BiGG Models database [269]. Not all reviewed literature has a definition
for wisdom, which remains the most elusive concept, here I will define Wis-
dom as the consensus subset of knowledge that is actively applied at the point
of time. These definitions imply that the set the of knowledge is ever grow-
ing, whereas the set of wisdom is not. Knowledge that is no longer needed or
actively being used will disappear in time from the wisdom, for example the
knowledge on how to preprocess microarray data. Another important con-
cept to define is curation: the process in which each element of information
is assessed and accepted (or rejected) as valid knowledge or the process in
which existing or new supporting or disproving information is attached to an
existing element of knowledge.

These concepts will be used in this thesis to describe the extraction of value
from biological data and their transformation into knowledge and wisdom
within the framework of systems biology. In the general work flow that will
be described, data is generated as the output of an experiment. In this exper-
iment a biological sample is generated which gets sequenced or measured,
resulting in a (omics) data set with an associated meta data file. The meta
data file describes each sample and possibly each sequence or measurement.
Next, a bio-informatics pipeline is applied to turn these data and meta data



1

Chapter 1. Introduction 5

into information, for example, the assembly and annotation of a newly se-
quenced genome with associated phenotype such as Gram staining, optimal
growth temperature and duplication time. Then, a researcher interprets this
information, thereby creating new knowledge that can be applied to design
new experiments or to further improve the data to information and informa-
tion to knowledge processing. An example of a knowledge driven application
is the genome editing tools facilitated by the knowledge on the CRISPR/Cas9
system [518]. Follow up experiments can be designed, for instance, to test hy-
pothetical protein-protein interaction. Inclusion of newly identified Hidden
Markov Models (HMM) the Pfam [169] database is an example of how the
data to knowledge process is further improved. The last step in the DIYW
model is achieved overtime as researchers work with the knowledge stored
in databases and a subset of this knowledge becomes common good, which
is the wisdom of that time. An example of wisdom would be protocols and
standard operating procedures for genome sequencing, assembly and annota-
tion. Finally, current knowledge and wisdom can be used to inform the design
of new experiments, which result in the creation of new data. This last step
closes a cycle, which is typically referred to as ‘the wet-lab cycle’. However,
knowledge and wisdom can be used to create new methods to transform data
into information. This forms a shorter cycle which excludes the execution of
new experiments, therefore we will call this cycle the dry-lab cycle and it is
depicted in Figure 1.2

Big data challenge

Challenges have arise in the process of knowledge and wisdom extraction due
to the large increase of available (omics) data sets. Thus, analytical methods
have to be developed to extract better insights from these big data. An im-
portant distinction exist between Horizontal and Vertical data processing and
integration, which is depicted in Figure 1.3.

The number of omics data set types is limited: genomics, transcriptomics,
proteomics, metabolics and phenomics, but it is slowly growing as new high
throughput measurements become available, such as lipidomics. However,
the number and sizes of these omics data sets are constantly growing [450].
Moreover, with the use of high throughput techniques many combinations of
conditions can be tested for example, environmental conditions, gene knock-
outs and sets of species. This results in a growth in diversity and size of the
associated meta data [165]. As a result, the number of testable combinations
for which enough statistical power can be achieved is rapidly growing. These,
in turn leads to an increasing number of applicable methods, each producing
unique sets of information. This information requires (manual) integration,
processing and curation to turn it into knowledge. The great diversity of in-
formation results int a bottleneck in the complete process.
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Dry lab cycle

Knowledge

Information

(omics) 
data

Tools

Wisdom

Experiment
(high throughput)

Wet lab Cycle

statistical 
options & power 

Meta data

(Manual) integration,
 processing & curation

use

Applications

FIGURE 1.2: Wet and dry-lab cycles in systems biology. Experiments are designed
based on currently available knowledge and wisdom. Execution of the experiments
results in new data with associated meta data. Data and meta data are subsequently
transformed into information through tools that use existing knowledge and informa-
tion. The generated information is subsequently processed into knowledge through
(manual) integration, processing or curation efforts. The knowledge can become part
of the current wisdom, which can be used to create new applications and new exper-
iments thereby closing the wet-lab cycle. The dry-lab cycle, however, excludes new
experiments. Instead it uses (new) knowledge and wisdom to improve the tools and
methods to generate information, knowledge and wisdom from data. In both cycles
the step from information to knowledge is often the rate limiting step.

Semantic web technologies

Data heterogeneity often implies that answering a single biological question
based on the ever growing collection of available information and knowledge
might require days or even weeks of coding. Semantic web technologies can
be used to (partly) overcome this problem [17].

Semantic web technologies have emerged as the result of the technological
developments in computer sciences aimed at transforming the Internet from
a network of linked documents into a semantic web of interlinked data which
is meaningful to computers [58]. Early efforts to store knowledge for artificial
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FIGURE 1.3: Horizontal and vertical data integration scaling. Horizontal refers to the
size of the data sets in bytes and compute time needed to process them whereas vertical
is related to the amount of heterogeneity within the data sets. The color indicates the
relative difficulty of each process, where green indicates relatively easier tasks and
red more difficult ones. The combination of performing both horizontal and vertical
scaling is the most difficult problem to solve.

intelligence based systems resulted in the creation of General Frame Protocol
[190], which is applied in the MetaCyc database [95]. This and other similar ef-
forts were subsequently converted into the RDF standard [220]. This standard
has become the default format for storing semantic web data. In RDF, knowl-
edge is represented as set of triples forming a graph of linked data. Each RDF
triple links a uniquely identified subject through a uniquely identified pred-
icate to an object, which is either another subject or a literal, as depicted in
Figure 1.4.

A subject represents an entity such as a person, a file or a gene whereas a
literal is a value, which can either be a text, numerical value or a date among
other. The unique identifier is an International Resource Identifier (IRI) which
extends the Uniform Resource Identifier (URI) which is the well known unique
identifier for a web page. In this way, the IRI “http://example.com/
cytidineDeaminase” can be used to uniquely identify the subject repre-
senting the cytidine deaminase reaction. Interlinked triples, such as the ones
in Table 1.1 can be used to generate a knowledge graph, as shown on Figure
1.5.

Using the RDF standard, a knowledge graph can be conceptualized into
an RDF resource, that can be serialized into a N3, Turtle, or XML/RDF file.
Semantic data can be loaded into a database, also referred to as triple store. If
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IRI IRI IRI or value

Subject Predicate Object

FIGURE 1.4: RDF triple. A triple consists of: a subject, a predicate and an object. The
subject is identified with an IRI; The predicate defines the type of relationship which is
identified with an IRI; The object, can be either another subject or a value. A value can
be either a number, a string or a Boolean.

FIGURE 1.5: RDF knowledge graph describing Cytidine deaminase reaction.
Description of the cytidine deaminase reaction based on interlinking the triples
given in Table 1.1. Here the cytidine deaminase reaction is identified with
“ex:cytidineDeaminase”. Note that in this case the prefix “ex:” has be used to abbrevi-
ate the IRI “http://example.com/”.

multiple RDF resources, each containing subjects sharing IRIs are loaded, the
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TABLE 1.1: Cytidine deaminase reaction RDF triple set. These triples form the
knowledge graph shown in Figure 1.5

Subject Predicate Object
ex:cytidineDeaminase bp:standardName "cytidine deaminase"
ex:cytidineDeaminase rdf:type bp:BiochemicalReaction
ex:cytidineDeaminase bp:left ex:cytidine
ex:cytidineDeaminase bp:left ex:water
ex:cytidineDeaminase bp:right ex:amonia
ex:cytidineDeaminase bp:right ex:uridine
ex:cytidine rdf:type bp:SmallMolecule
ex:cytidine bp:standardName "cytidine"
ex:water rdf:type bp:SmallMolecule
ex:water bp:standardName "water"
ex:amonia rdf:type bp:SmallMolecule
ex:amonia bp:standardName "amonia"
ex:uridine rdf:type bp:SmallMolecule
ex:uridine bp:standardName "uridine"

resources are automatically interlinked. Once the data is loaded, the query
language SPARQL can be used to access, integrate and query the data. SPARQL
is similar to SQL, but SPARQL operates on graphs instead of on tables. More-
over, SPARQL uses a graph pattern matching system that automatically per-
forms the joins whereas joins have to be explicitly stated in SQL [185].

Knowledge graphs have no predefined structure nor a schema, however
the structure is essential for reusable data and for consistent querying. Within
conventional computer engineering, file structure is defined in a schema, for
example the structure of an XML file is described in an associated DTD file.
Within the semantic web world, an ontology is the equivalent of a schema.
However, in my opinion this concept has a broader meaning. The book by
Guarino et al. [209] includes a detailed definition for the concept ontology. For
this thesis, I define ontology as a resource that supports the conceptualization
and interpretation of another data or knowledge entity. I define schema as a
document that defines the structure of a computer readable file. From these
definitions, it follows that the ontology definition encapsulates the schema
definition but not vice versa.

RDFS and OWL are two related standards to define an ontology. RDFS
can be used to define the structure of an RDF resource. In this standard, each
object can be defined as an instance of a class and each link as the realization
of a property. This standard also allows subclasses to be defined. An exam-
ple on how these concepts can be used to describe transcription regulation is
provided in Figure 1.6.

OWL can be used to define concepts, which are commonly defined within
a separate ontology. For instance, in Figure 1.6, the “GO:0006281: DNA repair



10 Chapter 1. Introduction

FIGURE 1.6: LexA OWL example. LexA is a transcription factor that regulates DNA
repair process in prokaryotes [276]. LexA is an instance of the class transcription fac-
tor, which in turn is a sub class of the protein class. Every transcription factor is also a
protein. The link regulates between the instance LexA and the concept(an owl:Class)
DNA repair process (GO:0006281) is a realization of the property regulates. The prop-
erty regulates is an RDFS property and has a label and comment.

process“ concept is described in the GO ontology [92]. OWL extends RDFS
and is a formal description of the conceptualization of the information in a
knowledge graph. In this way, it defines the structure and relationships of
the encoded knowledge [18]. OWL originated in the field of artificial intel-
ligence [74] and is used to relate concepts through subclass-of relationships
[423]. Using these standards, reasoners can be used to automatically find in-
consistencies and recognize unknown or unclassified concepts [197].

Precise definition of the structure of a resource can also be used to validate
the resource itself. If all subjects in a knowledge graph are defined as instances
of some class or concept and all links are realizations of some property, then
these definitions can be used to know which links are to be expected for each
instance. This can be used to consistently query the resource. The class and
property definitions themselves can also be stored within the same RDF re-
source and be used within the same query. However, RDFS and OWL have
limited use to validate instances and associated link structure, because they
are based on the open world assumption instead of the closed world assump-
tion. In the open world assumption, everything the agent does not know is
interpreted as undefined, while with the closed world assumption everything
the agent does not know is interpreted as false [423]. If a class states that an as-
sociated property is obligatory, an instance not having the corresponding link
would be wrong. However, in an open world assumption, the reasoner inter-
prets this as: “I do not know if it is existing somewhere in world, therefore I
reason this to be correct.

Therefore, to validate the structure of a knowledge graph, two new stan-
dards ShEx and SHACL have been developed based on the closed world as-
sumption. These standards can be used on top of RDFS and OWL. Using ShEx
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or SHACL, each instance can be mapped to a shape definition. The shape def-
inition includes the presence, multiplicity, and types and values of the links
so that the links and the linked nodes can be validated. These validation stan-
dards can be used to ensure that the information stored in an RDF resource
adheres to the predefined structure. This ensures the consistent storage of the
relevant information.

SPARQL vs SQL and other table based solutions
Semantic web technologies are suited for data integration better than SQL and
other table based solutions. Within SQL, data integration is based upon ta-
ble coupling, which can only be done trough the use of primary and foreign
keys pairs [51]. This means that to integrate two sets of databases, the ta-
ble has to be redesigned. Furthermore, to retrieve and store data from and
into an SQL table normalization or de-normalization steps are required. The
data usage or generation from or into an RDF graph is more direct. The nor-
malization and de-normalization steps typically involve coding work, that is
particular expensive in scientific research. The amount of coding work can
be reduced through semantic web based solution. Although SPARQL and
SQL have many similarities, SPARQL is, in my opinion easier to use. The
main reason is that SQL requires manual definition of the joins, whereas in
SPARQL this is done automatically. Within the years that I have worked with
SPARQL, I experienced that even non technical users where able to modify
and create their own queries in a relatively short amount on time. On the
other hand SQL databases are commonly faster than semantic web technol-
ogy based databases. One reason, is that SQL is a more mature technology.
But the fundamental reason is that when one performs a SPARQL query it
requires all data to be joined, whereas in SQL one can create pre-joined tables.

Genome scale metabolic models (GEM)
Whole bacterial genome sequencing has become common practice [284]. This
has resulted in completely sequenced genomes that can be used to predict
phenotypes such as pathogenicity [296], physiological properties [361, 420],
antibiotic resistance [275] and metabolic phenotypes. Metabolic phenotypes
include auxotrophies and media requirements, anabolic and catabolic poten-
tial and biomass composition. These metabolic phenotypes can be predicted
with Genome Scale Metabolic Models (GEM).

A GEM includes the complete set of biochemical reactions related to the
species of interest. The GEM is represented as a network of nodes, in which
each node is either a metabolite or a reaction. Simulations using constraint
based GEM are performed under the steady state hypotheses, that states that
none of the intracellular metabolites accumulates nor depletes. This hypothe-
sis enables to calculate for each reaction possible flux values compatible with
the steady state assumption. Additionally, one reaction is included in GEMs
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which represent the production of biomass. This reaction consumes all metabo-
lites needed to produce one unit of biomass, which includes amino acids,
nucleotides, vitamins, lipids and glycogens. Flux balance analysis is a com-
monly used technique to determine how an organism modifies its fluxes so
that biomass production is maximized, for a given media. The media is repre-
sented as a set of ‘influx’ reactions that produce each of the metabolites within
the simulated medium, see Figure 1.7.

R1

R2

R3 R4

R5 R6

R7 R8

RB

M1

M2

M3

P1

P2

PB

FIGURE 1.7: Example metabolic network. R1 to R8 represent the metabolic reac-
tions within the organism. M1 to M3 simulate the media compounds consumed by
the organism. Fluxes through these reactions are limited to the maximum uptake rates
known for the organism. P1 and P2 represent production of metabolites or side prod-
ucts, for exampleCO2. Finally, PB represents the biomass reaction and contains the list
and stoichiometry of metabolites needed to produce one unit of biomass, this includes
amino acids, nucleic acids, fatty acids, vitamins and cell wall components. Flux trough
PB is maximized to simulate maximum growth given the measured uptake rates.

GEMs have a broad range of applications. A GEM can be used to predict
auxotrophies thereby informing media design [25]. A GEM can also be used
to find possible intervention options to kill pathogenic bacteria within a host,
without killing the host cells and thus helps in the search for new therapeutic
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strategies and new antibiotics [221]. Finally, GEMs can also be used to design
mutant strains for production of target compounds [221].

GEMs are built based on functional genome annotations. Functional anno-
tations are used to map to reaction databases to identify reactions the organ-
isms can perform. It is essential that all reactions use the same identifier for
the compounds consumed and produced, otherwise the GEM will be incon-
sistent. Many metabolites can be identified with multiple identifiers, therefore
standard name spaces like KEGG [260], MetaCyc [95] and the Model Seed
[137] have a unique identifier for each compound. Still, it is difficult to to
translate from one namespace to another, so special, cross linking databases
like MetaNetX have been developed [343].

GEM building entails identifying, for each annotation, a reaction within
the selected name space. However, the gene functional description does not
always contains a direct link to the reaction within the selected name space.
Therefor, automated GEM generation often results in gaps (missing reactions)
that prevent the functioning of the GEM. This has lead to the development of
gap-filling methods that iteratively modify the GEM until a functional GEM
is achieved [545].

Within this protocol to create a working GEM, a lot of information needs
to be integrated. Furthermore gap filling methods can be used to integrate
additional phenotype data.

Outline
The goal of this thesis is to improve the genotype to phenotype associations
with a focus on metabolic phenotypes of prokaryotes. To fulfill this goal I inte-
grated data and for this task I developed supporting solutions using semantic
web technologies.

To understand the phenotype and (pathogenic) systems of M. tuberculosis
(Mtb), we created methods and tools to integrate and visualize available data
which included genomics, transcriptomics, and proteomics data sets together
with existing literature. The generated tools rely on synchronized network
representations of each information source (such as correlated gene expres-
sion, gene neighborhood, gene co-occurrence, gene similarity, protein-protein
interaction among others). The network visualization is embedded within a
Data integration, visualization and analysis (DIVA) framework to manually
compare and integrate the knowledge captured within these networks. The
tool allows to generate pipelines to analyse other data types, such as ChIP-seq
data. A prototype of this tool is presented in chapter 2. The prototype was ini-
tially used to investigate gene regulation in Mtb, specifically to analyse regula-
tion of processes related to survival of the pathogen during infection, such as
dormancy, zinc uptake and response to DNA damage. The stand alone proto-
type was later adapted as a Cytoscape application plugin, presented in chap-
ter 3. The DIVA tool was also extensively used to analyze virulence strategies
of this pathogen and an extensive review is provided in chapter 4.
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The network based approach is limited as (functional) genome annotation
can not be represented as a network. A different strategy had to be developed
to better associate genotypes and phenotypes. Moreover, genome annotation
is essential to develop GEM which provide the means to better understand
and predict metabolic phenotypes. Therefore, new methods based on seman-
tic web technologies were developed to retrieve and store genome functional
annotations.

UniProt RDF contains gene annotation in the semantic web format, how-
ever accessing resources in this format is challenging. It was often found
that the documentation was incomplete and the schema definition did match
match to actual data structure within the resources. This makes it difficult to
query the resource, because one can not know which information is available
and one does not know which structure the data has. To overcome this is-
sue, in chapter 5 we present RDF2Graph a tool that, can automatically extract
structure information from an RDF resource.

Another challenge was associated to the used ontologies, as none of the
existing ontologies (such as SO [154], FALDO [68] and SBOL [182]) fulfilled
all the requirement needed for complete genome annotation. A new ontology
for storing genome annotations was developed and the GBOL ontology to-
gether with a set of supporting tools was is presented in chapter 6. However,
the ontology by itself does not produce usable data. We developed a con-
version module to convert GenBank data into the GBOL format. However,
for comparative genomics it is important that all annotations are created with
the same methods and the contextual provenance, which captures the e-value
scores, is present. Therefore, we created SAPP, an annotation pipeline that is
presented in chapter 7. SAPP uses existing annotation tools, but wraps the
results with associated provenance into GBOL ontology.

During the development of SAPP and GBOL, we noticed that it was hard
to generate the correct RDF output. We encountered errors such as typing
errors in the predicates, instances with missing attributes, instances that did
have a non-unique IRI, and instances that had no type defined, among others.
Furthermore we noticed that the time needed to consistently encode the more
complex data structures was becoming a limiting factor. To overcome these
problems Empusa was invented as presented chapter 8.

Subsequently, we used Empusa to improve and extend GBOL and SAPP,
which we subsequently successfully used as an enabler to integrate annota-
tion data and perform advanced comparative genomics. Specifically, we com-
pared 432 Pseudomonas strains through integration of genomic, functional,
metabolic and expression data, as presented in chapter 9

GEM are useful tools to perform predictions on metabolic phenotypes.
Therefore, a pipeline to build complete GEM is presented in chapter 10. The
pipeline includes a gap filling method that specifically integrates phenotype
characterizations that are measured with high throughput methods. The me-
thod was extensively tested and benchmarked against existing approaches, as
presented in chapter 10.

Finally, in chapter 11 I will discuss how the methods, tools and analysis
presented in these thesis contribute to make better phenotype to genotype
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associations and I will discuss the opportunities associated to semantic web
technologies in the life sciences, on their potential to expand the dry-lab cycle
and on the data requirements for this task.
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Chapter 2

Integration of heterogeneous
molecular networks to
unravel gene-regulation in
Mycobacterium tuberculosis

Adapted from:
Jesse CJ van Dam, Peter J Schaap, Vitor AP Martins dos Santos, and Maria

Suarez-Diez. "Integration of heterogeneous molecular networks to unravel
gene-regulation in Mycobacterium tuberculosis". In: BMC Systems Biology 8:111
2014.
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Abstract
Background: Different methods have been developed to infer regulatory net-
works from heterogeneous omics datasets and to construct co-expression net-
works. Each algorithm produces different networks and efforts have been
devoted to automatically integrate them into consensus sets. However each
separate set has an intrinsic value that is diluted and partly lost when build-
ing a consensus network. Here we present a methodology to generate co-
expression networks and, instead of a consensus network, we propose an in-
tegration framework where the different networks are kept and analysed with
additional tools to efficiently combine the information extracted from each
network.

Results: We developed a workflow to efficiently analyse information gen-
erated by different inference and prediction methods. Our methodology re-
lies on providing the user the means to simultaneously visualise and anal-
yse the coexisting networks generated by different algorithms, heterogeneous
datasets, and a suite of analysis tools. As a show case, we have analysed the
gene co-expression networks of M. tuberculosis generated using over 600 ex-
pression experiments. Regarding DNA damage repair, we identified SigC as a
key control element, 12 new targets for LexA, an updated LexA binding motif,
and a potential mismatch repair system. We expanded the DevR regulon with
27 genes while identifying 9 targets wrongly assigned to this regulon. We dis-
covered 10 new genes linked to zinc uptake and a new regulatory mechanism
for ZuR. The use of co-expression networks to perform system level analy-
sis allows the development of custom made methodologies. As show cases
we implemented a pipeline to integrate ChIP-seq data and another method to
uncover multiple regulatory layers.

Conclusion: Our workflow is based on representing the multiple types
of information as network representations and presenting these networks in
a synchronous framework that allows their simultaneous visualization while
keeping specific associations from the different networks. By simultaneously
exploring these networks and metadata, we gained insights into regulatory
mechanisms in M. tuberculosis that could not be obtained through the separate
analysis of each data type.
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Background

Current biology research generates an ever-increasing deluge of omics de-
rived data. Each type of omics data pertains to a single level of the biolog-
ical system under investigation (transcriptomics, proteomics, metabolomics,
lipidomics, etc.). While detailed knowledge of the individual genes, tran-
scripts, proteins, metabolites and other cellular components remains impor-
tant, understanding a biological system requires considering the networks
into which these components are embedded and of their functioning as a (dy-
namic) whole. A major challenge in Systems Biology lies thus on developing
effective and efficient methods to optimally extract the information contained
in the aggregate of these datasets.

The increasing availability of genome-scale expression data has boosted
the development of methods to infer the underlying regulatory networks. A
broad range of alternative methods are available, see [40, 130, 512] for re-
views, and each of them uses different mathematical tools and/or biological
assumptions. A class of methods use differential equations to express tran-
script changes as a function of the transcript levels of the corresponding tran-
scription factors [70, 91]. A second class of methods rely on Bayesian net-
works to analyse the joint probability distributions obtained from the exper-
imental data [178, 536]. Other methods use the similarity between gene ex-
pression profiles to detect associations and to reconstruct a genome scale tran-
scriptional regulatory network [48, 161, 410]. Another class of methods use
a combination of machine learning techniques to produce prioritized lists of
transcription factors regulating each target gene [234, 457]. Each method has
different strengths and weaknesses, even methods using similar conceptual
tools. For example C3NET [13] uses mutual information (MI) to reconstruct
the core regulatory interactions in the network, that is, to recover the strongest
interactions. Within this core, C3NET was shown to outperform other meth-
ods also using MI such as CLR [161] and ARANCE [48]. Each method pro-
vides different results, therefore much effort has been devoted to generate
consensus networks from the multiple solutions. It has been shown that in
many instances, an integrative approach combining the outcome of each algo-
rithm produces the best result [477], however, a detailed analysis shows that
for some interactions individual methods perform better than the consensus
network [319].

Co-expression networks and module identification algorithms
Co-expression networks contain genes as nodes and the edges of the network
represent significant co-expression levels across the studied data set. An open
problem is still how these connexions are to be defined and how an adequate
threshold is to be imposed [538]. In differential network analysis two net-
works obtained using the same algorithm but alternative datasets are com-
pared to identify interactions appearing only under a subset of conditions
[196, 236, 539]. For example, such an approach was used to analyse prostate
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cancer datasets by comparing the networks inferred using C3NET from nor-
mal or tumour samples datasets and was able to successfully identify cancer
specific interactions [14]. Here, we construct and analyse co-expression net-
works extracted from the same dataset but using alternative algorithms to
identify relevant interactions.

Biclustering or module learning algorithms [313] aim at the identification
of functionally related genes showing co-expression patterns. In some cases,
such as the cMonkey algorithm [409], additional biological information (data-
bases or sequence analysis) is also considered. The results of the genome-
scale reconstruction methods can be displayed and visualized as one net-
work whereas an identified module or bicluster contains a set of function-
ally related genes that might be differently regulated in different conditions.
Therefore, the genes within a module might not form a cluster when consid-
ering all the conditions and would remain undetectable for network inference
methods. Network inference methods and module prediction algorithms are
highly complementary and new information can be obtained by combining
the outcome of both approaches.

Analysis of ChIP-seq data
There are experimental methods to directly reconstruct regulatory networks.
The knowledge of transcriptional regulatory events and specifically the tran-
scription factors (TF) binding sites can be greatly improved by chromatin im-
munoprecipitation and sequencing, ChIP-seq. Powerful techniques have been
developed to process the sequencing data and to isolate the binding sites from
the background noise generated by non-specific sequences, such as statisti-
cal tests, use of controls, techniques for signal de-convolution or lag-analysis
among others [311]. In the classical model of transcription regulation in proka-
ryotes a binding site in the promoter region of a gene is linked to a regulatory
interaction between the corresponding TF and the gene. However, the col-
lection of ChIP-seq data for M. tuberculosis (Mtb) hosted in the TB Database
(TBDB) [181, 406] shows that not all identified TF binding sites can be linked
to regulatory interactions. For example, in some instances the TF binding is
much weaker than expected, in other cases this association is complicated
by the occurrence of divergons, which are pairs of divergently transcribed
operons or genes, or by the presence of binding sites within coding regions.
This lack of a one-to-one relationship between TF binding sites and regulatory
events can be due to multiple reasons such as non-specific binding, cumula-
tive effects of sites with weaker binding to regulate overall promoter affinity,
specific binding generated in non-biological or non natural conditions, false
positives as a result of the experimental procedure, or, simply errors in the
genome annotation. We propose that it is through the integration with addi-
tional data sources, specifically through the integration with expression data,
that this challenge can be overcome.
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Integration of heterogeneous molecular networks
Each inference algorithm has its weaknesses and strengths and each network
holds its own intrinsic value and can be used to gain more specific insights
on various aspects of the biological system [156]. In a sense, using multiple
algorithms to extract the networks and presenting them to the user is a sim-
ilar approach to that followed by annotation pipelines, such as Microscope
[507], DIYA [475] or BASys [508] among others. These pipelines present the
user a list of gene centred information, with different annotation sub-fields,
to enable supervised annotation. Integration efforts require a common lay-
out for the data, therefore, we have chosen to represent the available layers of
information, such as operon structure, known interactions between genes or
proteins, enzymatic activity (metabolic map) or functional similarity, among
others through network representations. The networks themselves are repre-
sented in a common format, XGMML (eXtensible Graph Markup and Model-
ing Language), that allows their simultaneous exploration.

In addition to the simultaneous visualization of different networks, addi-
tional analysis tools such as motif search and identification, GO-enrichment
analysis, and tools to overlay expression data or analyse expression profiles
of multiple genes across different conditions can be used. We have devel-
oped a pipeline for the generation of co-expression networks that is easily
tunable to produce alternative networks (holding their own intrinsic value).
The pipeline is based on using the similarity between gene expression profiles
to detect associations and contains a higher order extension of the data pro-
cessing inequality method [48] to reduce the number of redundant or possible
spurious links. This pipeline is presented in Figure 2.1.

Through the exploration of the multiple networks, the user gains new
knowledge of the biological system, but it can also lead to the discovery of
new strategies to integrate the information stored in the networks. These
newly gained strategies can then be translated into new pipelines. As result of
our exploration, we have developed a pipeline to uncover multiple layers of
regulation, presented in Figure 2.2 and another one to analyse ChIP-seq data
and assign regulatory interactions to the detected binding sites, presented in
Figure 2.3.

Show case: Deployment of the framework to unravel regula-
tory mechanisms in M. tuberculosis
We have analysed regulatory events in Mtb. Due to its implications to hu-
man health this highly successful pathogen has been extensively studied and
there is already a substantial body of information on Mtb and its underlying
regulatory networks, but still much remains to be learned. We have analysed
not only networks extracted from literature [36, 426, 431] but also networks ex-
tracted from publicly available databases such as STRING [483], MetaCyc [95],
KEGG [259], TBDB [406] and Tuberculist [297]. Expression data from publicly
available repositories and corresponding to 287 perturbations, have been used
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FIGURE 2.1: Schematic of the pipeline to obtain co-expression networks. From top
to bottom the following steps are applied: (1) calculation of the similarity matrix, (2)
z-transformation, (3) Combine I, (4) threshold setting (5) inequality simplifier and (6)
combine II. Note that when applying the Inequality simplifier to the ZRC network the
result will be a tree.
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FIGURE 2.2: Pipeline to uncover additional regulatory layers. Step 1: Identify condi-
tions linked to the main regulatory event for the initial gene set. This can be done using
biclustering techniques or by direct comparison with the expression levels of the reg-
ulator (if known). Step 2: Build co-expression networks in the remaining conditions.
Step 3: Identify the closest neighbours of the selected genes in the new networks. Step
4: iterative round of motif identification/matching to identify the secondary motif and
the set of genes with this motif in their upstream regions.
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FIGURE 2.3: Pipeline to analyze ChIP-seq data. After the locations of the ChIP-seq
binding sites have been retrieved, their genomic context is analysed. A core set is
defined by selecting targets with i) literature evidence or ii) a hit in the upstream region
of not divergently transcribed genes. The expression levels of these genes are analysed
and they are categorized through (bi)clustering. Finally the rest of the putative targets
are assigned to these groups (if possible) based on the similarities of their expression
patterns.
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to generate the co-expression networks and to further analyse ChIP-seq data
[181]. We have finally combined the inferred networks with the outcome of
biclustering algorithms, to further explain the functionalities of the modules.

We have analysed the regulation of DNA repair systems within Mtb, par-
ticularly we have focussed on two alternative regulatory mechanisms: the
’RecA-LexA dependent DNA repair system’ and ’RecA non dependent reg-
ulation’.

We will show that the integration of expression data and its use to guide
the exploration of upstream sequences allows to analyse alternative regula-
tory mechanisms for the same set of genes. In addition, we have explored
some of the regulatory mechanisms that allow Mtb to survive within the host,
such as DevR (DosR) regulon, which is a key element for understanding the
dormant state, and the regulation of the response to changes in zinc availabil-
ity (ZuR regulon).

Methods
Gene expression data
565 two-colour microarrays for Mtb (strain H37Rv) were retrieved from the
Gene Expression Omnibus Database [45]. 454 of them aimed to capture the
effect of 75 drugs targeting metabolic pathways [72, 263] whereas 111 cap-
tured stress induced dormancy in the wild-type and in DevR activation genes
knockout mutants [131, 228]. We followed Boshoff et al. [72] to classify the
conditions in the compendium into 14 categories according to the experimen-
tal perturbation: (1) Aromatic amides intracellularly hydrolyzed, low pH; (2)
mutants of DevR activation pathways; (3) Translation inhibition; (4) Acid-
ified medium; (5) Cell wall synthesis inhibition; (6) Respiration inhibition
(except conditions with NO); (7) Nutrient starvation; (8) DNA damage; (9)
Transcription inhibition; (10) Iron scavengers; (11) Multiple stress sources ap-
plied simultaneously (low oxygen, low pH, glycerol-deprived); (12) Minimal
medium (succinate/palmitate as carbon source); (13) not classified; and (14)
conditions associated with DevR upregulation. A list of the used datasets is
presented in Additional file 1. We applied a common normalization method,
loess, to the arrays from each experiment and each of the six independently
designed platforms. Linear models were constructed to consider biological
and/or technical replicates (when available); within-array replicate probes
were averaged; and an additional between-array quantile-quantile normaliza-
tion was performed to ensure the comparability between experiments. These
manipulations were performed using the R limma package [464]. A com-
mon locus tag format was introduced and missing values were filled up using
knn-imputation from the impute R package [218] with k = 3 and eliminating
genes and experiments with more than 30% and 50% missing values respec-
tively. The resulting compendium contained information on 4223 open read-
ing frames across 287 different conditions (175 steady state situations and 100
conditions within 30 time series).
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Biclustering
We adapted the original cMonkey R code to Mtb data [409] and we increased
the number of biological information sources that the algorithm can consider.
For the biclustering process, we selected a subset of the interactions present
at the STRING database [483]. We selected specifically interactions obtained
based on co-occurrence of linked proteins across different species, on curated
databases, and on their association in the abstracts of scientific literature. From
ProLinks [73] we collected interactions obtained by the phylogenetic profile
method. In addition, we included the network based on the similarity among
the annotated GO terms (for the ontologies ’biological process’ and ’cellular
component’), which was constructed using the Sleipnir library [233]. Up-
stream sequences for Mtb genes were retrieved using RSAT [497] and used for
the motif detection and motif matching steps. For the automatic biclustering
algorithm, we used the 1000 bp region upstream of the translation start site,
avoiding overlapping with upstream neighbour genes when present. In the
initial rounds we used a reduced matrix where only the leaders of the oper-
ons, as defined by Roback and co-workers [414], were kept. Multiple runs of
the algorithm were performed, which used the default parameters except for:
initial size of seed clusters (10); number of iterations (1000); maximal number
of clusters (300). We obtained a set of 1527 biclusters. The Jaccard similarity
coefficient between each pair of biclusters was computed (number of shared
genes between both biclusters over the number of different genes in both bi-
clusters). To reduce the redundancy in the set of biclusters, we merged the
pairs that showed a Jaccard similarity higher that 0.7. The biclusters in the
merged set were enlarged by adding genes based on the predicted operon
structure combined with the expression level measurements. This new set
was used to seed the biclustering algorithm in two subsequent optimization
rounds one biased towards the detection of concurrent motifs in the upstream
regions and a second one biassed towards the identification of sets linked to
highly related biological processes (GO terms). We performed an additional
manual merging step, that also considered the similarity between the detected
motifs using the matrix comparison tools from RSAT [497] and we obtained a
final set of 76 biclusters. Expression plots for these biclusters are in Additional
file 2.

Pipeline for the generation of co-expression networks
The pipeline to generate co-expression networks is presented in Figure 2.1.
Departing from anN ×M matrix containing the expression profile ofN genes
in M conditions, we construct a symmetric N × N similarity matrix S. The
pipeline allows to choose between correlation (Pearson, Kendall and Spear-
man) and MI as similarity measurements. MI is computed using an estima-
tor based on the entropy of the empirical probability distribution with initial
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data discretization into n (default = 10) equal sized bins from the Bioconduc-
tor package minet [337]. In the second step, a z-score transformation is per-
formed on the distribution of the scores from the similarity matrix. The trans-
formation is done by rows, to obtain the ZR matrix; by columns, to obtain the
ZC matrix; or by both rows and columns simultaneously, to obtain the ZRC
matrix. The z-score transformation allows for each possible interaction to be
weighted regarding the background of interactions in which each member of
the interacting pair is involved [161]. Therefore, in the ZC case each element
Sij becomes ZCij , which is the z-score of Sij regarding the distribution Si1,
Si2, . . . , Sin. In the ZR case each element Sij becomes ZRij , which is the z-
score of Sij regarding the distribution S1j , S2j , . . . , Snj . In the ZRC case each
element Sij becomes √

(ZC2
ij + ZR2

ij)/2. (2.1)

In the following step the matrices are combined into two new matrices: Cλ

and Rλ:

Cλij = max(ZCij , λ · ZRCij) (2.2)

Rλij = max(ZRij , λ · ZRCij) (2.3)

with λ (default = 1) a positive real number and i and j denoting the rows
and columns of each matrix. λ allows to fine-tune the results, since higher
values of λ will lead to Cλ and Rλ matrices that are similar to each other and
to ZRC. Considering λ =

√
2 means that, for those cases where one of the

elements in (2.1) is zero, both λ ZRCij and ZCij will be identical. However,
using the default λ = 1 will ensure that when the values of ZCij and ZRij
differ then the highest one will be selected either through ZCij (or ZRij) or
ZRCij .

In the following step a threshold can be applied to remove interactions
with low weight (and therefore low likelihood). Any value below the thresh-
old is set to 0. This step produces a more sparse network, which might be
needed to obtain a neat visualization. The default threshold value is chosen
so that the number of non zero edges is equal to a predefined value (default =
10000).

Afterwards the inequality simplifier can be used to remove, possibly spuri-
ous, links from the network. The inequality simplifier is an extended version
of the data processing inequality (DPI). In simple terms, the DPI states that
given two interdependent random variables A1 and A2 and a third one A3

that only depends on one of them, for example A2, then A1 cannot contain
more information about A3 than A2 does. This statement is mathematically
represented by the following inequality among MI values

MIA1,A3
≤ min(MIA1,A2

,MIA2,A3
). (2.4)

The DPI must hold whenever A3 does not depend on A1, so it can be used
to remove spurious interactions from the network [48], possibly caused by



28 Chapter 2. Heterogeneous molecular networks in M. tuberculosis

feed forward loops or mutually dependent regulators. The spurious links are
removed according to:

if MIA1,A3 ≤MIA1,A2 & MIA1,A3 ≤MIA2,A3 , then, set MIA1,A3 = 0. (2.5)

The DPI can be extended to higher-order interactions, therefore allowing a
recursive implementation [245]. The DPI is derived from the triangle inequal-
ity satisfied by any metric or distance, such as the MI or Kendall rank distance.
Our extension to remove spurious edges by considering higher order interac-
tions contains two parts: the first part is the identification of alternative path-
ways connecting the same nodes and the second part is to apply the inequality
simplifier to decide whether a link is spurious and should be removed. The
first part is based on Dijkstra’s shortest route algorithm [143]. Here, instead of
searching for the shortest route between two nodes (e.g. genes), we use it to
find the alternative path between those two nodes with the best throughput.
The throughput of a path is defined as the value of the edge with the lowest
throughput (similarity) value. Given two connected nodes, the link between
them is considered spurious and removed if an alternative path is found with
a higher throughput value. For a given pair of nodes, Ai and Aj , (i < j), so
that the best alternative path of length (n+1) passes throughA1, A2, . . . , An−1

and An, the following rule (inequality simplifier) is applied:

ifMIAi,Aj
≤ min(MIAi,A1

,MIA1,A2
, . . . ,MIAn−1,An

,MIAn,Aj
)

then, set MIAi,Aj = 0, where n ∈ {1, . . . , N − 2}.
(2.6)

This rule is applied for each possible pair of nodes and for each possible
value of n. The alternative pathway joins Ai and Aj and does not contain
any cross-linking, so that therms such as A2A4 or A1A3, do not need to be
considered. This is a consequence of using the path with the best throughput
so that no triangle inequality of the metric is required to derive this property.

Figure 2.4 shows how the inequality simplifier acts to remove, possibly
spurious, links from the network when applied to higher order terms. While
applying this rule, an additional N × N matrix, T , is built to keep track of
how many links a particular edge has caused to be removed. In this case, the
links Ai, A1, A1A2, A2A3, . . . , An−1An and AnAk have caused the removal of
link AiAj , therefore, in the T matrix, the elements TAi,A1

, TA1,A2
, TA2,A3

,. . . ,
TAn−1,An and TAn,Aj are increased by 1/(n+ 1).

Finally the two networks Cij and Rij are combined into one final network
RCij :

RCλij = max(ZCij , ZR). (2.7)

The presented pipeline can be used to obtain different outputs, such as the
RC or the ZRC networks and their variants through the application of thresh-
olds or the inequality simplifier. The final output is a square matrix that repre-
sents a network through a weighted adjacency matrix. This adjacency matrix
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FIGURE 2.4: The inequality simplifier. The similarity values among the nodes (genes)
connected by the different edges have been indicated. Dotted lines represent the spu-
rious links removed by the inequality simplifier. Left: application of order two, which
is equivalent to a direct application of the DPI. Right: higher order application, both
dotted lines are removed. The DPI would only remove the blue dotted line.

is finally exported into a tabular format that can be imported into Cytoscape
[463] to obtain a graphical representation. The weights in the adjacency matrix
or the T matrix produced by the inequality simplifier can be imported as edge
attributes and used to set the thickness of the edges. Finally, a force directed
algorithm can be used to generate the appropriate layout and the graphical
representation of the network, which then can be exported to an XGMML file.

Applying the inequality simplifier to a symmetric matrix, such as ZRC, re-
moves any possible loop in the network, therefore it results in a forest graph
as depicted in Figure 2.1. Applying the inequality simplifier to an initial ma-
trix containing around 3000 nodes takes at most five minutes in a standard
desktop computer (2.80GHz Intel machine).

The networks used for our exploration of gene regulation networks in Mtb
were the result of applying the inequality simplifier to ZR, ZC and ZRC (ob-
tained with λ = 1). Belcastro et al. [53] have shown that from the total num-
ber of possible interactions a selection of 5% (4*105 for a network with 4000
genes) would be a sensible choice according to the assumption that biological
network are sparse. Here, one of our goals is to obtain a clear visualization
of the network, therefore, we have chosen an even lower number (10000) so
that the number of nodes included in the network is as high as possible with-
out having a too crowded visual representation of the network. An additional
threshold was imposed so the number on non zero edges of ZR, ZC and ZRC
networks is equal to 10000. The ZRC derived network contained 2293 nodes
and 10000 edges whereas the mixed network contained 2693 nodes and 5898
edges.

These manipulations were implemented in R and Java, the corresponding
scripts can be found, together with an example data set in Additional file 3.
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Additional networks and analysis tools
Metabolic networks. The nodes in the metabolic networks are of two differ-
ent types: reactions and metabolites, and additional information, such as the
stoichiometry, directionality and the catalysing proteins of the reactions, also
has to be stored. We kept this information by using a combination of two file
types: a SVG (Scalable Vector Graphics) file that contains the graphical rep-
resentation of the networks and an RDF (Resource Description Framework)
file containing the additional information (see Additional file 4 for technical
details).

Other networks. A network formed by multiple disjoint interlinked clusters
was generated using the predicted Mtb operon structure [414]. In addition,
the information stored in the STRING database [483] was used to generate
networks based on: known protein-protein interactions; distance of the genes
in the genome and that of orthologous genes in other species; co-occurrence in
other species; orthologous genes being fused together in other species; associ-
ation in the abstracts of scientific literature; and other databases, such as Meta-
Cyc [95] and KEGG [259]. To identify regions duplicated in the genome or ho-
mologous genes, a network was built by considering the sequence similarity
between each pair of genes. The similarity was computed using Megablast
[344] and an edge was created for matches with E-values lower than of 10−10.

Sequence analysis tools. We have used MEME [34] for motif elicitation with-
in a set of genes and FIMO [205] to find occurrences of the chosen motif. A
post processing step ranks, using the FIMO q-value, the genes (matching up-
stream region) for each identified motif (MEME). An iterative cycle of motif
identification and motif matching can be established to further refine each mo-
tif. The computational time required by each iteration greatly depends on the
length of the upstream sequences, which has to be selected for each particular
analysis. For the selected show cases the motifs accumulated in the 200 bp
region upstream of the translation start site.

Gene ontology (GO) enrichment analysis on selected set of genes was per-
formed using a hypergeometric function to model the probability density,
as implemented in the GOHyperGAll R function [230]. The GO annotation
for Mtb was obtained from the UniProtGOA database [144], the Mtb-GOA
database (http://www.ark.in-berlin.de/Site/Mtb-GOA.html),
TBDB [406] and the more recent re-annotation of the Mtb genome [146].

Operons. We developed a putative operon extension tool which is only based
on the gene orientation, so that genes that are downstream of the selected gene
(or genes) and with the same orientation are added to the putative operon un-
til a gene with the reverse orientation is found. The user is then free to decided
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whether the expression data sustains the extension of the operon. This ap-
proach allows to easily combine expression information with genomic context
information.

Venn diagrams have been created using the utilities from the VennDiagram
R package [103].

Expression plots. Generated with a solid line representing the mean expres-
sion of the selected genes in the conditions included in the compendium and
dots marking the conditions in the bicluster where the genes show high corre-
lation (bicluster). The classification of the experimental conditions, previously
mentioned, was included in the expression plots through an horizontal colour
line that allows to quickly associate the behaviour of the genes with the type
of perturbation. To select the conditions (if any) in which the selected genes
show co-expression there is an initial step where all conditions are included
in the bicluster, then an iterative loop starts were each condition is removed
at a time and the new correlation values are computed, finally the condition
leading upon removal to the highest correlation values in the remaining set,
is removed from the set. This process is iterated until the correlation in the
remaining set of conditions is higher or equal to 0.8.

Discovery of additional regulatory layers
Whenever two alternative regulators regulate the expression of genes in a
given set, it might be that one overshadows the detection of the other. We
have developed a work flow to analyse these events (shown in Figure 2.2).
Given a set of genes under control of two regulatory events, the first step is to
identify the conditions were the first event is active or taking place. How these
conditions are identified depends on the particular example. One way would
be to identify conditions with up/down regulation of the corresponding tran-
scription factor. To identify conditions were recA expression is not regulated
by the RecA/LexA mediated mechanism we built a model linking the time
dynamics of recA to lexA expression levels using the Inferrelator algorithm
[70]. The output of the algorithm is a prediction or fit of recA levels based on
lexA levels (see Additional file 5). Those conditions with a poor agreement be-
tween the measured and fitted levels are the conditions (most likely) without
LexA mediated induction of recA.

Once the new set of conditions has been selected, the following step is to
reconstruct the co-expression network(s), using only the expression data cor-
responding to this subset of conditions and analyse the location of the original
set of genes in the newly built network(s). Furthermore an iterative round of
motif identification and motif matching can be run to identify a possible motif
in the upstream region of the cluster. This iterative round can be performed
either using cMonkey [409] (restricting the expression data to the selected con-
ditions) or manually using alternatively MEME [34] and FIMO [205].
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Analysis of ChIP-seq data
Publicly available ChIP-seq data were obtained from TBDB [181]. We have
developed the workflow, presented in Figure 2.3, to analyse these data. The
ChIP-seq data had already been analysed with a peak calling algorithm. For
each of the considered TFs a list of predicted targets was obtained from TBDB,
together with information about the peak location. A reduced list, or core
set, was obtained by selecting those targets that show a hit in their adja-
cent upstream intergenic regions. An additional filtering was done to se-
lect only those hits where the peak is not flanked by divergently transcribed
genes/operons. Additionally, the genes for which literature evidence sup-
ported the regulatory interaction with the TF were included in the core set.
In the following step, the expression levels of the genes in the core set were
analysed and the matrix of correlations across the conditions in the expression
compendium was computed. The appearance of negatively correlated genes
in this set is a signal of a dual repressing/activation function of the regulator
and therefore two (or more) subsets can be defined by hierarchical cluster-
ing of the set. This process can be further enlarged to encompass additional
groups that would be linked to alternative regulatory mechanisms or to the
effect of additional TFs. Once this/these group(s) were defined, the rest of the
putative targets predicted by ChIP-seq were assigned to either one of these
groups based on their average correlation with the members of the group (0.7
threshold).

Topological overlap
The topological overlap between two genes i, j in an unweighted network is
defined as [404, 535]:

tij =

{ |N(i)∩N(j)|
min{|N(i)|,|N(j)}+1−aij i 6= j

1 i = j
, (2.8)

where N(x) is the set of direct neighbours of gene x (excluding itself); |x| rep-
resents the number of elements in set x and ai,j is the adjacency matrix of the
network (1 if there exists a link between genes i and j and 0 otherwise). The
topological overlap is bounded between 0 and 1. Two genes will have high
topological overlap if there exists a connection between them and if they are
connected to the same group of genes. For weighted networks, ai,j represents
the weight of the interaction between genes i and j and takes continuous val-
ues between 0 and 1. In these cases, the previous formula can be generalized
to [538]:

tij =

∑
k ai,kak,j + ai,j

min{
∑
k ai,k,

∑
k aj,k}+ 1− ai,j

. (2.9)

The topological overlap of a group of genes was defined as the average of
their mutual topological overlap, which was computed using the R WGCNA
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package [286]. Only groups with more than 5 genes were considered. An em-
pirical p-value for these scores was calculated by randomly sampling (10000
times) gene groups of the same size in the respective network.

Network visualization
We have developed a visualization tool that allows the simultaneous visual-
ization of networks in XGMML format and the sharing of identifiers between
them. Technical characteristics of this tool are available in Additional file 4.

Results
Co-expression networks
We have developed a pipeline to generate co-expression networks that allows
for a myriad of possible networks. Choosing a subset of them highly depends
on the available data and the process the user wants to explore, since different
clusters appear in each of them. This reflects the inherent modularity of bio-
logical networks and the dependency of regulation on the chosen conditions.

The pipeline presented in Figure 2.1 includes some already well estab-
lished and tested methods for genome scale network inference. For example,
the similarity matrix computed using either correlation or MI is commonly
used to analyse gene expression data [128], but also other methods are con-
tained in the pipeline. When working with mutual inference as a similarity
measure the matrix denoted ZRC corresponds to the output of the CLR algo-
rithm [161]. Additionally, applying the inequality simplifier only up to order
two on a MI matrix amounts to using the DPI to prune spurious interactions
from the networks, which is a key element of the ARACNE algorithm [48].

A comparative analysis of methods to reverse-engineer transcriptional reg-
ulatory networks was done using the results of the DREAM5 challenge. In this
challenge the teams had to reconstruct genome-scale transcriptional regula-
tory networks from expression data. The networks proposed by the different
teams, were evaluated through their comparison with a gold standard, a set
of experimentally verified regulatory interactions in the target organisms. In
addition, Marbach et al. [319] constructed a consensus network integrating the
predictions from the multiple methods. Whole network performance estima-
tors such as Area Under Receiver Operating Characteristic Curve (AUROC) or
Area Under Precision Recall Curve (AUPR) show that over the entire network
the consensus network outperforms individual methods due to their inherent
complementarity. However, for some interactions individual methods per-
form better than the consensus network (see Additional file 6A). The loss of
information when building the consensus network does not affect equally the
different transcription factors (see Additional file 6B). For example, for PurR
or LexA, a significant fraction of the total number of known interaction is bet-
ter recovered by the individual methods than by the consensus network.
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To evaluate the performance of our algorithm we have generated co-ex-
pression networks corresponding to the synthetic, Escherichia coli and Saccha-
romyces cerevisiae datasets used in the DREAM5 challeng. For each dataset,
two networks (ZRC and mixed) were built (see Methods section). In the chal-
lenge the goal was to identify links between regulators and target genes. In
coexpression networks no special emphasis is done on the regulators. To eval-
uate the networks we have calculated the topological overlap [404, 535] of the
known targets of the transcriptions factors (also provided in the challenge).
The topological overlap measures how similar the neighbourhoods of two
genes are [538]. For 95% (64 out of 67) of E.coli TFs considered (those with
more than 5 experimentally verified targets) the topological overlap of the
target genes in the ZRC network is significantly higher than for the overall
network (see Figure 2.5), which means that they form cohesive modules in
the network. The relative number of cohesive clusters identified for the other
datasets (yeast and synthetic set) are lower (57% and 40% respectively, see
Additional file 7) Overall the ZRC networks maintain a higher degree of co-
hesiveness than the mixed networks (89%, 31% and 32% for the E.coli, yeast
and synthetic datasets).

Systematic analysis of regulation in Mtb. Integration and si-
multaneous exploration of heterogeneous networks
We considered co-expression networks obtained with different approaches.
Additional information is represented through networks, such as information
on operons, GO annotation similarity, data base stored knowledge and se-
quence homology among others.

This integrative approach allows to systematically explore functional mod-
ules in the network and it is highly complementary to existing bi-clustering
and other module identification methods. Even when additional biological
information is included, biclustering methods have to face the challenge of
interpreting the function of each groups of genes. Therefore, a general ap-
proach to detect and understand functional modules in a given organism is
to simultaneously explore the location of the genes in a given bicluster in the
co-expression networks. We have done so to analyze the output of the cMon-
key algorithm [409] on Mtb data. We have run multiple instances of the algo-
rithm to bias the search towards the detection of both putative co-regulated
and functionally related sets of genes. The obtained bi-clusters are presented
in Additional file 2. To further investigate these biclusters, we have projected
them in the multiple networks and genes proceed to their in-depth analysis.
An example of how this is done is shown in the following section when we
analyse the regulation of DNA damage repair systems in Mtb by LexA.

In a given co-expression networks it might very well happen that the ef-
fect of one regulator on a given set of genes overshadows the identification of
other regulators. However, these mechanisms can be uncovered when com-
paring different networks generated under different experimental conditions.
We have developed the pipeline presented in Figure 2.2 to uncover additional
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FIGURE 2.5: Topological overlap of TF targets in the E. coli ZRC co-expression net-
work. The ZRC co-expression network was reconstructed using our pipeline using E.
coli expression data from the DREAM5 challenge [319]. Only the 67 TF with more than
5 experimentally verified targets (in the gold standard) were considered. Dashed line
represents the average topological overlap in this network (0.0053).

layers of regulation based on the assumption that regulation proceeds differ-
ently upon different perturbations, therefore some regulatory events will only
be detectable in subset of conditions. This pipeline is only useful when the
user suspects or has prior knowledge of an additional regulatory interaction
affecting the same set of target genes. Therefore, we have used it to further
explore the regulation of DNA repair systems in Mtb, where additional regu-
lators are known to exist [183].

In addition, our approach allows to systematically explore and interpret
additional data such as ChIP-seq data, through the pipeline presented in Fig-
ure 2.3. Among the available data we have chosen to focus on one of the key
subsystems key for Mtb survival in the host, the regulation of the response to
hypoxia and the induction of dormancy program via DevR.

Furthermore, the simultaneous network visualization, allows the explo-
ration of common trends in the networks. Instead of focussing on clusters
of genes appearing in the co-expression networks and how these clusters are
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reflected in, for example, the network liked to the GO biological process anno-
tation. The alternative approach can be taken and for each set of genes linked
to a particular GO or COG category we can trace back their location in the net-
work. This analysis can point to interesting effects. For example, we explored
the genes coding for ribosomal proteins and in the different co-expression net-
works these genes appear to form a highly interlinked cluster. However, in
all versions of the networks, the rpmB2-rpmG1-rpsN2-rpsR2 operon (Rv2058c-
Rv2055c) formed by genes coding for ribosomal proteins (S18-S14-L33-L28)
appear as a separated set (see Additional file 8). The combination of this in-
formation with the network of interactions extracted from literature [431] led
us to the analysis of the zinc uptake regulator, ZUR, and its targets.

DNA repair systems in Mtb
RecA-LexA dependent DNA repair system: the SOS box

LexA is a repressor known to be involved in the control of mechanisms for
DNA repair. Under neutral conditions LexA, dimerizes and binds to the SOS
box, repressing its own expression and of other genes related to DNA re-
pair. The consensus sequence of the SOS box for Mtb had been identified
as the palindromic motif TCGAAC(N)4GTTCGA [129]. Upon DNA damage,
RecA binds single stranded DNA (ssDNA). The complex RecA-ssDNA, stimu-
lates autocatalytic cleavage of LexA, so genes repressed by LexA are induced.
Acidic conditions trigger a similar response, since LexA can no longer dimer-
ize, effectively preventing it from binding its target DNA sequence [88].

The iteratively mapping of the genes in each of the biclusters presented in
Additional file 2 to the multiple co-expression networks, showed that biclus-
ter 36 is a 13 gene module that shares many of the characteristics of the LexA
regulon. To further investigate this bicluster, we proceed to analyse the loca-
tion of these genes in the multiple networks and to identify genes that might
be linked to them through the systematic analysis of their expression patterns
(see Figure 2.6 A and B). For each of the candidates to be included in the regu-
lon we combined information from the different information layers: literature,
databases, functional annotation, and upstream sequence among others. We
were able to identify a total of 28 genes putatively in the regulon, listed in
Additional file 9: Table S1. This includes the 16 genes reported by Davis et
al. [129] plus 12 additional ones, resulting in an effective enlargement of the
regulon size by 75%, (see Figure 2.6D). Based on this extended regulon, we
identified for the SOS box in Mtb a more specific motif: MKWMTCGAAM-
RYWTGTTCGA (depicted in Figure 2.6C).

To verify our predictions about the 12 genes not previously assigned to this
regulon, we compared our predictions with the LexA binding regions identi-
fied by Smollett et al. [462]. In that work ChIP-seq analyses of LexA binding
sites was complemented with experimental measurements of gene expression
upon DNA damage induced by mytomycin C. The 12 genes that we assign to
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FIGURE 2.6: LexA regulon. A) Plot of the average expression level of the members
of the LexA regulon across the different conditions. Red dots mark conditions with
high (>0.8) correlation between the genes in LexA regulon. The horizontal bar and
its different regions indicated by numbers refer to the classification of the conditions
as described in Materials and Methods. High expression levels are observed in con-
ditions corresponding to low pH or UV light. B) Clusters of genes involved in DNA
repair mechanisms in the co-expression network (obtained from the combination of
Rλ and Cλ with λ =

√
2). Genes regulated by LexA are marked red. C) Refined LexA

identified binding motif, positions 14 and 15 were previously non specific. D) Number
of genes identified to be regulated by LexA. Previous indicates genes previously re-
ported in the literature as LexA regulated [129], whereas Automatic refers to the genes
initially identified by the automatic biclustering algorithm.
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the LexA regulon contain a site in their upstream regions where LexA bind-
ing was detected. In addition, these genes also show dis-regulation in DNA
damaging conditions. It is important to stress that the results from Smollett et
al. were used in our analysis only to verify our predictions. Therefore, we can
conclude that we have successfully reconstructed the regulatory interactions
of LexA.

Davis et al. identified a single SOS box in the upstream region of the diver-
gently transcribed genes whiB2 and fbiA, however none of them were listed as
likely to be regulated by LexA. The analysis of the expression profiles of these
two genes, fbia and whib2 led us to conclude that fbiA, a probable 2-phospho-L-
lactate transferase involved in coenzyme F420 biosynthesis, does not belong to
the regulon, since no significant expression changes are observed upon condi-
tions related with induction of the LexA regulon (DNA damage or acidic pH).
The expression pattern of whiB2 gene shows anticorrelation with the rest of
the genes in the LexA regulon in all the conditions in our compendium that
show upregulation of LexA. Therefore, we concluded that LexA regulation
of whiB2 expression proceeds through a different mechanism than the previ-
ously described so that the dimerized form of LexA acts as an inductor of
whiB2 expression. This has also been independently confirmed in experimen-
tal conditions were mytomycin C was added to the medium [462].

WhiB2 has been hypothesised to be involved in the regulation of cell di-
vision [401]. Functional analysis of the genes co-expressed with whiB2 fur-
ther supports the idea that WhiB2 is involved in the regulation of cell di-
vision. We also found that not only Rv2719c, as reported by Davis and co-
workers, but the complete Rv2719c-nrdR-Rv2717c operon is under the control
of LexA. Information from the STRING database [483] (gene neighbourhood
and co-occurrence) allows us to functionally link Rv2717c with DNA repair
and cell wall synthesis; NrdR is involved in the control of the synthesis of
dNTP needed for DNA replication and/or DNA repair [346]; and the cell wall
hydrolase Rv2719c is involved in suppressing the cell cycle by altering local-
ization of FtsZ rings [99]. Therefore, our analysis has unveiled that repression
of whiB2 and induction of the Rv2719c-nrdR-Rv2717c operon are the LexA reg-
ulated mechanisms to temporary arrest cell division upon DNA damage.

Furthermore, through the re-annotation of the newly discovered LexA tar-
gets, we can identify a putative functional mismatch repair (MR) system. No
MR system has been previously identified in Mtb. A typical bacterial MR sys-
tem contains: the mismatch-recognition protein MutS that contains an HNH
endonuclease domain; MutH, a nicking endonuclease; and MutL, which acts
as a scaffold between these. The MR system additionally contains a DNA
helicase; a DNA exonuclease to remove the mismatching nucleotides; and a
DNA polymerase together with a DNA ligase to repair and ligate the created
gap [324]. The hypothetical MR system that we have identified is formed by: i)
some of the 10 HNH endonuclease domain containing genes that belong to the
13E12 family, ii) the Holiday junction DNA helicases RuvA and RuvB together
with RuvC, a crossover junction endo deoxyribonuclease, and iii) the DNA
polymerase DnaE2, together with ImuA/B that are essential for its function
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[520]. The existence of this repair system, under the control of LexA, would
solve the apparent inconsistency between the low mutation rates in Mtb and
the absence of an MR system [148].

Additional regulation: RecA independent DNA repair system

RecA is key to the correct regulation of the LexA regulon and it is also LexA
regulated. However, additional DNA repair mechanims have been described
in Mtb, particularly the RecA non-dependent (RecA_ND) DNA repair system
[183], that also regulates recA expression in a LexA independent manner. To
analyse this additional regulatory layer, we have used the pipeline in Figure
2.2.

The conditions not linked to the main regulatory event are those 93 where
no relationship was found between recA and lexA levels (see Additional file 5).
Using these conditions we built a new co-expression network and afterwards
we compared the original and the newly built networks. The members of the
LexA regulon appear in the original network as a tight cluster, however, in the
second network only a subset of them appear clustered. We selected the genes
in this small cluster and proceed to an iterative round of motif identification
and motif matching, to finally identify the genes regulated by the RecA_ND
mechanism. Our approach does not allow us to identify the regulator of the
set, but previous studies point to ClpR (Rv2745c) [519].

We have verified our predictions for the identified motif and the list of tar-
gets genes, (see Additional files 10 and 11) through comparison with literature
data, since they match those previously described by Gamulin et al. [183] for
the RecA_ND DNA repair system. However, there are two striking differences
between our results and those previously reported by Gamulin et al. We don’t
find that sigG responds to DNA repair, which matches the result reported by
Smollett et al. [461], on the other hand, we do find another sigma factor, sigC,
that seems to be regulated in response to DNA damage. The list of genes in
the regulon, show that in this case, regulation of cell cycle arrest upon DNA
damage is not linked to whiB2, but only to the Rv2719c-nrdR-Rv2717c operon.

Hypoxia and induction of dormancy program: DevR regulon
One of the main characteristics of Mtb is its ability to switch to a non replicat-
ing or ‘dormant’ state that allows it to survive for a long time within the host
and renders it less susceptible to antibiotics. The environment inside the host
is hypoxic and it might have high concentration of CO or NO released by the
host macrophages. Under either low oxygen concentrations or high concen-
trations of NO or CO, the heme iron from the kinases DevS (DosS) and DosT
becomes ferrous, the kinases become CO or NO bound and they get activated.
In the active form, DevS and DosT autophosphorylate and induce phospho-
rylation of DevR, which in turn, can bind its DNA recognition sequence and
induce expression of the DevR regulon resulting in the activation of the dor-
mancy program [381].
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All the options to build the co-expression networks that we have explored,
result in a tight cluster for the known members of the DevR regulon. This is to
be expected since dormancy and DevR regulon induction have been an active
research topic in the Mtb field. From the 287 distinct conditions present in the
expression compendium, almost 10% of them (23) are conditions associated
with expression of DevR regulon. However, the fact that these genes always
appear forming a tight cluster, points to the absence of additional regulatory
elements that might cause a differential expression of some members of this
regulon.

We have selected this regulon to validate our methodology for ChIP-seq
data analysis. ChIP-seq data corresponding to over-expression of DevR were
obtained from TBDB [181]. The processed results for DevR contain 475 de-
tected peaks, that correspond to 622 genes that could be possibly regulated
by DevR, although in our compendium expression data for only 605 of them
were available. We have analysed this dataset following the methodology
shown in Figure 2.3, and defined a core-set containing 107 genes. The analysis
of the correlations in the expression profile among this set as compared to the
overall distribution indicates a common regulatory influence over the selected
genes, as shown in Figure 2.7A. Further analysis of the genes in this core set
and their behaviour across the conditions in the compendium lead us to iden-
tify five distinct groups of genes within the identified targets (see Figure 2.7C
and Additional file 12). In four of these groups there is a high correlation
among the genes whereas no clear pattern can be identified in the expression
of the genes in the fifth group. One of these groups, that from now on we
will refer to as the DevR regulon, contains 64 genes that were identified by
ChIP-seq, has an expression pattern consistent with the previously described
DevR regulon, and 37 of these genes have been previously identified as DevR
regulated genes (Figure 2.7B). Additionally, we have found among the list of
targets from TBDB, 7 genes that have been previously reported as DevR reg-
ulated [36, 46, 98, 381] however their expression patterns suggest that either
they are not regulated by DevR or there is a secondary regulatory event al-
tering their expression levels, therefore it is arguable whether they can be in-
cluded in the regulon. A detailed list of members of this regulon is provided
in Additional file 13: Table S2. The genes in this table have been assigned
to functional categories: cell wall, transport elements, anaerobic respiration,
translational machinery, regulatory elements and elements related to stress
response. These six elements are linked to some of the main changes observed
during growth arrest and dormancy, such as the changes in the cell wall, the
arrest in protein synthesis and the adaptation to a hypoxic environment with
reactive nitrogen species [193, 486].

Interestingly, we found a faint link between the type VII secretion sys-
tem (Esx-3) genes Rv0282-Rv0290 and DevR. Although the correlation analysis
shows that they are not members of DevR regulon, we indeed find that, in a
reduced set of 27 conditions they show a high (0.7) correlation with DevR reg-
ulon (see Additional file 14). These genes are also known to be regulated by
Zur (Zinc uptake regulator) [312] and IdeR (Iron dependent regulator) [417]
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FIGURE 2.7: DevR regulon. A) Left: Histogram in blue represents the correlation
among all the genes present in our compendium, whereas the histogram in green is
based upon the correlations of the identified targets for which expression data is avail-
able within our compendium (605). Both show the same overall distribution. Right:
Histogram in blue represents the correlation among all the genes present in our com-
pendium, whereas the histogram in green is based upon the correlations of the 107
genes selected in the core set. Note there is a shift towards positive correlation val-
ues, pointing to a common regulatory influence over the selected genes. B) Number
of genes identified in the DevR regulon compared to the number of targets identified
through ChIP-seq experiments or the ones cited in literature [36, 98, 381]. C) Group
assignment of the 622 targets identified by ChIP-seq for DevR. G0 contains genes for
which non discernible expression pattern has been found. G1 correspond to the usu-
ally named DevR regulon, whereas G2-4 contains genes that show correlated expres-
sion patterns, although these patterns are not consistent with the previously described
behaviour of DevR regulon. A detailed list of these genes is available in Additional file
12 and the output of the GO-enrichment analysis is shown in Additional file 16.
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and are required for mycobactin-mediated iron acquisition [447] in Mtb.
Rv1734c belongs to the set of genes that had been previously reported as

DevR regulated but for which our analysis shows that their expression pat-
tern is not compatible with this assertion. Our analysis is based on tran-
script levels, so it could be that the regulation of Rv1734c happens at the
post-transcriptional level. However we have found additional evidence, al-
beit indirect, of our prediction. Chauhan et al. [101] analysed the effect of
mutations in the DevR binding motif and found that positions 5 (G), 7 (C) and
9 (A/T) are essential and a substitution in any of them dramatically reduces
the binding affinity (see Additional file 15 for the DevR binding motif). In ad-
dition, our analysis shows that position 6 always contains an A. Motif analysis
complements the results from the analysis of expression data and further sup-
ports our prediction that Rv1734c is not regulated by DevR, since its putative
binding site contains a mutation (to G) at position 9.

Among the targets identified by ChIP-Seq four other groups emerge (see
Figure 2.7C and Additional file 12) however none of these groups show sig-
nificant up or down regulation in the conditions associated with DevR regu-
lon induction. No clear common behaviour can be detected among the genes
in group G0. These could be considered as false positives as a result of the
textitdevRover expression performed prior to the ChIP-seq procedure [181].
However the genes within each of the other groups (G2, G3 and G4) show a
consistent co-expression across the conditions in the compendium, therefore
we believe that these hits should not be discarded as being caused by non-
biological reasons, instead alternative explanations such as weaker binding
to regulate overall or regulation through a transcription factor homologous
to DevR should be further explored. In addition the genes in each group are
functionally related (see Additional file 16), specifically, genes in G2 are mostly
linked to translation and might be linked to the translation arrest observed
during dormancy. Genes in G3 and G4 are functionally linked to ’metabolism’,
’stress’ and ’cell wall formation’, which are significantly different in the non
replicating state.

Zinc uptake regulator ZUR
As previously stated, the systematic analysis of genes linked to the differ-
ent COG categories, showed that in the different co-expression networks the
rpmB2-rpmG1-rpsN2-rpsR2 operon (Rv2058c-Rv2055c) appeared forming a dis-
tinct cluster, separated from the rest of ribosomal protein coding genes (see
Additional file 8). In addition, this operon also appears linked to the ppe3-
Rv0281 operon. Therefore, we concluded that these two operons should be
regulated by a specific mechanism and respond to a specific type of perturba-
tions. The location of these genes in the network of known regulatory inter-
actions [431], pointed to the zinc uptake regulator ZuR (Rv2359) as the most
likely regulator of both operons. Therefore we set forth to study the possible
targets of this TF. Initially we selected from the network extracted from the lit-
erature, a list of regulatory targets of ZuR that had been verified either by more
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than one source or by an appreciable upregulation in a zur knock out mutant
[312]. Once this core set was selected, we proceed to identify the subset of
conditions where these genes are co-expressed. The method to construct the
expression plots (see Materials and Methods) was used to select 23 conditions
were the members of the core set were correlated (average correlation 0.76,
see Figure2.8A); similarly we selected a core subset set of 35 conditions (aver-
age correlation of 0.65) and another subset of 5 conditions (average correlation
0.92). The correlation among the different putative members of the ZurR reg-
ulon (identified by motif elicitation and matching) was used as a signature to
identify the other members of the regulon. The list of genes identified as be-
longing to this regulon is provided in Additional file 17 and the ZuR consen-
sus binding motif is depicted in Figure 2.8A. The correlation analysis shows
the importance of the biclustering approach to select only those conditions
where no additional regulatory influences hinder the discovery of the mem-
bers of the regulon. For example, if we analyse the correlation of rpmB1 with
the members of the core set across all conditions present in our compendium,
we obtain no correlation (0.02). However when we compute the correlation
between rpmB1 and the genes assigned to the core set but only considering the
previously selected subsets of conditions the correlation values raise to 0.63,
0.71 and 0.93 respectively, showing that, as previously reported, expression of
rpmB1 is indeed regulated by ZuR.

Our predictions closely match the list proposed by Maciag et al. [312], how-
ever some differences in the target assignment appear (Figure 2.8C). From the
34 previously assigned genes to the ZuR regulon, we can only confirm that
79% (27) of them show correlated expression patterns. In addition, among
our predicted targets there are 10 genes for which no experimental evidence
can be found in the literature. These predicted additional members of the
regulon are: Rv0223c, lpqR (Rv0838), Rv1057, pe15 (Rv1386), ppe20 (Rv1387),
Rv2617c, Rv2618, Rv2619c, Rv3018c and Rv3018b. Rv0232 and lpqR appear
anti-correlated with the genes in the previously defined core set. In the case
of lpqR this anti-correlation clearly increases when restricting the set of condi-
tions. This together with the presence of ZuR binding motif in its upstream
region, leads us to conclude that regulation of lpqR (and possibly of Rv0232)
expression proceeds through a different mechanism than that of the rest of the
genes in the regulon.

Additionally, it is striking to notice the clear upregulation of this set of
genes in conditions where transcription was inhibited by addition of Rifapen-
tine to the medium (conditions 207 and 208 from Additional file 1). This shows
that, at least regarding these genes, the inhibition of transcription cause by
Rifapentine has a similar effect as zinc limitation. However, a detailed expla-
nation of this phenomenon is most likely unreachable from the analysis of the
present dataset.
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FIGURE 2.8: ZuR regulon. A) Bicluster formed by members of the ZuR as reported in
literature [312]. The grey line represents the average expression levels of the members
of ZuR regulon in the conditions in our compendium. The numbers identify the 23
conditions that have been included in the bicluster. The horizontal bar and the different
regions indicated by numbers refer to the classification of the conditions as described
in Materials and Methods. Notice the clear up-regulation of this set in conditions of
type 9: Transcription inhibition, in particular these values correspond to experiments
were Rifapentine was added to the medium. For clarity, expression values have been
scaled, so that the mean value for each gene when all conditions are considered is zero.
B) Identified ZuR binding motif. E-value 4.210−49. C) Number of genes in the ZuR
regulon (Additional file 17) compared to the ones previously identified [312], the set
anticorr. contains Rv0232 and lpqR, that show anticorrelation with the rest of the genes
in the regulon.
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Conclusion
We have shown that by integrating data from different sources and through
the combined analysis of data, we are able to obtain insights into the biologi-
cal system under investigation that go beyond the specific research questions
of each experimental design. Our systems level approach has allowed us to
analyse in depth publicly available data on Mtb and has enabled us to ex-
tract valuable new information from the existing datasets. The processes that
we have studied (namely: adaptation to hypoxia, low zinc availability and
DNA damage repair systems) are paramount in allowing Mtb to thrive within
the hostile host environment. We generated comprehensive lists of genes in-
volved in the response to such environmental conditions. These compendia
summarize and substantially extend and modify the current knowledge. We
believe that any further research on these adaptation mechanisms will make
extensive use of this new knowledge and the hypotheses generated herewith.

We have developed a framework that allows the user to integrate informa-
tion from gene or protein expression experiments, genome annotations and
existing databases together with analysis tools. Most of the already existing
databases and tools provide human user interfaces that only allow for query-
ing one gene at a time and only provide a subset of the total available informa-
tion. Within our framework this integration is done at once on a genome-scale,
by using the gene co-expression networks. Instead of obtaining a network
with the majority vote We have developed a framework that allows the user
to integrate information from gene or protein expression experiments, genome
annotations and existing databases together with analysis tools. Most of the
already existing databases and tools provide human user interfaces that only
allow for querying one gene at a time and only provide a subset of the to-
tal available information. Within our framework this integration is done at
once on a genome-scale, by using the gene co-expression networks. Instead of
obtaining a network with the majority vote.

Comparison with experimentally verified networks (E. coli and S. cere-
visiae) and with in silico generated datasets shows that the co-expression net-
works generated using our pipeline preserve the desired modularity of tran-
scriptional networks and the regulatory targets of a TF tend to appear in the
networks as forming a closely interconnected module. Comparison with E.
coli data, shows that in 97% of the cases the target genes of a TF form clusters
in the network. Modularity was on average less preserved for S. cerevisiae net-
works (57% of the cases), due most likely to the increased complexity of reg-
ulatory interactions in eukaryotes. This poorer performance of the inference
methods for the yeast dataset was also observed in the DREAM5 challenge
were at most a 0.25 recall was obtained by any of the tested methods. On av-
erage the ZRC networks perform better that the mixed ones, but our analysis
also showed that both types of networks contain complementary information,
for example the targets of a yeast’s YPR199C are only identified as forming a
module in the mixed network (see Additional file 6).
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We have established a protocol to assign regulatory interactions to binding
sites identified through ChIP-seq experiments via the integration of expres-
sion data. We have used this approach to correctly identify the target genes
of a given TF (DevR) as a response to an specific type of perturbation (dor-
mancy inducing conditions) among the hundred of candidates from the ex-
perimental dataset. Within our framework biclusters can quickly be analysed,
interactions between the biclusters can be identified in the overall networks
and biclustering methods can easily be transformed into a tool for automatic
detection of functionally related modules or underlying layers of regulation.
Moreover, we have developed a method that allows to identify additional reg-
ulatory layers. The comparison of the networks generated by considering
different subsets of conditions allowed us to distinguish various regulatory
mechanisms for DNA damage response.

The analysis of ZuR regulon shows the potential of an integrative ap-
proach. In our compendium there were no data corresponding to experiments
designed to analyse the effects of zinc limitation on Mtb. However, the anal-
ysis of the expression patterns of the genes in the different conditions and
the analysis of their correlations, allowed us to select a set of conditions that
would complement the bioinformatic analysis of the upstream sequences of
the genes and would allow us to decided which of the regions similar to the
motif actually represents a ZuR binding site and characterize the members of
the regulon. We were able to compare our predictions with dedicated exper-
iments performed with knock-out mutants and we found a good agreement
between computational predictions and experimental data.

Our work extends the already existing knowledge and produces a compre-
hensive list of the members of the DevR regulon. Among the targets identi-
fied by ChIP-seq, we have uncovered three additional sets of genes that show
a consistent expression pattern across the conditions in the compendium and
are functionally related. Additional studies are required to further understand
the regulation of these genes and their possible link to the non-replicative
state. The discovery of new regulatory mechanisms involved in dormancy
has the potential to deliver a new set of drug targets.

The automatic biclustering was the basis of our analysis of DNA repair
systems and specifically LexA regulon. We were able to confirm our compu-
tational predictions through the comparison we literature data and recently
performed ChIP-seq experiments. In addition, our work has produced a more
specific binding motif for LexA through the identification of new members of
its regulon. Additionally, the re-annotation of the identified new targets al-
lowed us to identify a putative MR system in Mtb. The analysis of mutations
and mechanisms to avoid them is of the uttermost importance for the further
understanding of the evolution of antibiotic resistances and pathogenicity.

Previously existing data were used to verify our predictions on the regu-
latory mechanisms of DNA damage response. We have clarified some points
previously in dispute, such as the lack of involvement of sigG in the response
to DNA damage and the regulation of the alternate sigma factor sigC in these
conditions. Correct identification of the sigma factor up-regulated upon DNA
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damage is key to understanding the systemic response of Mtb to this damage
type. In addition, our work has provided further evidence on the mechanisms
leading to cell cycle arrest upon DNA damage in Mtb.

In addition, we identified a new regulatory mechanism for ZuR, since the
analysis of the upstream regions of its target genes and their expression pat-
terns show that Rv0232 and lpqR belong to its regulon, although their regula-
tion must proceed through a different mechanism.

Here, we have presented the results obtained by applying our integrative
approach to Mtb and whenever additional data was available, we have found
good agreement between predictions and experiments. The basic underlying
principle of this approach relies on the comparison of the networks obtained
using different sources of information or methodologies. This approach can
be readily extended to different organisms and to the comparison between
different species, by using global identifiers together with a database of or-
thologous genes between species. This would allow to select a gene or group
of genes in one organism and see how they are arranged in the networks cor-
responding to a different organisms. In addition, other types of data, such as
synteny or evolutionary information, and protein structure and families could
improve the evolutionary comparison of functional modules.
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Abstract
Background: Systems biology takes a holistic approach by handling biomo-
lecules and their interactions as big systems. Network based approach has
emerged as a natural way to model these systems with the idea of repre-
senting biomolecules as nodes and their interactions as edges. Very often
the input data come from various sorts of omics analyses. Those resulting
networks sometimes describe a wide range of aspects, for example different
experiment conditions, species, tissue types, stimulating factors, mutants, or
simply distinct interaction features of the same network produced by differ-
ent algorithms. For these scenarios, synchronous visualization of more than
one distinct network is an excellent mean to explore all the relevant networks
efficiently. In addition, complementary analysis methods are needed and they
should work in a workflow manner in order to gain maximal biological in-
sights.

Results: In order to address the aforementioned needs, we have devel-
oped a Synchronous Network Data Integration (SyNDI) framework. This
framework contains SyncVis, a Cytoscape [443] application for user-friendly
synchronous and simultaneous visualization of multiple biological networks,
and it is seamlessly integrated with other bioinformatics tools via the Galaxy
platform [65, 194, 198]. We demonstrated the functionality and usability of
the framework with three biological examples - we analyzed the distinct con-
nectivity of plasma metabolites in networks associated with high or low latent
cardiovascular disease risk; deeper insights were obtained from a few similar
inflammatory response pathways in Staphylococcus aureus infection common
to human and mouse; and regulatory motifs which have not been reported
associated with transcriptional adaptations of Mycobacterium tuberculosis were
identified.

Conclusion: Our SyNDI framework couples synchronous network visu-
alization seamlessly with additional bioinformatics tools. The user can easily
tailor the framework for his/her needs by adding new tools and datasets to
the Galaxy platform.
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Background

Systems biology promotes a holistic approach in which biological elements
such as molecules or reactions are no longer considered in isolation but as
components of a bigger system such as a cell [270]. Within this framework,
networks provide a natural way to describe associations and interconnections
between system components. Network biology has emerged as one of the
core sub-fields of systems biology in which nodes are biomolecules (e.g. pro-
teins, genes, and metabolites) and edges represent interactions, associations
and relationships between the biomolecules (e.g. chemical conversions, signal
transduction steps, regulations, and co-expressions) [194, 270]. This approach
is creating new inroads to solutions and applications in systems medicine [194,
270] and industrial biotechnology [369] among others.

The reconstructed networks are usually mined using a variety of query-
ing methods [108, 335, 369]. In many cases, these methods aim at selection of
sub-networks based on experimental evidence or on local topological prop-
erties (e.g. identification of network clusters) [383]. Computational analysis
methods are in turn applied on selected sub-networks to understand related
biological context. For example, Gene Ontology (GO) enrichment analysis can
be performed to associate sets of genes or proteins with a specific biological
process [28] or motif identification in upstream regions of selected genes [34]
to identify gene regulators.

Biological network visualization has remained a highly non-trivial task
and one of those currently open challenges related to the need of simulta-
neous network visualization to optimally and efficiently perform differential
network analysis. Many alternative methods can be used to extract networks
from the same datasets and the resulting networks have to be examined to
generate a consensus network [319]. Different network representations are
needed to convey different layers of information pertaining the same system
(e.g. metabolic networks, protein-protein interactions networks, gene regula-
tion networks), however these information layers are not independent and all
of them have to be considered as a whole in order to describe how the overall
system behaves. Moreover, different networks might arise even when con-
sidering similar biological processes under different conditions (e.g. healthy
versus disease states) [236].

As a result of this multiplicity in the nature of networks and the subse-
quent integration need, many advanced graph-based methods have been de-
veloped for comparing networks [236]. Some of them produce local measures
for individual nodes (e.g. node degrees, clustering coefficients) and these are
compared on a node basis across different networks. This can, in turn, help
clarifying the biological significance of a highly connected node, or hub. Other
methods give global measures for the network as a whole, for instance distri-
butions and average values for node degree and clustering coefficients, and
network diameter [404]. A researcher is needed to interactively inspect these
results to achieve proper analysis and interpretation.
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As stated, network analysis requires the use of complementary analysis
methods. In today’s omics era it has become utmost important that these data
analyses can be performed through the use of consistent workflows, where
results can be stored for further analysis and findings can be reliably repro-
duced. In addition, these workflows have to be integrated with network vi-
sualizations, so that it is possible to easily switch from network interpretation
to subsequent bioinformatics data analysis and vice versa. Galaxy is a user-
friendly web-based platform that has been developed to address these needs
[65, 194, 198].

Here we present SyNDI, a Synchronous Network Data Integration frame-
work for synchronous visualization of multiple biological networks that ad-
dresses the above mentioned challenges. Specifically, the SyNDI framework
endows Cytoscape [443] with the capability to show multiple networks in
a synchronous way that preserves the identity between nodes appearing in
multiple networks, thus enabling visually inspecting differences in their lo-
cal connections. SyNDI also provides the possibility to perform data analysis
directly from the network visualization (without complicated file handlings)
using Galaxy and vice versa - the analysis results from Galaxy can be directly
exported to the network visualization.

Here we demonstrated the functionality and usability of SyNDI with three
biological examples. First, we illustrated how it can be used to assist analysis
of metabolite association networks related to high and low latent cardiovas-
cular risk respectively by simultaneously visualizing those networks. In our
second example, we analyzed a few common response pathways between hu-
man and mice in SStaphylococcus aureus infection to gain further biological in-
sights. Finally, we demonstrated how SyNDI connects network visualization
with Galaxy’s data analysis tools and specifically we analysed type VII secre-
tion system, ESX-1, in the human pathogen Mycobacterium tuberculosis; this
study represents a follow-up on an earlier analysis of key regulatory events
associated with pathogenesis and survival within the host, see [123].

Implementation

The overall architecture of our framework is presented in Figure 3.1. It is com-
posed of two layers: SyncVis is a Cytospape app that allows the user to visu-
alize multiple biological networks exploiting the Cytoscape core and network
analysis layer which uses Galaxy [65, 194, 198] for central core of analysis. In
the next sub-sections we describe these layers in technical detail.

Network Visualization
We have developed a Cytoscape app called SyncVis (Synchronous Visualizer)
for network visualization. Also we use Cytoscape core for some of this func-
tionality. In the next sub-sections we describe the technical implementation
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FIGURE 3.1: Technical architecture of a workflow system. It comprises of layers for
network visualization and analysis; synchronous network visualization on a SyncVis
Cytoscape app and network analysis on Galaxy or another external tool. The user can
transfer node attributes from SyncVis to a network analysis to automatically or non-
automatically.

in detail. In the first sub-section we present a few options the user can ap-
ply for constructing networks as a pre-step before starting to use the SyNDI
framework. Then we describe three other sub-functionalities: Network im-
port, synchronous visualization and node attribute export.

Pre-step - Network construction

In order to visualize networks on the SyNDI network, the user needs to con-
struct networks. We would like to emphasize this procedure is not part of
SyNDI framework. However we feel this procedure deserves its own sub-
section since it is a necessary pre-step - the user needs to have sufficient knowl-
edge about network construction in order to use the SyNDI framework.
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She can use a top-down approach to generate networks from experimental
data using existing reconstruction algorithms [319]. In most cases it is prag-
matic to implement these algorithms as separate applications for example in
the R environment.

Alternatively the user can use a bottom-up approach by constructing net-
works from available biological databases (e.g. signaling pathway databases,
metabolic pathway databases, protein-protein interaction databases). Most of
biological pathways have some networks directly available on their web sites
- for example Wikipathways database [283, 319] has hundreds of pathways
available (http://www.wikipathways.org). In addition, these pathways
usually have Application Programming Interface (API) available that sup-
port high-level programming languages (e.g. Java). The user can use these
APIs to implement an application customized for her purpose. Some of these
databases have been integrated in common bioinformatics tools - for example
Wikipathways database has a Cytoscape app (http://apps.cytoscape.
org/apps/wikipathways) that the user can use to retrieve pathways based
on various search parameters directly on Cytoscape.

Network import

Cytoscape core supports most of the base network representation formats
like Simple Interaction Format (SIF), eXtensible Graph Markup and Modeling
Language (XGMML) and Systems Biology Markup Language (SBML). Most
of the networks construction tools and methods covered in the previous sub-
section can generate networks in some of these formats. The user can therefore
import networks to Cytoscape Core for example by using “ctrl + L” shortcut
key or “File -> Import -> Network” menu. In some case the user may have
additional parameters for nodes or edges in separate files. This can be the
case for example if she has used a separate tool to calculate log2 fold changes
and statistical metrics like p-values from transcriptomics data. Technically this
happens by using the “File -> Import -> Table” menu on Cytoscape core.

Alternatively the user can use a specific Cytoscape app like the Wikipath-
ways Cytoscape app mentioned in the previous sub-section to construct net-
works directly on Cytoscape.

Synchronous visualization

The concept of synchronous network visualization is illustrated on the bottom
of Figure 3.1. Typically the user goes though the following pipeline when
using this feature.

• The user has a specific node of interest (e.g. an individual gene) or a
group of nodes (e.g. genes involved in a specific biological process).

• The user search the node(s) on one network (e.g. on an organism specific
pathway).
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• The corresponding node(s) are automatically highlighted on another net-
work (e.g. on a similar pathway from another organism). The user can
thus easily look into the differences in local connections of the nodes
between the networks.

The same pipeline can be applied to a synchronous visualization of any
other networks (e.g. networks from different medical conditions, networks
produced by different network construction algorithms).

We have implemented a Cytoscape app called SyncVis (Synchronous Vi-
sualizer) for this functionality by using Cytoscape Java API package (http:
//chianti.ucsd.edu/cytoscape-3.5.1/API/). We map the node se-
lections via Cytoscape’s “shared name” attribute which means that node iden-
tifies (e.g. gene names) have to be stored in this attribute. Next we will
present simplified code snippets demonstrating how these mappings are im-
plemented on Java programming level.
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// First we retrieve selected nodes from Cytocape’s "selected"
// attribute: selCyNet the network on which the user selects
// the nodes.
List<CyNode> selNodes

= CyTableUtil.getNodesInState(selCyNet,"selected",true);

// Then we store the "shared name" attributes of the selected
// nodes in a hash set:
HashSet<String> selSharedNames = new HashSet<String>();
for (CyNode node : selNodes) {
String sharedName = cyNodeTable.getRow(node.getSUID())

.get("shared name",String.class);
selSharedNames.add(sharedName);

}

// Then we select the nodes of the other networks based on
// their presence in selSharedNames: allNets is a list that
// contains all networks that are imported in Cytoscape
for (CyNetwork cyNet : allNets) {
CyTable cyNodeTable = selCyNet.getDefaultNodeTable();
for (CyNode node : selCyNet.getNodeList()) {

CyRow row = cyNodeTable.getRow(node.getSUID());
String sharedName = row.get("shared name",String.class);
row.set("selected", selSharedNames.contains(sharedName));

}
}

In addition the user can upload his/her own mapping file (e.g. homologs
between two species). We have explained this procedure in the user manual.

Node attribute export

SyncVis needs functionalities to export node attribute data for smooth com-
munication with network analysis. Cytoscape’s “shared name” attribute is
used to for this connection and it is accessed in the same way on Java pro-
gramming level as in synchronous visualization as described in the previous
sub-section.

As indicated in Figure 3.1, SyncVis contains two alternative options for the
export:

• Automatic export In this option the node data transfer from SyncVis to
the Galaxy platform is automated; SyncVis communicates automatically
with Galaxy and the user does not need do any manual operation. Sync-
Vis contains two buttons to this operation for each network analysis:
one button that creates a flat file when the user clicks on it and another
button that sends the request the Galaxy platform when the user clicks
on it and has possibly given additional parameters for network analysis.
Technically this is implemented so that first SyncVis creates a flat file
that contains the “shared name” attributes of the selected nodes. Then
it calls a python script from Java code that uses a BioBlend API [458] to
send the flat file to the Galaxy platform as an input of network analysis.

• Non-automatic export In this option user interventions is needed for the
node data transfer from SynVis to the Galaxy platform (or another net-
work analysis tool such as a (Biological Networks Gene Ontology tool
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(BiNGO) Cytocape app [315]). First a flat file is created. This is done
manually and using a button on SyncVis to copy-paste the “shared name”
attributes of the selected nodes to the flat file. Alternatively the user can
click another button on SyncVis to save the attributes to a flat file. The
flat files can then be imported into Galaxy or another network analysis
tool.

SyncVis has these two alternative options in order to find a balance between
automated communication and software development. The automated export
option is very user-friendly but some technical work is needed to implement
it on SyncVis for a network analysis tool. For time being this export is there-
fore implemented only for a few network analysis tool. The non-automatic
export is not so user friendly but this is does not require any extra work from
the software developer, so the user can use it immediately if she wants use a
network analysis tool for which the automatic export is not implemented.

Figure 3.2 illustrates the content of an Extensible Markup Language (XML)
file defining a connection between SyncVis and a tool running on the Galaxy
platform. The command element defines how the Galaxy platform executes
the tool using the input files listed in the input element. The output element
defines the format of the response. Algorithms can be implemented by any
programming language that Galaxy supports (e.g. R, Python, bash). More
details about the content of this file can be found at the tool configuration page
at the wiki page of the Galaxy project (https://docs.galaxyproject.
org/en/latest/dev/schema.html).

FIGURE 3.2: Content of an XML file that defines a Galaxy tool. This file contains a
brief description of the tool, a command for running the tool, and the input and output
parameters of the tool.

SyncVis needs an API key for the connection with the Galaxy platform.
Our user manual contains detailed instructions for configuring this key.
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Network Analysis
The purpose of network analysis is to gain our understanding of the underly-
ing biology behind a visualized network. The user can select sets of genes for
further investigation on the visualized network. She can for example perform
a Gene ontology (GO) enrichment analysis to see in what biological processes
the genes are over-represented, or plot the gene expression profiles or search
shared sequence motifs between the genes.

We use Galaxy as a central platform for running these analyses since it
is a widely used platform for running bioinformatics analysis requiring no
programming skills from end users. When the Galaxy platform has completed
analysis, it reports the results on Hyper Text Markup Language (HTML) pages
to which SyncVis displays links on pop-up windows.

The SyNDI framework is not restricted to Galaxy as it can easily interop-
erate with other available analysis tools and Cytoscape applications, such as
BiNGO [315].

Meme2Fimo tool
We have implemented a tool called Meme2Fimo in the Galaxy server for up-
stream sequence analysis. Meme2Fimo integrates tools for motif identification
(MEME [34]) and motif search (FIMO [205]).

From a user given gene selection, MEME is used to identify up to 5 possible
motifs in the upstream regions of the selected genes, which are automatically
retrieved from a GenBank file. MEME is executed with the “-dna -revcomp
-nmotifs 5 -mod zoops -evt 1000” parameter string. MEME generates a list
of found motifs and for each motif it returns an ordered list of scores for the
selected input genes. The score indicates how well the motif fits to the iden-
tified upstream region. These motifs and associated ordered list are collected
and stored.

For each motif identified by MEME, FIMO is executed to locate any other
occurrences within the complete genome. FIMO is executed with the “–bgfile
<genome background>” option. The genome background is generated from
the complete genome sequence using the “fasta-get-markov” command, with
an order value of 3. FIMO returns a list of occurences with an associated lo-
cation, p-value and q-value. This list is ordered by p-values. All occurrences
that occur within a known gene are rejected. For each remaining occurrence,
Meme2Fimo searches for the gene downstream and upstream if present. If
for the given downstream gene already another occurrence is found, then
it is rejected and the hit count of the already found occurence is increased
by one. If the downstream gene is present within the stored list captured
from the MEME output, the index within that list is added to final output of
Meme2Fimo. Otherwise a -1 is added. So Meme2Fimo will add for each motif
result generated by MEME to an additional table, which contains a row for
each accepted occurrence found in the genome of that motif: a downstream
gene identifier, a sequence associated to the occurrence, an index of the down-
stream gene within the initial MEME result, an index of the upstream gene



3

Chapter 3. SyNDI: Synchronous Network Data Integration framework 59

within the initial MEME result, a p-value, a q-value, a hit count and relative
position to the downstream gene.

Based on the index values one can identify other genes that are regulated
by the same regulator. If in the top hits within the list some occurrences and
associated genes are found, which are not within the selected set of genes (in-
dicated with a -1) one can add these genes to the input and rerun Meme2Fimo.
If one keeps repeating this process, in some cases (e.g. in a motif related to the
DosR regulator presented in Results and Discussion) the indexes in the list
will converge to a list without any -1 values in between.

Results and Discussion
Probabilistic networks of blood metabolites associated to la-
tent cardiovascular risk
Comparison of networks extracted under different clinical conditions, such
as health and disease, might help uncover key mechanisms of disease phys-
iology, especially in conditions whose outcome is presumably affected by a
multitude of risk factors. Cardiovascular diseases (CVD), one of the leading
causes of death in western countries, are associated to risk factors of metabolic
origin, however the complex nature of CVD has prevented a complete mech-
anistic understanding of these risk factors and their associations.

In a previous study [425], a global analysis was performed on the asso-
ciation networks between a panel of metabolites quantified using Nuclear
Magnetic Resonance (NMR) from plasma samples from healthy individuals.
Metabolites’ association networks were defined for individuals with low CVD
risk and for those presenting latent CVD risk. Briefly, an array of 29 metabo-
lites identified and quantified in the plasma of 864 healthy blood donors of
both genders was considered [59]. Clinical data and traits: concentrations of
high and low density lipoproteins (HDL and LDL respectively), total choles-
terol, triglycerides, glycaemia and Framingham score, were used to split the
cohort according to latent CVD risk levels: low, medium or high. Metabo-
lite networks associated to high and low CVD latent risk were extracted us-
ing the Probabilistic Context Likelihood of Relatedness based on Correlation
(PCLRC) algorithm [425].

Figure 3.3 represents the associations linked to either high (panels A and
C) or low (panels B and D) latent CVD. Topological indices for each node, such
as clustering coefficient and degree are represented by node color and size re-
spectively. Using a common layout for both networks eases the comparison,
as nodes occupy the same relative position in both networks (compare panels
A and B of Figure 3.3). However, a dedicated layout for each of them, (Fig-
ure 3.3 C and D) eases the identification of the key local connections. These
network representations emphasize , for instance, the prominent location of
very-low-density lipoprotein (VLDL) in the high latent risk network (Figure
3.3 C) or the two connected components in the low CVD risk network (Fig-
ure 3.3 D) that highlights the association between acetate and the amino acids
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serine, histidine, phenylalanine, glutamine and alanine. In the high latent
risk network these latter associations are disrupted and glucose appears as-
sociated to amino acids, which are known mediators of glucose metabolism,
insulin secretion, and insulin sensitivity [336].

FIGURE 3.3: Association networks of blood metabolites. Nodes represent metabo-
lites. Node size is proportional to node degree and node color is linked to clustering
coefficient. A) and C): Associations found exclusively in subjects with high latent CVD
risk (red edges). B) and D): Associations found exclusively in subjects with low latent
CVD risk (blue edges). Networks in A and B have the same node location. Networks
C and D have been obtained using force directed layout in each of them.

However, these networks pe se are not enough for a smooth local view
switch network. SyncVis tackles this challenge by transferring node selections
between networks automatically.
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Synchronous visualization of differentially expressed genes un-
der S. aureus infection on human and mouse signaling path-
ways
In order to demonstrate SyNDI’s functionality for synchronous network visu-
alization of networks across different species, we visualized Differentially Ex-
pressed (DE) genes in the context of S. aureus infection in human and mouse.
We thus aimed to gain deeper insights among dysregulated pathways shared
by these two species during S. aureus infection. Banchereau et al. performed
whole transcriptomics analysis on S. aureus infected patients and healthy peo-
ple (99 and 44 samples respectively) [38]. This data set comprises 24 371 tran-
scripts. DE genes were identified (False Discovery Rate (FDR) < 0.01 and log2
fold change > 0.7). Brady et al. studied protective mechanisms in mice to S. au-
reus Skin and Soft Tissue Infection (SSTI) [75]. They used an SSTI mouse model
to study local (=infected vs non-infected ears) and systemic (=challenged vs
naïve mice) responses to infection at one, four and seven days after the start of
infection. RNA sequencing (RNA-seq) was used and DE genes were defined
as those with a log2 fold change of 1 or higher. We selected the local response
at four days for our study as this time point gave the most significant overlap
with WikiPathways.

We retrieved all human and mouse signaling pathways from the WikiPath-
ways database [266, 283]. 25 pathways with at least 4 DE genes in both human
and mouse were selected (see table in Additional file 1).

Three pathways from this table were visualized using SyNDI to illustrate
how its synchronous network visualization functionality provides an easy and
effective approach to compare pathways between human and mouse. De-
tailed step by step instructions to run these examples are provided in Addi-
tional file 2. All needed scripts and data files are provided in Additional file
3.

Complement and Coagulation Cascades

As indicated in Additional file 1, this pathway (Figure 3.4) has one of the
largest number of DE genes among those already reported in the literature
to be differentially regulated in both human and mouse blood samples un-
der various injury or bacterial infection conditions (including S. aureus infec-
tion). Nearly all DE genes in this pathway were up-regulated. The comple-
ment system and coagulation system are main columns of innate immunity
and hemostasis respectively [16], so their up-regulation in human and mouse
indicated an attempt of the hosts to fight against injuries or infections and to
recover from damage. Among those 12 DE genes in this pathway found in hu-
man and mouse datasets, only 3 genes (F5, C1QB, and C3AR1) are homologs
and they appear significantly up-regulated in both cases. Using SyNDI’s syn-
chronous visualization, one can immediately identify that C1QB and C3AR1
belong to the classical pathway of the complement cascade, but F5 is among
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several other up-regulated genes in the coagulation cascade. C1QB is a sub-
component subunit of C1Q. Deficiency of C1q has been reported to be asso-
ciated with recurrent infections among Inuit people [323]. Literature studies
about C3AR1 and bacterial infection are very limited. Antunes and Kassio-
tis [19] studied influenza A virus infection-induced pathology in lymphocyte-
deficient mice. C3ar1 in cells of the monocyte/macrophage lineage was one of
the most highly induced gene transcripts, suggesting a role of C3ar1 in infec-
tion. F5 is a central regulator of hemostasis. In mice, reduction of F5 in blood
plasma or platelet caused higher mortality upon Group A Streptococcus infec-
tion, highlighting the importance of F5 pool in host defense [479]. Overall, this
visualization feature has facilitated quick identification of common regulation
trends in parts of the complement and coagulation cascades between human
and mouse. It can also speed up comparison of DE genes which are different
between the two species in this pathway for potential further investigation.

FIGURE 3.4: DE genes on “Complement and Coagulation Cascades” pathway
upon S. aureus infection, human pathway on the left part and mouse on the
right. Node color has been mapped to log2 fold change; red/blue denoting pos-
itive and negative values respectively (see legend). White color is used for nodes
(genes or metabolites) for which either no data was available or changes were not
deemed significant. The human pathway contains 169 nodes and 100 edges and
the mouse pathway 148 nodes and 86 edges. Additional file 7 contains a Comple-
ment_and_Coagulation_Cascades_human_mouse.cys file which can be opened on Cy-
toscape to view these pathways with better resolution.

Wnt Signaling Pathway and Pluripotency

The Wnt signaling pathway has been reported in several studies as commonly
regulated in human and mouse [7, 484]. Wnt signaling are responsible for cell
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differentiation, development, and tissue homeostasis etc. [222, 386]. A direct
evidence for the relevance of Wnt5A in severe systemic inflammation is sup-
ported by the finding of higher Wnt5A levels in patients with sepsis than in
healthy individuals [386]. Although all those DE genes in this pathway are
different in human and mouse, from Figure 3.5 we can easily identify that a
few genes belonging to frizzled ligands and some of the beta-catenin target
genes in the nucleus are differentially expressed in both mouse and human. It
is expectable that differences between species would result in different genes
being regulated in similar pathways in human and mouse. Those commonly
regulated sub-networks of the Wnt signaling pathway and pluripotency net-
work as shown by the synchronous visualization are tentative leads for further
investigation of common signaling mechanisms in human and mouse upon S.
aureus infection.

FIGURE 3.5: DE genes on “Wnt Signaling Pathway and Pluripotency” path-
way upon S. aureus infection, human pathway on the left part and mouse
on the right. See legend in figure 3.4 for additional information on col-
oring scheme. The human pathway contains 174 nodes and 55 edges and
the mouse pathway 175 nodes and 54 edges. Additional file 7 contains
a Wnt_Signaling_Pathway_and_Pluripotency_human_mouse.cys file which can be
opened on Cytoscape to view these pathways with better resolution.

Insulin Signaling

The insulin signaling pathway contains 8 DE genes in human and in mouse,
of which only SOCS3 is shared between the two species (Figure 3.6). All these
DE genes were up-regulated in both species. Georgel et al. reported TLR2
affected the outcome of mouse skin infection by bacteria [192]. In a study of
gut microbiota of type 2 diabetes and obesity subjects, it was observed that
TLR2 and inflammatory pathways were activated in obese individuals and
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insulin signaling was impaired relative to lean individuals [93]. Although the
involvement of insulin signaling in diabetes is well-known, the potential role
of this pathway in bacterial infections is rarely studied in the literature. Mele
and Madrenas [333] studied literature evidence of infections by S. aureus and
suggested TLR2 signals can differentially induce SOCS1 and SOCS3. In Fig-
ure 3.6, both Socs1 and Socs3, belonging to modulators of insulin action, were
significantly up-regulated in mouse. Further investigation is necessary to ver-
ify the potential relationship between S. aureus infection and insulin signaling
pathway, but the network visualization approach has provided a convenient
method to identify pathway candidates that appear to share unknown con-
nections.

Identification of binding motifs associated to DosR in M. tu-
berculosis
A pipeline for the reconstruction of gene co-expression networks from a com-
pendium of expression data was described in [123] to where we refer the
reader for additional details. This pipeline is highly customizable and its de-
fault values correspond to the following brief description. From a gene expres-
sion compendium, similarity between gene expression profiles is scored using
Pearson’s correlation for each gene pair. The significance of the similarity is
scored using an estimate for the null model based on the rest of the similarity
scores obtained for the members of the pair evaluated independently [161]. A
generalization of the data processing inequality is iteratively applied to prune
possible spurious associations from the network [320]. Stand-alone scripts im-
plementing this pipeline can be retrieved from Additional file 3 of [123].

We have used the Meme2Fimo tool to investigate transcriptional regula-
tion of M. tuberculosis, the aetiological agent of tuberculosis. Specifically we
investigated the role and regulation of ESX-1 associated genes espA, C and D
and the role of DosR in regulating these genes. ESX-1 is a type VII secretion
system required for the secretion of virulence proteins such as EsxA (ESAT-6)
and EsxB (CFP-10). These are involved in immune modulation and phago-
some escape [1, 452, 546]. EspACD is required for EsxA-EsxB secretion and
pore formation [104, 184]. Multiple regulators such as PhoP, EspR, MprA, CRP
are involved in modulation of ESX-1 and its secreted factors [256]. The tran-
scription factor DosR (DevR) mediates the hypoxic response of M. tuberculosis
and triggers the onset of dormancy which enables long term survival of the
bacteria within the lung granulomas of the human host [381]. DosR regulon
is essential for persistence and pathogenesis of M. tuberculosis [332]. ChIP-
seq experiments initially identified over 600 gene targets for DosR [181] and
its binding motif is shown on Figure 3.7 [101]. Integration of heterogeneous
molecular networks with this data led to the identification of five groups of
genes with distinct expression profiles among this initial set [123].

Here we used SyNDI framework to further investigate additional regula-
tory motifs related to ESX-1 systems by simultaneous exploration of the CLR,



3

Chapter 3. SyNDI: Synchronous Network Data Integration framework 65

FIGURE 3.6: DE genes on “Insulin Signaling” pathway upon S. aureus infection, hu-
man pathway on the top part and mouse on the bottom. See legend in Figure 3.4 for
additional information on coloring scheme. The human pathway contains 226 nodes
and 25 edges and the mouse pathway 195 nodes and 15 edges. Additional file 7 con-
tains an Insulin_Signaling_human_mouse.cys file which can be opened on Cytoscape
to view these pathways with better resolution.

STRING.db fusion, STRING.db neighbourhood, operon and BLAST based homol-
ogy (bbh) networks presented in [123], to where we refer the reader for addi-
tional information on these networks. Technical details are provided in Addi-
tional files 4 and 5.
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FIGURE 3.7: Comparison of DosR and ESX-1 related motifs. A) DosR motif as re-
ported in [101] B) Exploration path 3 motif. C) Exploration path 2 motif 2. D) Explo-
ration path 1 motif. E) Exploration path 2 motif 1.

Exploration path 1: ESX-1 associated genes espA,C and D

Initially, ESX-1 related genes, espACD, and other closely positioned genes in
the CLR network were selected. The gene selection was transferred to the
fusion network and three additional genes were identified in their neighbour-
hood. This selection was further enlarged with genes in their neighbourhood
previously reported in the DosR regulon [123]. Transferring the selection to
the bbh network led to the identification of three pairs of homologous genes.
In each pair one gene belongs to the ESX-1 related gene set whereas the other
one is in the DosR regulon (see Table 3.1). In the fusion network genes in
these homology pairs within the DosR regulon appear as a densely connected
cluster, together with Rv0080 and TB31.7. TB31.7 is a universal stress protein
family protein responding to stress signals and has been shown to be involved
in growth arrest during latent infection.

To further investigate the role of TB31.7 a new selection was made in the
bbh network by adding six TB31.7 homologs, five of which are in the DosR
regulon. Meme2Fimo was iteratively used to explore upstream sequences of
these genes. Finally, a conserved motif similar to the one reported for DosR
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TABLE 3.1: Hypothetical homologous complexes. Pairs of homolog genes in the ESX-
1 and DosR related clusters of two hypothetical homologous complexes. *low similar-
ity (E-value 3e-09 < network visualization threshold).

ESX-1 cluster related ESX-1 cluster related
Rv0569 Rv2302
Rv2632c Rv1738
Rv2406c* Rv2626c*

Rv0080
TB31.7

was identified (Figure 3.7). However, some distinct features appear show-
ing that regulation of ESX-1 related genes espACD is complex, integrating sig-
nals from hypoxia via DosR but also possibly increased cell stress signals via
TB31.7 homologs.

Exploration path 2: TB31.7 and its homologs

To further investigate the TB31.7 gene and its homologs, we selected them and
neighbouring genes within the neighbourhood network. Upstream regulatory
regions analysis lead to the description of another motif (Figure 3.7). A subset
of genes (Rv2621c, Rv2622), coding for a possible transcriptional regulator and
methyltransferase, with this motif in their upstream regions appear in the CLR
network with a cluster of genes related to mycolic acid synthesis. The ratio of
free and bound mycolic acids is known to change under hypoxia and cell wall
stress [181].

We further investigated the DosR regulation of Universal Stress Protein
(USP) homologs to TB31.7 and its relation to ESX-1. We described another
motif in Figure 3.7.

Exploration path 3, likely sigE binding motif

We explored the DosR regulon to identify elements with additional regulatory
influences. USPs homologs to TB31.7 with the DosR regulon and genes in the
same operons were selected. Transferring the selection to the gene neighbor-
hood network showed the relationship between these two related groups and
suggested some genes to be further included in the selection. Yet another mo-
tif (Figure 3.7) was described in the upstream regions of these genes.

This motif is similar to the binding motif of the AlgU sigma factor from
P. aeruginosa which is homologous to SigE in M. tuberculosis [166]. SigE and
SigH together with MprAB function to detect and protect against cell stress
such as misfolded proteins, heat shock, acidic pH, exposure to detergent, and
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oxidative stress. These conditions are associated with failed immune modula-
tion which is related to the DosR regulated dormancy regulon [44, 166, 523].
Moreover, Rv0080, which is also in the DosR regulon, has been reported as
a regulatory hub of the hypoxia response regulated by MprA [77, 181] .The
identified binding motif shows similarity to the motifs detected upstream of
genes experimentally shown to be regulated by SigE and SigH regulated genes
[469].

Motif comparison

Figure 3.7 shows five related binding motifs. The location of these motifs is
shown in Figure 3.8 and Additional file 5. The groups of genes controlled
by this motifs are shared as shown in 3.9. Inspection of the locations of the
motifs shows their overlaps in the upstream regions of the various shared
genes of motifs B, C and D, which indicates that the shifted motifs might
still be functional. The general DosR motif GGGNCNNNNGNCCC is palin-
dromic, whereas motif B GGGNCNNAAGTC has a unique element, which
is not palindromic. Both SigE and DosR are related to the modulation of
process directly related to growth within human macrophages, the similarity
between this motif and the AlgU motif in P. aeruginosa led us to hypothe-
size that DosR and SigE can bind to the same regions. Furthermore motif D
GGGNCNTTNGTC also has a unique element, NAA in motif B is replaced by
TTN.

narK2- <=> Rv1738  ~GCCGGCTCAGTTAGGGCCGGAAGTCCCCAATGTGGCAGACTTTC~
Rv1733c            ~CAGCAGGCGGGAAGGGGCGAAAGTCCCTTATCCGACAATAAAAC~
cysK2-             ~CGCTTCTGCATCGGGGCCGGAAGTCACACGCGGCACTGGATGGG~
Rv0079-            ~ACGGACGCGGACAGGGCCGAAAGTCCCATGCCAAATGTGGGCTG~
acg- <=> hspX      ~GTGGCCAGGGCTAGGGACAGAAGTCCCCGAAGCGCGGGCCATTT~N*~
ctpF-           ~N*~CCGGTGTGGATCAGGGCCGTAAGTCATCCACTGCAGGGACCTAC~
Rv3134-            ~CCGCTATCTCCCAGGGGCGTTGGTCCCCACCTGAGGGCCGTTAG~
Rv2005c-           ~AGTCACCGGTCATGAGGCTTTAGTCCCCAATCGGACGGCCAACC~
Rv1996-            ~GCGATCGCGTCAGGAGGCGATGGTCCCTAACCCAAGGGCATTAG~
TB31.7             ~GGGTTTTGCTCAGGAGGCGTTTGTCACTAGCCCAACGGGCTTAG~

B  C  D  E

FIGURE 3.8: Shifted motif alignment. Marked region denotes the region containing
the sequence to which the motif matches. The regions marked for the motif D regions
are shifted. See Figure 3.7 for the legend.

The palindromic motif E lacks the characteristic GGGNCNNNNGNCCC
pattern describing the general DosR binding motif. Only the GTC is conserved
in comparison to the other motifs. The regions it matches are close (14 and 37
nucleotides) to the regions matched by motif B. Therefore we hypothesize that
this motif might be associated to additional regulatory elements.
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FIGURE 3.9: Shared genes. Presence of binding motifs A, B, C and D in gene upstream
regions. See Figure 3.7 for Legends A, B, C and D motif description.

Scalability of network visualization
SyncVis scales quite well for visualizing synchronously large networks (i.e.
networks with a few thousands nodes and edges). In other, words it is pos-
sible to upload multiple networks of these sizes to Cytoscape and then select
a specific nodes. SyncVis can then successfully highlight these nodes on all
networks.

In order to demonstrate this scalability, we have constructed a synchronous
set of 11 networks on a ordinary desktop computer and then upload 11 gene
identifiers from a file that were automatically in all networks. This visual-
ization is presented in Figure 3.10. This construction is presented in detail in
Additional file 7.

However it is good to keep in mind these networks tend to be clumsy, so
it is not easy to browser them. If the user wants to gain detailed biological
insight from them, then perhaps she should restrict to specific sub-networks
such as specific signaling pathways presented in the “Synchronous visualiza-
tion of differentially expressed genes under S. aureus infection on human and
mouse signaling pathways” section.
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FIGURE 3.10: Scalability of network visualization. This Figure illustrates a syn-
chronous visualization of 11 big networks. The selected nodes are highlighted by yel-
low in all networks. The exact sizes of the networks are displayed in Table 3.2.

Comparison with other tools, limitations and future directions
SyncVis is an integral part of SyNDI. SyncVis uses Cytoscape core for vi-
sualizing multiple networks. All generic development work done in the
Cytoscape community will thus automatically be manifested in SyncVis.
Moreover, the user of SyncVis can easily use other Cytoscape apps; for
example there are some apps for advanced network visualization such
as yFiles Layout Algorithms (https://apps.cytoscape.org/apps/
yfileslayoutalgorithms), network comparisons [199, 287] and most im-
portantly for network based biological analysis such as the ones illustrated
in [478]. Tools like NAViGaTOR [82], Pajek [49] or igraph [120] are ideal for
visualizing and/or analysing large networks but we have decided to imple-
ment SyncVis as a Cytoscape app due to the huge community effort behind
Cytoscape and the continuous community support to biology oriented appli-
cations.

For the time being, SyncVis contains an automatic connection to only a
few selected tools on the Galaxy platform. Some of the tools deployed in the
presented use cases require collection of information that specifically relates
to the studied organism, such as GO gene annotation and upstream sequence
information for each gene. This information is derived from the genome but
requires additional bioinformatics analysis or database mining for each or-
ganism and different tools have to be used for fungi, bacteria, mammals and
so forth. We have chosen not to include the retrieval of this information as
part of the SyNDI framework, which might limit its application. A poten-
tial future direction is to connect SyncVis to tools for genome analysis such
as GenomeSpace [398] or SAPP [273]. The modular design of SyNDI allows
addition of more of these tools. Finally, in the current version, the user has to
install additional software components to use SyNDI’s workflow. This could
be streamlined by providing a script that installs all of these components.
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TABLE 3.2: The sizes of networks in Figure 3.10. The first column contains the net-
work names, the second columns contains the number of nodes in the network, and
the third column contains the number of edges in the network.

Network name #nodes #edges
H37Rv_blast 1705 2855
H37Rv_cognet 894 51718
H37Rv_pp1 1681 7446s
H37Rv_string_all2 2919 7222
H37Rv_string_all 3020 7562
H37Rv_string_coexpres 1159 1904
H37Rv_string_database 853 4216
H37Rv_string_exp 451 1415
H37Rv_string_exp2 3020 7562
literature_trans_network_all_methods 1304 2132
maincor 2616 6072

Conclusions
Here we have presented SyNDI, which is a framework that connect a user-
friendly Cytoscape application for synchronous network representation to ad-
vanced additional analysis tools for example through a Galaxy interface.

We have showed the potential of such a framework through three use
cases. Firstly we have shown how the synchronous SyNDI framework facil-
itates differential network analysis and how dedicated layouts can help pin-
point altered metabolites’ connectivity patterns at different levels of cardio-
vascular disease risk. Specifically such representations clearly emphasizes the
altered interplay between amino acids and glucose at high latent risk.

Secondly, we have used SyNDI to compare common inflammatory response
pathways in human and mouse by synchronous visualization of differentially
expressed genes. We have visualized S. aureus infection transcriptomics data
from human and mouse on signaling pathways. Most interestingly, inspec-
tion of the insulin signaling pathway a potential role of TLR2, which can in-
duce SOCS3, in induction of inflammatory pathways in S. aureus infection
even though there are so far very limited amount of studies to explain why
insulin signaling is regulated in bacterial infection.

Finally, we have shown how SyNDI can be used to explore and better un-
derstand complex regulated systems such as ESX-1 and associated virulence
proteins in M. tuberculosis. In addition we were able to detect multiple and
related binding motifs within the DosR regulon which have not yet been de-
scribed in the literature, including a motif that we hypothesize it is related to
M. tuberculosis SigE.
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Galaxy enables further development of SyNDI, so that additional analysis
modules can be added and complemented with network visualization. Here
only omics data has been used, but other data types (such as text mining re-
sults) and dedicated analysis tools can be seamlessly integrated within the
framework. Users can also easily customize SyNDI for their needs as they can
incorporate additional datasets to Galaxy and networks for visualization.

SyNDI provides a framework to visually inspecting local connections from
multiple networks, regardless of their origin. Additionally, SyNDI integrates
network visualization and and analysis through Galaxy. This represents major
advantages with respect to the use of the separate tools in isolations. First of all
there is an increase in usability, as the user can easily run analysis by selecting
nodes on networks without complicated file handling (e.g. copy-pasting rows
and columns from an Excel sheet to another). The second major advantage is
that SyNDI and most important, the Galaxy interface, allows the development
of analysis workflows so that in-silico analysis can be stored and re-used upon
addition of new datasets.

Availability and requirements

The source code can be found at https://gitlab.com/elindfors/syndi
and a link to the online user manual can be found at Cytoscape App Store
http://apps.cytoscape.org/apps/syncvis.
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Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant
and multidrug-resistant M. tuberculosis strains makes treating tuberculosis in-
creasingly challenging. In order to develop novel intervention strategies, de-
tailed understanding of the molecular mechanisms behind the success of this
pathogen is required. Here, we review recent literature to provide a systems
level overview of the molecular and cellular components involved in diva-
lent metal homeostasis and their role in regulating the three main virulence
strategies of M. tuberculosis: immune modulation, dormancy and phagosomal
rupture. We provide a visual and modular overview of these components and
their regulation. Our analysis identified a single regulatory cascade for these
three virulence strategies that respond to limited availability of divalent met-
als in the phagosome.
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Introduction
M. tuberculosis (Mtb) is the most successful known intracellular pathogen in-
fecting roughly one third of the world population and killing about 1.3 mil-
lion people in 2017 alone [322]. Treating Mtb infection is increasingly difficult
due to increasing number of drug-resistant, multidrug-resistant and exten-
sively drug-resistant strains [322]. In order to come up with new drug targets
and treatment strategies, there is an urgent need to understand the molecular
mechanisms supporting the success of this versatile pathogen. Here, we will
review the regulation of three important survival strategies of Mtb: immune
modulation, dormancy and phagosomal rupture [115, 191, 330].

Firstly, Mtb is a master in immune modulation. Its ability to interfere with
host cell signalling pathways allows it to carefully balance production of cy-
tokines involved in activation of the pro-inflammatory and anti-inflammatory
response [140, 210]. By balancing the pro- and anti-inflammatory immune
response, Mtb delays phagosome maturation, harvests essential nutrients and
stimulates the formation of granulomas. At early infection states, these granu-
lomas are initially dominated by alveolar macrophages and shield the bacteria
from more effective immune cells [449].

Secondly, when residing in the hypoxic granuloma, Mtb enters a metabol-
ically near inactive and non-replicating dormant state in which it is immune
to most types of drugs [200]. Mtb manipulates the macrophages to accumu-
late lipids, providing it with the nutrients required to sustain dormancy for
multiple decades [262, 373, 422, 442, 449].

Thirdly, Mtb has a highly regulated pore formation system that it uses to
rupture the phagosome and gain cytosolic access, resulting into necrosis of the
host cell and dissemination of the bacilli [429, 452].

The fine-tuned regulation of these three virulence strategies is what makes
Mtb such a successful pathogen. A large body of literature exists on these vir-
ulence strategies and on their molecular components. However, there have
been few attempts to provide a systems wide overview of these three viru-
lence strategies, their molecular components and their regulation. Divalent
metals play an important role in the regulation of some key aspects of these
strategies [173, 255, 307]. Here, we will present an overview of their involve-
ment in this regulatory process. Detailed inspection of available knowledge
pinpoints a single regulatory cascade as a main control hub for these three
virulence strategies, representing their interconnectivity as subsequent stages
encountered in pathogen host interaction. A modular overview of the molecu-
lar components involved in divalent metal homeostasis and their components
involved in these three virulence strategies can be found in Supplementary
Files 1 and 2. In the following, we will discuss these components and the en-
vironmental cues that control them and we will highlight the role of divalent
metals in the phagosome.
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Divalent Metals at the Interface of M. tuberculosis
Host Interaction
Divalent metals such as iron, zinc and manganese are required for prolifera-
tion and survival of all living organisms. Divalent metals appear, in all living
beings, nearly exclusively as constituents of proteins and act as cofactors in
many essential enzymes and environmental sensors [238]. Iron is the most
commonly used divalent metal cofactor [238]. Iron containing enzymes are
involved, among other processes, in electron transfer, maintaining redox bal-
ance and detoxification [374]. Manganese has the strongest affinity for ATP
and is the preferred cofactor in cAMP production [380, 405]. Zinc is used as
cofactor by numerous enzymes and DNA binding proteins and additionally
functions to scaffold additional proteins [312].

To prevent growth of bacteria, the host uses high affinity iron binding pro-
teins such as lactoferrin, ferritin and transferrin to keep concentration of free
iron in the blood low, in the so-called iron sparing response [255, 282]. These
proteins also bind other divalent metals such as manganese, albeit with lower
specificity than iron. Similarly, calprotectin functions as high affinity calcium
binding protein but also binds manganese, zinc and iron in the blood [302].
During infection, macrophages withdraw approximately 30% of the total cir-
culating iron from the blood stream making macrophages environments rich
in divalent metals [363]. Some intracellular pathogens use this defence mech-
anism to their advantage by stimulating phagocytosis by macrophages to get
access to divalent metals and other nutrients. During initial infection, Mtb pre-
dominantly encounters resident, replicative alveolar macrophages populating
the lungs which are rich in divalent metals while having reduced bactericidal
abilities compared to other macrophages [363, 422].

Upon ingestion by a macrophage, Mtb is engulfed in a special compart-
ment called the phagosome, in a process known as phagocytosis. The phago-
some then fuses with vesicles containing enzymes and other proteins that
facilitate bacterial digestion. Phagocytosis is a rapid process and leads to
phagosomal-endosomal fusion in approximately 3–4 min, acidification of the
phagosome within 23–32 min and fusion with lysosome in 74–120 min, based
on experiments with epithelial macrophages [64]. However, Mtb blocks phago-
some maturation in an early phase leading to fusion with early endosomes
and a pH of approximately 5.5 [172].

The macrophage continuously exports divalent metals out of the phago-
some via Nramp1 and Nramp2 in a pH dependent manner. Many cell types
express Nramp2 while only macrophages express Nramp1. Nramp1 is mech-
anistically similar to Nramp2 but has a much higher specificity for manganese
(Mn) compared to Nramp2 [172, 173, 364]. Mn is required as cofactor for
the bacteria to break down oxidative compounds produced in the phagosome
such as H2O2 [242, 255, 380]. Thus, restricting Mn availability in the phago-
some by recruitment of Nramp1 is an essential defence against intracellular
pathogens. Nramp2 functions optimally around pH 6, a condition found in
the early phagosome while Nramp1 has an optimal activity at a pH of 4.5
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Nramp1 is attached to the membrane of maturing phagosomes and is associ-
ated with increased recruitment of endosomes and/or lysosomes containing
vacuolar V-H+-ATPase, resulting in acidification of the phagosome from pH
6.5 to 5.5 [172, 480]. Nramp2 is regulated separately from Nramp1 and co-
localizes with transferrin receptors to early endosomes as well as with V-H+-
ATPase. V-H+-ATPase provides the electro-genic force needed for Nramp1
and Nramp2 to operate [385, 516]. Metal availability in the phagosome is
tightly regulated by the host through the combined action of Nramp1 and
Nramp2. Therefore, blocking phagosome maturation is an effective strategy
to create an environment in which Mtb can outcompete divalent metal export
from the phagosome. Mtb uses special high affinity siderophores (mycobactin)
to gain access to divalent metals from both extracellular transferrin and the in-
tracellular iron pool [363].

Within Mtb iron, zinc and manganese homeostasis are regulated by IdeR,
Zur (previously known as FurB) and MntR respectively [312, 374, 375]. Liga-
tion of Fe2+ to IdeR and Zn2+ to Zur stabilizes the formation of dimers that
have strong affinity to binding sites involved in suppressing the genes in their
respective regulons [307, 374, 391]. MntR in Bacillus subtilis contains two man-
ganese binding sites as well as a dimerization site similar to IdeR and Zur
[138]. There is a significant overlap between IdeR, Zur and MntR regulated
genes, see Figure 4.1. An overview of the regulation of molecular components
by divalent metal regulators, IdeR, Zur and MntR can be found in Supplemen-
tary Files 1 and 2. Each of these three regulators suppresses the main operon
of genes coding for the ESX-3 secretion system and associated PE, PPE and
Esx proteins homologues of ESAT-6 and CFP-10 (EsxA and EsxB) [375]. We
will further discuss the ESX-3 transport system in a section below. In the fol-
lowing sections, we will discuss main characteristics of genes regulated by Fe,
Zn and Mn respectively.

Iron Homeostasis and Redox Sensing
Mtb produces high affinity hydrophilic and lipophilic siderophores termed
carboxy-mycobactin and mycobactin, respectively. Mycobactin can bypass the
phagosome membrane to scavenge iron from the extracellular iron storage
protein transferrin [308, 328, 363, 526]. In addition, Mtb actively synthesizes
deoxy-mycobactin during iron starvation [314].

Mtb combines the expression of a dedicated iron acquisition machinery
with cellular components involved in immune modulation. By limiting acid-
ification of the phagosome, Mtb maintains favourable conditions in which it
can outperform active export of divalent metals by the macrophages trans-
porter Nramp1. Mtb’s success in acquiring iron is illustrated by a 20-fold in-
crease of iron concentrations in the phagosome between 1 and 24 h of macro-
phage infection [419]. However, high iron concentrations renders Mtb much
more vulnerable to the formation of oxygen and nitrogen radicals upon phago-
some maturation, as iron functions as a catalyst in the formation of radicals via
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FIGURE 4.1: Number of genes in the IdeR, Zur and MntR regulons

the Fenton reaction [505]. Tight regulation of iron homeostasis is, therefore, es-
sential, making IdeR an interesting drug target [417]. Mtb has adapted to deal
with oxidative stress outside of the cell but is relatively vulnerable to endoge-
nously generated oxidative stress in comparison to Mycobacterium smegmatis
[505]. Due to this vulnerability, vitamin-C is an effective drug to combat Mtb
in the early stage of infection by inducing the Fenton reaction in iron rich
phagosomes [514]. The oxidative conditions encountered in the phagosome
leads to oxidation of the intracellular iron pool. Oxidation of the iron pool de-
represses IdeR regulated genes among which some are involved in virulence.
Upregulating expression of virulence genes in low iron and oxidative condi-
tions is a common response in intracellular pathogens and has been observed
in Shigella dysenteriae, Corynebacterium diphtheniae, Yersinia pestis and Yersinia
pseudotuberculosis, as well as in Mtb [303, 433].

The iron pool within Mtb and the phagosome functions as redox sensor
to the oxidative conditions encountered in the early phagosome. In oxidative
conditions, ferrous iron (Fe2+) is oxidized to ferric iron (Fe3+) [370]. Ferric iron
does not bind to IdeR, leading to upregulation of IdeR suppressed genes in ox-
idative conditions [417]. Genes suppressed by IdeR code for proteins involved
in siderophore synthesis (mbtA-G), secretion (mmpL4/5, mmpS4/5) and uptake
(irtAB) as well as 11 genes coding for the ESX-3 secretion system, among oth-
ers [163, 438, 447]. Even though IdeR mainly functions as iron dependent
repressor, IdeR also induces transcription of four genes. Among the induced
genes, bfrB and, to a lesser extent bfrA, code for mycobacterial ferritin-like
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iron storage proteins, which prevent overload of iron within Mtb [374, 416].
Analysis of the promoter region of bfrB revealed it contains two tandem IdeR
binding sites involved in alleviating repression by Lsr2. Lsr2 is a histone like
regulator that binds AT-rich regions virulence islands, including those coding
for ESX-1, espACD and PDIM coding genes, acting as a global regulator to aid
in the adaptation to extremes in oxygen availability [113, 114, 179, 365, 416].
Combined regulation of bfrB by Lsr2 and IdeR, suggests iron storage by BfrB
is suppressed by Lsr2 during infection under changing oxygen conditions un-
less IdeR detects availability of intracellular ferrous iron which indicates a lack
of oxidative conditions. Under low iron conditions, BfrA is required to mobi-
lize stored iron. On the other hand, on high iron conditions, BfrB is needed for
iron storage [268]. BrfB was shown to be required for the long term persistence
of Mtb in iron-starved granulomas [282].

Iron homeostasis is an essential process for bacterial survival, therefore
its cellular components are interesting drug targets. This was shown in a
knockout study of the mmpS4/5 siderophore secretion, which resulted in lim-
ited intracellular availability of iron as well as intracellular accumulation of
siderophores toxic to Mtb [248]. Another interesting drug target is HupB, a
nucleoid-associated protein that protects Mtb against reactive oxygen species,
regulates siderophore synthesis and was proposed to facilitate transfer of iron
from ferri-carboxymycobactin to mycobactin [309, 376]. HupB stimulates tran-
scription of its own operon in the absence of IdeR-Fe2+ [309].

IdeR also regulates genes involved in response to oxidative and acidic
stress, among which the two-component system PhoPR. Two-component sys-
tems contain a histidine kinase sensor that senses specific environmental stim-
ulus and a response regulator that gets phosphorylated by the sensor upon
specific environmental stimuli. Many two-component regulators, among which
PhoPR, also regulate their own operon [201]. Presence of multiple binding
sites allows both positive and negative regulation depending on the concen-
tration and phosphorylation state of the response regulator, as is the case for
PhoPR [202, 213]. PhoPR is the main regulator of the oxidative and acidic
stress response but also it is the initial step in a regulatory cascade controlling
pore formation and phagosomal rupture. Six putative IdeR binding sites up-
stream of the phoP-phoR operon were located, of which five were observed to
bind IdeR in the presence of iron [317]. This points to a possible link between
iron homeostasis and PhoPR regulation of the oxidative stress response and
virulence genes.

Nevertheless, the exact role of IdeR in upstream binding of PhoPR remains
to be determined.

Oxidation of the iron pool is also sensed by proteins containing iron-sulphur
clusters such as the enzyme aconitase (Acn) and the regulators FurA and
WhiB1-7. Acn catalyses the isomerization of citrate to isocitrate via cis-aconitate
in normal conditions. However, in low iron or oxidative conditions it binds
to and suppresses translation of IdeR-mRNA while increasing translation of
TrxC-mRNA [39]. The function of Acn as redox sensitive translational regula-
tor is conserved in many organisms [370, 384].
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FurA (ferric uptake regulator A) regulates the oxidative stress response
by modulating expression of the operon coding for FurA and the KatG cata-
lase [418]. KatG is essential for the breakdown of H2O2 radicals formed upon
phagosome endosome fusion and activates the anti-cell-wall drug isoniazid.
Recently, transcriptional activation of furA-katG was found to be regulated by
RbpA, which is induced by H2O2 in a SigE dependent manner [232].

A third iron sensitive regulator is WhiB7. WhiB proteins are iron-sulphur
cluster-containing redox-sensing transcription factors. WhiB7 expression is
auto-regulated by binding to its own promoter in response to antibiotics or re-
dox stress [542]. An 80-fold upregulation of WhiB7 was observed upon treat-
ment with antibiotics that bind to the 30S ribosomal subunit such as kanamycin
and streptomycin [542]. WhiB7 is upregulated by iron starvation and was
shown to induce transcription of eis and tap [408], two antibiotic resistance
genes. Upregulation of eis increases secretion of IL-10 and slightly represses
production of TNF-α by the host. IL-10 and TNF-α are involved in the anti-
inflammatory and pro-inflammatory responses respectively [428].

In summary, oxidation of the iron pool is an important environmental
cue to activate molecular components involved in iron sequestering, immune
modulation and virulence. IdeR, FurA, Acn, WhiB7, Lsr2 and SigE are all in-
volved in the response to the oxidative conditions encountered in the phago-
some and subsequent adaption through expression of a vast repertoire of mo-
lecules involved in iron homeostasis as well as genes involved in modulation
of the immune response.

Manganese Homeostasis and cAMP Production
Manganese is one of the most abundant metal elements in nature [164]. Mn
is involved in enzymes of diverse functionality such as photosynthesis and
detoxification: Mn is used as cofactor for both synthesis and degradation of
H2O2, superoxide and radicals [255]. The oxidative burst is a very effective
bactericidal process to defend against intracellular pathogens such as Mtb and
Y. Pestis [97, 113, 279]. As previously stated MntR is a regulator of Mn ho-
moeostasis, however MntR is dispensable for Mtb growth in human and/or
mice macrophages due to the limited availability of Mn in the phagosome.
Manganese transport on the other hand is required for virulence and to break
down oxygen radicals [375]. Mtb contains two superoxide dismutases, SodA
and SodC. SodA uses manganese as preferred cofactor and requires CtpC for
metalation and export to the phagosome. Interestingly, ctpC transcription is
induced in the presence of PhoP, while sodA is predicted to contain upstream
cAMP-CRP binding sites implicating it in its regulation [8, 201]. CRP is a
cAMP dependent regulatory protein.

Another role of Mn we would like to discuss here is the Mn dependent
activation of cAMP production in the early phagosome which was first pro-
posed by S. Reddy et al. in 2001 [405]. S. Reddy and co-workers studied
the kinetics of membranes containing Mtb adenylyl cyclase CyA (Rv1625c).
Their study revealed that the Michaelis-Menten constant (Km) for Mn-ATP is
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70-fold lower than for Mg-ATP. This results in a 47-fold activation by 1 mM
Mn-ATP compared to 1 mM of Mg-ATP at physiological conditions [405]. Mn
is also essential for the CRP regulated, virulence associated type III phospho-
diesterase Rv0805 [127, 325].

During infection, intracellular cAMP concentration increases 50 fold and
this is associated with a decrease in pH from 6.7 to 5.5 [32]. Among the 15
Adenylate Cyclases (AC) present in Mtb H37Rv, CyA has the highest mea-
sured cAMP production while AC (Rv1264) functions optimally at pH 6, which
is typically found in early phagosomes [32, 145]. Mtb was shown to secrete
cAMP in a burst into the macrophage cytosol, resulting in a 10-fold increase
in the host’s TNF-α concentration, an important inducer of granuloma forma-
tion [5]. Rv0386 is needed for this cAMP burst [5].

The MntR regulon contains mntH (Rv0924c), coding for Mramp, an Nramp
homolog that imports manganese (Mn) in a pH dependent manner; mntABCD
(Rv1283c-Rv1280c) coding for an ATP dependent manganese transporter and
Rv2477c coding for a manganese dependent ATPase which optimally func-
tions at pH 5.2 [126]. Interestingly, Rv2477c was postulated to be involved in
resistance to tetracyclines and macrolides [126]. Additionally, MntR and Zur
regulate Rv2059-Rv2060 coding for two components of an incomplete ABC
transporter of unknown function. Therefore, it is more likely that this trans-
porter is involved in transporting other divalent cations like Co2+, Cu2+ or
Ca2+ to substitute Mn and Zn in some conditions. A second possibility is
that this operon codes for a divalent cation exporter to counter the side ef-
fect of unwanted uptake of divalent cations such as Cu2+ by the high expres-
sion of manganese and zinc transporters [375]. Manganese uptake plays an
important role in virulence of many bacteria. For instance, supplementing
Salmonella typhimurium with manganese prior to infecting macrophages, de-
creased its lethal dose 50-fold [413]. Similarly, manganese acquisition in the
gut was shown to allow S. typhimurium and Salmonella enterica to evade neu-
trophil killing by calprotectin and reactive oxygen species, while patients with
mutations in manganese transporter Nramp1 were shown to be much more
susceptible to pathogens such as Mtb [6, 97, 113, 139, 172, 380].

MntR regulates WhiB6 which regulates espACD and some DevR (previ-
ously known as DosR) regulated genes [379]. DevR is the main regulator of
dormancy and espACD is involved in pore formation [105] and will be dis-
cussed below. The WhiB6 iron sulphur cluster is necessary for the negative
control of the DevR regulon and positive control of the ESX-1 secretion sys-
tem, whereas apo-WhiB6 induces the DevR regulon and suppresses ESX-1 ex-
pression in M. marinum [105]. A model was proposed where holo-WhiB6 posi-
tively regulate ESX-1 operon while upon reaction with reactive oxygen species
and NO, apo-WhiB6 and WhiB6-DNIC are formed respectively. Both apo-
WhiB6 and WhiB6-DNIC activate DevR regulated genes to shift metabolism
and maintain energy and redox homeostasis [105].

MntR interacts with the toxin-antitoxin system RelJ and RelK in which
MntR functions as antitoxin [274, 530]. Additionally, VapBC26 and VapB30
toxin-antitoxin system both requires Mg or Mn for their ribonuclease activity,
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which inhibits growth [261, 293]. These results indicate Mn might function as
environmental cue in the regulation of growth.

Zinc Homeostasis
The third and final divalent cation we would like to discuss is zinc, the only re-
dox stable divalent metal of the three. As previously stated, zinc homeostasis
is regulated by Zur (FurB), a Zn2+ dependent repressor. Zur knockout studies
identified 32 genes that are upregulated in the zur knockout mutant of which
24 belong to eight transcriptional units that were shown to be directly regu-
lated by Zur [312]. Zur expression levels are regulated by SmtB encoded by an
upstream gene, which is co-operonic with zur. SmtB functions as a repressor
which is deactivated upon binding to Zn2+ [312].

There are three possible zinc uptake systems regulated by Zur. Firstly, Zur
regulates the sitABC like genes (Rv2059-2060), which are also regulated by
MntR that were previously discussed. This suggest that this transporter might
function as Zn importer [78, 380, 439]. Secondly, Zur regulates Rv0106 coding
for a protein similar to the B. subtilis putative zinc low-affinity transporter
YciCas [439]. Thirdly, EsxG-EsxH proteins were shown to be able to bind zinc,
which might implicate them in zinc transport [237].

Other interesting targets of Zur are five genes coding for ribosomal pro-
teins that can function in the absence of zinc, in contrast to their zinc depen-
dent counterparts which normally bind to the 30S ribosomal subunits [180,
312]. Although Zur was found to be able to positively regulate some genes in
other pathogenic bacteria via repression of non-coding small RNAs, no such
regulation was found in a zur knockout Mtb mutant [307].

ESX-3 Secretion System
The ESX-3 secretion system is the only one of the five ESX systems that is
essential for in vitro growth of Mtb [85, 231]. ESX-3 is involved in divalent
metal homeostasis and immune modulation. ESX-3 is involved in divalent
metal homeostasis and immune modulation. ESX systems secret extracellular
proteins [331, 451].

Regulatory binding site for all three divalent metal regulators IdeR, Zur
and MntR can be found in the ESX-3 core operon promoter [237, 438], as sum-
marized in Table 4.1. The triple control of ESX-3 might allow Mtb to switch
partly to other divalent metals in the absence of one of these three. This hy-
pothesis is supported by the observation that siderophore knockout mutants
low in iron contain much higher zinc concentrations [516]. However, many
ESX-3 associated genes are regulated by only one or two of these regulators,
indicating dedicated roles in homeostasis of specific metals [503].

All three divalent metal regulators regulate EsxG and EsxH which play
an essential role in secretion of PE and PPE proteins [503]. PE and PPE pro-
teins comprise nearly 10% of the coding potential of the Mtb genome and, for
many of them, immune modulating properties have been reported [499]. A
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TABLE 4.1: Suppression of ESX-3 core genes and associated genes by IdeR, Zur and
MntR.

Gene IdeR Zur MntR
esx3-operon1 - - -
esxG-esxH - - -
esxQ -
esxR-esxS - -
esxW -
ppe3 - -
ppe4-pe5 - - -
ppe9 +
pe13 2 -
ppe19 -
ppe20 -
ppe37 -
ppe38 2

ppe48 -
pe_pgrs61 -

Plus symbols (+) indicate positive regulation, while minus symbols (−) indicate negative regula-
tion. 1 Rv0282-Rv291; 2 Reported as Zur regulated by Maciag et al. based on direct experimental
evidence on two conditions [312]; predicted not to be in the Zur regulon through a large scale
analysis of transcriptomics datasets and analysis of binding sites in upstream sequences [123]

large number of studies exist on the immune modulating properties of ESX-
3 secreted PE and PPE proteins [85, 122, 147, 299, 334, 426, 499, 503]. The
ESX-3 secreted protein pair EsxG-EsxH, targets the endosomal sorting com-
plex to impair fusion of the phagosome with the lysosomes, while increas-
ing association with the endocytic pathway leading to fusion with transfer-
rin containing vesicles [85, 237, 331]. PE5-PPE4 were found to be critical for
the siderophore-mediated iron-acquisition functions of ESX-3 [503]. PPE38 in-
hibits macrophage MHC Class I expression, dampens CD8+ T-Cell responses
and was shown to be required for virulence of M. marinum [147, 334]. PPE37
was found to reduce the production of pro-inflammatory factors TNF-α and
IL-6 [122]. PE_PGRS61 binds TLR2 in a Ca2+ dependent manner, leading to
increased IL-10 production. Finally, PE5 and PE15 trigger activation of the
host MAP kinases required for IL-10 production [426, 499]. IL-10 is an impor-
tant anti-inflammatory cytokine. IL-10 reduces the expression of iNOS, lim-
iting production of nitric oxide (NO) in the phagosome [85, 499]. Enhanced
IL-10 expression plays an important role in inhibiting early protective immu-
nity and blocking phagosome activation [121, 316]. In addition, a direct role
for IL-10 in Mtb reactivation has been observed [121]. Interestingly, IL-10 also
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modulates lipid metabolism by enhancing uptake and efflux of cholesterol in
macrophages [121, 217, 316]. Mtb is known to induce foamy macrophages
using immune modulating proteins as well as secreted lipids. This leads
to deregulation of the macrophages lipid metabolism via the macrophages’
lipid-sensing nuclear receptors PPARγ and TR4 [316, 422]. One study re-
ported observing Mtb to exploit host vesicle trafficking and lipid storage by
recruitment of iron bound mycobactin to lipid droplets which move to the
phagosome and discharge their content [308]. Another study found that Mtb
uses membrane vesicles containing immune modulating molecules as well as
mycobactin to interact with the macrophage during infection [394]. Further
research is needed to investigate the proposed synergy between modulation
of host vesicle trafficking, lipid acquisition and iron acquisition.

Three Main Virulence Strategies of Mtb

The three virulence strategies discussed in this review, namely immune mod-
ulation, dormancy and phagosomal rupture, represent subsequent stages in
Mtb-host interaction. These strategies extend and complement each other,
which is reflected in their regulation. While many pathogens directly express
components involved in phagosomal rupture, Mtb keeps a low profile and ac-
tivates key virulence strategies, such as phagosomal rupture, only when im-
mune modulation fails and the phagosome becomes inhospitable. However,
immune modulation also complements phagosomal rupture and dormancy,
since immune modulation leads to conditions, such as granuloma formation
and cholesterol accumulation, which are needed to prepare Mtb for dormancy
and phagosomal rupture.

Immune Modulation
Mtb uses a number of virulence proteins, complex lipids and secreted metabo-
lites, to modulate the immune response and arrest phagosome maturation to
prevent fusion with late endosomes and lysosomes [32, 257, 330, 331, 441,
513, 526]. In case of successful immune modulation, phagosome maturation
is halted resulting in a pH of approximately 5.5 [172, 480]. The macrophage
controls intracellular trafficking, including phagosome maturation, through
42 distinct Rab GTPases. Rab5 is associated with phagosomes immediately af-
ter phagocytosis and normally diffuses quickly, allowing Rab7 to associate to
the phagosome, which allows fusion of the phagosome with lysosomes. Stud-
ies with M. bovis have shown that Mycobacteria halts phagosome maturation,
by blocking vesicle fusion between stages controlled by Rab5 and Rab7, with
no Rab7 being accumulated in macrophages even after 7 days [513]. Similarly,
for Mtb Rab7 was shown to be recruited by the phagosome but its premature
release prevents fusion of the phagosome with late endosomes [211, 441].
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In addition to the earlier discussed ESX-3 secreted proteins, several other
proteins and molecules are involved in blocking phagosome maturation. Se-
creted tyrosine phosphatase (PtpA) is involved in the exclusion of the vacuolar
V-ATPase, thereby preventing acidification and fusion with lysosomes [493,
526]. cAMP secreted by Mtb blocks phagosome lysosome fusion by inhibit-
ing actin assembly [257]. Additionally, a number of virulence lipids interfere
with the phagosome’s Golgi trafficking, needed for maturation of the phago-
some [211, 353]. Among these virulence lipids are monomycolate, dimyco-
late, sulpholipid-1, diacyl trehalose, polyacyl trehalose as well as phthiocerol
dimycocerosate (PDIM). Of these lipids, PDIM was shown to play a role in
phagosomal rupture and will be discussed in the section below.

Mtb is very successful in balancing the expression of molecular systems
involved in activating the pro- and anti- inflammatory responses of the host
to direct the immune response to favourable conditions for its survival. Mtb
achieves this balance through multitude sensors and that integrate many en-
vironmental cues. One important family of regulators involved in sensing
internal conditions are the iron-sulphur cluster containing WhiB family of reg-
ulators, already mentioned in the section on iron homeostasis. Different WhiB
regulators have different redox potential and sensitivity to oxidative agents
such as O2 and NO and for some, thioredoxin like protein disulphide reduc-
tase activity has been reported [10, 288, 460, 542]. Many whiB genes are regu-
lated by cAMP-CRP [542], as summarized in Figure 4.2.

WhiB1 is an essential regulator that senses NO, is regulated by cAMP-
CRP and is associated with resuscitation [403, 460]. WhiB4 is associated to
the oxidative stress response while WhiB5 is required for resuscitation [94,
102]. DNA binding has only been experimentally proven for WhiB1, WhiB2,
WhiB3, WhiB6 and WhiB7 [105, 542]. Interestingly, WhiB1-3 are induced dur-
ing infection and, upon nutrient limitation, by exogenous cAMP. This indi-
cates they are involved in sensing the redox state of Mtb [453]. For WhiB1-3 it
was shown that their DNA binding ability is enabled by NO by bringing their
iron-sulphur cluster in their nitrosylated or apo-form [473, 542]. whiB2 and
whiB3 are down regulated in presence of O2 while whiB3, whiB6 and whiB7 are
upregulated in the early or late hypoxic response. Of the whiB genes, whiB7
is most upregulated in the macrophage with a 13 fold induction while being
80 fold induced by antibiotics that bind the 30S ribosomal unit [288]. WhiB3
senses NO and O2 via its iron-sulphur cluster [279] and regulates genes in-
volved in assimilation of propionate, a by-product of cholesterol degradation,
into virulence lipids [2, 412, 454, 543]. Virulence lipids regulated by WhiB3
include sulfolipids, diacyltrehaloses and polyacyltrehaloses, which results in
both higher pro- and anti-inflammatory cytokine levels and function as re-
dox sync [181, 454]. WhiB3, PhoP and Lsr2 bind to and regulate the whiB3
operon. MprAB might induce whiB3 through upregulation of Rv0081, which
was predicted to induce the whiB3 operon [181]. In addition, WhiB3 together
with DevSTR regulates expression of tgs1 which is needed for the produc-
tion of triacylglycerol, a storage lipid without which Mtb cannot resuscitate
from dormancy [262, 279, 427]. WhiB1 is associated with resuscitation as it
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FIGURE 4.2: WhiB1-7 transcriptional response to environmental stresses. Proteins
from the WhiB family are presented in the squares. The circles in the top indicate
environmental cues (O2, NO, cAMP availability) or infection stages (initial or long
term hypoxic response). Squares represent different environments (mouse lung and
JJ774 macrophage like cells). Arrows indicated regulation (green for induction, red for
inhibition of transcription) with the line width indicating the strength of the interaction
based on the fold change of their transcript level in a given conditions [288, 542].

induces transcription of whib1, rpfA, ahpC and groEL2 in the absence of NO
upon upregulation of WhiB1 by cAMP-CRP [460]. Interestingly, WhiB1 also
interacts with GlgB, which is essential for optimal growth of Mtb, by reducing
intramolecular disulphide bonds [94, 460, 542].

For a full review of WhiB proteins we refer to the excellent paper by Lars-
son et al. [288]. For a review of the function of WhiB like proteins and a
network view of WhiB1-3 regulated genes and their connection to other viru-
lence factors such as cAMP and CRP we refer to the review by Fei Zheng et
al. [542]. An overview of WhiB regulators and the environmental cues they
respond to can be found in Figure 4.2.

Two highly regulated virulence systems are EspACD, involved in phago-
somal rupture and GroEL2, an abundant chaperonin involved in blocking
apoptosis. Regulation of GroEL2 is summarized in Figure 4.3. GroEL2 is a
highly antigenic gene and is associated with increased release of IL-10 and
TNF-α which is also associated with cAMP secretion into the cytoplasm of the
macrophage [5, 32, 188, 257, 473]. GroEL2 forms a dimer and is normally as-
sociated to the cell wall. However, Hip1 cleaves cell wall associated GroEL2
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to form monomers that are able to cross the phagosome membrane and in-
hibit apoptosis by interacting with mitochondrial mortalin [251, 349]. In this
way, Hip1 modulates the macrophage responses by limiting macrophage ac-
tivation and dampening the activation of TLR2-dependent pro-inflammatory
responses [349]. Interestingly, Hip1 has also been reported to function as li-
pase, making the proteolytic function of Hip1 somewhat disputed [174]. Mtb
inhibits apoptosis of the macrophage through aggregation of mitochondria
around the phagosome and increased activation of mitochondria resulting in
limited cytochrome C release, an important inducer of apoptosis [243].

FIGURE 4.3: Regulation of GroEL2. Squares represent proteins, circles represent pools
of simple chemicals, environmental cues or factors. Green lines indicate induction of
transcription while red lines indicate inhibition of transcription. Black lines indicate
causal effects.

CMR and HrcA positively regulate groEL2 expression upon acidic and
anaerobic stress [473, 476]. CRP induces whiB1 expression in presence of cAMP
while WhiB1 represses its own operon as well as GroEL2 in the presence of
NO [4, 473]. GroEL2 is therefore only expressed in the presence of cAMP or
pH and redox responsive transcription factor CMR or heat stress, while NO
is absent (Figure 4.3). GroEL2 expression is induced 24 h post infection but
not at 2 h after infection while other CMR regulated genes, like Rv1265 and
PE_PGRS6, are induced at 2 h post-infection [189].
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Phagosomal Rupture and Pore Formation
The second main virulence strategy deployed by Mtb is phagosomal rupture.
A model of regulation of pore formation can be found in Figure 4.4.

ESX-1 and ESX-1 secreted proteins EsxA (ESAT-6) and EsxB (CFP-10) have
been implicated in phagosomal rupture of many Mycobateria such as M. mar-
inum, M. kansii and Mtb [30, 174, 301, 459]. The virulence lipid phthiocerol
dimycocerosates (PDIM) and EsxA from Mtb were shown to interact with
the host cell membrane and in concert, induce phagosome membrane dam-
age and rupture in infected macrophages [30, 177]. A recent study reported
that many claims about pore formation at neutral pH are due to contami-
nation with detergent from the washing step [115]. The same study found
membrane-lysing capabilities for EsxA only to occur below pH 5, to be con-
tact dependent and accompanied by gross membrane disruptions rather than
discrete pores. For the sake of simplicity, we refer here to the process of cy-
tosolic access as phagosomal rupture although more research is needed to find
out if cytosolic access is only achieved through lesions or also through for-
mation of pores. Additionally there are reports of Mtb and other Mycobacteria
to escape the phagosome [244]. However, the data generate by electron mi-
croscopy—the only direct approach—remains controversial.

The ESX-1 secretion system is involved in secretion of virulence proteins
among which those shown to be involved in pore formation and phagoso-
mal rupture EsxA (ESAT-6) and EsxB (CFP-10), secretion associated proteins
EspA-D, EspF and secreted immune modulating PE and PPE proteins [111,
136, 142, 451]. Although EsxB is the main pore forming protein, other ESX-1
secreted genes are required for EsxB secretion and proper functioning of the
ESX-1 secretion machinery. EspD stabilizes the extracellular levels of EspA
and EspC and it is required for EsxA secretion but does not require ESX-1 for
its own secretion [104]. Secretion of EspA, EspC, EsxA is codependent on each
other, suggesting they might be secreted as a multimeric complex or that they
are part of the secretion machinery itself [175, 241]. This theory is supported
by a study showing that EspA forms dimers by disulphide bond formation
after secretion; disruption of this disulphide bond affects cell wall stability as
well as the functioning of the whole ESX-1 secretion system [184]. Recently,
an EspC-multimeric complex was observed to form filamentous structure that
could represent a secretion needle [29]. Inactivation of MyCP1 protease causes
hyper-activation of ESX-1 while protease inhibition leads to attenuated viru-
lence during chronic infection [306, 529]. A balanced activation and deactiva-
tion of ESX-1 through MycP1 proteolysis of EspB is required during chronic
infection. MyCP1 and MyCP5 are required for stability of the ESX-1 and ESX-
5 secretion complex respectively [525]. Without ESX-1, Mtb is unable to dis-
rupt the phagosome membrane and make contact with the cytosol, leading to
highly diminished pathogenicity [111].

ESX-1 and secreted factors EsxA and EsxB are regulated by the two-compo-
nent systems PhoPR, previously mentioned. The importance of PhoP for viru-
lence was confirmed in knockout studies that showed phoP knockout mutants
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FIGURE 4.4: Regulation of pore formation. The circles represent environmental con-
ditions. Arrows indicated regulation (green for induction, red for inhibition of tran-
scription) with dashed lines for uncertain effects. Regulators are depicted in green,
proteins and other molecules dark blue while operons are depicted in squares.

to be attenuated in mouse bone marrow derived macrophages, lungs, livers
and spleen [456]. A single point mutation in phoP in Mtb H37Ra decreases the
DNA affinity of PhoP and strongly contributes to the reduced virulence of this
strain [387]. PhoPR regulated genes are upregulated in acidic and oxidative
conditions encountered during the first two days of infection [419]. Recent
studies show that PhoP interacts with SigE, which is upregulated in acidic pH
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and upon cell stress during the first three days of infection [41, 419]. Addition-
ally, polyphosphate was needed for normal transcription of phoP as well as for
transcriptional regulation of sigE by MprAB, although these results could not
be reproduced [455, 481]. PhoP/R influences transcription of some 80 (accord-
ing to some sources up to 150 [76]) genes directly as well as the transcription of
a large number of genes indirectly via upregulation of WhiB6, EspR, DevS/R
and WhiB3 [181, 201].

EspR is a transcriptional regulator upregulated by PhoP. EspR induces
transcription of the espACD (Rv3612-16c) operon which is essential for phago-
somal rupture and potential escape from the phago(-lyso)some [104, 184, 280].
PhoP, therefore, controls, directly (espB/E-L) or indirectly (espA/C/D), the 13
Esp proteins secreted by ESX-1 [61, 206, 280]. Recently it was found that
holo-WhiB6 increases transcription of its own operon, the ESX-1 regulon and
suppressed the DevR regulon, while apo-WhiB6 formed in anaerobic condi-
tions and by prolonged exposure to NO, suppresses the ESX-1 regulon and
induces the DevR dormancy regulon [105]. Interestingly, gene expression of
EsxB by WhiB6 was highly induced after 30-min of NO exposure, decreased
at 60 min and is highly reduced after 3 h of exposure to NO, indicating a short
but intense activation of espACD by holo-WhiB6. Additionally binding sites
for WhiB6 and Rv0081, a transcriptional factor regulated by MprAB, were pre-
dicted upstream of espACD [379]. These results suggest WhiB6, which is in-
duced by PhoPR and MntR, plays an essential role in the regulation of phago-
somal rupture and dormancy.

Induction of transcription of espACD by EspR requires the presence of
PhoP [280]. In addition, MprAB, Lsr2 and CRP bind to the promotor region of
espACD operon. Lsr2 represses transcription of both the espACD and the ESX-
1 operon [379], while CRP binding inhibits expression of espACD [256]. Lsr2
binds to AT rich regions in the DNA, mostly virulence genes and is required
for adaptation to extreme oxygen conditions [113, 179]. We hypothesize it is
likely that Lsr2 represses the operon containing ESX-1 genes and espACD in
oxidative conditions. This could serve to avoid further aggravation of the im-
mune response. MprAB functions as a repressor of the espACD operon in cel-
lular stress conditions, however MprA/B is also required for full expression
of espACD. It is plausible to assume both positive and negative regulation by
MprAB occurs based on the presence of multiple binding sites for MprA and
two transcriptional start in the espACD operon [379].

Like the post-translational activation of GroEL2 by HiP1, membrane lysing
capability of EsxA is activated only upon dissociation of EsxA from EsxB
in acidic environment (pH 4–5) encountered when the phagosome matures.
Acetylation of proteins in Mtb is cAMP dependent [174]. Acetylation im-
proves dissociation of EsxA from EsxB at higher pH, a model where acety-
lation leads to reduced virulence was proposed [250]. Taken together, these
studies indicate pore formation is strictly regulated, most likely only occurs
when cAMP is depleted (no cAMP-CRP), might be inhibited by sudden changes
in oxidative conditions (Lsr2), the phagosome acidifies and become hypoxic



4

Chapter 4. Regulation of three virulence strategies of M. tuberculosis 91

(PhoPR) and pore formation is transiently induced by WhiB6 upon NO sens-
ing [105]. MprAB further modifies activation of espACD, most likely both pos-
itively upon initial cell damage and negatively after prolonged cell stress and
accumulation of polyphosphate, as indicated in Figure 4.2.

It should be mentioned that in addition to their role as regulators, Lsr2,
CRP and EspR have also been characterized as nucleoid-associated proteins
and as such might serve additional functions such as structuring the organi-
zation of the chromosome and, as has been shown for the ESX-1 and espACD
operon, protecting DNA region from oxygen radicals [66, 179, 256].

Dormancy and Modulation of Granuloma Formation
The third virulence strategy deployed by Mtb is onset of dormancy. Dormancy
is a non-replicating and metabolically near inactive state at which Mtb is im-
mune to most drugs and can survive for decades [191, 262]. Dormancy occurs
upon formation of mostly hypoxic granulomas [500]. Immune modulation
that stimulates granuloma formation will therefore be discussed as a part of
the dormancy virulence strategy.

When Mtb runs out of cAMP to secrete thereby suppressing phagosome
lysosome fusion, the macrophages phagosome will fuse with late endosomes
and lysosomes. As a result, the phagosome becomes increasingly hostile with
lower pH, production of oxygen radicals and NO and fusion with vesicles
containing lysozymes. In contrast, conditions encountered in granulomas are
slightly more favourable for Mtb. Granulomas have reduced capacity to form
oxidative radicals [442].

Mtb stimulates TNF-α production which leads to granuloma formation
among others through secretion of cAMP into the cytosol [121, 402, 428]. A
number of studies indicate that granuloma may be dispensable for prevent-
ing bacterial dissemination and may actually contribute to Mtb persistence
and shield Mtb from more successful immune cells [373, 442, 449]. Accord-
ing to some models, Mtb containing granuloma’s contain two types of macro-
phages: classically activated and alternatively activated [449]. Mtb shifts the
macrophage population within the granuloma from being classically activated
to alternatively activated macrophage which produce more anti-inflammatory
cytokines (TGF-β, IL-10) and arginase. These diminish the amount of arginine
available to iNOS, which results in reduced NO production [321, 442, 449].
A balance of pro-inflammatory and anti-inflammatory response via stimula-
tion of TNF-α and IFN-γ production is needed for granuloma formation while
IL-10 is the main negative regulator for this response, inhibiting formation of
dense and hypoxic mature fibrotic granuloma’s [121, 449]. Moreover, parame-
ter sensitivity analysis for a granuloma model, showed IL-10 had the strongest
influence on myofibroblast numbers at 300 days post infection and indicated
IL-10 to play a major role in preventing differentiation of immune cells needed
to develop protective immunity [121, 449].

A number of regulators allow Mtb to sense and adapt to hypoxia and mat-
uration of the phagosome. The most important of these regulators is the
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two-component regulator DevRST which regulate genes coding for proteins
that help Mtb prepare for dormancy and subsequent resuscitation [100, 187,
295]. A visual representation of DevRST response to environmental cues is
present as part of Supplementary File 1. Both DevS and DevT can activate
the DevR regulon through phosphorylation of DevR, which autoregulates its
own operon through cooperative binding to two binding sites [100, 101, 187,
445]. DevT provides initial activation of the DevR regulon through phospho-
rylation of DevR and has the strongest sensitivity to CO and a weaker binding
to NO and O2 compared to DevS. DevS is sufficient for DevR activation after
5 days of infection [228, 277]. DevS phosphorylates DevR even in the pres-
ence of small concentrations of NO, negatively regulates the DevR regulon
through phosphatase activity in the presence of O2 while positively regulat-
ing the DevR regulon in reducing conditions [229, 265, 277].

Interestingly, even under non-inducing conditions and as such no phos-
phorylation of DevR, the DevR regulon is activated upon high enough con-
centrations of DevR, providing a possible explanation for enduring induction
of the DevR regulon which might occur after prolonged autoactivation of its
own regulon [445]. Among DevR regulated genes there are a few types of
regulation. While some genes are strongly upregulated within a few hours of
infection others are only mildly induced after 12–24 h in hypoxic and high NO
conditions [101]. DevR and other two-component regulators can fine tune ex-
pression of genes through the presence of multiple binding sites and through
phosphorylation which stimulates cooperative binding [100].

CO is released by the enzymatic activity of heme oxygenase-1 (HO-1) in
lungs infected by Mtb [278, 448]. CO is an important dormancy inducer. Inter-
estingly, Mtb has a unique heme scavenging and degrading systems that does
not produce CO allowing Mtb to degrade heme without inducing the immune
response or its own dormancy regulon.

Interestingly, there is evidence for two DevR regulated proteins to be in-
volved in stabilizing the 30S ribosomal units under hypoxic conditions, while
slowing down translation and protein synthesis in the process [86, 500]. Mtb
uses lipids such as cholesterol as primary nutrient in this phase of infection
via genes regulated by KstR and IdeR [181, 412], while increasing production
of triacylglyceride (TAG) via tgs1 which is under control of DevR and Whib3
[279].

Protein-protein interaction was observed between DevT and NarL, a lone
two-component response regulator involved in nitrate and nitrite respiration
in Escherechia coli [253, 292, 322]. Although the genes regulated by NarL in Mtb
are unknown, we argue it is plausible that NarL is involved in regulation of
nirB, narU, narX, narU, nuoB that are currently thought to be part of the DevR
regulon.

NO is produced in the maturing phagosome and is an important dor-
mancy cue sensed by DevT and DevS. Mtb expresses two truncated heme
proteins, GlbN and GlbO, that help it detoxify from nitrate containing oxy-
gen radicals such as NO while residing in the macrophage [26, 252, 350, 504].
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Interestingly, GlbN is co-transcribed with lpRl coding for Lipoprotein LprI,
which Acts as a lysozyme inhibitor [440]. The GlbN-lpR1 Activated isoniazid
inhibits truncated haemoglobin N that protects against reactive nitrogen and
oxygen species as well as AcpM, which is required for mycolic-acid produc-
tion [27, 215, 307, 390]. NO was found to help Mtb to survive in hypoxic and
acidic conditions through anaerobic respiration [253, 486]. In addition, nitrate
respiration plays an important role in dormancy and protection against hy-
poxic and acidic stress [267, 486].

Although DevRST and WhiB3 are involved in the preparation for dor-
mancy, the enduring hypoxic response measured in a devR knockout mutant
showed 230 genes to be differentially expressed with roughly half of them up-
regulated in in the first day of hypoxia and the other half only upregulated at
4 and 7 days of hypoxia [424]. These results indicate many genes involved in
the enduring hypoxia response are not regulated by DevR. Resuscitation from
dormancy is more elusive and less studied than dormancy. Resuscitation in-
volves ClgR and both SigH and SigE are upregulated upon reaeration [510].
Also cAMP-CRP plays a role in resuscitation as it upregulates rpfA one of the
five resuscitation promoting factors [4, 212, 540].

Success through Regulation of Virulence Strategies

Mtb anticipates changes in the interaction with the host by upregulating both
internal and external sensors and regulators involved in sensing progression
of the immune response. This allows the bacteria to adjust more quickly to
progression of the immune response. External sensors involved in survival
in the macrophage consists mostly of two-component regulators [76] (such
as DevRST, PhoPR, MprAB, SenX3-RegX3, NarL) while for internal sensors,
WhiB family proteins and regulators such as CRP and CMR are used. These
sensors and regulators appear interconnected, thus forming a single regula-
tory cascade that controls the three virulence strategies, as represented in Fig-
ure 4.5. This regulatory cascade integrates many internal (cAMP, Mn, Mg,
oxidative conditions and presence of NO) and external environmental cues
(phagosome pH or cell wall damage) for fine-tuned regulation of key viru-
lence systems. Examples of such virulence systems downstream this cascade
are GroEL2, ESX-1, EsxAB and EspACD. Pore formation by EsxA depends
on the regulation of ESX-1 by PhoP, Lsr2 and WhiB6 and on regulation of
EspACD by Lsr2, EspR, PhoPR, MprAB, WhiB6 and Rv0081. Post translation-
ally, pore formation by EsxA is regulated by proteolytic activity of MycP1,
acetylation of EsxA and dissociation of EsxA-EsxB upon acidification of the
phagosome [66, 105, 113, 174, 179, 250, 256, 379, 452, 459]. Similarly, GroEL2 is
regulated by CRP, WhiB1, HrCA and Mg2+ starvation and post-translationally
regulated by proteolytic cleavage by Hip1 [4, 189, 251, 349, 473, 476].

There is a great amount of overlap in this cascade, so that multiple envi-
ronmental signals are considered in the regulation of these genes, as indicated
in Figure 4.5. For example, some PhoPR regulated genes are predicted to have
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FIGURE 4.5: Overview of the regulatory cascade that integrates environmental cues
to active the immune modulation, dormancy and phagosomal rupture virulence
strategies. Arrows indicated regulation (green for induction, red for inhibition of tran-
scription) with dashed lines for uncertain effects. Regulators are depicted in green,
proteins and other molecules dark blue while operons are depicted in squares. The
large arrow on the top represents the progression of the immune response.

cAMP-CRP binding sites [33]. These genes are upregulated upon oxidative
stress and low pH but suppressed in the presence of cAMP-CRP, as is the
case for espACD [411]. Some PhoPR regulated genes are also regulated by De-
vRST, WhiB3 and by MprAB. An even larger overlap exists in genes regulated
by DevRST and MprAB, indicating integration of CO, NO, hypoxia and cell
stress in the regulation of these genes [77, 377, 378]. We argue that based on
the overlapping regulation of the three virulence strategies, these strategies
extend and overlap each other. The order of activation of these strategies is
likely to vary depending on the dynamics between Mtb and the host. Timing
of specific virulence strategies also vary for different Mtb strains [244]. Some
strains gain cytosolic access within hours of phagocytosis while others require
3–10 days [244, 452].

Pore or lesion formation is linked to immune modulation. Cytosolic access
is need for secretion of cAMP and other immune modulating factors, such as
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GroEL2, into the macrophage cytosol [244]. There are still many unanswered
questions regarding the exact role and regulation of GroEL2. Firstly, it is un-
known at which conditions proteolysis of GroEL2 by Hip1 (Rv2224c) occurs.
Secondly, Hip1 was reported to mainly function as lipase in one study [174],
further research is needed to confirm whether GroEL2 is a direct substrate
of Hip1. Strict regulation of GroEL2 suggests it to have an important role in
virulence.

Interestingly, there are many parallels in regulation of virulence systems
between Mtb and other pathogens. Understanding Mtb as one of the most
successful intracellular pathogens can therefore provide insight in common
strategies deployed by intracellular pathogens. For instance, positive regula-
tion of virulence genes by PhoPR and suppression by cAMP-CRP appears to
occur in more pathogens. In Y. pestis, PhoP directly binds to and transcription-
ally activates crp and cyA leading to merging of the PhoPQ and CRP-cAMP
regulon [541]. Similarly, a major virulence island is positively regulated by
PhoP while being suppressed by cAMP-CRP in S. typhimurium [247]. In Mtb,
PhoPR regulates pro-inflammatory virulence genes such as the ESX-1 operon
as well as genes involved in protecting against oxidative stress, when cAMP
is depleted. cAMP does not only suppress phagosome maturation but also
acts as an internal sensor of phagosome maturation, through pH dependent
secretion of cAMP.

Some aspects in the regulation of PhoPR and cAMP in Mtb require more
research. Firstly, the function of multiple IdeR binding sites upstream of the
phoPR suggests complex regulation of the phoPR operon by IdeR and thus by
iron bioavailability. Secondly, the exact cue for activation of PhoP remains un-
known. Upregulation of phoPR in acidic conditions has been observed as well
as under Mg2+ starvation, however this later observation could not be repro-
duced [2]. Transcriptional analysis of Mtb showed many genes in the PhoPR
regulon to be upregulated during the first hours of infection (20 min to 2 h)
while the phagosome acidified from pH of 6.5 to pH 5.5 [418]. PhoPR stim-
ulates expression of aprABC, an Mtb specific pH sensing locus involved in
the regulation of among others a number of PhoP regulated genes [2]. These
results indicated PhoPR directly or indirectly senses pH. Recently, it was dis-
covered that PhoP interacts with acid inducible extracytoplasmic sigma fac-
tor SigE, providing a possible explanation for activation of the PhoP regulon
at low pH [41]. Extracytoplasmic sigma factors provide a means of regulat-
ing gene expression in response to various extracellular changes, hence their
name.

Secondly, we argue entrance of Mtb in the early phagosome is likely to lead
to higher abundance of Mn. Pathogenic Mycobacteria species such as Mtb and
M. avium, have high manganese concentrations at 1 and at 24 h after infec-
tion compared to non- pathogenic M. smegmatis [516]. Mn availability might
also be affected by Mramp, a pH dependent Mn H+ symporter with maximal
activity between pH 5.5 and 6.5 matching the conditions found in the early
phagosome. Mn is an important cofactor for cAMP synthesis and it is likely
to increase cAMP production in the early phagosome. cAMP-CRP and PhoPR
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co-regulate virulence genes directly or via regulators such as WhiB6, which
is linked to Mn deficiency. Based on the strong affinity of PhoP for Mn we
hypothesize Mn might play a role in both cAMP and PhoPR regulation [6,
380]. Depletion of Mn and secretion of cAMP might lead to de-repression of
cAMP-CRP suppressed genes such as espACD as well as activation of these
genes through PhoPR.

Thirdly, polyphosphate is needed for optimal PhoP activation [455]. Po-
lyphosphates are potent inhibitors of type III adenylyl cyclases in M. bovis
which agrees with the opposing roles of cAMP-CRP and PhoPR in respec-
tively inducing genes involved in the anti- and pro-inflammatory response
in Mtb and other pathogens. Polyphosphate is implicated in the activation
of PhoP and is part of one of two positive feedback loops in the regulation
of mprAB and sigE [41, 455, 481]. Polyphosphates kinase production is con-
served in all bacteria and is associated to induction of dormancy and acti-
vation of virulence genes in many pathogens [83]. Knockout polyphosphate
kinases ppk1 mutants, have reduced biofilm formation, are more susceptible
to drugs and are impaired in growth in guinea pigs [110, 455]. Interestingly,
SigE is involved in regulation of polyphosphate. MprAB and SigX3-RegX3, in-
duce transcription of sigE upon cell wall stress or phosphate starvation, while
anti sigma factor RseA binds to and neutralizes SigE in reducing conditions
[318, 430]. RseA is degraded by ClpC1P2-dependent proteolytic activity de-
pending on its phosphorylation by the eukaryotic-like Ser/Thr protein kinase
PknB [318]. SigE, polyphosphate and MprAB are involved in a double pos-
itive feedback loops through polyphosphate and ClpC1P2 of which a visual
model is provided by Manganelli et al. [318]. Polyphosphate functions as
phosphate donor for MprAB under low ATP condition. Additionally, SigE
regulates the transcription of the furA-katG operon in response to oxidative
stress in Mycobacteria [232]. SigE knockout strains are strongly attenuated and
a recent study shows a sigE knockout strain provide an even more effective
live vaccine than BCG [502]. Taken together, these studies indicate SigE plays
an important role in adapting to low pH, cell wall and oxidative stress through
upregulation furA-katG, activation of some PhoPR induced genes, MprAB and
inhibition of cAMP-CRP through polyphosphate production. The interplay of
SigE, polyphosphate and the hypothesized role of Mn in PhoPR and cAMP
regulation should be further investigated.

Another aspect we want to address is the link between IdeR, cAMP, choles-
terol degradation and phagosomal rupture. IdeR, KstR and KstR2 co-regulate
the cholesterol degradation pathway in M. bovis [412]. We suggest a similar
synergy between IdeR regulation and cholesterol degradation in Mtb. Tran-
scription of cholesterol degradation genes in Mtb is dependent on the pres-
ence of CyA [509]. Regulation of cholesterol degradation by IdeR and cAMP
would suggest access to cholesterol is associated to the initial stage of Mtb host
interaction when the iron pool is oxidized and cAMP is produced to avoid
phagosome maturation. Interestingly, EsxA and other pore forming toxins
specifically inserts themselves into phosphor lipid (phosphatidylcholine) and
cholesterol-containing liposomes [250, 305]. Giant foamy macrophages rich in
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cholesterol are at the centre of Mtb containing granuloma’s that turn necrotic
[305, 316, 422, 442, 449]. Accumulation of cholesterol was shown to be essen-
tial for uptake of Mtb by the macrophage [186]. Additionally, cholesterol was
shown to increase association of TACO, a coat protein that prevents degrada-
tion of Mycobacteria upon fusion with lysosomes [186]. We argue that accu-
mulation of cholesterol in macrophages not only increases Mtb survival in the
phagosome by serving as carbon source but also might assists in phagosomal
rupture and possibly in escape from the phagosome.

In summary, in this review we provide an overview for understanding di-
valent metal homeostasis and their role in regulating three essential virulence
strategies of Mtb: immune modulation, dormancy and phagosomal rupture.
Sensors of environmental and internal cues, including divalent metal avail-
ability, form a single regulatory cascade that controls these three virulence
strategies. The role of polyphosphate, cAMP and manganese in this cascade
requires further investigation.
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Abstract
Background: Semantic web technologies have a tremendous potential for
the integration of heterogeneous data sets. Therefore, an increasing num-
ber of widely used biological resources are becoming available in the RDF
data model. There are however, no tools available that provide structural
overviews of these resources. Such structural overviews are essential to ef-
ficiently query these resources and to assess their structural integrity and de-
sign, thereby strengthening their use and potential.

Results: Here we present RDF2Graph, a tool that automatically recovers
the structure of an RDF resource. The generated overview allows to create
complex queries on these resources and to structurally validate newly created
resources.

Conclusion: RDF2Graph facilitates the creation of complex queries thereby
enabling access to knowledge stored across multiple RDF resources. RDF2-
Graph facilitates creation of high quality resources and resource descriptions,
which in turn increases usability of the semantic web technologies.
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Background

In the life sciences, high-throughput technologies deliver ever-growing
amounts of heterogeneous (meta) data at different scales, which are produced,
stored and analysed in both structured and semi-structured formats. Systems
Biology is an integrative discipline that uses various integration strategies to
model and discover properties of biological systems. Integration and analysis
of heterogeneous biological data and knowledge require efficient information
retrieval and management systems and Semantic Web technologies are de-
signed to meet this challenge [17].

The RDF data model is a mature W3C standard [79, 515] designed for
the integrated representation of heterogeneous information from disparate
sources and it is proving effective for creating and sharing biological data.
RDF is not a data format, but a data model for describing resources in the
form of self-descriptive subject, predicate and object triples that can be linked
in an RDF-graph. Integration of heterogeneous data from different sources
in a single graph relies on using retrievable controlled vocabularies, which
is essential to access and analyse integrated data [341]. Once data sources
are converted into the semantic Web, SPARQL[22, 396] can be used to query
multiple of these resources, simultaneously or consecutively, without further
modifying any of them.

Widely used biological resources such as Reactome, ChEBI and UniProt,
among other, [50, 119, 219, 254] have been transformed into the RDF data
model and the Bio2RDF [55] project has transformed a large set of additional
sources, such as the NCBI GenBank files [57], DrugBank [290] and InterPro
database [339]. Additionally, there are on-going efforts to develop tools pro-
viding results in this data model, such as the Semantic Annotation Platform
for Prokaryotes, SAPP, (J. Koehorst, J. van Dam et al. personal communication)
that provides genome functional annotation in the RDF data model.

These RDF resources can be readily queried with SPARQL. Constructing
SPARQL queries requires that the user has a mental representation of the un-
derlying structure of the resource. The structure of a resource is the set of
object types and their relationships, i.e. the explicit representation of the pred-
icates linking different classes. This structure represents the set of semantic
constraints embedded in the resource. In a biological database containing in-
formation on biochemical reactions, genes and their identifiers are linked to
proteins; proteins are linked to EC numbers; EC numbers are connected to
reactions that involve metabolites as products and substrates. To retrieve in-
formation pertaining metabolites and genes, the SPARQL query has to obey
the specific network topology linking these types of objects. RDF data sources
do not need a predefined scheme so that new data types can be added at any
time expanding the underlying structure. If the modifications in the underly-
ing structure generated by this new data are not known, linked information
cannot be retrieved. Not having a clear idea of the underlying structure makes
querying an RDF resource inefficient, time consuming, or even impossible.
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The structure of a resource can be either retrieved through manual queries
or it can be provided by the data publishers in the documentation of the re-
source. This structural information can be encoded using Web Ontology Lan-
guage (OWL) files [42]. OWL was created as a description logic language and
it is intended for automatic reasoning; nevertheless, its axioms can also be
used to construct a graphical overview of the described resource [96]. How-
ever, the OWL standard does not require all axioms necessary for such recon-
struction. Examples of necessary axioms not obligated by this standard are
object all values from and data all values from. In some of the resources created
by the Bio2RDF project these axioms (object all values from and data all values
from) are not provided. Furthermore, the ontology generation process is, at
best, semi-automatic, time consuming and error-prone. Errors might also ac-
cumulate due to the conversion code used to generate the RDF resource, as the
triple generating code can contain lexical errors in predicate definition such
as typos, inconsistent usage of upper and lower case, or misspelled words,
thereby populating a resource containing information on proteins with infor-
mation on “porteins”, which describes proteins associated to transmembrane
transport. These errors lead to descriptions of the intended content of the re-
source rather than of its actual content.

Shape Expressions (ShEx) is a standard to describe, validate and transform
RDF data. One of the goals of this standard is to create an easy to read lan-
guage for the validation of instance data, however, it is still being developed
and no final recommendation is yet available [69, 395, 468].

Computational tools able to reconstruct the structure of RDF resources are
thus required to i) facilitate query writing and to ii) enable data providers to
verify the structural integrity of their resource. To our knowledge, no such
tool, able to automatically recover the structure of the resource and the associ-
ated multiplicity of the predicates, exist. Semscape [470] is an already existing
Cytoscape [463] app that is able to retrieve to some extent the structure of
the resource. However, it has limited recovery and simplification capabilities,
leading to unreadable hairballs for larger structures. Furthermore, additional
statistical information about the classes and links is not retained. Here we
present RDF2Graph, a tool to automatically recover the structure of an RDF
resource and to generate a visualization, ShEx file and/or an OWL ontology
thereof. These can be used to write SPARQL queries or to verify (generated)
RDF resources.

Implementation

RDF2Graph performs two distinct processes to retrieve the structure of a re-
source. Initially, there is a recovery of all classes, predicates and unique type
links together with their associated statistics. In the second stage there is a sim-
plification step to arrive to a neat structural overview. A simplified overview
of the complete process is given in Figure 5.1.
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FIGURE 5.1: Overview of the structure recovery process. A) Recovery of the infor-
mation on predicates, classes, class properties, unique type links and class hierarchy B)
Simplification of the structure leading to a neat visualization by preventing the forma-
tion of an unreadable hairball.

A type link is defined as a link joining a subject class type to an object class
or value data type, via a predicate. A unique type link is defined as a unique
tuple: type of subject, predicate, (data)type of object. For the triple <:BRCA1,
:locatedOn, :chromosome17> the type link is <:Gene, :locatedOn, :Chromo-
some>. When considering the full resource, all type links <:Gene, :locatedOn,
:Chromosome> correspond to the same unique type link. In the triple <:Adam
:hasSon :Bob> the type link is <:Person, :hasSon, :Person>.

The multiplicity of a unique type link describes the number of instances con-
nected to each other. The forward multiplicity can be: i) One-to-one (also de-
noted: 1..1) each source instance has exactly one reference to the target; ii)
One-or-many (1..N) each source instance has one or more references to the tar-
get; iii) Zero-or-one (0..1) some source instances have at most one reference
to the target; iv) Zero-or-many (0..N) some source instances have one or even
more than one reference to the target. Similarly, for the reverse multiplicity
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the roles of target and source are inverted. In the previous examples, the for-
ward multiplicity of the unique type link <:Gene, :locatedOn, :Chromosome> is
(1:1) since each human gene is associated to one and only one chromosome,
whereas the reverse multiplicity is (1..N) since a chromosome contains many
genes. In the second case <:Person, :hasSon, :Person>, the forward multiplic-
ity is (0..N) since there is no limitation to the number of sons a person may
have; in this case the reverse multiplicity is (N=2..1) given that each son has
two parents.

The initial recovery process is performed through a series of SPARQL que-
ries on the selected endpoint. Detailed information about the SPARQL queries
and the queries themselves are provided in RDF2Graph’s documentation. The-
se queries can be adapted to change the introduced limitations and to cus-
tomise the tool for specific end points. The queries can be limited to reduce
the running time since this process can take between a few minutes for a re-
source with a million of triples, to several days for a resource with 16 billion
triples, such as the RDF version of UniProt, as described in the Results section.
However the limitation in the number of retrieved triples may lead to incom-
pleteness of the recovered structure, since some type links could be missed.
This may cause that for some unique type links not all type links are retrieved,
which can cause errors in the calculation of the multiplicities (forward and/or
reverse). It may also lead to some unique type links not being identified if no
type links associated to them are found. Therefore, we advise caution when
using these limitations.

After the initial recovery of type links and unique type links, a simplifica-
tion process follows, in which type links with a common parent class for either
the subject or object types are merged. These process proceeds in a pairwise
manner, so that at each iteration only two unique type links sharing either the
subject type or the object (data)type are considered. If more than two unique
type links are present, the first two are merged, and their result is combined
with the next one and so on until all have been considered. Therefore, only
two unique type links at a time are merged. Figure 5.2 represents the cases that
need to be considered when analysing two unique type links. In principle, other
cases involving the “sameAs” relationship could appear, but in our approach,
the “subClassOf” relationship also includes the “sameAs” relationship, which
reduces all possible cases to the ones represented in Figure 5.2.

This process also allows the identification of concept classes. A concept class
is defined as a class that has no instances and no subclasses with some in-
stances. A typical set of examples of concept classes are all the GO classes in
the GO database [28]. This concept is needed to support the exclusion of them
in the network view as they have little value for the structural overview and
will overcrowd the network visualization.

All classes identified in the recovery process and associated subclassOf links
are loaded into a memory based directed graph. This class tree is then used in
the merging process. During the merging process five steps are executed per
retrieved predicate. Step 1 is the initialization; step 2 performs the merging in
case A and steps 3 and 4 are used for case B, whereas case C is the combination
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FIGURE 5.2: Graph simplification by merging of links and classes. Overview of the
possible cases considered in the simplification step. *: Classes X1 and X2 are either
equal to X or (indirect) subClassOf X, same applies to Y1, Y2 and Y. A) Merging of two
links in Class X that link to 2 subclasses of Class Y . B) Merging of 2 links in 2 subclasses
of class X. C) Merging of two links in 2 subclasses of class X that link to 2 subclasses of
ClassY.

of cases A and B from Figure 5.2; step 5 is the fictionalization step.
The following definitions of shared types and child of classes are used. Two

types are shared if i) both are the same, ii) one is a parent class of the other, or
iii) both have a common parent class in the class tree. A child of class is defined
as follows: Class K is a a child of class L if either class K is equal to class L or
class K is a (non)direct subclass of class L.
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• Step 1: For each unique type link found for the predicate currently pro-
cessed a temporary link is added to the type of subject, which links to the
(data) type of object. In this way a temporary link between both types is
defined.

• Step 2: For each class in the class tree all temporary links are copied to
the respective parent class(es). Then, occurrences of case A from Figure
5.2 are simplified by performing a search for pairs of temporary links
which both point to a shared type. If found, the temporary links are
merged and replaced by a new temporary link pointing to the common
parent class.

• Step 3: This step is executed as a per class recursion breadth first process
over the class tree. For each temporary link of the currently processed
class the number of direct ’child’ classes is counted if they have at least
one link pointing to a type that is a child of the type pointed by the cur-
rently processed temporary link. When this count is one, the currently
processed temporary link is removed from the currently processed class.

• Step 4: This step is executed as a per class depth first process over the
class tree. Each temporary link pointing to a type that is a child of the
type pointed by any of the links in the parent classes of the currently
processed class are removed.

• Step 5: The remaining temporary links and the newly calculated unique
type links are stored. The temporary links are cleaned from the class tree
to enable the system to process the next predicate.

Results are stored in a local triple store that contains the unique type links
and their count (number of type links associated to them) together with their
forward and reverse multiplicities.

To store information for the new concept of unique type links we developed
a new ontology. Figure 5.3 depicts the elements within this ontology that are
related to storage of the unique type links. Each unique type link links to an
object type which is either: i) a class; ii) a data type, such as xsd:integer; iii)
external, a subject in another resource; or iv) invalid, a subject with no defined
type. In each class the class property groups the associated unique type links
per predicate and links them to the rdfs:Property. Additionally, the number of
occurrences are stored for each class and predicate.

Results
RDF2Graph recovers the structure of an RDF triplestore endowed with a
SPARQL 1.1 endpoint. The results are stored in a local triple store and can be
exported to RDF, XGMML, OWL or ShEx files.
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FIGURE 5.3: RDF2Graph ontology. A simplified UML diagram of the RDF2Graph
ontology.

The RDF export contains the information on the unique type links, their
count (number of type links associated to them) and their multiplicities (for-
ward and reverse) as stored in the local triple store. The XGMML file provides
a graphical format for a network representation that can be opened with tools
such as Cytoscape. In the network each node represents a type and edges rep-
resents either unique type links or subClassOf relationships, see Figure 5.4 for
additional details. The associated additional information (instance counts, for-
ward/reverse multiplicity and full IRI) are stored as node and edge attributes.
The XGMML exporter reports on the unique type links for which the multiplic-
ity could not be determined. These correspond to unique type links cesing to
an invalid subject involved in a set of triples but without a defined type. This
can be seen as a measure of the structural integrity of the resource. Addition-
ally, the XGMML exporter reports on i) predicates joined to an invalid subject
with properties but no class type definition, and ii) predicates also defined as
classes, for instance using CDS (coding sequence) both as a class and a predi-
cate

The OWL representation of the recovered structure contains the following
definition and axioms: i) object and data properties, including domain and
range definitions, ii) class definition, including the all values from restrictions
to express type links with associated forward and, optionally, inverse cardinal-
ities, and iii) the subclass of definitions from the original recovered resource.

The ShEx compact format contains the shape definitions with the associ-
ated class properties, type links and forward multiplicities. If a class property
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heads indicate the multiplicity of the links (see legend in figure). For clarity nodes
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contains multiple type links an or group is included. Even though ShEx is not
yet a fully mature standard, it provides better representation of the unique type
links than other standards such as OWL. This representation is also more com-
pact and intuitive than the generally used representations of OWL.

Use cases
We successfully applied RDF2Graph to recover the structure of UniProt, EBI
Reactome (BioPAX level 3), ChEBI and the RDF dataset generated by SAPP,
a semantic, web based, genome annotation tool currently being developed in
our group. The statistics of this process are presented in Table 5.1.

The RDF version of the UniProt database contains more than 16 billion
triples which is more than one thousand times the number of triples present
in the RDF version of Reactome. Therefore there are huge differences in the
time required for the recovery process. More than 99% of the CPU time spent
in the recovery process is consumed by the SPARQL endpoint.

Given the size of the UniProt resource, we had to impose a limitation on
the number of considered type links per predicate (100.000). With this limi-
tation the recovery process required more than 740 hours (4 days on 8 cores
on a 2.3 GHz computer). On the other hand, the time required to retrieve the
structure of Reactome was of only half an hour. This shows that the relation-
ship between the recovery time and the number of triples is non linear. This
nonlinearity can be associated to the higher memory requirements associated
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with a larger resource but also to the intrinsic differences in the structure of
the resource, given by the different values of the total number of unique type
links and the average number of type links per class property (see Table 5.1).

TABLE 5.1: Summary statistics. Summarizing statistics of the recovery process and
recovered structured for UniProt RDF, ChEBI RDF, Reactome BioPAX level 3 and local
resource generated by the SAPP tool.

{UniProt} {ChEBI} {Reactome} {SAPP}
#unique triples
in RDF resource 16.313.400.275 425.256.854 14.285.722 359.141
CPU time needed
for the recovery 742 h 6,5 h 0,5 h 2 min
#triples in
local triplestore

before simplification 2.507.483 2.854.295 2.411 1410
after simplification 2.504.259 2.848.491 964 912

#classes
with instances 169 123 45 17
without instances 1.232.947 1.423.143 25 1

# unique type links
before simplification 724 942 254 137
after simplification 302 187 69 78

multiplicity of
unique type links
after simplification

1..1 53 77 29 46
1..n 11 1 5 2
0..n 104 27 17 4
0..1 128 78 18 26
not determined 6 4 0 0

Even though the UniProt RDF resource has around 40 times more triples
than ChEBI RDF, they have a similar number of triples in the local resource.
This is due to the high number of concept classes and subClassOf relationships
that can be found in ChEBI, for example the subClassOf relationship associ-
ated with galactose is an aldohexose.

The number of triples in the local triple store does not necessarily grow
with the number of triples in the resource, since the number of triples in the
local triple store is associated with the complexity and the number of classes in
the resource, but not with the number of occurrences of each unique type link.
Table 5.1 shows that the number of triples in the local triple store is roughly
equal to twice the number of classes in the resource plus eight times the num-
ber of unique type links. The number of classes and relationships that can be
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recovered is limited by the amount of triples that the local triple store can han-
dle. In our case (Jena TDB) that would correspond to an upper limit of roughly
107 unique type links and classes. So, in practice, the only limitations are given
by the restrictions on the SPARQL endpoint imposed by data providers and
not by the storage capacity in the local triple store.

Figures 5.4, 5.5, 5.6 and 5.7 provide graphical representations of the re-
trieved structures for these resources (SAPP, ChEBI UniProt and Reactome)
respectively. The nodes in these representations correspond to classes with
instances, whereas the edges represent the unique type links with determined
multiplicity. See additional files for additional output of RDF2Graph regard-
ing these resources (OWL, XGMML, ShEx and the RDF of the local store).
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FIGURE 5.6: UniProt database. Network based view generated using RDF2Graph of
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FIGURE 5.7: Reactome database. A) Network based view generated using RDF2Graph
of the Reactome (BioPAX level 3) resource. See figure 5.4 for the legend. An interactive
XGMML file is included in additional files. Edges used for the query in B are high-
lighted. Numbers on highlighted edges correspond to line numbers in B; B) SPARQL
query to extract the names of all pathways associated to a given gene identifier.
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The simplification process reduces the number of unique type links from
40% to 80% in the selected resources. Thereby providing a neat structural
overview that can be browsed for query building.

There is a small subset of unique type links for which the multiplicity could
not be determined. These correspond to unique type links referencing to an
invalid subject involved in a set of triples but without a defined type. These
links were identified when using the XGMML exporter.

We used RDF2Graph to incrementally develop and improve SAPP, our se-
mantic annotation tool. For each incremental improvement we recovered the
structure and used the graphical overview to assess the integrity of the re-
source and compare its intended and the actual content. We manually veri-
fied every class, associated properties and type links to identify and solve an
number of issues, such as capitalization errors, predicate naming errors, faulty
URI’s, broken links, missing attributes and type definitions, unwanted inter-
connections and faulty multiplicities For example, a broken link will appear
as a reference to an external resource where a reference to another class would
be expected. A predicate naming error in one of the RDF exporter functions
will cause some subjects to be in triples with the “wrong” predicate and will
change the multiplicity from 1..1 to 0..1. Finally, the OWL exporter was used
to generate an OWL file requiring little manual curation to complete it.

Similarly we verified the structure of the UniProt RDF resource. The XG-
MML exported reported 24 errors, most of them associated to subjects with
the same missing class definition (see additional files). Additionally we manu-
ally compared the provided OWL file with the one created by the RDF2Graph
OWL exporter. We detected a set of practical issues such as missing type defi-
nitions, references linking the wrong type of objects, incorrect multiplicities
and mismatches between the descriptive OWL file and the actual content.
These have been reported and will result in an improvement of the quality
of this important resource.

The recovered structures and their associated statistics about classes, pred-
icates and type links were successfully used to create multiple complex queries.
For instance, the retrieved structure of Reactome is depicted in Figure 5.7,
panel A. Using this structural information we created the query in Figure 5.7,
panel B. This query extracts from Reactome the names of all pathways associ-
ated to a specific gene identifier. Through the use of the structural overview
we were able to find and follow multiple links from the gene or protein of
interest to the associated pathways.

Discussion
RDF resources of biological data are on-going efforts, producing resources
that are constantly updated and incorporating additional data sets. Detailed
knowledge of the current structure is essential to query and validate these re-
sources and RDF2Graph can be used to understand and improve the quality
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of an RDF resource. This becomes even more important when the goal is to
perform a federated query that spans multiple RDF resources.

Our tool is complementary to existing tools that help create queries such
as SPARQL assist [327], Visor [392] iSPARQL [366] and SPARQLGraph [436],
these tools are based on local instance or class relationship browsing, or on
query suggestion and completion or on a graphical representation of the
SPARQL query.

RDF2Graph can be used to inspect instance data (also called A box ) and
semi automatically generate a descriptive OWL ontology. However, it does
not check or quantify the quality of the underlying class structure and de-
scriptions (also called T box). Nevertheless, there exist several tools such as
OntoQA [488], OOPS [393] and OQuaRE [151]) to perform these tasks.

In the provided use cases we performed a manual structural integrity ver-
ification. If needed integrity constraint (IC) validation [388] can be used to au-
tomatically perform this task. However, for this task an OWL file with all the
required axioms is needed. Such an OWL can be generated with RDF2Graph.
However, the performance on the generated OWL files upon IC validation
implemented by Stardog has not been extensively tested. Additionally ShEx
validators, when operational, can be used for this automatic validation, how-
ever the output of RDF2Graph ShEx exporter will need to be adapted to the
latest definition of ShEx.

So far, RDF2Graph does not support the recovery of contextual links (RDF
quads) as they are not supported by the OWL standard although active re-
search is being done to solve this issue [355].

Conclusion
RDF2Graph facilitates the creation of high quality resource descriptions, which
in turn improves the quality of the resources themselves. It also facilitates the
creation of complex queries, therefore our tool will be helpful for improving
the usability of semantic web technologies, which is required for data inte-
gration in (computational) biology, systems biology and the emerging field of
semantic systems biology.

Availability and requirements

RDF2Graph is distributed under MIT license and it is freely available from
https://github.com/jessevdam/RDF2Graph. RDF2Graph runs under
Linux however, a virtual machine is also distributed with the version de-
scribed in this manuscript. Furthermore a Galaxy interface is available at
http://semantics.systemsbiology.nl/RDF2Graph/. The RDF resour-
ce size, in this case, is limited to 20.000.000 lines.

Maven 2 [20] is required for installation and the resulting jar can be ex-
ecuted with Java using bash or alike. In addition it requires Jena to host
the local temporary RDF store and Cytoscape (version 3.x) [463] to generate
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the network based overview. See the RDF2Graph manual enclosed in the Git
repository for more details.

Additional Files
Electronic supplementary material can be accessed at the on-line version of
Jesse CJ van Dam, Peter J Schaap, Vitor AP Martins dos Santos, and Maria
Suarez-Diez. "RDF2Graph a tool to recover, understand and validate the on-
tology of an RDF resource". In: Journal of biomedical semantics 6(1) 2015.
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Abstract
Background A standard structured format is used by the public sequence
databases to present genome annotations. A prerequisite for a direct func-
tional comparison is consistent annotation of the genetic elements with evi-
dence statements. However, the current format provides limited support for
data mining, hampering comparative analyses at large scale.

Results The provenance of a genome annotation describes the contextual
details and derivation history of the process that resulted in the annotation.
To enable interoperability of genome annotations, we have developed the
Genome Biology Ontology Language (GBOL) and associated infrastructure
(GBOL stack). GBOL is provenance aware and thus provides a consistent rep-
resentation of functional genome annotations linked to the provenance.

GBOL is modular in design, extendible and linked to existing ontologies.
The GBOL stack of supporting tools enforces consistency within and between
the GBOL definitions in the ontology (OWL) and the Shape Expressions (ShEx)
language describing the graph structure. Modules have been developed to se-
rialize the linked data (RDF) and to generate a plain text format files.

Conclusion The main rationale for applying formalized information mod-
els is to improve the exchange of information. GBOL uses and extends current
ontologies to provide a formal representation of genomic entities, along with
their properties and relations. The deliberate integration of data provenance
in the ontology enables review of automatically obtained genome annotations
at a large scale. The GBOL stack facilitates consistent usage of the ontology.
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Background

Advances in sequencing technologies have turned genomics into a data-rich
scientific discipline in which the total assembled and subsequently annotated
sequence data doubles every 30 months [158]. To support the growth in data
throughput, automated annotation algorithms have become an indispensable
supplement to manual annotation [437, 490] and currently, automatic annota-
tions in the UniProt database outnumber manual annotations 100-fold [492].

Functional genome comparison has been used to identify diagnostic mark-
ers, to develop effective treatments, and to understand genotype-phenotype
associations [12, 118, 153]. The volume and heterogeneity of genome anno-
tation data has created a unique type of big data challenge, namely how to
transform computational predicted annotations into actionable knowledge.
Tapping into these available resources is only efficiently done by computa-
tional means and requires a consistent interlinking of data so that data be-
comes Findable, Accessible, Interoperable and Reusable (FAIR) [524].

The format for sharing of public genome sequence annotation data has
been developed and is maintained by the International Nucleotide Sequence
Database Collaboration (INSDC) a long-standing foundational initiative that
operates between the DDBJ, EMBL-EBI and NCBI public repositories. How-
ever, tradeoffs between simplicity, human readability and representational
power left little support for interoperability, i.e. the ability of computer sys-
tems to directly make use of information. The /inference qualifier [240] pro-
vides a structured description of evidence that supports feature identification
or assignment. Thus, within the standard formats, data provenance of com-
putational annotations could be stored under this optional inference tag but
this tag is not designed to be used for contextual, element-wise provenance.

Currently, most annotations rely on computational predictions of struc-
ture or function, and the choice of thresholds for confidence scores becomes a
key consideration. Tracking the provenance of genome annotations becomes
essential for scientific reproducibility and to enable critical reexamination of
analyses. However, such meta-analysis is currently very time-consuming. Ef-
ficient meta-analysis would require a framework able to accommodate the
various types of annotations (e.g. gene prediction, homology, protein do-
mains) directly linked to the supporting statistical evidence. Presently, no
machine-readable infrastructure exists to directly query genome annotations
linked to the historical and contextual provenance. The World Wide Web con-
sortium provides the Semantic Web and the Resource Description Framework
(RDF) data model, supporting these requirements. For RDF, ontologies are
essential as they provide consistency in the meaning of data elements and in
the relationship between them [226].

In this respect, ontologies already exist for various aspects of biology [43].
The Sequence Ontology (SO) [154] was presented over 12 years ago and was
designed as a complete terminology of unambiguous terms related to genet-
ics. However, it was never intended to function as a file format or database
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schema, and provides no support for linked sets of data attributes. Further-
more, it has limited support for storing based-on provenance except for some
experimental codes. FALDO’s [68] only purpose is to unambiguously store ge-
netic locations on a sequence. The Synthetic Biology Open Language (SBOL)
[182] was successfully designed to describe complete synthetic constructs and
the interactions between each of the elements. None of these standards were
designed to consistently store feature predictions with evidence provenance
and therefore none of these tools provides a complete representation of the
genomic information linked to the provenance it is based on.

To meet the requirements and to ensure interoperability of computational
predictions, we developed an extendable provenance-centered infrastructure
for interoperable genome annotations. The here presented infrastructure con-
sists of two main elements; Firstly, the Genome Biology Ontology Language
(GBOL), which directly integrates evidence provenance for the whole dataset
and for each included element (dataset- and element- wise provenance). Sec-
ondly, the "GBOL stack" of enforcing tools facilitates the consistent usage of
ontologies. GBOL is modular in design, extendible and linked to existing on-
tologies. Empusa has been developed as part of the GBOL stack to ensure con-
sistency within and between ontology (OWL), the API and the Shape Expres-
sions (ShEx) describing the graph structure. This enables the use of SPARQL
queries to include contextual details in large scale functional analyses. Mod-
ules have been developed to serialize the linked data (RDF) and to generate a
plain text format files.

Results
Ontology structure
GBOL is a genome annotation ontology developed for the application of se-
mantic web technologies in genome annotation and mining. As such GBOL
provides the means to consistently describe computationally inferred genome
annotations of biological objects typically found in a genome sequence an-
notation data file in the public repositories. Additionally, it can describe the
linked data provenance of the extraction process of genetic information from
genome sequences.

An overview of the structure of GBOL is shown in Figure 6.1. The ontol-
ogy contains 251 classes that can be categorized into 6 broad domains (Table
6.1). In GBOL, sequences have features, which in turn have genomic locations
on the sequence. The authority of this relationship is derived from the data
provenance that captures both the statistical basis of each individual annota-
tion (element-wise provenance) as well as the programs and parameters used
for the complete set of sequences under study (dataset-wise provenance). All
annotations for a given sequence can be packed into a single entity called a
document.
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FIGURE 6.1: The GBOL ontology structure: Network based view generated using
RDF2Graph[125] the GBOL core ontology. Nodes represent types. Blue edges rep-
resent subClassOf relationships whereas grey edges represent unique type links. A
unique type link is defined as a unique tuple: type of subject, predicate, (data)type of
object. Arrow heads indicate the forward multiplicity of the unique type links: 0..1 and
1..1 multiplicities are indicated by diamonds; 0..N and 1..N multiplicities are indicated
by circles. Neighbourhood of nodes marked in yellow is further expanded in Figures
6.4-6.8

Design principles
GBOL was developed focussing on its function as as file format and as database
schema and has the following design principles: modularity, human readabil-
ity, and annotation. These principles ensure that the ontology can be easily
extended [63].

Modularity: The number of classes in the main class tree is kept as small
as possible and elements within the data are described with attributes when
possible. Furthermore, classes are included in the main class tree only when
there are unique properties in a class or in one of the sibling classes. This ap-
proach ensures that sub-ontologies can be managed as separate entities within
the main ontology and that we can use existing ontologies. As an example the
class RegulationSite has an attribute regulatoryClass, which denotes the type of
regulation with a separate set of classes of which all are instances of the regu-
latory class.

To further simplify the ontology, every attribute is defined as a direct prop-
erty within the class that links to either a string, an integer, another object or
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TABLE 6.1: Overview of domains, classes and properties described by the the GBOL
ontology. Note that some properties might be in multiple sub domains.

Sub domain Classes Properties Value
sets

Genomic locations 16 17 1
Genes
transcripts and features 114 133 17
Document structure 27 107 7
Dataset-wise provenance 22 54 0
Element-wise provenance 5 9 0
BIBO 59 90 2

a class in an enumeration set. For each class in which the attribute is used,
an ‘all values from’ axiom is used, with an optional minimal and/or maximal
cardinality constraint. The ’all values from’ axiom enforces all referenced ob-
jects to be of the expected type, which is not the case with the ’some values
of’ axiom and therefore we excluded the use of the ‘some values of’ axiom.
This approach is fundamentally different from the principle used in the SO, in
which attributes are defined using the ’has quality’ property in combination
with the ‘some values of’ axiom that references to a class.

Human Readability: All names within the ontology adhere to a set of ba-
sic principles to increase (human) readability of the ontology. All class names
represent the underlying biological concept as closely as possible avoiding the
use of unreadable numbers. All classes start with uppercase whereas proper-
ties start with lowercase. All words are spelled out, and white spaces are left
out of the names, instead the next word starts with uppercase. In this way,
the class ‘exact position’ becomes ‘ExactPosition’ and the property ‘regulatory
class’ becomes ‘regulatoryClass’. Furthermore, where possible, the names are
shortened with abbreviations, as long as they remain understandable for a
human reader (e.g. XRef instead of CrossReference).

Annotation: All classes and terms within the ontology are annotated with
a short definition; an optional comment with additional usage information;
an optional editorial comment relating to the development of the ontology
itself; an optional ddbj label indicating the presence in the GenBank standard;
and an optional SKOS [338] exact match to relate classes to terms in existing
ontologies.

The GBOL infrastructure
An infrastructure enabling interoperable genome annotations integrated with
provenance requires the following characteristics: i) An OWL [18] encoded
definition of an ontology. ii) An infrastructure to enhance and simplify its
usage, consisting of an interface (API) that allows to use Java and R. iii) A
file format that can be obtained from serializing the linked data (RDF) using
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a lightweight Linked Data format (JSON-LD) [471] which is subsequently se-
rialized as YAML [56]. This format mimics the layout of the current format
for sharing of public genome sequence annotation data, but has integrated
support to add additional information. iv) A ShEx definition for data confor-
mance validation to enhance data consistency [395]. And v) a tool to convert
existing GenBank and EMBL format files into the GBOL format.

FIGURE 6.2: Schematic of an interoperable provenance centered genome annota-
tion pipeline. The GBOL stack (dashed box) provides the Genome Biology Ontology
Language (GBOL) (Yellow) and associated infrastructure to keep it consistent and ex-
tendable (Empusa). The SAPP module functions as an interface for (standardly used)
genome annotation tools. Using the Java API, SAPP retrieves raw genome data from
the triple store, runs genome annotation tools in batch and uses the GBOL ontology to
automatically store their predictions and associated data provenance directly as RDF
triples in the triple store database (Blue). Stored predicted functional annotations, data
provenance and linked meta-data can be queried within Java and R with SPARQL and
by using a web interface (Green). Parsers have been developed for conversion of an-
notation files in standardly used formats (Orange).

GBOL data can be stored in any of the linked data formats (RDF), such as
Turtle. The generated API can be used to access the genomic information en-
coded within the GBOL format, which includes a data consistency validation.
The API directly reads from and directly modifies the RDF data structure upon
usage of any of the data model functions. This enables the usage of SPARQL
within the client code, which can run a SPARQL query and directly use the
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resulting objects nodes in the API. Moreover, the RDF data can be structured
into a tree with the JSON-LD framing API into JSON-LD, which, in turn, can
be further serialized as YAML resulting in a human readable format for shar-
ing of public genome sequence annotation data. By addition of standard an-
notation tools, the GBOL stack can be at the core of a provenance-centered
genome annotation framework (Figure 6.2).

Embedding with other ontologies

FIGURE 6.3: Embedding of the GBOL ontology with already existing ontologies.
FALDO, ProvO, GO, EC, RHEA and SO are existing ontologies. Classes are in yellow
and an explanation is provided in the main text.

GBOL is embedded in the corpus of currently developed web technologies
and when possible we have integrated existing ontologies such as: FALDO
[68], PROV-O [291], SO [154], SBOL [182], BIBO [195], WikiData [340], FOAF
[81], Gene ontology (GO) [28] and the Evidence ontology [107] as depicted in
Figure 6.3. Annotation of genomic location is inspired by FALDO ontology,
although several elements had to be modified. The PROV-O ontology was
used and extended to store data provenance. Whenever applicable, we added
a cross-link to exact matching terms within the FALDO, SO and SBOL on-
tologies. Identification of persons and institutions is done through the FOAF
ontology and BIBO is used to identify publications.



6

Chapter 6. Interoperable genome annotation with GBOL 125

GBOL does not represent a vocabulary to describe genetic, molecular or
cellular functions. Instead, terms can be cross-referenced to the many vocab-
ularies that provide functional descriptions to the (products of) genetic ele-
ments, such as Gene Ontology, Enzyme commission (EC) numbers, and the
ChEBI and RHEA databases [11, 132], among others.

Key GBOL classes
Common elements in genome annotations include different classes of DNA
molecules such as chromosomes, plasmids and contigs, genes, transcripts,
exons, introns, proteins, protein domains and functional annotations. The
following sections summarize the key classes of the ontology. An extensive
description for each element can be found in the documentation available at
http://gbol.life/0.1/.

Genomic locations: Genomic locations of all features in GBOL is captured
with the Location, Position and StrandPosition classes, which are inspired by
the FALDO ontology and represented in Figure 6.4. The Location and its sub-
classes together with the StrandPosition define an interval on the Sequence,
whereas Position defines a single position in a sequence. A location can be
either: i) A region which has begin and end positions; ii) A collection of re-
gions (ordered or unordered); iii) A single base at a given position; or iv) an
InBetween location denoting a location between two bases after the base of
which the position is given. Each region, base and in-between location can
be defined to be located on the forward, reverse or both strands, although no
strand should be specified if the sequence is a single stranded DNA sequence
or a protein sequence. It should be noted that elements of a collection of re-
gions can be located on different sequences. This can be used to encode cases
in which an otherwise indistinguishable genetic element is located on multi-
ple chromosomes.

Exactly known positions can be indicated using the ExactPosition class con-
taining the position property. Otherwise a not exactly known position, also
called fuzzy position, can be indicated using either the BeforePosition class
containing the position property, the AfterPosition class containing the position
property, the InRangePosition class containing the beginPosition and endPosition
properties or the OneOfPosition class containing multiple position properties.

Genes, transcripts and other commonly encountered genomic features:
GBOL has a consistent model for storing genes, exons, (alternatively spliced)
transcripts, coding sequences and proteins. Central to this model is the Se-
quence class that can have multiple annotations represented in the Feature class.
An overview is provided in Figure 6.5.

In GBOL a sequence can be specified as a nucleic acid (NA) or a protein
sequence. The sequence is attached to the Sequence class via the sequence prop-
erty, provided in the DNA, RNA or protein encoding standard. NA-sequences
can represent transcripts or other elements such as chromosomes, plasmids,
scaffolds, contigs or reads. No distinction is made between DNA and RNA
and the strandType denotes that it is either a double or single stranded DNA or
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FIGURE 6.4: Graphical view of the GBOL ontology for genomic locations. An explana-
tion of the classes is provided in the main text.

RNA. As indicated in Figure 6.5 the type of sequence determines the features
it might be associated to (ProteinFeature, NAFeature or TranscriptFeature),

Typically, each GBOLDocument contains one or more NASequences (e.g.
Chromosome, Contig, mRNA), which can have multiple features including all
gene, exon, intron, sequence variations, and structural, regulatory and repeat
annotations. Each gene is linked to its associated exons, introns and tran-
scripts. Due to alternative splicing a gene can have multiple transcripts. Each
transcript has its own unique list of exons, which is linked through the exonList
and associated exonList class to all associated exons. A transcript can be either
a mRNA, ncRNA, rRNA, tmRNA, tRNA, precursor RNA or a miscellaneous
RNA. The type of transcript determines the associated features: mRNA tran-
scripts can have features linked to coding sequence (CDS), 5’-UTR, 3’- UTR
and poly A tail.

The mRNA translation table is defined with the translTable property from
the parent sequence. The association between CDS and the encoded protein is
preserved and information about the translation is stored if it is different from
the default translation (for example, use of alternative stop codons).

Each protein has a unique IRI (http://gbol.life/0.1/protein/
<SHA-384>) based on the SHA-384 hash of its sequence. This makes it pos-
sible to combine protein information from heterogeneous sources, as a pro-
tein can be associated to several CDS features. All information related to the
protein which is unique to the genome (such as location) should be stored in
the CDS feature. Protein annotation features may include, among other, con-
served regions, protein domains, binding sites, 3D structure, signal peptides,
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FIGURE 6.5: Graphical view of the GBOL ontology for genes, transcripts and other
commonly encountered genomic features. An explanation of the classes is provided in
the main text

transmembrane regions, and immunoglobulin regions. Operons can be de-
fined with the Operon feature, to which other genomic features, such as genes,
can be associated. Additionally, viral genome integration can be denoted us-
ing the IntegratedVirus feature.

Provenance related classes

Three types of provenance can be distinguished. Metadata refers to the own-
ers of the samples, the biological origin, culture conditions etc. Dataset- and
element- wise provenance pertain to the annotation process. All data within
a single data collection stored in GBOL is based on the GBOLDataSet, which
holds among other, references to all included samples, sequences, organisms,
annotation results and linked databases. An overview of the document struc-
ture is given in Figure 6.6.

A sequence originates from a sample and samples are related to one or
multiple organisms. The sample property which links to the Sample class de-
scribes where, when, how, by whom and from what the sample was collected.
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FIGURE 6.6: Graphical view of the GBOL Document structure. An explanation of the
classes is provided in the main text

The fields follow the GenBank format. The organism property describes the
taxonomic reference, its scientific name and its taxonomic lineage.

All annotations made within the GBOLDataSet have associated provenance
and should originate from one of the listed annotation results, so that cor-
respondence with originating databases is preserved. The Database and the
GBOLDataSet classes are both sub classed from the void ontology, Dataset class
contains a general description, including among other title, description, com-
ment, license, version, data download address, SPARQL endpoint URI, and
URL encoding.

Dataset-wise provenance: Storage of the dataset-wise provenance is based
on the PROV-O ontology in which the Entity, Agent and Activity classes are
central. An activity can use and generate entities, which are executed (wasAs-
sociatedWith) by an agent. As a result, an entity can be attributed to an agent.
The GBOLDataset, AnnotationResult, GBOLLinkSet and Database classes (in-
dicated in Figure 6.6 and 6.7) are subclasses from the PROV-O ontology Entity
class, so that for each of these objects provenance on how, when and by whom
they were created can be associated.

In GBOL an Entity is either a file or an annotation result. The annotation
result is a set of triples contained within a GBOL document, whereas a file
represents a physical file either on a computer or network. An agent can either
be a curator, person, organization or annotation software. For the annota-
tion software a version and code repository with associated commit identifier
is included to enable univocal identification. For a curator, an ORCID [214]
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FIGURE 6.7: Graphical view of the GBOL Dataset-wise provenance. An explanation of
the classes is provided in the main text

must be specified so that each curator can be uniquely identified together with
his/her organization. Both Person and Organization are sub-classed from the
FOAF ontology to include additional information such as name and email ad-
dress.

Within GBOL, each activity is an annotation activity, which can be either an
automatic process or a manual curation activity, with a start and end time. An
automatic annotation must be associated with a software agent and the set of
parameters used must be specified including the corresponding input and/or
output files. Finally, manual curation must be associated with a curator.

Element-wise provenance and qualifiers: In addition to the dataset-wise
provenance, GBOL is able to capture an additional layer of element-wise prove-
nance, as the provenance of all the annotation in GBOL is captured per prop-
erty per feature with the FeatureProvenance, as shown in Figure 6.8. For prop-
erties that could have items from multiple sources, we have defined the Qual-
ifiers, each with its own associated provenance. A qualifier can either be a
citation, note or cross reference (indicated by xref ). A citation can hold a refer-
ence to literature encoded with the BIBO ontology.

Annotations are linked to the provenance object either through the prove-
nance property of the qualifiers or the onProperty property of the Provenance
feature. The provenance object links to both the dataset-wise provenance
and the element-wise provenance. The origin links the provenance with the
dataset-wise provenance (AnnotationResult), which includes among other the
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FIGURE 6.8: Graphical view of the GBOL element-wise provenance. An explanation
of the classes is provided in the main text

creation time, identity of the creating agent and the used parameters, as previ-
ously mentioned. The annotation links to the element-wise provenance (Prove-
nanceAnnotation), which includes: A free text note to describe the annotation;
A list of references supporting the note; An experimental code, preferably
from the Evidence Ontology to qualify the evidence supporting the conclu-
sion; An optional derivedFrom that links to other features on which it is based.

Finally, each annotation tool generates its own evidence statements, of-
ten embedded in a statistical framework, characteristic of the algorithmic ap-
proach taken, such as p-values, bit scores, matching regions or any other scor-
ing system. To store tool specific confidence scores, a subclass of the Prove-
nanceAnnotation class can be created. Some example classes include BLAST,
HMM and SignalP associated with the output of corresponding tools [90, 389,
400] However, these classes are not part of the GBOL ontology itself.

Empusa
During the development of the standard, difficulties were encountered in man-
aging the large set of properties and structures in the OWL and ShEx defini-
tions and the API needed to encode the annotation information in conjunction
with the associated provenance. Moreover, Analyses of various public repos-
itories have shown that inconsistent, non-enforced usage of ontologies leads
to mismatches between the descriptive OWL file and the actual content [125].
In order to shorten the development cycle and to maintain consistency within
and between the OWL and ShEx definitions and the API, a standalone tool
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was developed named Empusa. The input definition of Empusa is a combi-
nation between OWL and a simplified version of ShEx, which can be edited
within Protégé [347]. The classes are defined in OWL, whereas the properties
are defined in each class under the annotation property ‘propertyDefinitions’
encoded within a simplified format of the ShEx standard. Additionally prede-
fined value sets (for example all regulatory types) can be defined by adding a
subclass to the EnumeratedValueClass. Each subclass of the value set is rep-
resented as one element within the value set. As standalone tool, Empusa
can automatically and consistently generate an OWL and a ShEx definition,
ontology documentation in markdown, an API, a JSON-LD framing file and
a visualization. Empusa uses parts of the RDF2Graph tool [125] to gener-
ate a representation that can be subsequently used to generate a visualization
within Cytoscape [444]. This allows users to browse the complete ontology
intuitively.

Discussion
Comparative genome analysis is essential to understand the mechanisms un-
derlying evolution and adaptation. Ideally, comparative genomics should be
performed at the functional level, as this is highly scalable and more resis-
tant to phylogenetic distances [271]. However, as functional annotation is
performed in a non consistent manner the current practical level of interop-
erability is at the sequence level. Many tools exists to obtain orthologous clus-
ters which are shaped by a generalised acceptance threshold for similarity and
alignment length which is a trade-off between sensitivity and false discovery
[176, 298]. At large scales these analysis are hampered by the high computa-
tional cost for finding bi-directional best matches. We have shown [271] that
functional comparison, based on consistently annotated protein domains, pro-
vides a fast, efficient and scalable alternative .

The prerequisite of a direct comparative functional analysis is consistent
annotation of the genetic elements with evidence statements. Recording the
provenance allows class-specific cut-offs for each individual annotation. E-
lement-wise provenance enhances the re-usability of the annotations, and al-
lows the development of methods to combine evidence statements, often de-
rived from complex statistical frameworks, into confidence statements. Ele-
ment-wise provenance also enables a quick re-evaluation of evidence, for in-
stance by using a tunable cut-off score.

/beginsloppypar GBOL has been developed to explore available genome
sequences using the mining possibilities of linked data. As a result, GBOL
has evolved to consistently capture annotation data generated by the Seman-
tic Annotation Platform with Provenance (SAPP), available at
http://semantics.systemsbiology.nl. Previous versions of the GBOL
ontology have been used to compare 432 Pseudomonas strains through integra-
tion of genomic, functional, metabolic and expression data [272]. Here GBOL
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was essential to capture, store and interlink the genomic and functional anno-
tation data. Strikingly, over 432 Pseudomonas strains, consistent de-novo anno-
tation yielded 838 additional GO-terms and 146 additional protein domains
which would not have been identified using the original gene predictions. In
addition to determining the functional pan- and core genome of a species,
comparative genomics also enables the investigation of genotype-phenotype
associations. In [258] we consistently functionally annotated and compared
80 publicly available mycoplasma genomes. The resulting semantic frame-
work allowed us to efficiently query for functional differentiation of various
mycoplasma species in relation to host specificity and phylogenetic distance.
/endsloppypar

Consistent functional annotation within a semantic framework requires a
standardised ontology for the annotated elements and the associated based-
on provenance. Linked data ensures that queries can be performed, mining
multiple sequences at once, thereby providing a scalable alternative for large
scale genome comparisons. The GBOL stack provides the ontology and cor-
responding API that enables the incorporation of functional annotation and
provenance reducing complexity and is the outcome of efforts in a number
of studies related to functional comparative genomics. Currently the GBOL
stack is being used in various collaborative projects to handle genomic data of
organisms across all domains of life [141, 157, 239, 348].

GBOL has been primarily designed to handle genomic annotation. How-
ever, it has been designed in a modular and extensible manner so that in
the future it can be extended to host other omics data types as proteomics
and transcriptomics. The modular design of GBOL ensures that other on-
tologies can be incorporated and managed as separate entities. For instance,
the majority of the feature and sequence classes within GBOL can be con-
nected with those from the Sequence Ontology and are therefore linked with
the skos:exactMatch predicate. The major difference between GBOL and SO is
that SO has been defined as vocabulary of terms related to genetic elements,
whereas the GBOL classes have been designed to describe genetic annotation
and elements located on a sequence and is inspired on the principles of the
GenBank format. However, still a number of features in the SO are not cur-
rently available in GBOL and future work should focus on including them.
Another possible extension would be to link to other Minimum Information
Standards like MIGS and extensions thereof (MIMARKS, MIxS) [168, 534] and
cross domain experiment reporting standards like ISA-tab [415]. Other possi-
ble extensions relate to the development of the sub-ontologies GBOL links to.
For instance, BIBO is used to store information on literature references, how-
ever the OWL ontology file of BIBO has to be further improved, as it does not
specify to which classes all of the properties should belong. Therefore we have
chosen to include a less consistent representation of the properties by adding
all properties to the root class bibo:Document.

Empusa, a core part of the GBOL stack, ensures the correct usage of the
ontology through the provided R and Java API. We have ensured that Empusa
can be used independently of GBOL (documentation available at http://
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gbol.life) and therefore can be used to develop new ontologies combined
with an automatically generated API and documentation. This reduces the
complexity and time to extend and develop ontologies with corresponding
API’s and ensures consistent and correct usage of a defined ontology.

Conclusions
Large scale analysis of heterogeneous biological data is hampered by lack of
interoperability. To improve the exchange of information formalized informa-
tion models are required. GBOL provides a formal representation of genomic
entities, their properties and relations. The GBOL Stack provides a framework
to enforce consistent and correct usage of GBOL. The semantic basis and the
integration of provenance enables FAIR genome annotations, thereby unlock-
ing the potential of functional genome annotation data.

Methods
The GBOL ontology is OWL encoded and a ShEx schema is provided. All
supporting software (Java and R API, Empusa) are written in Java with Gradle
as build system. We use Jena [21] for handling and loading the RDF data into
a triple store. Protégé was used for editing the ontology[347].

Storage of the genomic location is inspired by FALDO, although several
elements had to be modified e.g. to account for features that start and end
on different sequences. Differences include: i) StrandPosition is not subclassed
from Position. Instead, an additional property is added to the region, base and
InBetween location, this is done because these location object types can have
both a strand position and an index position on the sequence. ii) The refer-
ence property is not part of a Position, but of a Location, because a location
that starts on one sequence and ends on another sequence is an undefined
sequence. iii) The BaseLocation and the InBetweenLocation classes have been
added to the ontology. iv) The BaseLocation, InBetweenLocation, CollectionOfRe-
gions and Region are children of the Location class, such that the rest of the
ontology can incorporate these classes. v) The before and after positions have
been explicitly defined to include their semantics. vi) The classes sub-classed
from FuzzyPosition have an integer to denote the position and do not point
to another position object, which could allow for arbitrary complex location
denotations. vii) The N- and C-terminal positions have been removed and all
indexes are counted from the N-terminal side. Counting from the C-terminal
side can be calculated based on the sequence length. vii) The reflective prop-
erties beginOf and endOf have been removed, because a position can also be
referenced by the added base location. For consistency we have redefined all
FALDO elements within our own namespace.

Cross-links to exact matching terms from other ontologies (such as FALDO,
SO and SBOL) where added using skos:exactMatch. Additionally, several
properties within the ontology point to existing ontologies, for instance: i)
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The signalTarget property of SignalPeptide, the modificationFunction of Modi-
fiedResidue and the organelle of Sample are interlinked with GO terms. ii) The
experiment property of ProvenanceAnnotation, which denotes upon which ev-
idence the annotation is based on, should point, where possible, to a term
within the Evidence Ontology. iii) The residue property of ModifiedResidue
must point to a term within the Protein Modification Ontology [342]. iv)
GBOL includes the GO terms for tissueType of the Sample class and points,
when possible, to a term within the BRENDA Tissue and Enzyme Source On-
tology [435].

The source file of the ontology encoded in the Empusa and associated
generated OWL definition, ShEx schema and visualization for Cytoscape
available at http://www.gitlab.com/GBOL under the MIT license. The
generated Java and R API are available at https://gitlab.com/gbol/
GBOLapi and https://gitlab.com/gbol/RGBOLApi under the MIT li-
cense. The conversion module, which is part of SAPP, is available at http:
//www.gitlab.com/SAPP/conversion under the MIT license. The sup-
porting Empusa code generator is available at http://www.gitlab.com/
Empusa under the MIT license. All projects are coded in Java and are based
on the Gradle build system. All terms are resolvable and can be browsed for
at the associated website http://gbol.life/0.1/.
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Abstract
Summary: To unlock the full potential of genome data and to enhance data
interoperability and reusability of genome annotations we have developed
SAPP, a Semantic Annotation Platform with Provenance. SAPP is designed
as an infrastructure supporting FAIR de novo computational genomics but can
also be used to process and analyse existing genome annotations. SAPP au-
tomatically predicts, tracks and stores structural and functional annotations
and associated dataset- and element-wise provenance in a Linked Data for-
mat, thereby enabling information mining and retrieval with Semantic Web
technologies. This greatly reduces the administrative burden of handling mul-
tiple analysis tools and versions thereof and facilitates multi-level large scale
comparative analysis. Availability: SAPP is written in Java and freely avail-
able at https://gitlab.com/sapp and runs on Unix-like operating sys-
tems. The documentation, examples and a tutorial are available at https:
//sapp.gitlab.io.
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Introduction
Managing the genomic data deluge puts specific emphasis on the ability of
machines to automatically find and use the data. To meet this demand and to
extract maximum benefit from research investments, digital objects should be
Findable, Accessible, Interoperable and Reusable (i.e. FAIR) [524].

Genome annotation data is usually findable and accessible through public
repositories in which the data is linked to metadata providing detailed de-
scriptions of the data acquisition and generation process. Interoperability re-
flects the potential for seamless integration of data from independent sources.
Currently, genome comparisons usually involve a laborious process of data
retrieval, modification and standardization (canonicalization). Reusability re-
quires rich metadata with provenance for each annotation. Current standard
formats (GenBank, EMBL or GFF3) retain the output of the prediction tools
(for example for gene identification) but only when they score better than a
predefined, often pragmatic, prediction threshold. Detailed information of
the actual prediction scores is lost. This hampers critical re-examination of the
results.

Because existing genome annotation data is hard to be made FAIR and
managing of FAIR genome annotation data requires a considerable adminis-
trative load, we developed SAPP, a semantic framework for large scale com-
parative functional genomics studies. SAPP can automatically annotate geno-
me sequences using standard tools. The unique characteristic of SAPP is that
the annotation results and their provenance are stored in a Linked Data for-
mat, thus enabling the deployment of mining capabilities of the Semantic Web.
As the automatic annotations are incorporated into a dynamic framework,
SAPP supports periodic querying, comparison and linking of diverse anno-
tation sources, resulting in up-to-date genome annotations. By interrogating
metadata as part of a digital annotation object, annotation data becomes inter-
operable as the extraction procedure requires no additional standardization
process.

Implementation

SAPP accepts annotated and non-annotated sequence files which are con-
verted into an RDF data structure using the GBOL ontology [124]. Within
SAPP, structural and functional annotation is performed using add-on mod-
ules incorporating existing standard annotation tools such as Prodigal and
Augustus [235, 472]. Modules for tRNA, tmRNA, rRNAs, protein domain and
CRISPR repeats annotation are also available. New modules can be added.
Annotation data and metadata are stored in a compressed graph database
[167], as shown in Fig.7.1A.

Genome annotations can be exported to standard formats. All data can be
directly queried and compared using the SPARQL endpoint or via the GBOL
API (Java/R). Complex queries can be performed on multiple genomes while
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simultaneously taking meta-data into account. A SPARQL query example is
provided in Fig. 7.1B. Examples to query SAPP from R, Java or Python, a
tutorial and a list of publications in which SAPP was used can be found at
http://sapp.gitlab.io.

FIGURE 7.1: A: The conversion module imports genome sequences in common for-
mats. Annotation modules perform common tasks such as gene, tRNA, protein and
protein domain annotation. Results are stored as Linked Data and consistency is en-
sured by the GBOL stack. B: SPARQL query to retrieve the E-value score of the in-
stances of the protein domain PF00465 across multiple bacterial genomes. C: Distribu-
tion of E-values for protein domain PF00465 across multiple bacterial genomes: note
the multimodality of the distribution. D: Principal component analysis of functional
similarities of 100 bacterial genomes from the Streptococcus (blue) and the Staphylococ-
cus (orange) genera. PC1 and PC2 account for 51.4% and 10.1% of the variance in the
dataset respectively.

Results and Discussion
Reproducible computational research requires a management system that links
data with data provenance. Interoperability requires a strictly defined ontol-
ogy. Using and sharing Linked Data based on controlled vocabularies and
ontologies ensures the interoperability and reusability of the data. SAPP func-
tionalities are unique since none of the existing de novo annotation pipelines
implement Semantic Web technologies. SAPP generated data fulfil the appli-
cable requirements for data FAIRness proposed by [524].

For input and output, these tools interact directly with the database thereby
forcing automatic linkage of data and provenance. In this way there is no
need to work with predefined thresholds on the parameters controlling the
annotation output. SAPP uses a controlled vocabulary to describe genome
annotations. Consistency is ensured through the GBOL Stack [124].

The GBOL ontology enables consistent genome annotation while integrat-
ing dataset-wise and element-wise provenance. The element-wise provenance
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is the statistical basis or score of each individual annotation, whereas the data-
set-wise provenance refers to the programs, versions thereof and parameters
used for the complete annotation of the (set of) sequences under study.

GBOL makes use of existing ontologies: PROV-O for activity capturing
[291]; FOAF for agent information [81]; BIBO for article information stored
within the annotation files [195]; SO for sequence information [154]; FALDO
for genomic location [68], among many others. We refer the reader to [124] for
detailed information on the integrated ontologies and the data model.

Annotations can be evaluated through critical examination of the prove-
nance. The use of SPARQL allows complex queries across data annotated with
SAPP and in direct comparison of these annotations with external resources,
such as UniProt. Additionally for specific questions, likelihood values can be
integrated, normalized or corrected for multiple testing. For instance, study of
E-value distribution on instances of a protein domain across multiple genomes
can inform optimal threshold selection, as shown in Fig.7.1C. SAPP imple-
ments existing tools: consistency of SAPP annotation and a comparison with
deposited annotations is shown and discussed in [272].

By querying multiple consistently annotated genomes simultaneously, large
scale functional comparisons can be performed without additional conversion
steps (see Fig. 7.1D and [271]).

These examples demonstrate that by adopting FAIR principles to genome
annotation, knowledge discovery is facilitated.
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Abstract
The RDF data model facilitates merging of data that has been stored using
different underlying schemas. This flexibility makes RDF an efficient alterna-
tive to develop resources integrating heterogeneous data sets. However, the
lack of a predefined schema and the great flexibility of RDF might lead to a
mismatch between the data structure in the resource and the ontology used
to capture the data described in the resource documentation and schema. We
have developed the Empusa code generator that from one Empusa definition
format generates the ontology definition and API that can be used to validate
the consistency of the exported data.



8

Chapter 8. The Empusa code generator 143

Introduction
Semantic Web technologies provide information retrieval and management
systems to integrate heterogenous data from disparate sources [58]. The RDF
data model is a W3C standard for storage of information in the form of self-
descriptive subject, predicate and object triples that can be linked in an RDF-
graph [79, 515]. The use of retrievable controlled vocabularies enables integra-
tion of data from different sources in a single graph and SPARQL can be used
to query the so generated resources [22, 396]. RDF graphs have no predefined
structure nor a schema, and the structure of an RDF resource can vary as new
triples are added. Therefore, a formal definition of the relations among the
terms, called an ontology, is required to efficiently retrieve linked information
from these resources. Structural information can be encoded using Web Ontol-
ogy Language (OWL) files [42]. RDFS is another related standard to define the
structure of an RDF resource [80]. In this standard, each object can be defined
as an instance of a class and each link as the realization of a property. Shape
Expressions (ShEx) is a standard to describe, validate and transform RDF data.
One of the goals of this standard is to create an easy to read language for the
validation of instance data [69, 395, 468].

In a previous work, we developed RDF2Graph, a tool to automatically re-
cover the structure of an RDF resource and to generate a visualization, ShEx
file and/or an OWL ontology thereof [125]. Application of RDF2Graph to re-
sources providing data in the RDF data model in the life sciences domain such
as Reactome, ChEBI, UniProt, or those transformed by the Bio2RDF project
[50, 55, 119, 219, 254] showed mismatches between the retrieved data struc-
ture and the one described in the OWL definition of each resource. The main
reason for this lack of consistency is the great flexibility provided by RDF: as
the data graph is free format, the ontology defines the structure but does not
enforce it.

In the development of RDF resources, data export to RDF is often a source
of errors such as typing errors in the predicates, instances with missing at-
tributes, instances that did have a non-unique IRI, and instances that had no
type defined, among others. Therefore tools that automatically store their out-
put in RDF are essential to unlock the potential of these technologies. An
example of such tools is the Semantic Annotation Platform with Provenance
(SAPP) [273], that can automatically annotate genome sequences using stan-
dard tools and store the annotation results and their provenance in the RDF
data model using the genome biology ontology language (GBOL) [124]. De-
velopment of such tools would be greatly facilitated by supporting tools able
to read an ontology definition and generate code that can be used for data
generation, export and validation.

Here we present Empusa, that has been developed to facilitate the creation
of RDF resources, which are validated upon creation. Empusa can be used to
define an ontology and create an associated application programming inter-
face (API) that can be used to perform data consistency checks. Therefore, the
use of Empusa ensures consistency within and between the ontology (OWL),
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the Shape Expressions (ShEx) describing the graph structure and the content
of the resource.

Implementation

The input definition of Empusa is a combination between OWL and a sim-
plified version of ShEx, which can be edited within Protégé [347]. The classes
are defined in OWL, whereas the properties are defined in each class under the
annotation property ‘propertyDefinitions’ encoded within a simplified format
of the ShEx standard. Additionally predefined value sets can be defined by
adding a subclass to the EnumeratedValueClass. Each subclass of the value
set is represented as one element within the value set.

The RDFS standard is used to define the subClassOf relationships between
the classes, whereas the ShEx standard is used to define the properties of each
class. Properties of the class are defined through the annotation property prop-
ertyDefinitions’ as shown in figure 8.1. For each property the multiplicity and
the expected type of the target value can be defined. The multiplicity can ei-
ther be: 0..1 indicating that the property is optional and at most one reference
is allowed; 1..1 indicating that one and only reference is allowed; 0..N for op-
tional properties with multiple allowed references; and 1..N for properties that
must have at least one reference. The ‘=’ and ‘∼’ sign can be used to define
the references be stored as an ordered list to ensure that the elements are num-
bered. Target values types can also be defined. The type of the target value
can be either: A simple value (String, Integer or Double, among others); An-
other class (for example a Protein); Or an IRI, referencing an external resource
or ontology or to a sub-ontology(value set). Within the ontology, sub ontolo-
gies (value sets) can be defined under the EnumeratedValue class. Every sub
class of EnumeratedValue class represents one sub ontology. All subsequent
sub classes are elements of the sub ontology of which it is sub classed from.
A class/sub class structure can be defined for these elements within the sub
ontology.

The Empusa code generator uses this definition to generate: (i) An OWL
file definition. It should be noted that the OWL file definition is generated as
it remains general consensus within the field of semantics that these files are
created for each ontology (ii) A full ShEx file that can be used to validate a
data set containing information that is encoded with the ontology. (iii) An R
and Java API, which one can use to generate the data with the encoding of the
defined ontology. This API ensures that the multiplicities and referenced types
are correct and prevents many errors in the data export. (iv) A canonicalized
data format such that the data file encoded with the ontology can be read and
modified by human editors. (v) A full documentation of the ontology based
on mkdocs. The rdfs:label and skos:description properties can be used within
the ontology to add a description about the classes and a comment line above
each property definition in the simplified ShEx definition and can be used to
add a description to each property.
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FIGURE 8.1: Example Empusa definition format. Properties within a class can be
defined with the propertyDefinitons annotation property. As an example, the the Re-
gion Class has been highlighted. Value sets (sub ontologies) can be defined under the
EnumeratedValueClass class, for example the StrandPosition value set.
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Results and Discussion
Empusa was developed primarily to help develop ontologies focussing on
their function as a database schema for RDF resources. The design principles
modularity, human readability, and annotation are followed to ensure that the
so generated ontology can be easily extended [63]. Empusa can automatically
and consistently generate an OWL and a ShEx definition, ontology documen-
tation in markdown, an API, a JSON-LD framing file and a visualization. Em-
pusa uses parts of the RDF2Graph tool [125] to generate a representation that
can be subsequently used to generate a visualization within Cytoscape [444].
This allows users to browse the complete ontology intuitively.

Development of Empusa was closely related to the development of the
GBOL stack [124] and the associated tool SAPP [273]. GBOL enables inter-
operable genome annotation, as it deploys and extends existing ontologies to
represent genomic entities, their properties and associated provenance. The
GBOL stack contains over 80.000 lines of R and Java code, OWL and ShEx
definition files, and documentation files (mkdocs format). Generating such
a large amount of code would entail 1 year of manual work (considering an
efficiency of 50 lines per hour) [351]. The SBOL stack is a recently published
platform for storing, publishing, and sharing synthetic biology designs [182].
GBOL contains 47673 lines of Java code for the API whereas the SBOL API has
27325 although it does also include some other supporting code. This shows
the higher complexity of the GBOL ontology.

Moreover, during the development of the GBOL ontology countless up-
dates were made to correctly encapsulate all the data and associated prove-
nance. Most of these updates were based on insights gained through the data
encoding process. Manually updating the code, without using the supporting
Empusa tool, would have entailed so much work that it would still be an on-
going process. Thus, the Empusa code generator can serve to reduce the time
(and costs) associated to development of ontologies and tools.

Conclusions
The Empusa code generator can be used to develop new ontologies combined
with automatic generation of API and documentation. This reduces the com-
plexity and time to extend and develop ontologies and tools able to exploit
the full potential of Semantic technologies for heterogeneous data integration.
Moreover, Empusa enables the validation of the generated resources and the
verification of the consistency of the exported data thereby bridging the gap
between the intended and the actual content of RDF resources.

Methods
Empusa is written in Java with Gradle as build system. Empusa is available at
http://www.gitlab.com/Empusa under the MIT license. Documentation



8

Chapter 8. The Empusa code generator 147

can be found at associated website http://gbol.life/Empusa.
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Abstract
Pseudomonas is a highly versatile genus containing species that can be harmful
to humans and plants while others are widely used for bioengineering and
bioremediation.

We analysed 432 sequenced Pseudomonas strains by integrating results from
a large scale functional comparison using protein domains with data from six
metabolic models, nearly a thousand transcriptome measurements and four
large scale transposon mutagenesis experiments.

Through heterogeneous data integration we linked gene essentiality, per-
sistence and expression variability. The pan-genome of Pseudomonas is closed
indicating a limited role of horizontal gene transfer in the evolutionary history
of this genus. A large fraction of essential genes are highly persistent, still non
essential genes represent a considerable fraction of the core-genome.

Our results emphasize the power of integrating large scale comparative
functional genomics with heterogeneous data for exploring bacterial diversity
and versatility.
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Introduction
The Pseudomonas genus exhibits a broad spectrum of traits and Pseudomonas
species show a remarkable adaptability to the biochemical nature of the large
variety of environments, often extreme, they thrive in [498, 527]. The genus
currently includes almost 200 recognized species, which have been clustered
into seven groups and into lineages on the basis of a limited set of loci [304].
Some species are well-studied because they are human or plant pathogens,
like P. aeruginosa or P. syringae, or because they are considered harmless and
possess interesting biodegradation properties while others can produce a va-
riety of extraordinary secondary metabolites with anti-microbial properties
[207]. P. putida KT2440 is even Generally Recognized as Safe (GRAS-certified)
for expression of heterologous genes and has been transformed into a geneti-
cally accessible laboratory and industrial workhorse [352].

A number of comparative genomics studies have been performed in the
past [37, 304, 527] but the number of available Pseudomonas genomes quadru-
pled in the last five years due to the widespread use and the advancement of
high-throughput sequencing technologies. As of December 2015, the complete
and draft genomes of 432 strains distributed over 33 species are publicly avail-
able (see Supplementary Figure S1). This plethora of data entitles an in-depth
comparative re-analysis of Pseudomonas genomes to explore their metabolic
and ecological diversity.

Large scale functional comparison based on sequence similarity is chal-
lenged by methodological problems, such as the need of of defining arbitrarily
generalized minimal alignment length and similarity cut-off for all sequence
to be analyzed, and it is hampered by the high computational cost, since time
and memory requirements scale quadratically with the number of genome se-
quences to be compared[271]. Many bacterial proteins consist of two or more
domains and fusion/fission events are the major drivers of modular evolution
of multi-domain bacterial proteins [382]. Interspecies domain variation can
thus give rise to an annotation transfer problem: sequence based functional
annotation methods use a consecutive alignment to identify common ances-
try and therefore may miss domain insertion/deletion, exchange or repetition
events, which may lead to functional shifts and promiscuity. Comparisons at
protein sequence level should therefore be complemented with comparisons
at the protein domain level [271]. In addition, in order to avoid technical bi-
asses a biologically meaningful functional comparison requires consistent and
up-to-date annotations. Instead, the biological information available in public
databases varies in quality due to the use of different databases and annota-
tion pipelines that include different methods and may assign different names,
acronyms and aliases to the same protein. Re-interpretation of these predic-
tions in most cases requires reverse engineering as data provenance is usually
not available.

In this paper 432 Pseudomonas genome sequences were de novo re-an-
notated and the generated annotation information was integrated through a
semantic platform with data from six metabolic models, nearly a thousand
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transcriptome measurements and four large scale transposon mutagenesis ex-
periments. We identified phylogenetic relationships among different species
using protein domains and performed extensive analysis of the core- and pan-
genomes of the Pseudomonas genus and considered the habitat factor while an-
alyzing the pan/core-genome. Finally, we linked domain content and domain
variability of persistent and essential genes and their transcriptional regula-
tion.

Results
De novo annotation of P. putida KT2440 as a minimal working
example
P. putida KT2440 [352] is one of the best-characterized Pseudomonas strains. A
de novo annotation obtained using an in-house annotation pipeline, the an-
notation deposited in GenBank (NC_002947) and an alternative annotation
obtained using RAST [31] were compared, see Table 9.1. The total number
of genes identified using three gene calling methods, Prodigal 2.6 (in our
pipeline), Glimmer3 (RAST), and Glimmer (GenBank) are very similar, dif-
fering less than 4%. However, as each of these algorithms have an intrinsic
false discovery rate in start-site prediction, significant differences in the start
position of the identified genes were found. The number of exact matches
in gene start-sites is only 73% (4073 genes) confirming previous observations
[501]. These 5’ variations in gene identification can result in a putative gain or
loss of biological functions; however, since different naming conventions are
used in the different annotation protocols applied, a direct functional compar-
ison to spot possible differences is not possible (Figure 9.1).

TABLE 9.1: Annotation results for P. putida KT2440. GenBank refers to the original
deposited annotation (available at NCBI), whereas RAST and SAPP refer respectively
to their annotation.

#Genes #Unique start/end #Unique Unique Unique
positions GO domains EC

GenBank 5350 170 0 3574 443
RAST 5531 62 726 3631 447
SAPP 5555 252 1403 3636 447

The use of controlled vocabularies overcomes this issue, so that functional
comparison can be performed using gene ontology (GO) terms, Enzyme Com-
mission (EC) numbers and InterPro identifiers. For the GenBank deposited
annotation no GO information was available but the difference observed be-
tween the RAST and the de novo annotation is striking. This minimal work-
ing example shows that even for a single genome a comparative analysis of
functional annotations derived from three work-flows is almost impossible
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FIGURE 9.1: Alternatives for functional genome comparison: A) Direct comparison
of genome potential using existing annotation is often hampered by lack of standard-
ization of gene calling and annotation tools, mixed and unknown data provenance and
inconsistent naming of function. B) Sequence similarity clustering bypasses inconsis-
tent functional annotations. Computational time scales quadratically with the number
of genome sequences and gene fusion/fission events might be overlooked. C) Usage
of standardised annotation tools ensures uniform genome annotation prior to com-
parison; annotation provenance is stored for all steps.
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by computational means due to lack of standardization and data provenance.
This example further emphasizes that comparative genomic analysis requires
homogeneous annotation.

Comparison of the genomic potential of Pseudomonas species
Since for a comparative genomics study a consistent and standardized genome
annotation is a prerequisite, we evaluated the impact by comparing the func-
tional annotations of 432 Pseudomonas genomes with a de novo annotation. We
used both complete and draft genomes. According to the quality metric de-
fined by Cook and Ussery, almost 30% of the available draft genomes were of
low quality [116]. This was mostly due to a high number of contigs and not to
the quality of the assemblies in itself, so they were included in the analysis.

GenBank files were converted into RDF, extracting genome sequences and
gene-calls. Genomes were structurally and functionally re-annotated. The
originally deposited gene-calls were functionally re-annotated as well and a
pairwise comparison of GO terms, and EC identifiers assigned to the origi-
nally deposited and the de novo gene-calls was performed at gene and protein
domain level. Figure 9.2 summarizes the results for the available 58 complete
genomes. Differences in annotations were observed at all functional levels.
Per genome on average 38 new genes were predicted while a functional re-
annotation of the set of complete genomes yielded 838 additional GO-terms
and 146 additional domains (For a more detailed overview see Supplementary
Data S2). Considering the full set of 432 genomes, on average a difference of
153 genes per genome was detected. The results advocate for routine imple-
mentation of consistent gene-calling methods combined with an up-to-date
functional annotation before performing comparative genomic analyses, as
many of these differences will results in gain or loss of biological functions.

Sequence and function based comparative genomics of Pseu-
domonas
Genome-wide comparative analysis usually relies on sequence similarity clus-
tering based on a blast-based all-against-all bidirectional best hit (BBH) heuris-
tic approach. There are several limitations to this approach. Firstly, the run-
time increases quadratically with the number and complexity of the species in-
volved. Secondly, clustering is strongly context-dependent as it dramatically
depends on chosen cut-off values to define statistical significance of sequence
similarity. Problems may arise with in-paralogous sequences that evolve at
very similar rates resulting from recent duplication events[357]. Thirdly, pro-
tein fusion and fission events are difficult to detect using alignments and thus
critical information might be lost.

An alternative approach, already employed in a comparative genomics
study of Escherichia coli [467], consists of grouping of proteins on the base of
domain architectures with a fixed N-C terminal order []. Clustering based on
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FIGURE 9.2: De novo annotation of Pseudomonas genomes. Comparison between the
original and de novo annotations of 58 completely sequenced Pseudomonas genome
sequences. Barplots indicate differences in the number of retrieved genome features
terms between the de novo annotations and the original deposited annotations. A) gene
abundance; B) protein domains; C: GO terms, and D: EC identifiers. The genomes are
ordered from left to right by deposition date in the NCBI database (from oldest to
newest).

domain order is highly scalable and moreover, most protein domains repre-
sent structural folds that can be directly linked to function. Here, both ap-
proaches were compared. Protein sequence similarity clusters were identified
in a BBH approach using orthAgogue [155]. Due to runtime constraints, pro-
tein clustering was limited to the analysis of the 58 complete genomes leading
to the identification of 14757 protein clusters. For each protein found within
a cluster the domain content and N-C terminal domain order ranked by the
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position of the first detected amino acid of the domain (domain start) in the
protein sequence (domain architectures) was analysed and is summarized in
Figure 9.3A. 5515 sequence based protein clusters (37%) present a one-to-one
correspondence to domain architectures, whereas 3134 (21%) can be associ-
ated to two distinct domain architectures. Overall, 93% of the identified clus-
ters can be associated to 4 or less distinct domain architectures. Figure 9.3A
also shows the number of proteins in each orthologous cluster. 3162 clus-
ters (21%) contain proteins lacking established domains and almost 75% of
them contain less than 10 sequences. These clusters correspond, in their vast
majority, to hypothetical proteins. Regarding the core genome, 1618 clusters
(11%) were found to be present in all 58 genomes. From these 1618 protein
clusters, 242 contained duplication events leaving 1376 distinct single copy
gene protein clusters common to all 58 genomes. 543 of those clusters showed
a single domain architecture whereas the rest contained domain architecture
variations as summarized in Figure 9.3C. We noted that such variability was
mainly due to swapping or inversion in domains order. In a sequence based
approach domain order variation can potentially lead to false negatives, bro-
ken clusters and even reduction of the core genome when more genomes are
added to the analysis.

The analysis of 58 complete genome sequences showed that domain ar-
chitectures retain enough information for functional characterization and that
they can be used as a fingerprint for a functional cluster. Since the compu-
tational cost for obtaining protein domain identification scales linearly with
number of genomes and can be easily distributed over multiple machines, we
used these functional fingerprints to extend the analysis to all 432 Pseudomonas
genomes. Over two million (2,704,339) genes were identified coding for over
one million (1,196,884) unique protein sequences of which 85.6% (1,024,877)
contain known protein domains. Figure 9.3B shows the results of persistence
analysis, reporting the fraction of the total number of analysed genomes in
which the corresponding cluster/protein domain/domain architecture was
found; 40% the protein domains are persistent in the genus, showing that the
functional information at domain level is preserved.

Classification of Pseudomonas strains based on genome poten-
tial
Patterns of protein domain presence/absence can provide an alternative and
complementary way for assessing strain diversity [9, 531]. There are still many
unclassified Pseudomonas strains and there is a continuous development on
assessing the phylogeny using various approaches [60]. Figure 9.4 shows a
distance tree of genome potential based on presence/absence of protein do-
mains for the 58 complete Pseudomonas genomes. We found excellent agree-
ment between this distance tree and the taxonomic classification based on 16S
sequences indicating that binary patterns of protein domains retain enough in-
formation to reconstruct evolutionary history. The positioning of Pseudomonas
sp. UW4 within the clade of P. fluorescence, confirms a previous observation
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FIGURE 9.3: Domain architectures in sequence based clusters of orthologous pro-
teins A) Number of distinct domain architectures per cluster B) Persistence analysis
within the Pseudomonas genus. The curves indicate the persistence of each of the clus-
ter. Clusters have been arranged by decreasing persistence values and the x-axis has
been scaled to 0-1 range, in this way the cluster with the highest persistence have an x
value of 0 and the cluster with the lowest persistence has an x value of 1. The y-axis in-
dicates the persistence of a given cluster (see Equation 1): for instance a persistence of
0.8 indicates that 80% of the analyzed genomes contain sequences in that given cluster.
SB-58 refers to the use of sequence based cluster considering the 58 complete genomes;
DA-58 and DA-432 refers to the use of protein domains, for 58 and 432 genomes re-
spectively; Single-432 reproduces the analysis for single domain proteins found in the
full set 432 genome sequences. C)Variability in domain architectures per gene cluster
in core-genome. Complete agreement indicates a unique domain architecture shared
by all members of the cluster; For the cases where multiple domain architectures were
found in a sequence cluster, the number of cases corresponding to domain duplica-
tions, additions and shuffles are indicated. (For A and B only 58 complete genome
sequences considered).

based on 16S and three housekeeping genes (gyrB, rpoB and rpoD) [150]. P.
aeruginosa and P. stutzeri clades are conserved while P. putida and P. fluores-
cence clades shows the addition of different species.

We further extended the domain based distance analysis to include all 432
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FIGURE 9.4: Domain based distance tree of 58 Pseudomonas strains The tree was
build considering the pattern of presence/absence of protein domains using an aver-
age clustering approach. Only completely sequenced genomes are considered. The
phylogenetic clusters corresponding to the most abundant species (P. stutzeri, P. men-
docina, P. aeruginosa and P.putida) are colour-shadowed.

Pseudomonas strains (see Supplementary Figure S3). The majority of the strains
cluster in accord with their taxonomic classification. Many of the unclassified
strains could be classified either in P.aeruginosa (4) or P. putida (13).

Exploring the pan- and core-genome of Pseudomonas at protein
domain level
The core-genome of a taxon level is defined as the genes persistently present
in the population, while the pan-genome is essentially the amount of differ-
ent genes found within a population at the specified taxonomic level [465].
The currently available genomes allow to measure the pan- and core-genome
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sizes, however these sizes change upon the addition of new sequences. The
core-genome is usually reduced and the pan-genome increases mostly due
to the discovery of novel accessory genes that accumulate by lateral transfer,
forming new trait combinations until saturation has been reached. Saturated
pan-genomes with a stable core-genome are called closed. From the currently
available genomes an estimation can be made, using mathematical modelling
[465], of the size of the pan- and core- genomes that are expected if the se-
quences of every existing strain were to be included in the analysis. We refer
to these estimations as estimated pan- and core- genome sizes.

Genome potential of the genus Pseudomonas is reflected in its metabolic
diversity which allows individual species to inhabit a wide variety of envi-
ronments. With the current set of 432 (draft) genomes we studied whether
the observed diversity in genome potential reflects a closed pan-genome. We
initially considered the 58 complete genomes. Observed core-genome of 2687
protein domains was to be confronted with an estimated size of 2681. For
the pan-genome we found 6472 protein domains (observed) versus 6541 (esti-
mated). Since these measures depend on the number of genomes considered,
we explored how these measures vary by using a different number of genomes
(from 5 to 58). This was achieved by applying a 10-fold random re-sampling
from the 58 genomes to obtain an indication of the possible variability (Figure
9.5). As expected the size of the core-genome of the genus decreases with the
number of genomes considered while that of the pan-genome increases. The
observed and estimated sizes of both the pan- and core-genome are rather sta-
ble with respect to the number of genomes used in the calculation, except for
small sample size (< 15).

Including draft genomes in the calculations resulted in a dramatic reduc-
tion, up to the 73%, of the size of the core-genome both observed and esti-
mated, which dropped to 726 and 720 protein domains architectures, respec-
tively. Interestingly, this reduction does not lead to a loss of functional infor-
mation since single domains are highly persistent as previously stated (40%).

We observed a large variability for both measures. The reduction of the
core size and its variability can be partly explained due to the inclusion of draft
genomes with a high number of gaps containing non-sequenced genes. The
difference between observed and estimated sizes reduced to only one protein
domain for both the pan- and core-genome, indicating saturation. Addition of
new genome sequences to the analysis will most likely not lead to the identi-
fication of a significant set of new domains within this genus. This saturation
effect does not depend on the particular estimation model used. Saturation of
the pan-genome was also seen through a heap model (α = 1.30 ± 0.05). In this
analysis values > 1 indicate a closed pan-genome [491].

Essentiality analysis of domains in the core-genome
From a functional point of view, the core-genome of a genus is most likely
enriched in essential genes necessary for (long term) viability and adaptation
to ever changing environmental conditions. Since persistence can be used to
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FIGURE 9.5: Pseudomonas pan- and core-genome defined on the base of protein
domains A) Complete overview of the distribution of the size of the pan- and core-
distribution of protein domains. Error bars correspond to standard deviations based
on 10 measured random realizations of the indicated number of genomes whereas
the shadowed area is the estimated standard deviation using the same approach. B)
Pan-genome of the 58 fully circular genomes. C) Core-genome of the 58 fully circular
genomes.

identify genes required for survival [3, 329], a positive correlation between
persistence (the number of genomes sharing a given gene) and essentiality
can be hypothesized. To verify this hypothesis we combined gene essentiality
measures with gene persistence in the genus. Gene essentiality was defined
from experimental results available for two P. aeruginosa strains (PAO1 and
PA14)[294, 300] and from in silico predictions. For the latter, we considered 6
genome-scale constraint-based metabolic models which rely on functional an-
notation to uncover the metabolic potential of biological systems and are able
to accurately predict gene essentiality in a large variety of growth conditions
[367].

We observed that essential genes show higher persistence values than non
essential ones: this relationship is conserved when persistence is computed ei-
ther using a sequence similarity based approach on 58 completely sequenced
genomes or for 432 genomes by using a domain architecture approach as
shown in Figure 9.6A.
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FIGURE 9.6: Persistence of (non) essential genes. A) Persistence of essential and non-
essential genes as derived by experimental investigations. B) Persistence of essential
and non-essential genes as derived by in silico modelling using genome based con-
strained metabolic modelling. Results shown pertain the use of the iMO1086 model
for P. aeruginosa PAO1. In both cases persistence is calculated using the 58 completely
sequenced Pseudomonas genomes and the complete set of 432 genomes sequences. Ma-
genta (circle) dots indicate outliers.

A comparison of gene persistence and essentiality for the two strains sho-
wed that 65% of genes found to be essential for PA14 growth on LB are also
essential for growth of PAO1 on either LB, minimal with pyruvate or sputum
agar, but only 39% of genes reported to be essential for PAO1 growth were
found to be essential for PA14 (See Supplementary Figure S4). This difference
could be due to the smaller set of tested conditions. We used a less stringent
cut-off for persistence: 0.95 instead of 1 to allow for non-sequenced genes due
to incomplete draft genomes. Therefore, we observed that a small fraction of
persistent genes is present in only one of the two strains (0.016% and 0.025%
for PA14 and PAO1, corresponding to 75 and 47 genes respectively) which are
likely to have been lost through evolution.

Analysis of the complete pan-genome revealed that 1252 single copy genes
are persistent. Of these, almost one third (404) were found to be essential in
vivo under three growth conditions (LB, minimal-pyruvate or sputum agar)
for P. aeruginosa PAO1 strain []. Similar ratios were observed for strain PA14.

1112 unique domains were identified in the 404 essential persistent genes
and 1340 unique domains in the non-essential but persistent genes. 203 do-
mains were shared between essential and non-essential persistent genes. Es-
sential genes contain a larger repertoire of unique, single copy domains: 404
essential persistent genes contained, on average, 1.53 single copy domains
whereas for non essential persistent genes, the average was 0.82.

In vivo essentiallity analysis were limited to four conditions. Using meta-
bolic models a wider range of conditions can be explored albeit the analysis
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is restricted to metabolic genes. We considered six genome scale constraint
based metabolic models describing the metabolism of P. aeruginosa PAO1 (mod-
els iMO1056[359] and iMO1086 [360]), P. fluorescens SBW25 (iSB1139 [71]) and
P. putida KT2440 (iJN746 [356], iJP815 [397], and iJP962 [360]).

We explored a wide range of growth conditions with varying carbon, ni-
trogen, phosphorus and sulphur sources and for each medium composition,
gene essentiality predictions were performed using Flux Balance Analysis and
are summarized in Table 9.2. Figure 9.6B shows results for P. aeruginosa model
iMO1086, confirming what was observed for experimental data. Of the 750
essential metabolic genes that were identified under 3366 media compositions
for iMO1086, 169 genes were identified to be essential under experimental
conditions whereas 42 genes were essential but not in silico (25%). Average
persistence over the 58 complete genomes was 0.96±0.14 for predicted essen-
tial genes and 0.85±0.24 for non-essential, which we found to be significant (p-
value < 0.01 for a Wilcoxon test). When considering the 432 genomes, we still
observed difference in the persistence of predicted essential and non essential
genes 0.95±0.12 versus 0.89±0.21, p-value < 0.01). Similar results were also
obtained when using essentiality predictions for the other metabolic models.

TABLE 9.2: Conditional gene essentiality predictions using six metabolic models from
three Pseudomonas species.

Organism P. aeruginosa P. putida P. fluorescens
Model iMO1056 iMO1086 iJN746 iJP815 iJP962 iSB1139

Medium sources
#Carbon 49 51 60 40 43 44

#Nitrogen 32 33 22 25 27 19
#Sulfur 4 1 10 1 1 6

#Phosphor 2 2 1 1 1 2
Genes

#Essential/
persistent* 115/106 149/132 118/104 112/100 162/148 117/95

#Conditional/
persistent* 591/278 601/278 389/170 113/64 495/252 615/290

#Non-essential 348 336 253 593 305 407
#Overlapping
genes* 95 68

*Persistence was computed for each essential and conditional essential genes over the 58
Pseudomonas genomes

Using metabolic models to simulate media compositions we identified ad-
ditional genes that were essential in a number of conditions, retrieving on av-
erage 1.47 single copy domains per gene, consistently with what observed for
essentiality experiments. We further combined the models’ predictions and
we inspected genes predicted to be essential in all the tested conditions. For
P. putida, the three models showed an overlap of 68 essential genes. Interest-
ingly, these genes contained 2.53 single copy domains on average, underpin-
ning previous results. Non-essential genes contain domains that are shared
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with other genes. This can result in the presence of isozymes or of potentially
moonlighting enzymes which can step in for essential functions in the case of
deletions or mutations.

Variability of gene expression and its association to persistence
and essentiality in Pseudomonas
Associations between gene essentiality and low variation in protein abun-
dance have been observed in E. coli [487]. We hypothesized the existence
of an association between gene persistence and expression level variation.
We analysed gene expression variability in P.aeruginosa using a gene expres-
sion compendium containing over 900 samples and 100 datasets regarding
P.aeruginosa PAO1 genes [485]. Each gene was assigned a score, Variability, for
transcriptional variation. Persistent genes tend to show significantly lower de-
gree of variation in expression level than non persistent ones (p-value < 0.01);
this holds true also for essential genes (Figure 9.7). Similar results are ob-
tained when analysing a more limited dataset containing RNAseq measure-
ments of P.aeruginosa PA14 in 14 growth conditions[149] (see Supplementary
Methods S5) This association between low expression variability and persis-
tence/essentiality could indicate that expression of genes in the core-genome
is likely to be buffered and independent from environmental growth condi-
tions. To the best of our knowledge such associations have never been es-
tablished on such large scale due to the limitations associated to comparing
hundreds of genome sequences.

Discussion
For our analysis we did not rely on previously existing annotations, but we
performed a consistent re-annotation of all the sequences using a standard-
ized approach that ensured coherence and uniformity. A sequenced based
approach was used for a prior comparative analysis to define clusters of or-
thologous proteins in the smaller dataset of 58 complete genomes. Due to
polynomial growth of computational time, this approach is not feasible for
large data sets. Mining a gene sequence for domain occurrences is less com-
putationally demanding, which provides an effective scalable approach.

Sequence based approaches are used to identify clusters of orthologous
proteins, however the analysis of domain architectures is targeted towards
the identification of groups of functionally equivalent proteins. Protein do-
mains provide a standardised way to assess sequence variation and its impact
in function, since every amino acid has a characteristic weight in the domain
model. Protein domains are more strongly associated to protein structure
than protein sequences, thereby providing a closer link to function that can
bridge over larger evolutionary distances, which is essential to comparative
functional analysis. Still there is a need for improving how protein domain
are defined to accommodate similar models arising from, possibly different,
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FIGURE 9.7: Variability of gene expression levels and its association with persis-
tence and essentiality A) Distribution of Variability score for (non) persistent genes
(genes with persistence lower or higher than 0.95, respectively). Box plots show Vari-
ability values for both groups. Difference between mean values is significant (p-val
< 0.01). B) Distribution of Variability score for essential and non-essential genes with
gene essentiality derived experimentally [293]. Box plots show Variability values for
both groups. Difference between mean values is significant (p-val < 0.01).

databases and to take into account positional variations that might lead to
spurious domain inversions.

When applied to the inferred proteomes of the 58 complete genomes, both
clustering methods yield similar results. The same clusters were obtained
in 40% of the cases meaning that each of these clusters contained an equal
number of proteins, captured the same strains and shared the same domain
architectures. In 20% of the cases, very similar but numerically distinct clus-
ters were obtained, as a given sequence similarity cluster had captured two
distinct domain architectures. In most of these cases variability in domain ar-
chitecture were caused by changes in domain order due to small variations in
the start position of overlapping domains. Approximately, 20% of identified
proteins have no recognizable functional domains. As most of these proteins
are hypothetical they were not considered for functional analysis. When only
proteins containing domains are considered, over 90% of the clusters identi-
fied using sequence comparisons contain 4 or less distinct architectures.

The differences in the persistence curves shown in figure 9.3C show that
the way the clusters are defined, either using sequence similarity or protein
domains, impacts the calculation of gene persistence: this has repercussions
on the definition of the core genome and its size. We found these differences
to be larger when more genomes are considered. This is more likely linked to
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the broader range of phylogenetic distances among considered genomes: this
is explored in more detail in Koehorst et al.[271]

Our analysis resulted in the identification of the pan- and core-domainome
of 432 Pseudomonas which is closed according to the heap model as also re-
cently noted for the P. aeruginosa species [345]. This suggests that sequencing
additional strains will fail to add new genes to the pan-genome: however,
this is likely an oversimplification. Here, we understand closeness of the pan-
genome as measure of the genus ability to acquire exogenous genes and as
a proxy for the ratio between vertical and horizontal gene transfer indicat-
ing that horizontal gene transfer has not played a major role in shaping the
genome content of the genus.

Key characteristics of Pseudomonas must be located in the genus core-geno-
me, however comparison with metabolic models shows that identified core is
not autonomously functional. Not all the genes in the core-genome seem to
be essential (under given tested conditions), however essential genes repre-
sent ≈ 40% of the core-genome, in agreement with previously reported ratios
for other species/genus [532]. The remaining 60% contain unique features
defining the genus.

We found a strong association between gene essentiality and protein do-
main properties. We observe an inverse correlation between the number of
proteins in the genome containing the considered domain and essentiality,
with average number of domains uniquely present in the considered protein
going from 1.5 to 0.8 when non essential/essential genes in the core-genome
are considered. The average number of single copy domains per gene further
increases when stricter criteria for gene essentiality are applied, namely that
genes should be essential in all the simulated media.

Accurate algorithms to predict gene essentiality from genomic features
have been also developed and domain enrichment score has been shown to
have a high predictive power[134] which is computed based on the ratio of
occurring frequencies of a particular domain between essential genes and the
total genes in the whole genome of already characterized species. Here we
have established a link between the number of copies of a domain in a genome
and gene essentiality that can be used to complement essentiality predictions.

The extensive use of metabolic reconstructions allowed us to identify con-
ditionally essential genes, and a large number of single copy domains is also
observed in these genes. This supports the idea that protein domains are the
driving force behind gene essentiality which is preserved through protein do-
mains rather than through the conservation of entire genes [135].

We have shown that lower fluctuations in gene expression are associated
to essential and/or persistent genes. Further work is required to clarify the
overlap and intertwining between both gene categories (essential/persistent)
and to clarify the (possibly different) regulatory mechanisms stabilizing their
expression levels.
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Methods
Genome retrieval
Genbank files containing genome sequences and existing annotations for 58
circular genomes and 374 draft genomes of the Pseudomonas genus were down-
loaded from the GenBank database in June 2015. Annotation of Pseudomonas
KT2440 was also downloaded from RAST [31]. A detailed list of the included
strains is available (see Supplementary Figure S1 and Supplementary Data
S2).

Genome de novo annotation
To perform the re-analysis of the 432 genomes sequences we used a in-house
pipeline for annotation and data storage[271]. Likewise existing annotation
pipelines such Prokka [437], it relies on external feature prediction tools to
identify the coordinates of genomic features within genomics sequences. The
pipeline consists of a number of python modules that execute annotation ap-
plications and convert results and provenance directly into the RDF data model
with a self defined ontology (the complete description of the implemented
ontology can be obtained using RDF2Graph [125]) using the RDFLib library.
For genetic elements determination a variety of tools is implemented such
as Prodigal [235] for gene prediction. The main difference is that results are
stored as Turtle files [52] containing an RDF model which allows simultane-
ous exploration of annotation data of multiple genome sequences, greatly fa-
cilitation multiple comparison and the integration of heterogeneous source of
information. Since it deploys semantic features allowing the storage of data
provenance, we refer to it as SAPP (semantic annotation pipeline with prove-
nance). Annotation can be exported to other formats for downstream process-
ing with other tools such as Roary [372]

Each genome sequence was converted to the RDF data model using the
EMBL/GBK to RDF module. De novo. The FASTA2RDF, GeneCaller (a seman-
tic wrapper for Prodigal 2.6 [235]) and InterPro (a wrapper for InterProScan
[249]) modules were used to handle and annotate the genome sequences. Re-
sults were retrieved with SPARQL queries.

Protein domain presence and phylogenetic analysis
A SPARQL query was used to extract the presence of protein domains for all
432 genomes. Data were stored in a 432 (genomes) by 7608 (protein domains)
binary matrix (0/1 for absence/presence). Protein domains were identified by
their InterPro identifiers. Phylogenetic trees based on protein domains were
created taking as input the domain presence/absence matrix. The R package
pvclust was implemented in R (version 3.3.1)[399] with a binary distance
and average clustering approach with a bootstrap value of 10 [482].
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Protein domain architecture based clustering
The positions (start and end on the protein sequence) of domains having In-
terPro [248] identifiers were used to extract domain architectures (i.e. combi-
nations of protein domains). Protein domains were retrieved for each protein
individually. The domain starting positions were used to assess relative posi-
tion in the case of overlapping domains; alphabetic ordering was used in the
case of domains with the same starting position. Labels indicating N-C ter-
minal order of identified domains were assigned to each protein so that the
same labels were assigned to proteins sharing the same domain architecture.
Here we have followed a strict approach and two domain architectures were
considered different whenever they had different domains or they appeared
in different order. For more details see Koehorst et al.[271].

Estimation of pan- and core-genome size
The estimated number of domains in the pan- and core-genomes expected if
the sequences of every existing strain were to be included in the analysis were
computed using binomial mixture models as implemented in the micropanR
package [466] using the domain presence/absence matrix previously defined
and default values for the parameters. Pan- and core- analysis was initially
performed on the 87 genomes with a maximum of 3 contigs to avoid bias due
to incomplete genome sequences. Analysis was extended to the remaining
374 draft genome sequences available. To obtain an indication of the variabil-
ity of these measures as function of the number of sequences used, these were
calculated by a 10 fold random sampling from the full set. Heap analysis as
implemented in the micropan R package was used to estimate openness or
closeness of the pan-genome [491] using 500 genome permutations and re-
peating the calculation 10 times. Final measure is given as the mean ± stan-
dard error.

Orthologous gene detection
Orthologous genes were calculated initially for the set of 58 completely se-
quenced genomes. Protein sequences predicted using Prodigal 2.6 were ex-
tracted using a SPARQL query and used in a Best Bidirectional Hit approach
[489]: using an all-versus-all BLASTP comparison and an E-value threshold
of 10−5 and a maximum target sequence of 105. OrthAgogue [155] was used
to convert BLAST results into a weighted graph. The MCL [159] clustering
algorithm was applied, using an inflation value of 1.5, on the graph to de-
fine protein clusters. The results were then extrapolated to the full set of 432
genomes using cluster specific domain fingerprints. Specifically, the sequence
clusters obtained through MCL clustering on the 58 complete genomes were
used to define sets of protein domains (each sequence cluster was mapped to
a set of domains). The remaining genomes were then looked for any given
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domain set defined on the 58 genomes to define their presence/absence in the
draft genomes.

Persistence and essentiality analysis
The persistence of a gene can be defined as

Persistence =
N(orth)

N
(9.1)

where N(orth) is the number of genomes carrying a given orthologue and N
is the number of genomes searched [162]. For the 58 completely sequenced
genomes, orthologous genes were inferred using a BBH approach. For the full
set of 432 sequenced genomes orthologous genes were inferred by making use
of protein domain arrangements.

Locus tags for predicted proteins were inferred from the original annota-
tion through SPARQL. Locus tags were linked to gene essentiality as defined
in experimental studies available for P. aeruginosa PAO1 [] and PA14 [300].
For each of the predicted proteins with inferred locus tag the corresponding
protein cluster was initially calculated for the 58 genomes. The domain archi-
tecture corresponding to each cluster was extracted and subsequently scanned
against all 432 available sequences. We used the MCL clusters as a reference
set for the identification of domain architecture variations which were then
extrapolated over the 432 genomes. The persistence for each locus tag was
calculated and compared against the essentiality score obtained from two ex-
perimental studies.

Metabolic model essentiality analysis
We considered six genome scale constraint based metabolic models describ-
ing the metabolism of P. putida KT2440 (models iJN746 [356], iJP815 [397],
and iJP962 [360]), P. aeruginosa PAO1 (models iMO1056[359] and iMO1086
[360]) and P. fluorescens SBW25 (model iSB1139 [71]). For each genome-scale
metabolic model we performed a single gene essentiality analysis in a large
number of growth media varying in carbon (C), nitrogen (N), phosphorus (P)
and sulphur (S) source. To define the growth media we first identified candi-
date C, N, P, and S sources in each model independently. Because chemical
sum formulas were not always available, we considered each compound for
which an exchange reaction was present as a candidate C, N, P and S sources.
We changed the in silico medium composition to a minimal salts medium con-
taining glucose as C source, ammonia as N source, phosphate as P source,
sulphate as S source, in addition to oxygen, water, H+, and a variety of salts
depending on the particular model considered. The potential of each can-
didate C, N, P, and S source was then evaluated by adding it to the in silico
medium while omitting the default C, N, P, or S sources. Growth predic-
tions were performed using Flux Balance Analysis [367] as implemented in
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the Matlab COBRA Toolbox [434]. This provided 4 lists of compounds that
were suitable as C, N, P or S sources which were then combined into a sin-
gle list of growth media by taking all combinations of compounds from the 4
lists. For each medium, we then used the singleGeneDeletion function from the
COBRA toolbox to determine the growth rate of the mutant strains. If a gene
knock-out reduced the in silico growth rate below 10-6 we considered the gene
as essential. Models and Matlab scripts used in this analysis are available in
Supplementary Data S6.

Comparison of gene expression profiles
A publicly available gene expression compendium for P. aeruginosa was re-
trieved [485]. Briefly, this dataset contains a collection of gene expression
datasets (950 individual samples pertaining 109 distinct datasets) measured
using Affymetrix platform GPL84 and processed using a common normaliza-
tion and background correction protocol. The final dataset contains expres-
sion measurements (in a log2 scale) for 5549 genes from P. aeruginosa PAO1.
For every gene we considered its expression profile in this compendium and
a Variability value was calculated as the ratio between the standard deviation
and the mean.

Availability of Data and Materials
The annotation pipeline framework is distributed under the MIT license. The
pipeline all genomic data, data provenance and computational results associ-
ated with this study are freely available at
http://semantics.systemsbiology.nl. Additionally, the data associ-
ated to this study are provided in turtle format as an RDF serialized dump.
This dataset is made available under the Open Database License: http://
opendatacommons.org/licenses/odbl/1.0/.

Acknowledgements

This work was supported by the European Commission-funded FP7 project
INFECT (contract number: 305340). This work was carried out on the Dutch
national e-infrastructure with the support of SURF Foundation.

Author contributions
J.J.K, J.v.D, V.M.d.S and P.J.S participated in the conception and design of the
study. J.J.K and J.v.D were responsible for the code and design of the semantic
framework. R.v.H performed model-based essentiality analysis. M.S-D per-
formed the integration of expression data. J.J.K, E.S, V.M.d.S, M.S-D, and P.J.S
wrote the manuscript. All authors critically revised the manuscript.



170 Chapter 9. Comparison of 432 Pseudomonas strains

Additional information and files
All additional files can be found at the on-line version of Jasper J. Koehorst*,
Jesse C.J. van Dam*, Ruben G.A. van Heck, Edoardo Saccenti, Vitor A.P. Mar-
tins dos Santos, Maria Suarez-Diez and Peter J. Schaap. "Comparison of 432
Pseudomonas strains through integration of genomic, functional, metabolic and
expression data". In Scientific Reports volume 6, Article number: 38699 (2016)



10

171

Chapter 10

Bio-Growmatch: high quality
automatic model building
through automated
incorporation of phenotype
data

Jesse C.J. van Dam, Vitor A.P. Martins dos Santos, Peter J. Schaap and
Maria Suarez-Diez



172 Chapter 10. Bio-Growmatch: high quality automatic model building.

Abstract
Genome-scale metabolic models have been proven essential to unravel bac-
terial metabolism and to predict metabolic phenotypes from genome infor-
mation. The successful applications of these models to metabolic engineering
has boosted the development of tools for automated model reconstruction.
However, still building a genome scale model is a labour intensive process en-
tailing manual revision of hundreds of reactions. Gap-filling algorithms have
improved the quality of the automated reconstructions thereby reducing the
amount of curation needed. Still often the improved models are not able to
fully account for known metabolic phenotypes.

Here, we present Bio-Growmatch, a gap-filling tool that incorporates avail-
able phenotype information in the reconstructed draft, thereby largely im-
proving their quality. We have tested the performance of Bio-Growmatch on
31 bacterial species. For these we have performed high-troughput measure-
ments using phentoype microarrays. The obtained data have been used to
evaluate the improvements introduced using Bio-Growmatch on draft mod-
els generated using two popular tools for automated model generation (SEED
and PathoLogic) and different requirements for model completion. Overall,
we have tested the performance of Bio-Growmatch in more than 3000 models
and found that it improves the predictive power of the models.



10

Chapter 10. Bio-Growmatch: high quality automatic model building. 173

Introduction
High resolution sequencing of bacterial genomes has become very affordable,
single cell genomics is becoming commonplace and the quality of metage-
nomics datasets has increased considerably. As a result, the number of pub-
lished bacterial genomes has grown exponentially [112, 474]. This results in
an increased demand for computational tools to predict bacterial phenotypes
from the genotype. In this respect, genome-scale metabolic models (GEM),
based on stoichiometric constraints, can predict metabolic phenotypes such
as catabolic potential, essential media components, alternative culture condi-
tions and conditional gene essentially [24, 87, 272, 537].

GEM condense the full set of biochemical reactions that can occur in an
organism. The identified reactions and their corresponding metabolites are
stored in a matrix formalism suitable for mathematical analysis [358, 494]. The
starting point of a reconstruction is a comprehensive list of genome encoded
enzymes and associated reactions and metabolites. Building a GEM is a labor
intensive process. Currently, a number of software tools exist that automati-
cally mine reference reaction databases to produce a draft of the desired model
[216].

High quality automatically generated drafts greatly diminish the amount
of labor for GEM creation. Such draft models are often incomplete and contain
errors and inconsistencies but provide a solid starting point for subsequent
manual curation and improvement. Often, these inconsistencies appear as
gaps in the model that lead to blocked reactions, that are not able to carry any
flux in any condition or as dead-end metabolites that can only be either pro-
duced or consumed. These gaps prevent the use of many techniques, such as
Flux Balance Analysis (FBA) [367], commonly used to analyse GEM. FBA re-
turns a prediction on the optimal (maximum or minimum) flux value through
a selected reaction, called objective function. Growth predictions are com-
monly performed by selecting biomass formation as objective function. How-
ever, FBA is only possible when all the reactions connected to the selected
objective function are present in the model.

Gap-filling has been defined as “a computational technique to complete a
reaction network based on FBA without referring to the genome” [289]. Com-
putational tools to perform gap-filling, such as Gapfill [432], Smiley[407] or
fastGapFilling [289] use no other input than a draft model and a set of con-
straints defining possible media. Other tools incorporate additional experi-
mental data: C13 labeling data, expression datasets, knock-out data or growth
data on various substrates [47, 223, 225, 432, 544, 545]. Phenotype data charac-
terizing growth and substrate utilization are relatively easy to obtain and can
be obtained in a high throughput manner [67]. However, to the best of our
knowledge, no workable implementations are available for any of the tools
that use this data type.

We have developed Bio-Growmatch, a modification of GrowMatch that
is specialized on using metabolic phenotype data to gap-fill and improve an
automatically generated GEM. One of the major problems encountered when
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gap-filling a GEM pertains how biomass is described. The need of gap-filling
techniques often arises as a result of missing anabolic reactions needed to syn-
thesise biomass components. On the other hand, substrate utilization pre-
dictions rely on completeness of catabolic pathways. Thus, the prediction of
growth and substrate utilization on a given medium is dependent on both the
catabolic and anabolic capacities of an organism. Within Bio-Growmatch, it
is assumed that these are to some extent independent from each other. Two
main approaches are followed i) a set of relatively simple biomass definitions
is used, which limits the requirements on anabolic capacities and increases
the likelihood of a positive growth prediction. ii) Bio-Growmatch performs a
gap-filling using tricarboxylic acid (TCA) cycle intermediates as media, which
we named as the anabolic fast gap fill method. This effectively decouples the
gap-filling of anabolic and catabolic pathways.

In addition to a working implementation of Bio-Growmatch, an exten-
sive evaluation of the performance of the algorithm is presented. 31 bacterial
species, with available genome sequences, have been selected. For these, draft
network reconstructions have been generated using combinations of two ap-
proaches for genome annotation (SAPP and RAST [31, 273]), two automated
draft generation tools, namely SEED and PathoLogic [264, 371], which use
two reference reaction databases: ModelSEED and MetaCyc [95, 137]. High-
throughput data on the metabolic phenotypes of these organisms has been
generated using Biolog phenotype microarrays [446]. Subsequently, these ex-
perimental data have been compared with the predictions produced by the
models, obtained before and after using Bio-Growmatch. A scheme of the
tested combinations is presented in Figure 10.1. Furthermore, we have also
tested the improvements introduced by Bio-Growmatch in four published and
manually curated models. Overall, we have tested the performance of models
generated by combination of two model generating methods and their asso-
ciated gap filling methods, four biomass definitions, the inclusion of the an-
abolic fast gap-filling method and our new Bio-Growmatch method.

Results
Bio-Growmatch
Bio-Growmatch is based on the same principles as the algorithm presented
in [223], which in turn relies on the principles demonstrated by GrowMatch
[281]. Bio-Growmatch has four main steps, as shown in Figure 10.2. In the
first step (gap-filling) reactions are identified that, upon addition to the model,
would reduce the number of false negative (FN) predictions (no growth or no
degradation of compounds predicted when growth or degradation is experi-
mentally proven to occur). This produces a set of candidate reactions that, in
the second step, are reconciled to minimize the number of reactions added to
the model. In the third step (gap-creation) reactions are identified that, upon
removal from the model, create gaps that reduce the number of false positive
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FIGURE 10.1: Tested combinations. Schematic overview of all the tested combina-
tions: Two genome annotation pipelines (SAPP ([273]) and RAST([31])), two automatic
model generation tools (SEED and PathoLogic) and alternative gap filling methods:
the gap-filling methods included in PathoLogic and SEED, the anabolic fast-gap fill-
ing, Bio-Growmatch and the combination of anabolic fast gap-filling followed by Bio-
Growmatch. The gap-filling methods where, when possible generated in combination
with the four biomass definitions. Additionally 4 manual models are included and a
set of leave one out models are created. Each of these combination has been compared
to the Biolog data processed with the OPM package from which confusion matrices
and statistical estimators are calculated.

(FP) predictions. In the final step, a new consensus set of reactions is identi-
fied so that a minimal number of reactions are removed from the model. This
scheme closely follows that of the method proposed in [223], however impor-
tant differences have been introduced, especially in steps 1, where fastGapFill
is used, and in step 3 that simultaneously considers all media for which exper-
imental data are available. Additionally, steps 2 and 4 imply solving a Mixed
integer linear programming (MILP) problem. In the Bio-Growmatch imple-
mentation, the MILP problem has been split to reduce the memory load and
the computational cost. Running time varies depending on the model and on
the size of the experimental data sets. As an example, running Bio-Growmatch
with default parameter set using as input a model generated using the Seed
algorithm and a dataset with 190 growth conditions, typically requires 2 to 6
hours running on 4 cores on a typical I5 core machine.

In addition to Bio-Growmatch we have developed an anabolic fast gap-
filling method based on the already existing fastGapFill [289]. The main mod-
ification is a pre-defined minimal requirement for the objective function in
our approach. This gap-filling approach is designed to optimize anabolic ca-
pabilities, meaning that it is assumed that the full set of catabolic reactions
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FIGURE 10.2: Schematic overview of the steps in Bio-Growmatch. Prepare) The pre-
diction for each metabolite is determined and compared to the measured phenotype
data. Step 1) For each FN, propose multiple gap filling solutions. Step 2) Reconsoli-
dation I, select the solutions that solve most FN while minimizing the modifications
to the model. Step 3) For each FP propose multiple gap generating solutions. Step 4)
Reconsolidation II, select the solutions that solve most FP with the minimum amount
of changes to model.

are present in the model. This is achieved by allowing, during the gap filling
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process, unlimited uptake of TCA cycle intermediates and closely related com-
pounds: oxaloacetic acid, citrate, aconitate, isocitrate, α-ketoglutarate, succi-
nate, fumarate, malate, pyruvate, glutamate, glutamine and aspartate. Bio-
Growmatch and the anabolic fast gap-filling method have been implemented
as a Java command line application and are freely available.

Definition of objective functions
Four objective functions were used in the gap-filling process and to make pre-
dictions with the models. Three of them represent alternative biomass compo-
sitions: The first one, which we termed ‘Full’ is based on the biomass defini-
tions that can be found in MetaCyc [95] and ModelSEED [224] databases. The
‘Basic’ biomass definition requires cofactors ATP, NADH and S-adenosyl me-
thionine together with aspartate, glutamate, serine, α-ketoglutarate, pyruvate
and ribose 5-phosphate. The ‘Medium’ biomass function reports growth if the
model can synthesize all metabolites at the main branch point of metabolism.
The fourth objective function, which we termed ‘Mini’ is used to predict cata-
bolic capabilities. Flux through this reaction indicates that the compound of
interest can be degraded to any one of the TCA cycle intermediate metabo-
lites. In the models this is represented as a synthesis reaction requiring either
one of the compounds in the TCA cycle. A detailed list of the components in
each objective function is provided in Additional file 1.

Metabolic phenotype of selected bacterial species
Biolog phenotype microarrays produce measurements on cellular respiration
of distinct substrates and provide a characterization of the catabolic capacity
of the cells [446]. Here, we used the microarrays to characterize the ability
of 31 bacterial species to catabolize potential carbon sources. The selected
bacterial species represent a collection of species spread across the kingdom
of bacteria, and includes members from 6 phyla, 16 orders and 28 genera (see
Additional file 2)

The biolog data are presented in Additional file 3. These results show the
great metabolic diversity of the selected species. No single compound appears
that can be used by all the selected species, in fact the most utilized com-
pounds are fructose, glucose and glucosamine, which are all three utilized by
only 19 of the 31 species.

Experimental characterizations were performed for 190 carbon based com-
pounds. However, only for 127 of these degradation pathways can be found
in the ModelSEED and MetaCyc databases. Among the remaining 63 com-
pounds, over 66% were not present at all in one of the database. See Addi-
tional file 4 for detailed information.
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Automatically generated models
For each of the selected species we used alternative pipelines for automatic
reconstruction of metabolic models. We have tested two genome annota-
tion pipelines (SAPP [273] and RAST[31]), two automatic model generation
tools (SEED and PathoLogic) and five alternative gap filling methods: the
gap-filling methods included in PathoLogic and Seed, anabolic fast-gap fill-
ing, Bio-Growmatch and the combination of anabolic fast gap-filling followed
by Bio-Growmatch (see Figure 10.1). The gap-filling methods where, when
possible generated in combination with the four biomass definitions. Overall,
we generated 868 GEM, 28 for each of the considered bacterial species.

Seed models are more extensive (average of 3010 reactions and 3232 com-
pounds) that those generated using PathoLogic (an average of 1326 reactions
and 1474 compounds), as shown in Table 10.1. The anabolic fast gap-fill added,
on average, 8.52 reactions to the models. Bio-Growmatch, added an aver-
age of 30.74 reactions and removed 13.36 reactions. The combination of Bio-
Growmatch and the anabolic fast gap filling lead to slightly smaller models
with less added reactions (25.46 on average) and more removed reactions
(19.02). See Additional file 5 for detailed information on each species.

TABLE 10.1: Average number of reactions added and removed in each gap-filling ap-
proach.

model-
build

method

bio-
mass
defi-

nition

avg. added
#reactions

AFGF+

avg. added
#reactions

Bio-
Growmatch

avg. rem.
#reactions

Bio-
Growmatch

avg. added
#reactions

AFGF&Bio-
Growmatch

avg. rem.
#reactions

AFGF&Bio-
Growmatch

PT mini 0 15.42 48.68 15.29 47.9
PT basic 0.19 13.87 33 15.97 42.36
PT medium 2.03 13.19 0.55 16.07 22.97
PT full 12.87 20.42 0 15.87 3.32

seed mini 0 33.84 17.65 34.36 17.58
seed basic 0.55 31.07 7.03 34.84 10.84
seed medium 5.48 34.65 0 35.13 6
seed full 47.07 83.48 0 36.19 1.19

AFGF refers to anabolic fast gap-filling. “+” and “-” indicate added and removed reactions re-
spectively. Models had been generated with each of the indicated tools (PT indicates PathoLogic)
and gap-filling has been performed using the indicated objective functions. Data represent
averages over the studied 31 species.

Assessment of automatically generated GEMs
We performed a systematic evaluation of the potential of the models to predict
the metabolic capacity of each of the selected strains. For each model, predic-
tions for the carbons sources were compared with experimental data. These
comparisons were done only for the 78 compounds for which degradation
pathways are present in both ModelSEED and MetaCyc databases. For each
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model we have calculated statistical performance estimators, such as preci-
sion, sensitivity, specificity and accuracy. Given the diversity of the metabolic
potential of the selected species, we have also computed the Matthews cor-
relation coefficient (MCC) which provides a balanced measure of the quality
of the predictions regardless of the number of positives and negatives [326].
Table 10.2 contains averages over all the studied species. Detailed information
on each species can be found in Additional file 6.

Bio-Growmatch uses phenotype data for model optimization and, as ex-
pected, it greatly increases the agreement between model predictions and ex-
perimental data. Therefore, we further evaluated the quality of the predicted
models on data not used for model training. To this end, for each of the 31
organisms and each of the tested 78 compounds, a model was built on which
the gaps were filled using Bio-Growmatch and the full set of experimental
characterization of the organism except data corresponding to the considered
compound. The so generated models were used to assess the quality of the
predictions on that particular compound. Data corresponding to this unbiased
approach were averaged over the considered species. This is an extremely de-
manding approach as it entails the construction of 2418 models and the overall
process requires over 40000 hours of computational time. Thus, we have only
applied this approach to models generated using the SEED model construc-
tion pipeline and the basic biomass definition. Table 10.2 shows the increased
predictive power of this approach when compared with automatically gener-
ated models.

This strategy of leaving out one dataset on the model reconstruction step,
also provides the framework to compare the performance of the automatically
created models (after anabolic fast gap-filling and Bio-Growmatch) with that
of already published models. We retrieved available models for Escherichia
coli, Bacillus subtilis, Pseudomonas putida and Salmonella typhimurium [356, 362,
368, 496]. These models were used to make predictions on substrate utilization
and the results were compared with the experimental data. The outcome of
this analysis is summarized in Table 10.3.

Discussion
Comparison of model building methods, biomass definitions
and gap-filling methods
Precision and sensitivity of the models generated without any additional gap-
filling procedure are zero when the Full biomass definition is used (Table 10.2).
This is due to the fact that for none of the tested species, the automatic re-
construction methods led to networks with complete pathways for synthesis
of elementary biomass components such as DNA, RNA, lipids or proteins.
This further emphasizes the need of efficient gap-filling methods for auto-
matic model generation.
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TABLE 10.2: Scores for the generated models

modelbuild
method

biomass
definition

gapfill
method

sensi-
tivity

speci-
ficity

preci-
sion

accu-
racy MCC

seed mini none 0.55 0.67 0.49 0.63 0.22
seed mini default 0.56 0.67 0.48 0.63 0.22
seed mini AFGF 0.55 0.67 0.49 0.63 0.22
seed mini Bio-Growmatch 0.88 0.9 0.82 0.89 0.77

seed mini AFGF&
Bio-Growmatch 0.89 0.9 0.83 0.89 0.78

seed basic none 0.39 0.8 0.52 0.65 0.2
seed basic default 0.45 0.78 0.53 0.66 0.24
seed basic AFGF 0.55 0.68 0.49 0.63 0.23
seed basic Bio-Growmatch 0.81 0.9 0.82 0.87 0.71

seed basic AFGF&
Bio-Growmatch 0.81 0.93 0.86 0.89 0.75

seed basic leave one out 0.52 0.85 0.66 0.73 0.39
seed medium none 0 1 0 0.64 0
seed medium default 0 1 0 0.64 0
seed medium AFGF 0.55 0.68 0.49 0.63 0.23
seed medium Bio-Growmatch 0.75 0.85 0.73 0.81 0.59

seed medium AFGF&
Bio-Growmatch 0.87 0.85 0.76 0.86 0.7

seed full none 0 1 0 0.64 0
seed full default 0 1 0 0.64 0
seed full AFGF 0.56 0.67 0.49 0.63 0.22
seed full Bio-Growmatch 0.76 0.84 0.73 0.81 0.6

seed full AFGF&
Bio-Growmatch 0.9 0.77 0.68 0.82 0.64

PT mini none 0.84 0.29 0.4 0.49 0.15
PT mini default 0.85 0.29 0.4 0.49 0.15
PT mini AFGF 0.84 0.29 0.4 0.49 0.15
PT mini Bio-Growmatch 0.93 0.79 0.71 0.84 0.69

PT mini AFGF&
Bio-Growmatch 0.94 0.79 0.71 0.84 0.69

PT basic none 0.66 0.43 0.39 0.51 0.09
PT basic default 0.67 0.42 0.39 0.51 0.09
PT basic AFGF 0.84 0.29 0.4 0.49 0.14
PT basic Bio-Growmatch 0.73 0.81 0.68 0.78 0.53

PT basic AFGF&
Bio-Growmatch 0.79 0.83 0.72 0.82 0.61

PT medium none 0.1 0.9 0.36 0.62 0
PT medium default 0.14 0.85 0.34 0.6 -0.01
PT medium AFGF 0.84 0.29 0.4 0.49 0.14
PT medium Bio-Growmatch 0.62 0.79 0.62 0.73 0.41

PT medium AFGF&
Bio-Growmatch 0.87 0.64 0.57 0.72 0.49

PT full none 0 1 0 0.64 0
PT full default 0 1 0 0.64 0
PT full AFGF 0.84 0.29 0.4 0.49 0.14
PT full Bio-Growmatch 0.58 0.8 0.62 0.72 0.39

PT full AFGF&
Bio-Growmatch 0.96 0.41 0.47 0.61 0.39

Statistical estimators for each combination between the two model generating methods, four
biomass definitions and four gap filling options combined over all 31 models. The score for
the leave-one-out test is also included. AFGF refers to anabolic fast gap-filling and AFGF &
Bio-Growmatch to its combination with Bio-Growmatch
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TABLE 10.3: Comparison between manually curated and automatically generated
models

methods sensitivity specificity precision accuracy f1 MCC
seed & mini &

TCA-fast gap fill &
Bio-Growmatch

0.89 0.9 0.83 0.89 0.86 0.78

manual & mini 0.57 0.79 0.73 0.68 0.64 0.37
seed & full &

TCA-fast gap fill
&Bio-Growmatch

0.9 0.77 0.68 0.82 0.78 0.64

manual&self 0.14 0.96 0.79 0.56 0.24 0.18
For the automatically generated models the results are combined over 31 models. For the manual
models the results are combined over 4 models.

Similarly, when the Medium biomass definition is used, the number of
positive results is also zero for SEED generated models. However, models
generated with PathoLogic show a positive, albeit small, number of positive
predictions, which indicates a higher degree of model completion. Never-
theless, even without gap-filling the automated methods are able to, at least
partly, include catabolic pathways as shown by the relatively high accuracies
obtained when using the Mini objective function. This is objective function is,
as previously stated, an indicator of the catabolic capacities of the organisms
detached from their anabolic capacities.

Default gap-filling methods included in the tested algorithms for auto-
mated reconstruction result in an insubstantial improvement of the generated
models, as shown in Table 10.2. This is most likely due to mismatches between
the biomass definitions here presented and the approaches used by each of the
algorithms.

Applying the anabolic fast gap-fill approach to the generated models leads
to clear improvements in the predictive power of the models regarding the
Medium and Full biomass objectives. MCC goes from zero up to ≈ 0.22 and
≈ 0.15 for models generated using SEED and PathoLogic respectively, regard-
less of the selected biomass definitions (Table 10.2). These improvements are
not surprising, given that this approach is specifically designed to improve
the predictive power of the models regarding the anabolic potential of the
species. These improvements are achieved at the cost of including a relatively
large amount of reactions for which no genomic evidence is available (Table
10.1). SEED generated models seem to outperform the PathoLogic generated
ones after anabolic fast gap-fill. Nevertheless, it should be noted that the num-
ber of reactions that are added in the SEED generated models almost doubles
the number of reactions the PathoLogic generated models require. The an-
abolic fast gap-fill method was not intended to increase the predictive power
of the model regarding catabolism, and, as expected, no modifications are in-
troduced in the model (Table 10.1)

The gap-filling methods embedded in the reconstruction algorithms and
the anabolic fast gap-filling methods result in addition of reactions to the



182 Chapter 10. Bio-Growmatch: high quality automatic model building.

model, as these approaches work based on adding reactions that enable syn-
thesis of biomass components. However, Bio-Growmatch aims at the maxi-
mization of the agreement between model predictions and measured pheno-
types. As a result, reactions are both added and removed from the model
(Table 10.1). The more complex the biomass definition is, the more reactions
are added and less reactions are removed, regardless of the originating model.
For the Full biomass definition no reactions are removed. The resulting mod-
els achieve MCC that are significantly better than the scores achieved with no
gap-filling, the gap filling method included in Seed and PT, or the anabolic fast
gap-fill method. In particular, Bio-Growmatch clearly improves the specificity
of the models.

Finally, the best performing models arise as a result of the combination
of Bio-Growmatch with the anabolic fast gap-filling method, which is not sur-
prising given that this combination is the one that introduces the highest num-
ber of modifications (added and removed reactions, as shown in Table 10.1).
Bio-Growmatch is able to improve the models by reducing the number of in-
correct positive predictions. However its applicability is limited when the
starting model has such a high number of gaps that it is unable to simulate
biomass synthesis and no positive predictions can be generated. Thus initial
applications of the anabolic fast gap-filling approach improves the MCC and
sensitivity scores, however it does so at the cost of specificity (Table 10.2).

Overall, Table 10.2 shows that, regardless of the starting model, applica-
tion of Bio-Growmatch leads to models that better describe the metabolic po-
tential of the studied organisms. Moreover, it also increases the predictive
power of the model. This can be seen by comparing rows SEED/basic/ngf,
SEED/basic/Bio-Growmatch and SEED/basic/AFGF&Bio-Growmatch in Ta-
ble 10.2.

The comparison between manually curated models and those generated
by Bio-Growmatch shows the surprising result of Bio-Growmatch outperform-
ing the manually curated ones. However, caution should be exerted when in-
terpreting this result. Bio-Growmatch has been designed to generate models
able to account for metabolic phenotype data, even though in the carried on
comparison the corresponding data was purposely left out of the process. On
the other hand, published models have undergone a curation process that of-
ten takes into account other data types, such as gene essentiality. Moreover, it
should be noted that in the automatically generated models we have assumed
the existence of transporters needed to uptake the corresponding compounds.
Transport is often a major bottleneck in substrate utilization that in the gap-
filling method has not been considered, whereas in manually curated models
curation of transport mechanisms is often a major effort. Finally the score of
the curated models can be hampered due to metabolite mapping issues. This
is an intrinsic problem often found in the manual models, were unique and
univoque metabolite identifiers for the metabolites, such as InChI identifiers
[], are not included in the annotation.
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Selection of the objective functions for gap-filling
The choice of the objective function used in the gap-filling process has an im-
portant impact on the outcome of the algorithm. The best statistical estimators
are obtained when Bio-Growmatch is used (possibly in combination with the
anabolic fast gap-filling ) together with the Basic biomass or the Mini objec-
tive function (Table 10.2 and Additional file 7). This difference in performance
is not surprising as the Mini objective function is specifically designed to ac-
count for catabolic capabilities. Biolog microarrays produce measurements on
cellular respiration on distinct substrates. A positive result implies that the
cell is able to degrade the selected compound but it is not always guaranteed
that is additionally able to use it as a sole carbon source. Other approaches
to experimentally determine substrate utilization, such as growth curves em-
phasize the role of the carbon source in anabolism. In those cases, the Basic
biomass could provide models that better incorporates the experimental data.

Impact of the reference databases
The quality of the model enhancement achieved with the Bio-Growmatch
depends on the quality of both the experimental data and of the reference
database. However, alternative namespaces might be used for both, which
might hamper their interlinking. This prevents correct identification of degra-
dation pathways. Here, these problems have arisen for a quarter of the 190
carbon based compounds in the Biolog microarray, as either they could not
be identified or there was no known degradation pathway in the reference
database. These typically include the more complex molecules containing a
linked set of sugars, amino acids and fatty acids. However, this issue also
affects simple but more rare molecules such as lactulose as well as other fre-
quently used compounds, such as Tween 40.

SEED and PathoLogic
PathoLogic requires annotated genomes with locus tags associated to GO
terms, EC numbers, and enzyme names. This information is then used to iden-
tify the corresponding reactions in the MetaCyc database. However, SEED
model building requires the genomes to be annotated using RAST which uses
the ModelSEED database. The database used by PathoLogic currently con-
tains 12399 balanced reactions and uses compound classes whereas the one
used by SEED has 26079 balanced reactions and compound classes are not
used. These might be the cause of the differences between the generated mod-
els, as models generated with PathoLogic show a higher sensitivity whereas
the SEED generated ones result in higher selectivity. Those differences might
also be the cause of the better performance of the SEED generated models after
gap-filling using Bio-Growmatch.
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Conclusion
Bio-Growmatch is able to improve automatically generated models so that
they better represent the known physiology of the organism. Phenotype data
collection is an essential pre-requisite for Bio-Growmatch application. Here
we have used phenotype microarrays, as they provide high-throughput data
that in the past have been proven useful to increase the quality of metabolic
reconstructions [54]. Nevertheless other assay technologies like the API 20E
kit can also provide this type of data in a high-throughput manner [227].

Functional genome annotation is another critical step, here we have seen
that the combination of RAST annotation and SEED model building produces
the best results, however, the SEED gap-filling step is not needed. We have
used a generic biomass function ‘Full’ to account for the cellular components
of the selected organisms. This is similar to the approach followed by Patho-
Logic and SEED, however, within Bio-Growmatch this definition can be mod-
ified to the species of interest if experimental characterization is available.
This has the potential of greatly improving the resulting model [528]. Finally,
both the anabolic fast gap-fill and Bio-Growmatch should be used in combi-
nation. The Mini objective function will result in a better representation of the
catabolic capabilities, however, using the Full biomass as an objective function
would increase the scope of the model.

Bio-Growmatch is able to automatically include metabolic phenotype char-
acterizations in the model building process. This leads to model drafts that
represent a better starting point for the curation process, thereby diminishing
the amount of manual labour required to obtain accurate genome-scale con-
straint based metabolic models.

Availability

The Bio-Growmatch code is available under the MIT license and can be ac-
cessed at www.gitlab.com/wurssb/Bio-Growmatch. Bio-Growmatch is im-
plemented in Java, uses the Gradle build system and Cplex linear problem
solver for solving the MILP [62].

Materials and Methods
Bio-Growmatch
Bio-Growmatch is designed to simultaneously minimize the number of false
negatives (FN) (no growth or no degradation of compounds predicted when
growth or degradation is experimentally proven to occur) and false positives
(FP) (growth or degradation of compounds predicted when no growth or
degradation is experimentally proven to occur).

The algorithm consists of four steps, summarized in Figure 10.2.
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Step 1. Propose multiple gap filling solutions

In this step, the algorithm tries to identify up to 10 unique solutions that
would resolve each FN leading to a positive predictions. The method searches
for solutions with a minimal set of weighted modifications. Modifications in-
clude addition of reactions from a reference database or making an existing
reaction reversible. Modifications are weighted according to:

λfi = 1 + Pstructurei + Pknown∆Gi
+ Punfavorablei

(
3 +

∆Gi
10

)
.

Pstructurei is 1 if one of the compounds within an added reaction has an
unknown structure and 0 otherwise. Similarly Pknown∆Gi is 1 if the change in
the Gibbs free energy of the reaction, ∆Gi, is unknown and 0 otherwise. The
penalty introduced by Punfavorablei scales with ∆Gi thus penalizing reactions
in a thermodynamically unfavourable direction. If the change in the Gibbs
free energy is unknown the variable ∆Gi is set to zero [223].

To improve runtime performance we applied a strategy similar to the fast-
GapFill method [289]. The goal is to maximizes the flux through the objective
function while minimizing the weighted sum of the flux through any of the
additional reactions from the reference database (equation 10.1):

maximize M(c · vm)− λf · vr. (10.1)

The vector vm represents the flux through the reactions already in the model
and the Boolean vector c indicates which reaction is the objective function. vr
represents the flux through the added reactions. M is equal to the sum of all
λfi penalty scores and ensures that the flux through the objective function is
maximized:

M = 1 · λf . (10.2)

The maximization is performed with the additional constraints:

S · v = 0 (10.3)

where
v = [vm, vr] (10.4)

and
0 ≤ v ≤ vub. (10.5)

S is the stoichiometry matrix of all reactions in the model and equation 10.4
represents the steady state hypothesis (no net accumulation or consumption
of metabolites). All fluxes are constrained to be positive but below the flux
upper bound vub (Eq. 10.5). For equation 10.5 to hold the model has to con-
tain only irreversible reactions, this requires all reversible reactions to be split
in a forward and a reverse reaction. Integer cutting is used to find multiple
solutions [].
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Step 2 Reconsolidating I

Step 2 selects the best set among the previously identified solutions. The best
set of solutions is required to resolve the maximum amount of FN while mini-
mizing the number of newly introduced FP. A secondary requirement is added
to minimize the amount of weighted modifications to the model.

We closely follow the approach of Modified GrowMatch [] however, here
the original MILP problem is split and solved in two steps, 2A and 2B, inde-
pendent of each other. This is needed to overcome performance and memory
issues that arise due to the increased size of the problem in the application of
Bio-Growmatch.

Step 2A uses integer cuts to find up to 100 solution sets. Each solution set
contains solutions from Step 1 and is used to identify the ones with the lowest
FN and FP.

maximize Q
(
1 · ofn + 1 · otn

)
− 1 · s, (10.6)

where: 1·ofn is the number of corrected FN ; 1·otn is number of preserved true
negatives (TN) ; The Boolean vector s indicates, for each solution, whether it
is to be included in the final set of solutions and Q = nsol + 1 with nsol the
number of solutions.

Additionally the following constraints are imposed that take into account
the total set of nfn FN before the application of Bio-Growmatch:

ofnk
≥ εk · s with k ∈ {1, . . . , nfn} (10.7)

and
nsol ∗ (1− otnk

) ≥
(
1− µk

)
· s withk ∈ {1, . . . , ntn}. (10.8)

Here ofnk
is equal to 1 if the kth FN is turned into a TP by the addition of

the reactions in the solution set and 0 otherwise. Similarly, otnk
equals 1 if the

kth TN, is preserved and 0 otherwise. For each FN, the vector εk contains, for
each solution considered, 1 if the solution gives a corrected prediction and 0
otherwise. s is a vector of size equal or smaller than 10∗nfn, that contains sets
of reactions. The Boolean vector µk contains, for each solution sj and for each
compound causing the lth TN, 1 if the model with the inclusion of solution,sj ,
still gives a correct prediction and 0 otherwise. Equation 10.7 ensures that for
each FN at least one solution turns it into a TP. For each preserved TN none of
the solutions should give a positive solution (equation 10.8).

Step 2B selects the solution set with the minimum amount of weighted
changes to model:

minimize λf · y, (10.9)

where y contains, for each reaction, 1 if the reaction is included the final model
and 0 otherwise.

For each solution, j, in the solution set, all reactions have to be included in
the model:

δj · y ≥ sj
(
δj · 1

)
with j ∈ {1, dots, nsol}, (10.10)
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where sj equals 1 if the solution j is included in the model and 0 otherwise
and δj contains for each reaction a 1 if the reaction is included in solution j
and 0 otherwise. Each of the added reactions are marked such that they will
not be removed again in the subsequent gap generating step.

Step 3 Propose multiple gap generating solutions

In this step the algorithm tries to find up to 10 unique solutions to fix each FP.
A solution contains a minimal set of weighted modifications required to get
a negative growth prediction. Modifications include the removal of a (set of)
reactions or making a reaction irreversible.

Modifications are weighted with:

λgi = 1 + Pirreversiblei (10.11)

Pirreversiblei imposes a penalty of 1 if the reverse reaction is not present
in the model and of 0 otherwise. Thus, removing a reversible reaction has a
greater penalty than making it irreversible.

To fix a FP associated to a given compound, a search is done for a solution
predicting no growth on the compound while predicting growth for all the
compound associated to each existing TP. To do so, first an FBA optimization is
performed on which exchange reactions for all compounds associated to each
TP are added. Subsequently, the obtained value of the objective function is set
as minimum value (α) for the objective function in the bi-level optimization
problem described below.

maximize λ · y (10.12)
subject to:

maximize c · vm (10.13)
inner subject to:

S · vm = 0 (10.14)

0 ≤ vm ≤ y · vub (10.15)

c · vm = 0 (10.16)

0 ≤ tm ≤ y · vub (10.17)

k · y = 1 (10.18)

r · t = 0 (10.19)

t =
[
tm, te

]
(10.20)

S · t = 0 (10.21)

te = einflux ∗ 1 (10.22)

c · t ≥ α (10.23)
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1 · (1− y) ≤ ω. (10.24)

Were: λ contains for each reaction present in vm the weighting factor given
in formula 10.11. The vector y contains, for each reaction in vm, a 0 if its re-
moved in the final solution and 1 otherwise. The Boolean vector c indicates
which reaction is the objective function. vm contains the fluxes of all the reac-
tions in the model including the exchange reactions and objective function. tm
is the counterpart of the vm in the inner problem. The vector te contains the
fluxes through the exchange reactions representing uptake of compounds as-
sociated to TP. vub contains the upper bounds for fluxes through each reaction
in the model. The vector k is the selector for those reactions that should not be
removed. The vector r is the selector of the exchange reaction associated to the
processed FP. S is the stoichiometry matrix. einflux contains the upper bounds
for each exchange reaction. α equals the minimum flux through the objective
function that should be achieved. The constant ω is equal to the maximum
number of reactions that can be removed.

In the original “modified GrowMatch” method [223] the gap generating
step is based on a bi-level optimization problem, which must find a solution
of reactions y to remove such that the model with the knockout included (rep-
resented by the fluxes in vector vm) no longer predicts growth while the com-
plete model (represented by the fluxes in vector t) keeps predicting growth.
The inner problem represents the optimization of vm for maximal growth.
In our approach, both the inner and outer problems represent the complete
model, described by vm and tm. However, within the inner problem the
model utilizes the compound associated to the processed FP. Whereas in the
outer problem the model is forced to utilize all compounds associated to TP
for growth.

The gap generating step maximizes the (weighted) number of reactions
kept in the model thereby minimizing the (weighted) modifications (equation
10.12). The maximal possible flux through the objective function of the model
consuming the compound associated to the FP should be zero (equations 10.13
and 10.16). Equations 10.14 and 10.21 represent the steady state hypothesis in
the inner and outer problems respectively. All fluxes are constrained to be
positive but below the flux upper bound constant vub (eq. 10.17). For equa-
tion 10.17 to hold the model has to contain only irreversible reactions, this
requires all reversible reactions to be split in a forward and a reverse reaction.
Transport and biochemical reactions are within the model can be a candidate
to be removed, and their removal is represented in the Boolean vector y (eq.
10.17). However, exchange reactions, the objective function, the influx reac-
tion for the compound associated to the FP and reactions added in the gap
filling step, represented in vector k, are excluded from the candidate for re-
moval list (eq. 10.18). Uptake of the compound associated to the processed
FP must be zero (eq. 10.19). The model in the outer problem includes the in-
flux reactions for all the compounds associated to each of the TP (eq. 10.20).
To mimic a forced growth on the compounds associated to each TP, each of
the influx reactions should have flux and the objective function should have
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a minimal flux equal to the combined flux possible for all compounds con-
sumed (eq. 10.22 and 10.23). The minimum biomass production needed (α) is
equal to the flux achieved in a pre executed FBA, in which the biomass pro-
duction was maximized and in which all compounds associated to each TP are
included. This ensures that the model must be able to simulate grow on each
of the compounds, instead of simulating their degradation through respira-
tion or fermentation. Finally, to ensure a reasonable computational time the
number of reactions to remove is limited to a preset constant ω, with default
value to 3 (eq. 10.24).

Step 4 Reconsolidating II

This is the same as step 2 (described in eqs. 10.6 to 10.10 , with the exception
that the overlineλf weighting factor is replaced with the λg factor, the ele-
ments reading FN, TN, TP and FP should read FP, TP, TN and FN respectively
(that is positives and negatives exchage their roles) and the vector y contains
for each reaction a 1 if the reaction is excluded from the final model and 0
otherwise.

Anabolic fast gap-fill

The developed anabolic fast gap-filling method is based on the already exist-
ing fastGapFill [495]. For the anabolic fast gap fill, the model is modified to
only contain irreversible reaction. This again requires all reversible reactions
to be splitted in a forward and a reverse reaction. Then, the following linear
problem is posed:

minimize 1 · vr, (10.25)
subject to:

v = [vm, vr] (10.26)

S · v = 0 (10.27)

0 ≤ v ≤ vub (10.28)
c · vm > α. (10.29)

Here vr is the set of irreversible reactions in the reference database. The vector
vm is the set of reactions in the model. The Boolean vector c indicates which
reaction is the objective function and α is the pre-defined minimal requirement
for the objective function. Thus, the flux through the reactions added from the
reference database is minimized while ensuring a minimal value (α = 0.005)
for the objective function.

In the anabolic fast gap-fill exchange reactions are included (or modified if
existing) to allow uptake of TCA cycle intermediates and closely related com-
pounds: oxaloacetic acid, citrate, aconitate, isocitrate, α-ketoglutarate, succi-
nate, fumarate, malate, pyruvate, glutamate, glutamine and aspartate.
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Data preparation
Biolog data was generated for the 31 species listed in additional file 1 using the
BIOLOG PM01, and PM02A microplates containing carbon sources. The pro-
tocol described in [54] was followed. In brief, bacteria were grown overnight
on nutrient agar plates. Biolog experiments were performed according to the
modified protocol “PM Procedures for E. coli and other GN Bacteria” (Biolog,
Inc. 16 Jan 2006; see Supporting Information). Subsequently, cells were trans-
ferred and suspended into 20 ml of Inoculating Fluid IF-0 to achieve 85% T
(transmittance) in the BIOLOG Turbidimeter. About 240 µl Dye Mix A and
3760 µl H2O were added to a final volume of 24 ml. Wells wells were inocu-
lated with 100 µl of the 85% T cell suspension. Experiments were carried in
triplicate.

Data was processed with both the OPM[506] and RBiolog[511] R packages
using default parameters. OPM produces a result for each replicate whereas
RBiolog also provides a summarized result. In case of conflicting results,
‘growth detected’ was selected. Both methods produce comparable results,
however, the OPM method reports more positives. We tested the two meth-
ods with the generated models and found a slightly better result for OPM.
Upon closer investigation we noticed that RBiolog is likely to misclassify a
positive growth result if there is a delayed growth curve. Therefore OPM was
selected. Raw and processed results are provided in additional file 3.

Automated GEM reconstruction
For each of the 31 species we generated 14 automatic models using PathoLogic
and 14 using SEED. An overview of the generated models is provided in Fig-
ure 10.1. Models built with PathoLogic were based on the functional genome
annotation generated using the Prodigal, InterProScan, Swissprot BLAST and
PRIAM modules from the SAPP framework [273] whereas the ones created
with SEED were based on the RAST genome annotation with default parame-
ters. Alpha-D-glucose was used as a carbon source in the optional gap filling
performed in SEED.

SMBL versions of the GEM models for E. coli (JO1366 [368]), B. subtilis
(iYO844 [362]), P. putida (iJN746 [356]) and S. typhimurium (STM_v1_0 [496])
were download from BiGG database [269]. All these models are in the BiGG
namespace.

Reference databases

MetaCyc, the reference database from PathoLogic was retrieved. The
SEED reference database files with the reactions reactions.master.tsv
and compound definition file compounds.master.tsv were retrieved
from https://github.com/ModelSEED/ModelSEEDDatabase/
tree/2d8a6afb0929a8b8ea21a164de89e36bf2c04367/
Biochemistry. Direction directionality was updated with in-
formation from the file Reactions.tsv downloaded from https:
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//github.com/ModelSEED/ModelSEEDDatabase/tree/
2d8a6afb0929a8b8ea21a164de89e36bf2c04367/Templates/Core/.
Stoichiometrically unbalanced reactions were removed from the reference
databases.

Reference databases were interlinked. MetaCyc and SEED were linked
using InChI identifiers, whereas the internal cross links to the MetaCyc and
SEED identifiers were used to map BiGG identifiers. MetaCyc includes com-
pound classes and some compounds in the Biolog PM01, PM02A Microplates
link to these classes. For these we added a mapping linking the compound
class to each of its instances.

Biomass definitions and exchange reactions

The Full biomass definition is based on the biomass definition of E.
coli from MetaCyc [521] and the SEED biomass definitions available
under https://github.com/ModelSEED/ModelSEEDDatabase/tree/
f92036b50c503e9ab950bfc6ac75f18a39213e3d/Templates. Only
compounds present in both reference databases were kept. To overcome the
mismatch caused by the missing link between the instances of fatty acids and
the general class ‘Long-Chain-Aldehydes’ we added this class to the inward
flow exchange reactions set for the PT variant.

Exchange reactions for water, ammonium, sulfate, phosphate, protons,
chlorine, bromine and biological relevant metals have been included in the
models to simulate free in and out ward flow. Oxygen and carbon dioxide
were included in the inward and outward exchange reaction set respectively.
A curated mapping of all the compounds used in the exchange reactions,
biomass definitions and Biolog microplates can be found in additional files
1 and 3.

Model simulations

FBA was used to find the maximum flux value through the selected objective
functions (defined in additional file 1). A simulation was considered to pro-
duce a positive prediction when this maximal flux was bigger than the preset
cutoff (0.005). Exchange reactions representing the media are defined in addi-
tional file 1. Additionally an inward exchange reaction was added to simulate
cytosolic availability of the tested compound

To assess model quality we built confusion matrices with the results of the
comparisons of model predictions (additional file 7) to experimental data (ad-
ditional file 3) for the 78 tested compounds (that are indicated in additional file
3). From these matrices we calculated, using standard definitions, sensitivity,
specificity, precision and accuracy, we also computed Matthews correlation
coefficient (MCC), defined [326]:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
, (10.30)
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where TP indicates the number of true positives, TN of true negatives, FP of
false positives, and FN of false negatives.
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Additional information and files
Electronic supplementary material can be accessed at www.gitlab.com/wurssb/
Bio-Growmatch Additional file 1: Objective functions and exchange reac-
tions

Definition of objective functions and exchange reactions used in simula-
tions. Metabolites have been defined in the MetaCyc, ModelSEED and BiGG
namespaces.

Additional file 2: Species list
Species used for the analysis. Species name, NCBI taxonomic identifier,

ENA accession number and curated model name (if present are) given.
Additional file 3: The biolog Data. (This file is available upon request to

jesse@jessevandam.nl)
The raw biolog data for 31 species for the two carbon plates after it has

been processed by the software delivered by Biolog company and processed
data with OPM. Species are identified by their NCBI taxonomic identifier. The
78 compounds used for the comparison are marked.

Additional file 4: Degradation pathways reference databases
Presence of the 190 tested compounds in MetaCyc or ModelSEED databases.

Found: indicates compounds in the database for which a degradation path-
way is present. Unconnected: the compound is found in the database but no
degradation pathway is present. Not found: the compound is not described
in the database.

Additional file 5: Number of reactions added in removed in each gap-
filling approach for each species

AFGF refers to anabolic fast gap-filling. Models had been generated with
each of the indicated tools (PT indicates PathoLogic) and gap-filling has been
performed using the indicated objective functions. Species are identified by
their NCBI taxonomic identifier.

Additional file 6: Statistical estimators for the generated models per species
The statistical estimator scores per species for each combination between

the two model generating methods, four biomass definitions, five gap filling
options averaged over all 78 compounds.

Additional file 7: Model predictions
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The model predictions and Biolog results. Model predictions are included
for each of the 31 species, each of the 78 compounds and each of the tested
combinations.
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Chapter 11

General Discussion

The goal of this thesis was to improve the prediction of genotype to pheno-
type associations with a focus on metabolic phenotypes of prokaryotes. This
goal was achieved through data integration, which in turn required the devel-
opment of supporting solutions based on semantic web technologies.

Objective and solutions

In my thesis I developed four sets of tools. The first set of tools (DIVA and
SyNDI) is dedicated to the visualization and analysis of heterogeneous data
sets with a focus on concurrent network view. DIVA was a prototype of
SyNDI, which is implemented in the popular network viewing tool Cytoscape.
DIVA and SyNDI are best suited for discovering novel genes involved in some
biological process, function of genes and processes and analyzing (cross) reg-
ulation. The use of these tools was illustrated in chapters 2 3 and 4 where these
tools were extensively used to unravel different aspects of gene regulation in
M. tuberculosis. However these tools are less suitable to analyze metabolism.

GBOL is an ontology for genome annotations. Together with GBOL I have
presented an associated genome annotation pipeline SAPP. This is a tool with
a special focus on provenance and it is able to capture both historical and con-
textual provenance of the annotation. SAPP produces FAIR genome annota-
tion data that can be linked with existing databases. FAIR genome annotation
ensures that all annotations and associated contextual provenance (which in-
cludes the p values) are comparable and easy to query. This was vital for
chapter 9.

To support the development of GBOL and SAPP we developed RDF2Graph
and Empusa. RDF2Graph is a tool to recover the structure of an RDF resource.
This can be used for understanding a resource and to know how to query it. I
used RDF2Graph to recover the structure of the UniProt database and subse-
quently query it. Furthermore, this tool can be used to validate that all data is
correctly encoded. So if one creates a tool that generates RDF one can check
that the results are correct. We used it to validate the data we exported in the
initial prototype versions of SAPP. Empusa can be used to define an ontology
and create an associated data accessing API. This API performs a data consis-
tency check and can be used to export RDF data. This was used in the latest
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versions of SAPP, greatly enhancing its quality and shortening the develop-
ment time needed.

BioGrowmatch was developed to attain the final goal of this thesis: to pre-
dict associations between genotypes and phenotypes. Models of metabolism
were used for this task. BioGrowmatch integrates phenotype growth data in
the model building process. This is a method to gap fill a model such that the
model better predicts the phenotype. The method was tested with a collection
of datasets generated for that purpose.

During my thesis a number of issues arose related to data reuse and inte-
gration, provenance and existing databases, that will be discussed below. The
developed approaches will contribute to introduce dry-lab cycles in systems
biology and I will provide and example of such a cycle in genome annotation
and metabolic modeling and I will discuss the role of semantic technologies
in the implementation of such cycle. I believe that Empusa will greatly facil-
itate further advances. In the final sections I will discuss some of the current
challenges in GEM building that remain to be solved.

Data reuse & integration

Data reuse and data integration are two different yet strongly interlinked as-
pects. Data integration within one study does not require data reuse, how-
ever, cross-study data integration requires reusing data sets from different
resources. On the other hand, it is not necessary to have support for data
integration for data set reuse. However, the likelihood that a data set will be
reused will increase if the data can be easily integrated. This relationship is
reflected in the “FAIR” acronym, that relates to a set of standards to support
data reuse and data integration. The first two letters stand for Findable and
Accessible, which are essential for data set re-use. The “I” stands for Interoper-
able, which indicates that a computer can interpret the data, so that it can be
automatically combined with other data. The ”R” stands for Reusable, which
states “(meta)data meet domain-relevant community standards” [524]. This I
interpret to mean that the data is compatible with standard tools used within
the community, whereas Interoperable means data can be directly integrated,
so that it can be queried within and across other resources in the field.

Solutions such as FAIRDOM focus on reuse of (raw) data files arising from
experiments performed to address specific questions. These can be, for ex-
ample, data from a set of experiments used to prove a dynamic model. Tools
developed in FAIRDOM ensure that the data sets are findable and accessible
through a searchable web interface. The tools also ensure that data are asso-
ciated to the meta-data needed for data reuse. Associated to this data reuse
efforts are meta data standardization efforts, such as MIMS, that describe sam-
ple origin, for example from where a given soil sample was collected [534].

Instead, other initiatives such as STRING and solutions as the ones pre-
sented in chapters 2 and 3, are devoted to creating fully processed data sets
that are turned into information sets that can be readily integrated, which I
will call pre-integrative information sets. In these solutions, the information
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sets are presented as networks that can readily be compared with each other
in an easy-to-use interface. Similarly, our efforts in chapters 5, 6 and 8 were
devoted to fully processing the data to generate information sets that can be
readily queried with SPARQL. The output of these queries, can be further pro-
cessed using commonly applied tools such as R, as shown on chapter 9.

In my opinion, solutions to make data sets Findable and Accessible in pub-
lic repositories are critical to enable creation of pre-integrative information
sets. However, data available in public repositories, require a lot of work and
bio-informatics expertise so that they can be processed and integrated into
information sets that can be used to address biological questions. Moreover,
the input of computational non-expert researchers is often critical to further
interpret the pre-integrative information sets into new knowledge. I believe
pre-integrative information sets to be more important than large data collec-
tions to address biological questions. The biology expert can use the former to
enhance the discovery of new insights and the design of new experiments, as
these kind of resources can be used to address the problems within a limited
time span.

Pre-integrative information sets are most usable when they are easy to
browse, query and integrate. One example of a resource with these charac-
teristics is the UniProt database [50]. A website can be used to browse the in-
formation. A user can, for instance, browse on the website to find known 3D
structures and information on single point mutations altering the function of
a protein on interest. There is an additional interface to query the information.
For example, to identify proteins that could potentially work as a light sensi-
tive activator, the resource can be queried to find all proteins with annotated
ATPase activity and at least one light sensitive protein domain. Finally, there
is an RDF representation of the data, so that is can be readily integrated with
other resources. In this way, to find possible regulatory mechanisms in a path-
way of interest, Reactome [160] can be queried to identify all proteins known
to be present in the pathway; the output can be cross queried in UniProt to
select all protein that also have a phosphorylation domain present.

Tools for creating such pre-integrative information sets were presented in
chapters 6, and 7. In chapter 6 we presented the GBOL stack, which enables to
transform genome annotation into a format which supports data querying and
integration. The results of the different annotation tools can be queried with a
single SPARQL query that combines the results of multiple annotation tools.
For example, all EC numbers predicted by BLAST, InterProScan, PRIAM and
EnzDP [354] can be retrieved and combined. The development of GBOL was
strongly supported by the Empusa code generator (presented in chapter 8).
In chapter 7 we presented SAPP, that can be used to process each genome se-
quence (data set) into a fully annotated genome(pre-integrative information
set). We subsequently applied SAPP to a large number of available genome
sequences, within the Pseudomonas genus. This resulted in a resource that can
be readily queried and integrated with other sources, as shown on chapter 9.
More over, features and possibilities offered by SAPP have been successfully
applied to support the findings presented in more than twelve publications,
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see http://sapp.gitlab.io/ for a list of publications on which SAPP has
been used. Currently, in the Laboratory of Systems and Synthetic Biology a
large number of over 100 000 bacterial genomes have been re-annotated using
SAPP. Current efforts in the laboratory are directed towards the development
of a browseable web-interface for these information sets and on the develop-
ment of protocols for mining the data.

As clearly shown in chapters 2, 6 and 9, to create pre-integrative informa-
tion sets, one must process and normalize the data sets with the same meth-
ods. Otherwise, comparison between the information sets becomes impossi-
ble, as the differences would be based on the methods used rather than on
biological differences in the samples related to the data sets. However, for
some measuring techniques, it is hard or impossible to normalize the data, so
that data sets can be compared. For example, when two different types of gas
chromatography columns are used in a GC-MS based experiment. Therefore,
large data sets are better to create pre-integrative information sets than many
small data sets created for specific research purposes. One example of such
large data set is the Mtb expression data collection [72] that covers over more
than 200 conditions, has been cited over 500 times (as of November 2017) and
was extensively used in chapters 2 and 3.

Currently, large amounts of data sets with few samples have been gen-
erated, whereas a relative low number of samples can be found in large data
sets (100+ samples), as indicated in Figure 11.1. I strongly believe that commu-
nity efforts should be more devoted to the creation of large reusable data sets.
Large pre-integrative data sets contribute to generate predictions and hypoth-
esis that still need experimental proof. Experiments to prove this hypothesis
can be more precise and targeted using the knowledge gained trough the use
of pre-integrative data sets and therefore the hypothesis can be proved with
less effort and cost. Therefore, funding agencies could encourage the gener-
ation this type of data sets instead of granting research in which data is only
created to research a single question.

Provenance
Provenance holds the information that describes the processes that are respon-
sible for the creation of a data set. This we hereby define as historical prove-
nance (dataset-wise). Furthermore, we also define the additional information
generated by these processes that give support to each of the results in the
data set as contextual provenance (element-wise). This typically includes p
values or other scores.

Provenance is critical for data reuse. Typically, a shared data set is associ-
ated only to the historical provenance, which can be used to find, to review
and to correctly interpret the results captured within the data set. However,
a large pre-integrative information set contains a (large) set of individual pre-
dictions, for which it is important to access the supporting evidence so that
significance of the results can be put into context (contextual provenance). It
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FIGURE 11.1: Size of published transcriptomics data sets in the BioSamples
database [203]. Distribution of the amount of samples included in each published data
set. The y-axis represents the percentage of published data sets with a given number of
samples (indicated on the x-axis). Note that the number of samples have been binned
binned into bins 1 to 10 with bin size 1,10 to 100 with bin size 10, 100 to 1000 with bin
size 100, and 1000 to 10000 with bin size 1000. The first 10 bins show a bias towards an
even number of samples with a data set.
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is this contextual provenance that is often lacking or incomplete. For exam-
ple, in the TrEMBL data set [35] it is not possible to find significance values,
although an evidence code to indicate the source of the evidence is present.
Moreover, in this data set also the historical provenance is incomplete, as it
impossible to find how the information was generated. Due to this issues, it
becomes difficult or even impossible for a researcher to evaluate the value of
the predictions in the TrEMBL data set.

Contextual information is often essential to correctly interpret computa-
tional outcomes. We used SAPP (described in chapter 7) to annotate, using
the InterProScan module, a large number of bacterial genomes (>85.000). We
evaluated the predicted occurrences of the PurE domain (IPR000031) and as-
sociated E-values (part of the contextual information). PurE is associated to
the conversion of 5-aminoimidazole ribonucleotide (AIR) to 4-carboxy-AIR
(CAIR) in the purine biosynthesis pathway. We used the intrinsic InterProScan
threshold value (E−25), which is derived, in this case, from the one in the
Gene3D database [285]. As can be seen in Figure 11.2 A, the E-values associ-
ated to these instances show a bimodal distribution. These two peaks can be
associated to two divergent paths in the de novo purine biosynthesis pathway.
Conversion of AIR to CAIR in most bacteria proceeds through two enzymes
(PurK and class I PurE) as indicated in Figure 11.2 B. However, class II PurE
catalyzes this reaction in a single step. These two mechanisms can be associ-
ated to each of the peaks shown in the figure. Inspection of the identified hits
shows that they overlap with instances of the domain signatures IPR033747
and IPR033626 from InterPro. These correspond to class I and II PurE, re-
spectively. Class II PurE is present in animals, but it has also been found in
a reduced number of bacteria [171]. This example shows how element-wise
provenance can be used to provide additional context to individual findings
and to uncover biological variants.

To capture the information needed to review and contextualize annotation
information, provenance should, in my opinion, contain sufficient historical
and contextual provenance data.

The historical provenance should contain, for each step, the following min-
imal information requirements: i) The input data sets and parameters used.
For each input data source specific information should be available. For exter-
nal files, historical provenance should include from where it was downloaded,
when it was accessed and the version number of the data set, if available. For
intermediate or temporary files, it should include a historical provenance of its
own. For self-created data files, it should include from where and under which
conditions the associated sample material was collected and it should contain
which experimental measuring and data generation methods were used. For
example “we collected a soil sample from a salt lake in a location with a given
set of conditions and we used Sanger sequencing to sequence genomic DNA
following the protocol as given in reference ‘x’”. ii) The start and end time of
the job. This should be included whenever the code used to process the data
set contains a call to a web service. iii) The code and associated version used.
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FIGURE 11.2: PurE domain (IPR000031). A) Frequency distribution of the E-values
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5-aminoimidazole ribonucleotide (AIR) to 4-carboxy-AIR (CAIR). N5-CAIR indicates
the intermediate N5-carboxy-AIR.
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A reference to the code repository (for example a git repository) must be in-
cluded together with an identifier of the last commit that was applied to the
version used to process the data set. If the data processing consists of multiple
steps that can be contained in a single script, then that script should be put
into a code repository and the provenance should only point to that script.
This will ensure that the provenance does not become overly complex as the
script will contain the information needed to know how the data came to be.

The contextual provenance should contain, for each individual prediction,
information on to which data set it belongs, so that through this data set the
historical provenance is linked. For computer generated predictions, contex-
tual provenance should include significance scores and any other score related
to the statistical framework of the used method. For example an E-value and
coverage value for a BLAST based prediction.

Additionally, provenance on manual curation should also be included.
Here, I define manual curation as a curation process based on human assess-
ment. This process modifies the validity of a knowledge element. For manu-
ally curated annotations, contextual provenance should contain: i) Reference
to a publication with results supporting the prediction. ii) Type of evidence,
indicated with an evidence code from the evidence ontology [107]. iii) A tex-
tual note in English describing the reasons for the manual annotation. iv)
Identification of the curator, with an ORCID [89], full name and optionally an
organization. v) The date. vi) A mark (prove or negate) that indicates whether
the added information in the curation helps to prove or to negate the state-
ments to which the curation applies.

There are additional requirements when the annotation links elements from
a different source such as a protein and an EC number. The link should be
encapsulated into a cross reference to which the historical provenance, the
element wise provenance, the source data set and target data set should be
linked. Thus, it becomes possible to select all links between two data sets
related to a given set of evidence. For example, a query can be written to re-
trieve all EC numbers linked to proteins in a genome of interest so that EC
numbers are assigned based on sequence similarity (BLAST hit) to the Swiss-
Prot database with an E-value lower than a given cutoff/bit score or alignment
length.

These requirements have all been implemented into the GBOL ontology,
described in chapter 6, except for the option to describe self created data sets.
This is because we initially focused on the re-annotation of existing genomes,
but it will be included in a follow up versions. Representation of histori-
cal provenance in GBOL is based on the preexisting PROV-O ontology [291],
whereas the contextual provenance is based on a self created schema. PROV-
O perfectly applies to the historical provenance, however fails to properly en-
code the contextual provenance. The SAPP annotation pipeline, presented in
chapter 7 generates all the information in these requirements.

The listed requirements for provenance of genome annotation data would
provide researchers enough information to critically review existing results,
thus ensuring that scientific results are cumulative and reproducible.
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Existing Knowledge databases
In addition to large pre-integrative information resources like STRING and
TrEMBL, other resources like Swiss-Prot, MetaCyc and InterPro exist. These
result from long lasting manual curation efforts. These resources are ulti-
mately based on integration of many different experiments and publications
and can be seen as a pre-integrative information sets, which were turned into
a knowledge-base. Within these resources supporting evidence for the state-
ments is included, which mostly points to literature. However, the complete-
ness, quality and especially standardization of the provenance of the original
findings and experiments described in the papers are less then what can be
achieved with computer generated knowledge stored in semantic web based
stores. Furthermore, despite the peer reviewing process errors might have
accumulated.

To regain the high quality provenance track, we should complement these
resources with automatically generated resources. To do so we should try to
capture all the steps of the experiments and manual curation into an automatic
pipeline. However, I do realize this is a great challenge. This approach would
need to include the use of lab robotics, extensive vertical data integration and
implementation of the dry-lab cycle principles as proposed in my thesis. Were
we to succeed, then we should generate for each element, reproducible evi-
dence. In this way we would be able to detect and remove errors from these
important resources. However, this effort should be executed in collaboration
with the data owners of these resources, otherwise it will result in yet another
database, which is not synchronized to the original source.

Dry-lab cycle
I strongly believe that the dry-lab cycle previously introduced represents a
powerful approach to extract information and knowledge from existing data.
The information to knowledge step is a critical one, and problems associated
with vertical data integration and provenance tracking need to be overcome.
Therefore, within in my thesis, I have worked on developing data integration
solutions needed to enable this dry-lab cycle. For some cases, I was able to
perform some steps of this cycle such as the automatic creation of a genome
annotation which includes the associated historical as well as the contextual
provenance. However, I did not yet complete the cycle. In the following I
would like to discuss an example on how this cycle could look like.

GEM are efficient tools to predict metabolic phenotypes. The following ex-
ample shows how the dry-lab cycle can improve automatic GEM reconstruc-
tion. Figure 11.3 gives an overview of an example which includes a complete
dry-lab cycle. The starting point is a genome sequence and known metabolic
phenotypes. (i)In the domain discovery step all (bacterial) genomes are col-
lected and de-novo automatically annotated with a gene prediction tool. A pro-
tocol such as the one given in Jérome Gouzy et. al. [204] can be used to search
for new protein domains within the set of all available genomes. Subsequently
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FIGURE 11.3: An example of a dry-lab cycle. The following steps are indicated: (i)
Domain discovery from all (bacterial) genomes. (ii) Domain annotation and analysis.
(iii) Genome annotation. (iv) GEM building. (v) The feedback step to improve the
knowledge about the functions of the protein domains and domain architectures.

these domains are matched to already known domains in the Pfam database
as, for example, done in Corin Yeats et. al. [533]. (ii) In the domain annotation
step, an extensive analysis of the domain landscape is performed, on which
domain persistence, domain E-value score distribution, domain architectures,
domain co-occurrence networks and domain co-occurrence clusters are iden-
tified for each domain. Two domains are linked in the co-occurrence network
if they both occur in the same protein. A set of domains form a cluster, if all
members occur together in the same gene. Additionally, domains and domain
architectures are associated to functional annotation based on the knowledge
stored in Swiss-Prot database using, for instance, the method by Nam-Ninh
Nguyen et. al. [354]. (iii) In the genome annotation step, the curated knowl-
edge about domains and domain architectures is used to functionally annotate
the target genome sequence. (iv) In the GEM building step, the functionally
annotated genome is used to build a draft GEM. Gap-filling algorithms, like
the one in chapter 10 can then be used to integrate phenotype data (for exam-
ple the Biolog Microarray Phenotype data) and produce a more accurate draft
model. The GEM can be further curated and stored in a GEM database. (v) In
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the feedback step, the insights gained in the GEM building and gap filling pro-
cess can be used again to improve the knowledge about the functions of the
protein domain and domain architectures. For example, lets consider a GEM
that contains a pathway with three reactions A, B and C. Let genes ‘GenA’ and
‘GenC’ be associated with reactions A and C respectively. Let’s suppose that
B has been added to the model as a result of gap filling, thus no gene can be
associated to this reaction. Let ‘GenB’ within the same operon as ‘GenA’ and
‘GenC’. Let ‘GenB’ have a single domain ‘X’ that is known to perform reaction
D. Let this reaction D be equal to reaction B except its substrate and product
molecule has one methyl group less. Then we can suggest that domain ‘X’ can
also perform reaction B and will modify the annotation of ‘GenB’.

This represents a relatively simple example of a dry-lab cycle. Additional
steps could be included to further expand the cycle. Each added step requires
additional data integration and keeping track of the associated provenance.
I think it can result in solutions and pipelines integrating multiple methods
in an iterative manner. Each iteration or cycle enhances the findings of other
tools and results in knowledge with strong supporting evidence provenance
track. I think this kind of solutions can lead to predictions that go beyond
the possibilities of current methods and tools that use a limited set of sources
with a limited use of the associated provenance. Every prediction needs ex-
perimental validation, however if we can use better prediction to generate
experiments with an increased likelihood that the hypotheses is valid we can
reduce the total cost of the needed experimental validation.

The application of semantic web technologies

Creation of pre-integrative information sets that can be readily queried and
integrated requires the use of concepts and terms that can be matched across
resources. This matching, requires the use of ontologies, so that a concept
is defined within the context of other concepts and a concept can ultimately
be seen as the set of links relating it to other concepts. Each concept can be
referred to by a (set of) word(s) in a human language. Each word that refers
to the concept is a term associated to the concept. Another requirement to
generate pre-integrative information sets is that data are stored in a universal
representation that can be readily interlinked with other resources and data
sets. This can be achieved by representing the data as a graph in which the
nodes represent instances of concepts and the links represent properties that
describe the instance from which they originate.

Semantic web technologies offer solutions for both requirements. Earlier
solutions within the semantic web technologies focus on the first requirement
regarding the use of matchable concepts. These solutions include the OWL
standard and associated reasoners. The OWL standard can be used to create
ontologies to define concepts and to link these to the associated terms. The
reasoners can be used to find duplications and inconsistencies within the con-
cept definitions. Solutions regarding data linking include SPARQL, ShEx and
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SHACL standards. SPARQL can be used to query the data, and the ShEx and
SHACL standards can be used to validate the instance data, which ensures
that the structure of the data follows the rules defined within the ontology.
An example of instance data validation would be to verify that a protein has
one and only one amino acid sequence associated to it.

Unfortunately, the growth of semantic web technologies has lead to using
the technologies developed to solve the first requirement (concept matching)
to solve the second requirement (data linking). For example the FALDO ontol-
ogy uses the OWL standard to define its schema. I believe this to be a subop-
timal approach, because the technologies developed to solve the first problem
are not sufficient and sometimes incompatible with the second. The Stardog
implementation uses OWL definitions in a closed world assumption to vali-
date instance data [388]. However, as stated in the introduction of this thesis,
the semantics and associated mathematical proofs of the OWL standard are
defined with an open world assumption and therefore do not necessarily hold
in with a closed world assumption and this might lead to inconsistencies. For
instance, within the FALDO ontology a cardinality constraint is defined that
states that ExactPosition must have exactly one position value. One can un-
derstand what it means. However within the open world assumptions this
constraint can not be validated. If no position is given, the open world as-
sumption states: It is not defined, however it could still exist somewhere in
the open world and hence no error is given. In case two positions are given, it
will report a violation error.

This mismatch between design principles and effective usage is, in my
opinion, also present in the GO and SO ontologies. These are good solu-
tions for their respective fields of application, namely characterization of gene
function and nucleotide sequences. These ontologies have been successfully
applied in several databases, including UniProt, to unambiguously reference
to concepts within the field of biology. However, these ontologies can not
be used to store all the information of the objects themselves within an inter-
linkable and reusable semantic data graph. For example, SO can be used to
indicate that a part (indicated with FALDO) of a nucleotide sequence corre-
sponds to a silencing RNA. However SO can not be used to describe all the
properties of the silencing RNA as it can not describe what are the targets of
the silencing RNA. Likewise, the GO ontology is successfully used to anno-
tated genes with a given biological or molecular function, however it can not
be used to describe a biochemical reaction that is not pre-included in the GO
ontology.

Empusa
While working on this thesis I applied RDF2Graph, the tool described in chap-
ter 5 to several existing resources. My colleagues and I realized that many of
the existing resources lack the quality required for efficient reuse and integra-
tion of the stored information. Moreover, we often found mismatches between
the actual and the intended data structure and the one described in the OWL
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definition. I also noticed that the design principles needed for the schema defi-
nition for data import are different from the design principles needed to create
ontologies. Therefore, I developed Empusa, described in chapter 8. Empusa
is a tool that reads an ontology definition and generates code that can be used
for data generation. Using Empusa we succeeded in creating the GBOL stack
(chapter 6) and the associated tool SAPP chapter 7.

Developing GBOL and SAPP was greatly facilitated by Empusa. Moreover
through this process we were able to assess the usability of the tool. A rela-
tive large number of master students have been involved in either research
projects requiring accessing data encoded in the GBOL ontology or have been
involved in developing modules interacting with the GBOL ontology. In all
these cases we found that the use of the API and the supporting tools greatly
improved the learning process of these students and reduced the amount of
time required for autonomous work.

Currently, annotations for nearly 100.000 bacterial genomes have been con-
verted into the GBOL format. However, it is likely that the GBOL ontology
will be further modified in the future as it is not yet a community standards.
A mechanism to automatically update already generated resources upon a
modification in the GBOL ontology is still missing.

According to our design principles (specifically modularity and readabil-
ity), we separated the sub-ontologies (value set) definition from the definition
of the classes that have properties associated to them. However, a value set
can evolve into a full ontology, which subsequently can further evolve into an
ontology with classes that have properties, which in turn can point to another
sub-ontology (value set). In GBOL, a value set can be defined for nucleic acids.
Initially, it could be that only the adenine, cytosine, guanine, thiamine, uracil and
inosine are included. In a second stage, this ontology could be extended with
alternative forms. However, inclusion of all alternative forms and modifica-
tions would cause the complexity of the ontology to explode. Thus, instead of
adding values to the value set a class with properties describing the chemical
representation could be added. In turn this new class with chemical represen-
tations could have a property linking to an another value set describing the
type of chemical links. This constant growth of sub-ontologies into ontologies
is to be expected, as tools and ontologies are further used. Currently, no solu-
tion exists to automatically adapt to this growth of ontologies. In the future, I
would like to add such a functionality to Empusa trough the use of meta-class
definition schemas.

Genome annotation & automated draft GEM recon-
struction
Thiele et. al. [494] describe a protocol to create a high quality, manually cu-
rated GEM. The approach I have presented here relates to the automatic re-
construction of (draft) GEMs. This method depends on reference databases of
known metabolic pathways and it only partly overlaps with the protocol by
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[494]. Automatic draft GEM reconstruction based on reference databases en-
tails, among possible other, four important steps: i) Gene identification in the
genome sequence; (ii) gene functional annotation; (iii) linkage of of functional
annotation and reactions within the selected database; (iv) model completion
using gap-filling methods. In the following, I will discuss how these stpes
could be further improved using pre-integrative data sets and principles of
the dry-lab cycle.

Gene identification
Multiple gene identification tools exist. Currently, Prodigal [235] is commonly
applied for prokaryotic genomes. This method uses a single genome to train
itself in three phases using a dynamic programming approach. The first phase
is based on the GC bias per codon position (1, 2 or 3) and the result is opti-
mized so that predicted genes have high GC score for the selected codon posi-
tion. The second phase is based on hexamers, each hexamer has a within gene
occurrence and an outside gene occurrence score. The result is optimized so
that genes contain hexamers that are most likely to occur within a gene. The
third phase is based on the ribosomal binding sites (RBS). The result is opti-
mized so that predicted genes have a strong RBS signal in which the RBS bind-
ing motif is modified throughout the cycles. The combination of these meth-
ods leads to accurate gene prediction. However, the approach might be fur-
ther enhanced by including pre-integrative information from other available
bacterial genomes and genes. In this way, information from closely related
species could be included, thus enabling the training on multiple genomes
within the same genus. This information can be used to determine homologs
within the same clade, which in turn can be used to calculate specific codon
usage bias, and nucleotide versus amino acid mutation rates. This informa-
tion could be used to identify differences between the positions upstream and
downstream of the start codon, ultimately leading to better gene model pre-
dictions.

Gene function prediction
Traditional methods of computational gene functional annotation are based
on sequence similarity identified using algorithms such BLAST [15], wheras
the HMMER rely on protein domains for the annotation [152]. Several data-
bases exist containing motifs to recognize these domains and many have been
integrated into the InterPro database [170].

I believe that functional annotation based on domains could be improved.
(i) Currently, domains are manually added to InterPro and domain models are
mostly based on hidden Markov models (HMM). Model incorporation into
the databases could be further expanded by automatically mining all available
genome sequences to identify new domains, specially in proteins annotated as
hypothetical proteins. For the newly found domains, provenance should be
available and linked to the existing manually curated elements, as discussed
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above (see step i in Figure 11.3). Trough the use of domain co-occurrence and
domain clusters (see step ii in Figure 11.3) and gene networks as presented
in chapter 2 the newly identified domains can be functionally annotated. (ii)
MRFalign [310] can, in contrast to HMM, capture correlation between sites
at longer distances in the predictions model and would therefore further im-
prove the sensitivity. For example, if the amino acid at position 10 of a given
protein is an alanine, then at position 30 a tyrosine is to be expected. (iii)
The distribution of the E-values of all hits associated to a domain should be
systematically explored, as it can lead to more specific domain definition, as
illustrated in Figure 11.2.

Within bacterial genomes some domains are often found in in commonly
occurring combinations, called domain architectures. A complete collection
of domain architectures is available and browseable at the EBI InterPro web-
site [170]. EnzDP uses domain architectures to functionally annotate genomes
[354]. Domain architectures enable the identification of domain co-occurences
in proteins. Domain co-occurence can be used to built networks and within
these networks, sub-networks or clusters do appear that represent highly mod-
ular systems. For example the cluster of domains related to the synthesis of
complex polyketides (Figure 11.4). Unique combinations of these domains
form large (>10 domains within one protein) proteins that synthesize highly
specialized molecules with a polykytide backbone. This knowledge has been
used to create specific annotation tools such as Anti-Smash [522]. Identifi-
cation of clusters of commonly co-occurring domains can further refine the
approach. We have noticed that within these clusters it is often found some
domains forming a ‘core’ whereas other are mutually exclusive. Each of these
mutually exclusive members tend to give a unique function to the protein con-
taining the cluster of domains. However, further experimental information is
still needed to prove this.

Draft GEM building, linking annotation to chemical reactions
GEM reconstruction requires mapping functional annotations to chemical re-
actions within the selected name space, which could be Model Seed [137] or
MetaCyc [95] as described in chapter 10 [494]. However, in many cases di-
rect mappings to these name spaces are missing. Instead, the mappings are
dependent on EC numbers, GO terms or an identifier of another name space.
These can be further mapped to the selected name space. However, this task
is hampered by the use of different metabolite and reaction identifiers and
description between the databases, the so called name space problem. Techni-
cal translation issues between databases could be solved using InChI strings,
that can uniquely identify compounds (and conformations) and can be used to
uniquely identify reactions. Thus, a reaction would be represented as a unique
transformation between two sets of compounds, products and substrates.

However, the matching between genes and reactions is often hampered by
the lack of complete information on preferred substrate specificity and con-
formation or cofactor utilization. These could be solved by the use of generic
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FIGURE 11.4: Domain cluster related to polyketide synthesis (PKS). A cluster within
a domain co-occurrence network. In this network two domains appear linked if the
co-occur in the same protein in any of the studied genomes. The represented clus-
ter contains domains related to the synthesis of complex molecules with a polyketide
backbone.

compound classes. A generic class could be defined to represent all known
subclasses and conformations of the substrate a given enzyme can accept. In
the same way it is often unclear what is the preferred cofactor of an enzyme
in a given organism. A solution would be to use a generic compound class for
the cofactor.

Therefore, compound classes are a good solution to solve these problems,
however the use of compound classes is associated with other problems: (i)Ex-
isting reference databases (without generic compounds) contain entries that
defines a specific compound or cofactor for which there is no supporting ev-
idence or the available evidence only supports general compound class. For
example a reaction is defined to use NADH, while it is only proven that it
uses either NADH or NADPH. (ii) For GEM building it is important to ensure
that this generic compound classes are instantiated to specific compounds so
that it does not allow for unwanted inter-conversions and unbalances in the
model.

Overcoming these issues requires detailed provenance information on the
gene-protein-reaction (GPR) associations, which includes for which substrate
specificity there is supporting evidence. In this way, the process of model
manual curation can consider the supporting evidence for each reaction. The
provenance information should be included in the GEM and should contain:
the functional gene annotation, from gene to reaction annotation, general com-
pound to specific substrate instantiation and any subsequent modifications in
the GEM.
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It should be noted that still many challenges would need to be addressed
to improve the GPR associations, such as the associations for moonlighting
enzymes, enzymes with broad range of substrates, and differences due to
changes in conditions such as pH, salinity or temperature, among other.

GEM building, gap filling
As introduced in chapter 10, a number of tools exist to integrate experimental
data (growth phenotype data, knockout data and C13 flux data) with GEMs
to increase the quality of the reconstructions [545]. For most of these tools no
ready to use implementations nor standardization of the needed input data
are available. I think the community would greatly benefit from efforts to
make these tools available and of releasing the relevant experimental data as
FAIR data.

Moreover, as indicated in the previous section the translation from the
functional annotation to a reaction list would return a set of reactions con-
taining generic reactions. These generic reactions can not be used in the FBA
analysis. Special methods would need to be developed to select the specific
reactions and cofactors needed in the context of the model. It is important that
these selected specific reactions are marked so that a curator would know that
there is no supporting experimental information available.

The resulting gap filled GEMs together with the provenance data of the
annotation and gap filling processes can be used to identify new enzymes
and pathways. Orphan reactions in a GEM resulting from gap-filling provide
important information on enzymes not yet fully characterized. This infor-
mation can be used to further mine the genome sequence and look up other
related reactions. Guilt-by-association principles can be used to pinpoint the
responsible enzyme. Most often it would be linked to incomplete functional
annotations, due mainly to threshold settings too stringent for the particular
enzymes, but it also holds the potential to pinpoint novel enzymes. Similarly,
novel pathways can be assembled if a chain of general reactions can be iden-
tified. This can lead to the identification of species specific pathways, such as
the cholesterol degradation pathway in M. tuberculosis [412].

GEM re-use
Extension of published GEMs is hampered by the lack of provenance details
on the manual curation. To further expand and curate a GEM one would need
to re-curate all existing reactions. For optimal re-usability, GEMs should in-
corporate provenance on the functional annotations, the linking to reactions
within the selected name space and the automatic gap filling. A clear distinc-
tion should be visible between the automatically generated information and
that created with manual curation. Moreover, it should be possible to rerun
methods used for the automatically generated parts, without losing the man-
ual curation work, except for the conflicting elements.
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Model information should be encoded in the RDF data model, otherwise
I think it would be too complex to encode all the provenance information.
An exporter and importer to the current community standard (SBML) would
be required. SBML has the support to include, for each element. a piece of
RDF data, so it is possible to export all information into the SBML format. For
optimal reusability at least one default biomass definition and one minimal
media should be co-encoded into the GEM. Finally, the GEM file should be
stored in a git versioning system so that the complete history of the GEM is
available.

From Genotype to Phenotype
GEMs can be used to predict metabolic phenotypes, however they have lim-
ited use to predict other physiological properties such as pathogenicity or an-
tibiotic resistance. Machine learning based methods that use various genomic
properties can be used to predict these phenotypes [23, 133].

Machine learning methods require training data sets. Creation of these
training sets requires standardized and normalized annotations and standard-
ized description of phenotypes. The GBOL (chapter 6) ontology in combina-
tion with the SAPP annotation pipelines (chapter 7) ensures that the genetic
information is readily available in a standardized and normalized format. The
phenotype description can be standardized using a bacterial phenotype ontol-
ogy [106]. These approaches could also be used to identify the genetic deter-
minants of a given phenotype.



213

Bibliography

[1] Abdallah, A. M. et al. “Type VII secretion–mycobacteria show the way”. In:
Nature Reviews Microbiology (2007).

[2] Abramovitch, R. B. et al. “aprABC: a Mycobacterium tuberculosis complex-
specific locus that modulates pH-driven adaptation to the macrophage phago-
some”. In: Molecular Microbiology (2011).

[3] Acevedo-Rocha, C. G. et al. “From essential to persistent genes: a functional
approach to constructing synthetic life”. In: Trends in Genetics (2013).

[4] Agarwal, N., Raghunand, T. R., and Bishai, W. R. “Regulation of the expres-
sion of whiB1 in Mycobacterium tuberculosis: role of cAMP receptor protein”. In:
Microbiology (2006).

[5] Agarwal, N. et al. “Cyclic AMP intoxication of macrophages by a Mycobacterium
tuberculosis adenylate cyclase”. In: Nature (2009).

[6] Agranoff, D et al. “Mycobacterium tuberculosis expresses a novel pH-dependent
divalent cation transporter belongiang to the Nramp family”. In: The Journal of
Experimental Medicine (1999).

[7] Ahn, S. H. et al. “Gene Expression-Based Classifiers Identify Staphylococcus au-
reus Infection in Mice and Humans”. In: PLoS ONE (2013).

[8] Akhter, Y. et al. “Genome scale portrait of cAMP-receptor protein (CRP) regu-
lons in mycobacteria points to their role in pathogenesis”. In: Gene (2008).

[9] Alako, B. T. F. et al. “TreeDomViewer: a tool for the visualization of phylogeny
and protein domain structure”. In: Nucleic Acids Research (2006).

[10] Alam, M. S., Garg, S. K., and Agrawal, P. “Studies on structural and functional
divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv”.
In: FEBS Journal (2009).

[11] Alcántara, R. et al. “Rhea - A manually curated resource of biochemical reac-
tions”. In: Nucleic Acids Research (2012).

[12] Alföldi, J. and Lindblad-Toh, K. “Comparative genomics as a tool to understand
evolution and disease”. In: Genome Research (2013).

[13] Altay, G and Emmert-Streib, F. “Inferring the conservative causal core of gene
regulatory networks”. In: BMC Systems Biology (2010).

[14] Altay, G et al. “Differential C3NET reveals disease networks of direct physical
interactions”. In: BMC Bioinformatics (2011).

[15] Altschul, S. F. et al. “Basic local alignment search tool”. In: Journal of Molecular
Biology (1990).

[16] Amara, U. et al. “Interaction Between the Coagulation and Complement Sys-
tem”. In: Advances in experimental medicine and biology. 2008.

[17] Antezana, E., Mironov, V., and Kuiper, M. “The emergence of Semantic Systems
Biology”. In: New Biotechnology (2013).

[18] Antoniou, G. and Van Harmelen, F. “Web ontology language: Owl”. In: Hand-
book on ontologies. 2004.



214 BIBLIOGRAPHY

[19] Antunes, I. and Kassiotis, G. “Suppression of Innate Immune Pathology by
Regulatory T Cells during Influenza A Virus Infection of Immunodeficient
Mice”. In: Journal of Virology (2010).

[20] Apache Foundation. Maven. 2001. URL: http : / / maven . apache . org /
index.html.

[21] Apache Foundation. Apache Jena. 2013. URL: http://jena.apache.org/.
[22] Aranda, C. B. et al. SPARQL 1.1 Overview. 2013. URL: https://www.w3.org/

TR/sparql11-overview/.
[23] Arango-Argoty, G. et al. “DeepARG: a deep learning approach for predicting

antibiotic resistance genes from metagenomic data”. In: Microbiome (2018).
[24] Ark, K. C. van der et al. “More than just a gut feeling: constraint-based genome-

scale metabolic models for predicting functions of human intestinal microbes”.
In: Microbiome (2017).

[25] Ark, K. C. van der et al. “Model-driven design of a minimal medium for Akker-
mansia muciniphila confirms mucus adaptation”. In: Microbial Biotechnology
(2018).

[26] Arya, S. et al. “Truncated hemoglobin, HbN, is post-translationally modified
in Mycobacterium tuberculosis and modulates host-pathogen interactions during
intracellular infection”. In: Journal of Biological Chemistry (2013).

[27] Ascenzi, P. et al. “Isoniazid inhibits the heme-based reactivity of Mycobacterium
tuberculosis truncated hemoglobin N”. In: PLoS ONE (2013).

[28] Ashburner, M et al. “Gene Ontology: Tool for The Unification of Biology”. In:
Nature Genetics (2000).

[29] Ates, L. S. and Brosch, R. “Discovery of the type VII ESX-1 secretion needle?”
In: Molecular Microbiology (2017).

[30] Augenstreich, J. et al. “ESX - 1 and phthiocerol dimycocerosates of Mycobac-
terium tuberculosis act in concert to cause phagosomal rupture and host cell
apoptosis”. In: Cellular Microbiology (2017).

[31] Aziz, R. K. et al. “The RAST Server: rapid annotations using subsystems tech-
nology”. In: BMC Genomics (2008).

[32] Bai, G., Knapp, G. S., and McDonough, K. A. “Cyclic AMP signalling in my-
cobacteria: redirecting the conversation with a common currency”. In: Cellular
Microbiology (2011).

[33] Bai, G. et al. “Characterization of Mycobacterium tuberculosis Rv3676 (CRP Mt),
a Cyclic AMP Receptor Protein-Like DNA Binding Protein”. In: Journal of Bac-
teriology (2005).

[34] Bailey, T. L. and Elkan, C. “Fitting a Mixture Model by Expectation Maximiza-
tion to Discover Motifs in Biopolymers”. In: Proceedings of the Second Interna-
tional Conference on Intelligent Systems for Molecular Biology (1994).

[35] Bairoch, A and Apweiler, R. “The SWISS-PROT protein sequence database and
its supplement TrEMBL in 2000”. In: Nucleic Acids Research (2000).

[36] Balázsi, G et al. “The temporal response of the Mycobacterium tuberculosis gene
regulatory network during growth arrest”. In: Molecular Systems Biology (2008).

[37] Baltrus, D. a. et al. “Dynamic evolution of pathogenicity revealed by sequenc-
ing and comparative genomics of 19 Pseudomonas syringae isolates”. In: PLoS
Pathogens (2011).

[38] Banchereau, R. et al. “Host immune transcriptional profiles reflect the variabil-
ity in clinical disease manifestations in patients with staphylococcus aureus infec-
tions”. In: PLoS ONE (2012).

[39] Banerjee, S. et al. “Iron-dependent RNA-binding activity of Mycobacterium tu-
berculosis aconitase”. In: Journal of Bacteriology (2007).



BIBLIOGRAPHY 215

[40] Bansal, M et al. “How to infer gene networks from expression profiles”. In:
Molecular Systems Biology (2007).

[41] Bansal, R. and Kumar, V. A. “Mycobacterium tuberculosis virulence-regulator
PhoP interacts with alternative sigma factor SigE during acid-stress response”.
In: Molecular Microbiology (2017).

[42] Bao, J. et al. OWL 2 Web Ontology Language Document Overview (Second Edition).
2012. URL: https://www.w3.org/TR/owl2-overview/.

[43] Bard, J. B. L. and Rhee, S. Y. “Ontologies in biology: design, applications and
future challenges”. In: Nature Reviews Genetics (2004).

[44] Barik, S. et al. “RseA, the SigE specific anti-sigma factor of Mycobacterium tuber-
culosis, is inactivated by phosphorylation-dependent ClpC1P2 proteolysis”. In:
Molecular Microbiology (2010).

[45] Barrett, T et al. “NCBI GEO: archive for functional genomics data sets –10years
on”. In: Nucleic Acids Research (2010).

[46] Bartek, I. L. et al. “The DosR regulon of M. tuberculosis and antibacterial toler-
ance”. In: Tuberculosis (2009).

[47] Barua, D., Kim, J., and Reed, J. L. “An automated phenotype-driven approach
(GeneForce) for refining metabolic and regulatory models”. In: PLoS Computa-
tional Biology (2010).

[48] Basso, K. et al. “Reverse engineering of regulatory networks in human B cells”.
In: Nature Genetics (2005).

[49] Batagelj, V. and Mrvar, A. “Pajek — Analysis and Visualization of Large Net-
works”. In: Graph Drawing Software. 2004.

[50] Bateman, A. et al. “UniProt: The universal protein knowledgebase”. In: Nucleic
Acids Research (2017).

[51] Beaulieu, A. Learning SQL. 2009.
[52] Beckett, D. and Berners-Lee, T. Turtle - Terse RDF Triple Language. 2011. URL:

https://www.w3.org/TeamSubmission/turtle/.
[53] Belcastro, V et al. “Transcriptional gene network inference from a massive

dataset elucidates transcriptome organization and gene function”. In: Nucleic
Acids Research (2011).

[54] Belda, E. et al. “The revisited genome of Pseudomonas putida KT2440 en-
lightens its value as a robust metabolic chassis”. In: Environmental Microbiology
(2016).

[55] Belleau, F. et al. “Bio2RDF: towards a mashup to build bioinformatics knowl-
edge systems”. In: Journal of Biomedical Informatics (2008).

[56] Ben-Kiki, O., Evans, C., and Net, I. dot. YAML Ain’t Markup Language (YAML)
Version 1.2. 2009. URL: http://www.yaml.org/spec/1.2/spec.html.

[57] Benson, D. A. et al. “GenBank”. In: Nucleic Acids Research (2013).
[58] Berners-Lee, T., Hendler, J., and Lassila, O. “The Semantic Web. A new form of

Web content that is meaningful to computers will unleash a revolution of new
possibilities”. In: Scientific American (2001).

[59] Bernini, P. et al. “The cardiovascular risk of healthy individuals studied by
NMR metabonomics of plasma samples”. In: Journal of Proteome Research (2011).

[60] Bertels, F. et al. “Automated Reconstruction of Whole-Genome Phylogenies
from Short-Sequence Reads”. In: Molecular Biology and Evolution (2014).

[61] Bitter, W. et al. “Systematic genetic nomenclature for type VII secretion sys-
tems”. In: PLoS Pathogens (2009).

[62] Bixby, R. E. “Solving Real-World Linear Programs: A Decade and More of
Progress”. In: Operations Research (2002).

[63] Bizer, C., Heath, T., and Berners-Lee, T. “Linked data-the story so far”. In: Se-
mantic Services, Interoperability and Web Applications: Emerging Concepts (2009).



216 BIBLIOGRAPHY

[64] Blanchette, C. D. et al. “Decoupling internalization, acidification and
phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated
beads in epithelial cells”. In: PLoS ONE (2009).

[65] Blankenberg, D. et al. “Galaxy: A web-based genome analysis tool for experi-
mentalists”. In: Current Protocols in Molecular Biology (2010).

[66] Blasco, B. et al. “Virulence regulator EspR of Mycobacterium tuberculosis is a
nucleoid-associated protein”. In: PLoS Pathogens (2012).

[67] Bochner, B. R., Gadzinski, P, and Panomitros, E. “Phenotype Microarrays for
high-throughput phenotypic testing and assay of gene function”. In: Genome
Research (2001).

[68] Bolleman, J. T. et al. “FALDO: A semantic standard for describing the location
of nucleotide and protein feature annotation”. In: Journal of Biomedical Semantics
(2016).

[69] Boneva, I. et al. “Validating RDF with Shape Expressions”. In: arXiv:1404.1270
(2014).

[70] Bonneau, R et al. “The Inferelator: an algorithm for learning parsimonious reg-
ulatory networks from systems-biology data sets de novo”. In: Genome Biology
(2006).

[71] Borgos, S. E. F. et al. “Mapping global effects of the anti-sigma factor MucA in
Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling”.
In: BMC Systems Biology (2013).

[72] Boshoff, H. I. M. et al. “The Transcriptional Responses of Mycobacterium tuber-
culosis to Inhibitors of Metabolism”. In: Journal of Biological Chemistry (2004).

[73] Bowers, P. M. et al. “Prolinks: a database of protein functional linkages derived
from coevolution”. In: Genome Biology (2004).

[74] Brachman, R. J. A Structural Paradigm for Representing Knowledge. 1977.
[75] Brady, R. A., Bruno, V. M., and Burns, D. L. “RNA-seq analysis of the host re-

sponse to Staphylococcus aureus skin and soft tissue infection in a mouse model”.
In: PLoS ONE (2015).

[76] Bretl, D. J., Demetriadou, C., and Zahrt, T. C. “Adaptation to environmental
stimuli within the host: two-component signal transduction systems of My-
cobacterium tuberculosis”. In: Microbiology and Molecular Biology Reviews (2011).

[77] Bretl, D. J. et al. “MprA and DosR coregulate a Mycobacterium tuberculosis viru-
lence operon encoding Rv1813c and Rv1812c”. In: Infection and Immunity (2012).

[78] Bretl, D. J. et al. “The MprB extracytoplasmic domain negatively regulates ac-
tivation of the Mycobacterium tuberculosis MprAB two-component system”. In:
Journal of Bacteriology (2014).

[79] Brickley, D. and Guha, R. V. RDF Vocabulary Description Language 1.0: RDF
Schema. 2004. URL: http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/.

[80] Brickley, D., Guha, R. V., and McBride, B. RDF Schema 1.1. 2014. URL: http:
//www.w3.org/TR/rdf-schema/.

[81] Brickley, D. and Miller, L. FOAF vocabulary specification 0.91. 2007. URL: http:
//xmlns.com/foaf/spec/20071002.html.

[82] Brown, K. R. et al. “NAViGaTOR: Network analysis, visualization and graphing
Toronto”. In: Bioinformatics (2009).

[83] Brown, M. R. W. and Kornberg, A. “Inorganic polyphosphate in the origin and
survival of species”. In: PNAS (2004).

[84] Bruggeman, F. J. et al. “Introduction to systems biology”. In: Plant Systems Biol-
ogy. 2007.



BIBLIOGRAPHY 217

[85] Buchmeier, N et al. “A parallel intraphagosomal survival strategy shared by
Mycobacterium tuberculosis and Salmonella enterica”. In: Molecular Microbiology
(2000).

[86] Bunker, R. D. et al. “A functional role of Rv1738 in Mycobacterium tuberculosis
persistence suggested by racemic protein crystallography”. In: Proceedings of the
National Academy of Sciences of the United States of America of the United States of
America (2015).

[87] Burgard, A. P. and Maranas, C. D. “Probing the performance limits of the
Escherichia coli metabolic network subject to gene additions or deletions”. In:
Biotechnology and Bioengineering (2001).

[88] Butala, M, Žgur-Bertok, D, and Busby, S. J. W. “The bacterial LexA transcrip-
tional repressor”. In: Cell Molecular Life Sciences (2008).

[89] Butler, D. “Scientists: Your number is up”. In: Nature (2012).
[90] Camacho, C et al. “BLAST+: architecture and applications”. In: BMC Bioinfor-

matics (2009).
[91] Cantone, I et al. “A yeast synthetic network for in vivo assessment of reverse-

engineering and modeling approaches”. In: Cell (2009).
[92] Carbon, S. et al. “Expansion of the gene ontology knowledgebase and re-

sources: The gene ontology consortium”. In: Nucleic Acids Research (2017).
[93] Caricilli, A. M. and Saad, M. J. A. “The role of gut microbiota on insulin resis-

tance”. In: Nutrients (2013).
[94] Casonato, S. et al. “WhiB5, a transcriptional regulator that contributes to My-

cobacterium tuberculosis virulence and reactivation”. In: Infection and Immunity
(2012).

[95] Caspi, R. et al. “The MetaCyc database of metabolic pathways and enzymes and
the BioCyc collection of pathway/genome databases”. In: Nucleic Acids Research
(2012).

[96] Cerans, K. et al. “Advanced OWL 2.0 Ontology Visualization in OWLGrEd”.
In: Databases and Information Systems VII (2012).

[97] Champion, O. L. et al. “Yersinia pseudotuberculosis mntH functions in intracel-
lular manganese accumulation, which is essential for virulence and survival in
cells expressing functional Nramp1”. In: Microbiology (2011).

[98] Chao, M. C. and Rubin, E. J. “Letting Sleeping dos Lie: Does Dormancy Play a
Role in Tuberculosis?” In: Annual Review of Microbiology (2010).

[99] Chauhan, A et al. “Interference of Mycobacterium tuberculosis cell division by
Rv2719c, a cell wall hydrolase”. In: Molecular Microbiology (2006).

[100] Chauhan, S. and Tyagi, J. S. “Cooperative binding of phosphorylated DevR to
upstream sites is necessary and sufficient for activation of the Rv3134c-devRS
operon in Mycobacterium tuberculosis: implication in the induction of DevR tar-
get genes”. In: Journal of Bacteriology (2008).

[101] Chauhan, S. et al. “Comprehensive insights into Mycobacterium tuberculosis
DevR (DosR) regulon activation switch”. In: Nucleic Acids Research (2011).

[102] Chawla, M. et al. “Mycobacterium tuberculosis WhiB4 regulates oxidative stress
response to modulate survival and dissemination in vivo”. In: Molecular Micro-
biology (2012).

[103] Chen, H and Boutros, P. C. “VennDiagram: a package for the generation of
highly-customizable Venn and Euler diagrams in R”. In: BMC Bioinformatics
(2011).

[104] Chen, J. M. et al. “EspD is critical for the virulence-mediating ESX-1 secretion
system in Mycobacterium tuberculosis”. In: Journal of Bacteriology (2012).



218 BIBLIOGRAPHY

[105] Chen, Z. et al. “Mycobacterial WhiB6 Differentially Regulates ESX-1 and the
Dos Regulon to Modulate Granuloma Formation and Virulence in Zebrafish”.
In: Cell Reports (2016).

[106] Chibucos, M. C. et al. “An ontology for microbial phenotypes”. In: BMC Micro-
biology (2014).

[107] Chibucos, M. C. et al. “Standardized description of scientific evidence using the
Evidence Ontology (ECO)”. In: Database (2014).

[108] Cho, D.-Y., Kim, Y.-A., and Przytycka, T. M. “Chapter 5: Network Biology Ap-
proach to Complex Diseases”. In: PLoS Computational Biology (2012).

[109] Chuang, H.-Y., Hofree, M., and Ideker, T. “A Decade of Systems Biology”. In:
Annual Review of Cell and Developmental Biology (2010).

[110] Chuang, Y.-m. et al. “Stringent Response Factors PPX1 and PPK2 Play an
Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation,
and Sensitivity to Isoniazid In Vivo”. In: Antimicrobial Agents and Chemotherapy
(2016).

[111] Clemmensen, H. S. et al. “An attenuated Mycobacterium tuberculosis clinical
strain with a defect in ESX-1 secretion induces minimal host immune responses
and pathology”. In: Scientific Reports (2017).

[112] Cochrane, G. et al. “Facing growth in the European Nucleotide Archive”. In:
Nucleic Acids Research (2013).

[113] Colangeli, R et al. “The multifunctional histone-like protein Lsr2 protects my-
cobacteria against reactive oxygen intermediates”. In: PNAS (2009).

[114] Colangeli, R. et al. “Transcriptional regulation of multi-drug tolerance and
antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculo-
sis”. In: PLoS Pathogens (2007).

[115] Conrad, W. H. et al. “Mycobacterial ESX-1 secretion system mediates host cell
lysis through bacterium contact-dependent gross membrane disruptions”. In:
Proceedings of the National Academy of Sciences of the United States of America of the
United States of America (2017).

[116] Cook, H. and Ussery, D. W. “Sigma factors in a thousand E. coli genomes”. In:
Environmental Microbiology (2013).

[117] Cook, J. et al. “Consensus on consensus: A synthesis of consensus estimates on
human-caused global warming”. In: Environmental Research Letters (2016).

[118] Cooper, D. N. et al. “Where genotype is not predictive of phenotype: towards
an understanding of the molecular basis of reduced penetrance in human in-
herited disease”. In: Human Genetics (2013).

[119] Croft, D. et al. “The Reactome pathway knowledgebase”. In: Nucleic Acids Re-
search (2014).

[120] Csardi, G. and Nepusz, T. “The igraph software package for complex network
research”. In: International Journal of Neural Systems (2006).

[121] Cyktor, J. C. et al. “IL-10 inhibits mature fibrotic granuloma formation during
Mycobacterium tuberculosis infection”. In: Journal of Immunology (2013).

[122] Daim, S. et al. “Expression of the Mycobacterium tuberculosis PPE37 protein in
Mycobacterium smegmatis induces low tumour necrosis factor alpha and inter-
leukin 6 production in murine macrophages”. In: Journal of Medical Microbiology
(2011).

[123] Dam, J. C. J. van et al. “Integration of heterogeneous molecular networks to un-
ravel gene-regulation in Mycobacterium tuberculosis”. In: BMC Medical Genomics
(2014).

[124] Dam, J. C. J. van et al. “Interoperable genome annotation with GBOL, an ex-
tendable infrastructure for functional data mining”. In: bioRxiv (2017).



BIBLIOGRAPHY 219

[125] Dam, J. C. van et al. “RDF2Graph a tool to recover, understand and validate the
ontology of an RDF resource”. In: Journal of Biomedical Semantics (2015).

[126] Daniel, J. et al. “Rv2477c is an antibiotic-sensitive manganese-dependent ABC-
F ATPase in Mycobacterium tuberculosis”. In: Biochemical and Biophysical Research
Communications (2017).

[127] Dass, B. K. M. et al. “Cyclic AMP in mycobacteria: characterization and func-
tional role of the Rv1647 ortholog in Mycobacterium smegmatis”. In: Journal of
Bacteriology (2008).

[128] Daub, C. O. et al. “Estimating mutual information using B-spline functions –
an improved similarity measure for analysing gene expression data”. In: BMC
Bioinformatics (2004).

[129] Davis, E. O., Dullaghan, E. M., and Rand, L. “Definition of the Mycobacterial
SOS Box and Use To Identify LexA-Regulated Genes in Mycobacterium tubercu-
losis”. In: Journal of Bacteriology (2002).

[130] De Smet, R and Marchal, K. “Advantages and limitations of current network
inference methods”. In: Nature Reviews Microbiology (2010).

[131] Deb, C et al. “A Novel In Vitro Multiple-Stress Dormancy Model for My-
cobacterium tuberculosis Generates a Lipid-Loaded, Drug-Tolerant, Dormant
Pathogen”. In: PLoS ONE (2009).

[132] Degtyarenko, K. et al. “ChEBI: A database and ontology for chemical entities of
biological interest”. In: Nucleic Acids Research (2008).

[133] Deneke, C., Rentzsch, R., and Renard, B. Y. “PaPrBaG: A machine learning ap-
proach for the detection of novel pathogens from NGS data”. In: Scientific Re-
ports (2017).

[134] Deng, J. Gene Essentiality: Methods and Protocols. 2015. Chap. An Integra.
[135] Deng, J. et al. “Investigating the predictability of essential genes across dis-

tantly related organisms using an integrative approach”. In: Nucleic Acids Re-
search (2011).

[136] Deng, W., Xiang, X., and Xie, J. “Comparative genomic and proteomic anatomy
of Mycobacterium ubiquitous Esx family proteins: implications in pathogenic-
ity and virulence”. In: Current Microbiology (2014).

[137] Devoid, S. et al. “Automated genome annotation and metabolic model recon-
struction in the SEED and Model SEED”. In: Methods in Molecular Biology (2013).

[138] Dewitt, M. A. et al. “The Conformations of the Manganese Transport Regulator
of Bacillus subtilis in its Metal-free State”. In: Journal of Molecular Biology (2007).

[139] Diaz-ochoa, V. E. et al. “Salmonella Mitigates Oxidative Stress and Thrives in the
Inflamed Gut by Evading Calprotectin-Mediated Manganese Sequestration”.
In: Cell Host & Microbe (2016).

[140] Dietzold, J., Gopalakrishnan, A., and Salgame, P. “Duality of lipid mediators
in host response against Mycobacterium tuberculosis: good cop, bad cop”. In:
F1000Prime Reports (2015).

[141] DigiSal, Towards the Digital Salmon: From a reactive to a pre-emptive research strat-
egy in aquaculture. 2017. URL: https : / / www . forskningsradet . no /
prosjektbanken/\#/project/NFR/248792/Sprak=en.

[142] DiGiuseppe Champion, P. A. et al. “ESX-1 secreted virulence factors are recog-
nized by multiple cytosolic AAA ATPases in mycobactria”. In: Molecular Micro-
biology (2009).

[143] Dijkstra, E. W. “A note on two problems in connexion with graphs”. In: Nu-
merische Mathematik (1959).

[144] Dimmer, E. C. et al. “The UniProt-GO Annotation database in 2011”. In: Nucleic
Acids Research (2012).



220 BIBLIOGRAPHY

[145] Dittrich, D. et al. “Characterization of a Mycobacterium tuberculosis mutant defi-
cient in pH-sensing adenylate cyclase Rv1264”. In: International Journal of Medi-
cal Microbiology (2006).

[146] Doerks, T et al. “Annotation of the M. tuberculosis hypothetical orfeome: adding
functional information to more than half of the uncharacterized proteins”. In:
PLoS ONE (2012).

[147] Dong, D. et al. “PPE38 modulates the innate immune response and is required
for Mycobacterium marinum virulence”. In: Infection and Immunity (2012).

[148] Dos Vultos, T et al. “DNA repair in Mycobacterium tuberculosis revisited”. In:
FEMS Microbiology Reviews (2009).

[149] Dötsch, A. et al. “The Pseudomonas aeruginosa Transcriptional Landscape Is
Shaped by Environmental Heterogeneity and Genetic Variation”. In: mBio
(2015).

[150] Duan, J. et al. “The Complete Genome Sequence of the Plant Growth-Promoting
Bacterium Pseudomonas sp. UW4”. In: PLoS ONE (2013).

[151] Duque-Ramos, A. et al. “Evaluating the Good Ontology Design Guideline
(GoodOD) with the Ontology Quality Requirements and Evaluation Method
and Metrics (OQuaRE)”. In: PLoS ONE (2014).

[152] Durbin, R. et al. Biological sequence analysis: probabilistic models of proteins and
nucleic acids. 1998.

[153] Dutilh, B. E. et al. “Explaining microbial phenotypes on a genomic scale: GWAS
for microbes”. In: Briefings in Functional Genomics (2013).

[154] Eilbeck, K. et al. “The Sequence Ontology: a tool for the unification of genome
annotations”. In: Genome Biology (2005).

[155] Ekseth, O. K., Kuiper, M., and Mironov, V. “OrthAgogue: an agile tool for the
rapid prediction of orthology relations”. In: Bioinformatics (2013).

[156] Emmert-Streib, F. “Influence of the experimental design of gene expression
studies on the inference of gene regulatory networks: environmental factors”.
In: PeerJ (2013).

[157] EmPowerPutida, Exploiting native endowments by re-factoring, re-programming and
implementing novel control loops in Pseudomonas putida for bespoke biocatalysis.
2017. URL: http://www.empowerputida.eu/.

[158] ENA. European Nucleotide Archive Statistics. 2017. URL: http://www.ebi.ac.
uk/ena/about/statistics/.

[159] Enright, A. J., Van Dongen, S., and Ouzounis, C. A. “An efficient algorithm for
large-scale detection of protein families”. In: Nucleic Acids Research (2002).

[160] Fabregat, A. et al. “The Reactome pathway Knowledgebase”. In: Nucleic Acids
Research (2016).

[161] Faith, J. J. et al. “Large-scale mapping and validation of Escherichia coli tran-
scriptional regulation from a compendium of expression profiles”. In: PLoS Bi-
ology (2007).

[162] Fang, G., Rocha, E., and Danchin, A. “How essential are nonessential genes?”
In: Molecular Biology and Evolution (2005).

[163] Farhana, A. et al. “Mechanistic insights into a novel exporter-importer system
of Mycobacterium tuberculosis unravel its role in trafficking of iron”. In: PLoS
ONE (2008).

[164] Farina, M. et al. “Metals, oxidative stress and neurodegeneration: A focus on
iron, manganese and mercury”. In: Neurochemistry International (2013).

[165] Federhen, S. et al. “Toward richer metadata for microbial sequences: Replacing
strain-level NCBI taxonomy taxids with BioProject, BioSample and Assembly
records”. In: Standards in Genomic Sciences (2015).



BIBLIOGRAPHY 221

[166] Fernandes, N. D. et al. “A mycobacterial extracytoplasmic sigma factor in-
volved in survival following heat shock and oxidative stress”. In: Journal of
Bacteriology (1999).

[167] Fernández, J. D. et al. “Binary RDF Representation for Publication and Ex-
change (HDT)”. In: Web Semantics: Science, Services and Agents on the World Wide
Web (2013).

[168] Field, D. et al. “The minimum information about a genome sequences (MIGS)
specification”. In: Nature Biotechnology (2008).

[169] Finn, R. D. “Pfam: clans, web tools and services”. In: Nucleic Acids Research
(2006).

[170] Finn, R. D. et al. “InterPro in 2017-beyond protein family and domain annota-
tions”. In: Nucleic Acids Research (2017).

[171] Firestine, S. M. et al. “Reactions Catalyzed by 5-Aminoimidazole Ribonu-
cleotide Carboxylases from Escherichia coli and Gallus gallus: A Case for Diver-
gent Catalytic Mechanisms?” In: Biochemistry (1994).

[172] Forbes, J. R. and Gros, P. “Divalent-metal transport by NRAMP proteins at the
interface of host-pathogen interactions”. In: Trends in Microbiology (2001).

[173] Forbes, J. R. and Gros, P. “Iron, manganese, and cobalt transport by Nramp1
(Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane”. In: Blood
(2003).

[174] Forrellad, M. A. et al. “Virulence factors of the Mycobacterium tuberculosis com-
plex”. In: Virulence (2013).

[175] Fortune, S. M. et al. “Mutually dependent secretion of proteins required for
mycobacterial virulence”. In: PNAS (2005).

[176] Fouts, D. E. et al. “PanOCT: automated clustering of orthologs using conserved
gene neighborhood for pan-genomic analysis of bacterial strains and closely
related species”. In: Nucleic Acids Research (2012).

[177] Francis, R. J., Butler, R. E., and Stewart, G. R. “Mycobacterium tuberculosis ESAT-
6 is a leukocidin causing Ca2+ influx, necrosis and neutrophil extracellular trap
formation”. In: Cell Death & Disease (2014).

[178] Friedman, N. et al. “Using Bayesian Networks to Analyze Expression Data”.
In: Journal of Computational Biology (2004).

[179] Fu, G. et al. “Lsr2 is a nucleoid-associated protein that targets AT-rich sequences
and virulence genes in Mycobacterium tuberculosis”. In: PNAS (2010).

[180] Gabriel, S. E. and Helmann, J. D. “Contributions of Zur-Controlled Ribosomal
Proteins to Growth Under Zinc Starvation Conditions”. In: Journal of Bacteriol-
ogy (2009).

[181] Galagan, J. E. et al. “The Mycobacterium tuberculosis regulatory network and hy-
poxia”. In: Nature (2013).

[182] Galdzicki, M. et al. “The Synthetic Biology Open Language (SBOL) provides
a community standard for communicating designs in synthetic biology”. In:
Nature Biotechnology (2014).

[183] Gamulin, V, Cetkovic, H, and Ahel, I. “Identification of a promoter motif regu-
lating the major DNA damage response mechanism of Mycobacterium tubercu-
losis”. In: FEMS Microbiology Letters (2004).

[184] Garces, A. et al. “EspA Acts as a Critical Mediator of ESX1-Dependent Viru-
lence in Mycobacterium tuberculosis by Affecting Bacterial Cell Wall Integrity”.
In: PLoS Pathogens (2010).

[185] Garlik, S. H., Seaborne, A., and Prud’hommeaux, E. SPARQL 1.1 Query Lan-
guage. 2013. URL: https://www.w3.org/TR/sparql11-query/.



222 BIBLIOGRAPHY

[186] Gatfield, J and Pieters, J. “Essential role for cholesterol in entry of mycobacteria
into macrophages”. In: Science (2000).

[187] Gautam, U. S., Chauhan, S., and Tyagi, J. S. “Determinants outside the DevR
C-terminal domain are essential for cooperativity and robust activation of dor-
mancy genes in Mycobacterium tuberculosis”. In: PLoS ONE (2011).

[188] Gazdik, M. A. and Mcdonough, K. A. “Identification of Cyclic AMP-Regulated
Genes in Mycobacterium tuberculosis Complex Bacteria under Low-Oxygen Con-
ditions”. In: Journal of Bacteriology (2005).

[189] Gazdik, M. A. et al. “Rv1675c (cmr) regulates intramacrophage and cyclic AMP-
induced gene expression in Mycobacterium tuberculosis-complex mycobacteria”.
In: Molecular Microbiology (2009).

[190] Generic, T. et al. “The Generic Frame Protocol 2.0 1”. In: Architecture (1997).
[191] Gengenbacher, M. and Kaufmann, S. H. E. “Mycobacterium tuberculosis: Suc-

cess through dormancy”. In: FEMS Microbiology Reviews (2012).
[192] Georgel, P. et al. “A toll-like receptor 2-responsive lipid effector pathway pro-

tects mammals against skin infections with gram-positive bacteria”. In: Infection
and Immunity (2005).

[193] Gerasimova, A et al. “Comparative Genomics of the Dormancy Regulons in
Mycobacteria”. In: Journal of Bacteriology (2011).

[194] Giardine, B. et al. “Galaxy: a platform for interactive large-scale genome analy-
sis”. In: Genome Research (2005).

[195] Giasson, F. and D’Arcus, B. “Bibliographic ontology specification”. In: Biblioteca
Nacional Espanola (2009).

[196] Gill, R, Datta, S, and Datta, S. “A statistical framework for differential network
analysis from microarray data”. In: BMC Bioinformatics (2010).

[197] Glimm, B. et al. “HermiT: An OWL 2 Reasoner”. In: Journal of Automated Rea-
soning (2014).

[198] Goecks, J. et al. “Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences”. In:
Genome Biology (2010).

[199] Goenawan, I. H., Bryan, K., and Lynn, D. J. “DyNet: Visualization and analysis
of dynamic molecular interaction networks”. In: Bioinformatics (2016).

[200] Gomez, J. E. and McKinney, J. D. “M. tuberculosis persistence, latency, and drug
tolerance”. In: Tuberculosis (2004).

[201] Gonzalo-Asensio, J. et al. “PhoP: a missing piece in the intricate puzzle of My-
cobacterium tuberculosis virulence”. In: PLoS ONE (2008).

[202] Gonzalo-Asensio, J. et al. “The Mycobacterium tuberculosis phoPR operon is pos-
itively autoregulated in the virulent strain H37Rv”. In: Journal of Bacteriology
(2008).

[203] Gostev, M. et al. “The BioSample Database (BioSD) at the European Bioinfor-
matics Institute”. In: Nucleic Acids Research (2012).

[204] Gouzy, J, Corpet, F, and Kahn, D. “Whole genome protein domain analysis
using a new method for domain clustering”. In: Computers & Chemistry (1999).

[205] Grant, C. E., Bailey, T. L., and Noble, W. S. “FIMO: scanning for occurrences of
a given motif”. In: Bioinformatics (2011).

[206] Gröschel, M. I. et al. “ESX secretion systems: mycobacterial evolution to counter
host immunity”. In: Nature Publishing Group (2016).

[207] Gross, H. and Loper, J. E. “Genomics of secondary metabolite production by
Pseudomonas spp”. In: Natural Product Reports (2009).

[208] Gross, M. “Antibiotics in crisis”. In: Current Biology (2013).



BIBLIOGRAPHY 223

[209] Guarino, N., Oberle, D., and Staab, S. “What Is an Ontology?” In: Handbook on
Ontologies. 2009.

[210] Guirado, E. and Schlesinger, L. S. “Modeling the Mycobacterium tuberculosis
granuloma – the critical battlefield in host immunity and disease”. In: Frontiers
in Immunology (2013).

[211] Gupta, A. et al. “Mycobacterium tuberculosis: Immune evasion, latency and reac-
tivation”. In: Immunobiology (2012).

[212] Gupta, R. K., Srivastava, B. S., and Srivastava, R. “Comparative expression
analysis of rpf -like genes of Mycobacterium tuberculosis H37Rv under different
physiological stress and growth conditions”. In: Microbiology (2010).

[213] Gupta, S., Sinha, A., and Sarkar, D. “Transcriptional autoregulation by Mycobac-
terium tuberculosis PhoP involves recognition of novel direct repeat sequences
in the regulatory region of the promoter”. In: FEBS Letters (2006).

[214] Haak, L. L. et al. “ORCID: a system to uniquely identify researchers”. In:
Learned Publishing (2012).

[215] Hall, G. et al. “Structure of Mycobacterium tuberculosis thioredoxin in complex
with quinol inhibitor PMX464”. In: Protein science (2011).

[216] Hamilton, J. J. and Reed, J. L. “Software platforms to facilitate reconstructing
genome-scale metabolic networks”. In: Environmental Microbiology (2014).

[217] Han, X. et al. “Interleukin-10 overexpression in macrophages suppresses
atherosclerosis in hyperlipidemic mice”. In: FASEB Journal (2010).

[218] Hastie, T et al. Impute: Imputation for microarray data. 2010.
[219] Hastings, J. et al. “The ChEBI reference database and ontology for biologically

relevant chemistry: enhancements for 2013”. In: Nucleic Acids Research (2013).
[220] Hayes, P. J. and Patel-Schneider, P. F. RDF 1.1 Semantics. 2014. URL: https:

//www.w3.org/TR/rdf11-mt/.
[221] Heirendt, L. et al. “Creation and analysis of biochemical constraint-based mod-

els: the COBRA Toolbox v3.0”. In: arXiv:1710.04038v2 (2017).
[222] Hendrickx, M. and Leyns, L. “Non-conventional Frizzled ligands and Wnt re-

ceptors”. In: Development Growth & Differentiation (2008).
[223] Henry, C. S. et al. “iBsu1103: A new genome-scale metabolic model of Bacillus

subtilis based on SEED annotations”. In: Genome Biology (2009).
[224] Henry, C. S. et al. “High-throughput generation, optimization and analysis of

genome-scale metabolic models”. In: Nature Biotechnology (2010).
[225] Herrgård, M. J., Fong, S. S., and Palsson, B. “Identification of genome-scale

metabolic network models using experimentally measured flux profiles”. In:
PLoS Computational Biology (2006).

[226] Hoehndorf, R., Schofield, P. N., and Gkoutos, G. V. “The role of ontologies in
biological and biomedical research: a functional perspective”. In: Briefings in
Bioinformatics (2015).

[227] Holmes, B, Willcox, W. R., and Lapage, S. P. “Identification of Enterobacteri-
aceae by the API 20E system”. In: Journal of Clinical Pathology (1978).

[228] Honaker, R. W. et al. “Unique Roles of DosT and DosS in DosR Regulon In-
duction and Mycobacterium tuberculosis Dormancy”. In: Infection and Immunity
(2009).

[229] Honaker, R. W. et al. “DosS responds to a reduced electron transport system to
induce the Mycobacterium tuberculosis DosR regulon”. In: Journal of Bacteriology
(2010).

[230] Horan, K. et al. “Annotating genes of known and unknown function by large-
scale coexpression analysis”. In: Plant Physiology (2008).



224 BIBLIOGRAPHY

[231] Houben, E. N. G., Korotkov, K. V., and Bitter, W. “Take five - Type VII secretion
systems of Mycobacteria”. In: Biochimica et Biophysica Acta (2013).

[232] Hu, Y. et al. “σE-dependent activation of RbpA controls transcription of the
furA-katG operon in response to oxidative stress in mycobacteria”. In: Molecu-
lar Microbiology (2016).

[233] Huttenhower, C et al. “The Sleipnir library for computational functional ge-
nomics”. In: Bioinformatics (2008).

[234] Huynh-Thu, V. A. et al. “Inferring regulatory networks from expression data
using tree-based methods”. In: PLoS ONE (2010).

[235] Hyatt, D. et al. “Prodigal: prokaryotic gene recognition and translation initia-
tion site identification”. In: BMC Bioinformatics (2010).

[236] Ideker, T. and Krogan, N. J. “Differential network biology”. In: Molecular Sys-
tems Biology (2012).

[237] Ilghari, D. et al. “Solution structure of the Mycobacterium tuberculosis EsxG·EsxH
complex: functional implications and comparisons with other M. tuberculosis
Esx family complexes”. In: The Journal of Biological Chemistry (2011).

[238] Indriate, M and Skaar, E. P. “Nutritional immunity: transition metals at the
pathogen-host interface”. In: Nature Reviews Microbiology (2013).

[239] INFECT, Systems medicine to understand severe soft tissue infections. 2017. URL:
http://www.fp7infect.eu/.

[240] /inference qualifier. URL: http://www.insdc.org/.
[241] Ize, B. and Palmer, T. “Mycobacteria’s export strategy”. In: Science (2006).
[242] Jabado, N et al. “Natural resistance to intracellular infections: natural

resistance-associated macrophage protein 1 (Nramp1) functions as a pH-
dependent manganese transporter at the phagosomal membrane”. In: The Jour-
nal of Experimental Medicine (2000).

[243] Jamwal, S. et al. “Characterizing virulence-specific perturbations in the mito-
chondrial function of macrophages infected with Mycobacterium tuberculosis”.
In: Scientific Reports (2013).

[244] Jamwal, S. V. et al. “Mycobacterial escape from macrophage phagosomes to the
cytoplasm represents an alternate adaptation mechanism”. In: Scientific Reports
(2016).

[245] Jang, I. S., Margolin, A, and Califano, A. “hARACNe: Improving the Accuracy
of Regulatory Model Reverse Engineering via Higher-order Data Processing
Inequality Tests”. In: Interface Focus (2013).

[246] Jensen, L. J. et al. “STRING 8 - A global view on proteins and their functional
interactions in 630 organisms”. In: Nucleic Acids Research (2009).

[247] Jofré, M. R. et al. “RpoS integrates CRP, Fis, and PhoP signaling pathways to
control Salmonella Typhi hlyE expression”. In: BMC Microbiology (2014).

[248] Jones, C. M. et al. “Self-poisoning of Mycobacterium tuberculosis by interrupting
siderophore recycling”. In: PNAS (2014).

[249] Jones, P. et al. “InterProScan 5: genome-scale protein function classification”.
In: Bioinformatics (2014).

[250] Jonge, M. I. de et al. “ESAT-6 from Mycobacterium tuberculosis dissociates from
its putative chaperone CFP-10 under acidic conditions and exhibits membrane-
lysing activity”. In: Journal of Bacteriology (2007).

[251] Joseph, S. et al. “Mycobacterium tuberculosis Cpn60.2 (GroEL2) blocks
macrophage apoptosis via interaction with mitochondrial mortalin”. In: Biol-
ogy Open (2017).



BIBLIOGRAPHY 225

[252] Joseph, S. V. et al. “Comparative analysis of mycobacterial truncated
hemoglobin promoters and the groEL2 promoter in free-living and intracellular
mycobacteria”. In: Applied and Environmental Microbiology (2012).

[253] Jung, J.-Y. et al. “The intracellular environment of human macrophages that
produce nitric oxide promotes growth of mycobacteria”. In: Infection and Immu-
nity (2013).

[254] Jupp, S. et al. “The EBI RDF platform: linked open data for the life sciences”.
In: Bioinformatics (2014).

[255] Juttukonda, L. J. and Skaar, E. P. “Manganese homeostasis and utilization in
pathogenic bacteria”. In: Molecular Microbiology (2015).

[256] Kahramanoglou, C. et al. “Genomic mapping of cAMP receptor protein
(CRPMt) in Mycobacterium tuberculosis: Relation to transcriptional start sites and
the role of CRPMt as a transcription factor”. In: Nucleic Acids Research (2014).

[257] Kalamidas, S. a. et al. “cAMP synthesis and degradation by phagosomes reg-
ulate actin assembly and fusion events: consequences for mycobacteria”. In:
Journal of Cell Science (2006).

[258] Kamminga, T. et al. “Persistence of Functional Protein Domains in Mycoplasma
Species and their Role in Host Specificity and Synthetic Minimal Life”. In: Fron-
tiers in Cellular and Infection Microbiology (2017).

[259] Kanehisa, M et al. “KEGG for integration and interpretation of large-scale
molecular data sets”. In: Nucleic Acids Research (2012).

[260] Kanehisa, M. et al. “KEGG as a reference resource for gene and protein annota-
tion”. In: Nucleic Acids Research (2016).

[261] Kang, S.-M. et al. “Functional details of the Mycobacterium tuberculosis VapBC26
toxin-antitoxin system based on a structural study: insights into unique binding
and antibiotic peptides”. In: Nucleic Acids Research (2017).

[262] Kapoor, N. et al. “Human granuloma in vitro model, for TB dormancy and
resuscitation”. In: PLoS ONE (2013).

[263] Karakousis, P. C., Williams, E. P., and Bishai, W. R. “Altered expression of
isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis”.
In: Journal of Antimicrobial Chemotherapy (2008).

[264] Karp, P. D. et al. “Pathway tools version 13.0: integrated software for path-
way/genome informatics and systems biology”. In: Briefings in Bioinformatics
(2009).

[265] Kaur, K. et al. “DevS/DosS sensor is bifunctional and its phosphatase activity
precludes aerobic DevR/DosR regulon expression in Mycobacterium tuberculo-
sis”. In: FEBS Journal (2016).

[266] Kelder, T. et al. “WikiPathways: Building research communities on biological
pathways”. In: Nucleic Acids Research (2012).

[267] Khan, A. and Sarkar, D. “Nitrate reduction pathways in mycobacteria and their
implications during latency”. In: Microbiology (2012).

[268] Khare, G., Nangpal, P., and Tyagi, A. K. “Differential roles of iron storage pro-
teins in maintaining the iron homeostasis in Mycobacterium tuberculosis”. In:
PLoS ONE (2017).

[269] King, Z. A. et al. “BiGG Models: A platform for integrating, standardizing and
sharing genome-scale models”. In: Nucleic Acids Research (2016).

[270] Kitano, H. “Systems biology: A brief overview”. In: Science (2002).
[271] Koehorst, J. J. et al. “Protein domain architectures provide a fast, efficient and

scalable alternative to sequence-based methods for comparative functional ge-
nomics [version 1; referees: 1 approved, 2 approved with reservations]”. In:
F1000Research (2016).



226 BIBLIOGRAPHY

[272] Koehorst, J. J. et al. “Comparison of 432 Pseudomonas strains through inte-
gration of genomic, functional, metabolic and expression data”. In: Scientific
Reports (2016).

[273] Koehorst, J. J. et al. “SAPP: functional genome annotation and analysis through
a semantic framework using FAIR principles”. In: Bioinformatics (2018).

[274] Korch, S. B., Contreras, H., and Clark-curtiss, J. E. “Three Mycobacterium tu-
berculosis Rel Toxin-Antitoxin Modules Inhibit Mycobacterial Growth and Are
Expressed in Infected Human Macrophages”. In: Journal of Bacteriology (2009).

[275] Köser, C. U., Ellington, M. J., and Peacock, S. J. “Whole-genome sequencing to
control antimicrobial resistance”. In: Trends in Genetics (2014).

[276] Kreuzer, K. N. “DNA damage responses in prokaryotes: Regulating gene ex-
pression, modulating growth patterns, and manipulating replication forks”. In:
Cold Spring Harbor Perspectives in Biology (2013).

[277] Kumar, A. et al. “Mycobacterium tuberculosis DosS is a redox sensor and DosT is
a hypoxia sensor”. In: PNAS (2007).

[278] Kumar, A. et al. “Heme oxygenase-1-derived carbon monoxide induces the My-
cobacterium tuberculosis dormancy regulon”. In: The Journal of Biological Chem-
istry (2008).

[279] Kumar, A. et al. “Redox homeostasis in mycobacteria: the key to tuberculosis
control?” In: Expert Reviews in Molecular Medicine (2011).

[280] Kumar, V. A. et al. “EspR-dependent ESAT-6 Protein Secretion of Mycobacterium
tuberculosis Requires the Presence of Virulence Regulator PhoP”. In: Journal of
Biological Chemistry (2016).

[281] Kumar, V. S. and Maranas, C. D. “GrowMatch: An automated method for rec-
onciling in silico/in vivo growth predictions”. In: PLoS Computational Biology
(2009).

[282] Kurthkoti, K. et al. “The Capacity of Mycobacterium tuberculosis To Survive Iron
Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of
Human Granulomas”. In: mBio (2017).

[283] Kutmon, M. et al. “WikiPathways: Capturing the full diversity of pathway
knowledge”. In: Nucleic Acids Research (2016).

[284] Kwong, J. C. et al. “Whole genome sequencing in clinical and public health
microbiology”. In: Pathology (2015).

[285] Lam, S. D. et al. “Gene3D: Expanding the utility of domain assignments”. In:
Nucleic Acids Research (2016).

[286] Langfelder, P and Horvath, S. “WGCNA: an R package for weighted correlation
network analysis”. In: BMC Bioinformatics (2008).

[287] Larsen, S. J. and Baumbach, J. “CytoMCS: A Multiple Maximum Common
Subgraph Detection Tool for Cytoscape”. In: Journal of Integrative Bioinformat-
ics (2017).

[288] Larsson, C. et al. “Gene expression of Mycobacterium tuberculosis putative tran-
scription factors whiB1-7 in redox environments”. In: PLoS ONE (2012).

[289] Latendresse, M. “Efficiently gap-filling reaction networks”. In: BMC Bioinfor-
matics (2014).

[290] Law, V. et al. “DrugBank 4.0: shedding new light on drug metabolism”. In: Nu-
cleic Acids Research (2014).

[291] Lebo, T., Sahoo, S., and McGuinness, D. “PROV-O: The PROV Ontology”. In:
W3C Recommendation (2013).

[292] Lee, H.-N. et al. “Protein-protein interactions between histidine kinases and
response regulators of Mycobacterium tuberculosis H37Rv”. In: Journal of Microbi-
ology (2012).



BIBLIOGRAPHY 227

[293] Lee, I.-g. et al. “Structural and functional studies of the Mycobacterium tuber-
culosis VapBC30 toxin-antitoxin system: implications for the design of novel
antimicrobial peptides”. In: Nucleic Acids Research (2015).

[294] Lee, S. A. et al. “General and condition-specific essential functions of Pseu-
domonas aeruginosa”. In: Proceedings of the National Academy of Sciences of the
United States of America of the United States of America (2015).

[295] Leistikow, R. L. et al. “The Mycobacterium tuberculosis DosR regulon assists
in metabolic homeostasis and enables rapid recovery from nonrespiring dor-
mancy”. In: Journal of Bacteriology (2010).

[296] Leopold, S. R. et al. “Bacterial whole-genome sequencing revisited: Portable,
scalable, and standardized analysis for typing and detection of virulence and
antibiotic resistance genes”. In: Journal of Clinical Microbiology (2014).

[297] Lew, J. M. et al. “TubercuList–10 years after”. In: Tuberculosis (2011).
[298] Li, L., Stoeckert, C. J., and Roos, D. S. “OrthoMCL: identification of ortholog

groups for eukaryotic genomes”. In: Genome Research (2003).
[299] Li, W. et al. “Mycobacterium tuberculosis Rv3402c Enhances Mycobacterial Sur-

vival within Macrophages and Modulates the Host Pro-Inflammatory Cy-
tokines Production via NF-Kappa B/ERK/p38 Signaling”. In: PLoS ONE (2014).

[300] Liberati, N. T. et al. “An ordered, nonredundant library of Pseudomonas aerug-
inosa strain PA14 transposon insertion mutants”. In: Proceedings of the National
Academy of Sciences of the United States of America of the United States of America
(2006).

[301] Lim, Y.-J. et al. “Mycobacterium kansasii-induced death of murine macrophages
involves endoplasmic reticulum stress responses mediated by reactive oxygen
species generation or calpain activation”. In: Apoptosis (2013).

[302] Lin, H., Andersen, G. R., and Yatime, L. “Crystal structure of human S100A8 in
complex with zinc and calcium”. In: BMC Structural Biology (2016).

[303] Litwin, C. M. and Calderwood, S. B. “Role of Iron in Regulation of Virulence
Genes”. In: Clinical Microbiology Reviews (1993).

[304] Loper, J. E. et al. “Comparative genomics of plant-associated Pseudomonas
spp.: insights into diversity and inheritance of traits involved in multitrophic
interactions”. In: PLoS Genetics (2012).

[305] Los, F. C. O. et al. “Role of pore-forming toxins in bacterial infectious diseases”.
In: Microbiology and Molecular Biology Reviews (2013).

[306] Lou, Y. et al. “EspC forms a filamentous structure in the cell envelope of My-
cobacterium tuberculosis and impacts ESX-1 secretion”. In: Molecular Microbiology
(2017).

[307] Lucarelli, D. et al. “The Metal-Dependent Regulators FurA and FurB from My-
cobacterium Tuberculosis”. In: International Journal of Molecular Sciences (2008).

[308] Luo, M., Fadeev, E. A., and Groves, J. T. “Mycobactin-mediated iron acquisition
within macrophages”. In: Nature Chemical Biology (2005).

[309] M. Sritharan. “Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic In-
sights into Siderophore-Mediated Iron Uptake”. In: Bacteriology (2016).

[310] Ma, J. et al. “MRFalign: Protein Homology Detection through Alignment of
Markov Random Fields”. In: PLoS Computational Biology (2014).

[311] Ma, W and Wong, W. H. “Chapter Three - The Analysis of ChIP-Seq Data”. In:
Methods in Enzymology (2011).

[312] Maciag, A. et al. “Global analysis of the Mycobacterium tuberculosis Zur (FurB)
regulon”. In: Journal of Bacteriology (2007).



228 BIBLIOGRAPHY

[313] Madeira, S. C. and Oliveira, A. L. “Biclustering Algorithms for Biological Data
Analysis: A Survey”. In: IEEE/ACM Transactions on Computational Biology and
Bioinformatics (2004).

[314] Madigan, C. A. et al. “Lipidomic discovery of deoxysiderophores reveals a
revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis”. In:
PNAS (2012).

[315] Maere, S., Heymans, K., and Kuiper, M. “BiNGO: A Cytoscape plugin to assess
overrepresentation of Gene Ontology categories in Biological Networks”. In:
Bioinformatics (2005).

[316] Mahajan, S. et al. “Mycobacterium tuberculosis modulates macrophage lipid-
sensing nuclear receptors PPARγ and TR4 for survival”. In: Journal of Immunol-
ogy (2012).

[317] Manabe, Y. C. et al. “Attenuation of virulence in Mycobacterium tuberculosis ex-
pressing a constitutively active iron repressor”. In: Proceedings of the National
Academy of Sciences of the United States of America of the United States of America
(1999).

[318] Manganelli, R. and Provvedi, R. “An integrated regulatory network including
two positive feedback loops to modulate the activity of SigE in mycobacteria”.
In: Molecular Microbiology (2010).

[319] Marbach, D. et al. “Wisdom of crowds for robust gene network inference”. In:
Nature Methods (2012).

[320] Margolin, A. A. et al. “ARACNE: An algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context”. In: BMC Bioinformatics
(2006).

[321] Marino, S., El-Kebir, M., and Kirschner, D. “A hybrid multi-compartment
model of granuloma formation and T cell priming in tuberculosis”. In: Journal
of Theoretical Biology (2011).

[322] Maris, A. E. et al. “Dimerization allows DNA target site recognition by the NarL
response regulator”. In: Nature Structural Biology (2002).

[323] Marquart, H. V. et al. “C1q deficiency in an Inuit family: Identification of a new
class of C1q disease-causing mutations”. In: Clinical Immunology (2007).

[324] Marti, T. M., Kunz, C, and Fleck, O. “DNA mismatch repair and mutation
avoidance pathways”. In: Journal of Cellular Physiology (2002).

[325] Matange, N. “Revisiting bacterial cyclic nucleotide phosphodiesterases: cyclic
AMP hydrolysis and beyond”. In: FEMS Microbiology Letters (2015).

[326] Matthews, B. W. “Comparison of the predicted and observed secondary struc-
ture of T4 phage lysozyme”. In: Biochimica et Biophysica Acta - Protein Structure
(1975).

[327] McCarthy, L., Vandervalk, B., and Wilkinson, M. “SPARQL assist language-
neutral query composer”. In: BMC Bioinformatics (2012).

[328] McMahon, M. D., Rush, J. S., and Thomas, M. G. “Analyses of MbtB, MbtE, and
MbtF suggest revisions to the mycobactin biosynthesis pathway in Mycobac-
terium tuberculosis”. In: Journal of Bacteriology (2012).

[329] Medini, D. et al. “The microbial pan-genome”. In: Current Opinion in Genetics &
Development (2005).

[330] Meena, L. S. and Rajni. “Survival mechanisms of pathogenic Mycobacterium tu-
berculosis H37Rv”. In: FEBS Journal (2010).

[331] Mehra, A. et al. “Mycobacterium tuberculosis Type VII Secreted Effector EsxH
Targets Host ESCRT to Impair Trafficking”. In: PLoS Pathogens (2013).



BIBLIOGRAPHY 229

[332] Mehra, S. et al. “The DosR Regulon Modulates Adaptive Immunity and Is Es-
sential for Mycobacterium tuberculosis Persistence”. In: American Journal of Respi-
ratory and Critical Care Medicine (2015).

[333] Mele, T. and Madrenas, J. “TLR2 signalling: At the crossroads of commensal-
ism, invasive infections and toxic shock syndrome by Staphylococcus aureus”. In:
International Journal of Biochemistry and Cell Biology (2010).

[334] Meng, L. et al. “PPE38 Protein of Mycobacterium tuberculosis Inhibits
Macrophage MHC Class I Expression and Dampens CD8+ T Cell Responses”.
In: Frontiers in Cellular and Infection Microbiology (2017).

[335] Meng, Q. et al. “Systems Biology Approaches and Applications in Obesity, Di-
abetes, and Cardiovascular Diseases”. In: Current Cardiovascular Risk Reports
(2013).

[336] Menge, B. A. et al. “Selective amino acid deficiency in patients with impaired
glucose tolerance and type 2 diabetes”. In: Regulatory Peptides (2010).

[337] Meyer, P. E., Lafitte, F, and Bontempi, G. “minet: A R/Bioconductor Package
for Inferring Large Transcriptional Networks Using Mutual Information”. In:
BMC Bioinformatics (2008).

[338] Miles, A. et al. “SKOS Core: Simple knowledge organisation for the Web”. In:
International Conference on Dublin Core and Metadata Applications (2005).

[339] Mitchell, A. et al. “The InterPro protein families database: The classification
resource after 15 years”. In: Nucleic Acids Research (2015).

[340] Mitraka, E. et al. “Wikidata: A platform for data integration and dissemination
for the life sciences and beyond”. In: bioRxiv (2015).

[341] Mons, B. et al. “The value of data”. In: Nature Genetics (2011).
[342] Montecchi-Palazzi, L. et al. “The PSI-MOD community standard for represen-

tation of protein modification data”. In: Nature Biotechnology (2008).
[343] Moretti, S. et al. “MetaNetX/MNXref - Reconciliation of metabolites and bio-

chemical reactions to bring together genome-scale metabolic networks”. In: Nu-
cleic Acids Research (2016).

[344] Morgulis, A et al. “Database indexing for production MegaBLAST searches”.
In: Bioinformatics (2008).

[345] Mosquera-Rendón, J. et al. “Pangenome-wide and molecular evolution analy-
ses of the Pseudomonas aeruginosa species”. In: BMC Genomics (2016).

[346] Mowa, M. B. et al. “Function and Regulation of Class I Ribonucleotide
Reductase-Encoding Genes in Mycobacteria”. In: Journal of Bacteriology (2009).

[347] Musen, M. A. “The protégé project: a look back and a look forward”. In: AI
Matters (2015).

[348] MycoSynVac, Engineering Mycoplasma pneumoniae as a broad-spectrum animal vac-
cine. 2017. URL: http://www.mycosynvac.eu/.

[349] Naffin-Olivos, J. L. et al. “Mycobacterium tuberculosis Hip1 Modulates
Macrophage Responses through Proteolysis of GroEL2”. In: PLoS Pathogens
(2014).

[350] Nambu, S. et al. “A new way to degrade heme: the Mycobacterium tuberculosis
enzyme MhuD catalyzes heme degradation without generating CO”. In: The
Journal of Biological Chemistry (2013).

[351] Nawrocki, J. and Wojciechowski, A. “Experimental evaluation of pair program-
ming”. In: European Software Control and Metrics (2001).

[352] Nelson, K. E. et al. “Complete genome sequence and comparative analysis of
the metabolically versatile Pseudomonas putida KT2440”. In: Environmental Mi-
crobiology (2002).



230 BIBLIOGRAPHY

[353] Nguyen, L. and Pieters, J. “Mycobacterial subversion of chemotherapeutic
reagents and host defense tactics: challenges in tuberculosis drug develop-
ment”. In: Annual Review of Pharmacology and Toxicology (2009).

[354] Nguyen, N.-N. et al. “EnzDP: Improved enzyme annotation for metabolic net-
work reconstruction based on domain composition profiles”. In: Journal of Bioin-
formatics and Computational Biology (2015).

[355] Nguyen, V., Bodenreider, O., and Sheth, A. “Don’t Like RDF Reification? Mak-
ing Statements about Statements Using Singleton Property”. In: Proceedings of
the International World-Wide Web Conference (2014).

[356] Nogales, J., Palsson, B., and Thiele, I. “A genome-scale metabolic reconstruc-
tion of Pseudomonas putida KT2440: iJN746 as a cell factory”. In: BMC Systems
Biology (2008).

[357] Notebaart, R. A. et al. “Correlation between sequence conservation and the ge-
nomic context after gene duplication”. In: Nucleic Acids Research (2005).

[358] Oberhardt, M. A., Palsson, B., and Papin, J. A. “Applications of genome-scale
metabolic reconstructions”. In: Molecular Systems Biology (2009).

[359] Oberhardt, M. a. et al. “Genome-Scale Metabolic Network Analysis of the Op-
portunistic Pathogen Pseudomonas aeruginosa PAO1”. In: Journal of Bacteriol-
ogy (2008).

[360] Oberhardt, M. a. et al. “Reconciliation of genome-scale metabolic reconstruc-
tions for comparative systems analysis”. In: PLoS Computational Biology (2011).

[361] O’Brien, E. J., Monk, J. M., and Palsson, B. O. “Using genome-scale models to
predict biological capabilities”. In: Cell (2015).

[362] Oh, Y. K. et al. “Genome-scale reconstruction of metabolic network in Bacillus
subtilis based on high-throughput phenotyping and gene essentiality data”. In:
Journal of Biological Chemistry (2007).

[363] Olakanmi, O. et al. “Intraphagosomal Mycobacterium tuberculosis acquires iron
from both extracellular transferrin and intracellular iron pools. Impact of
interferon-gamma and hemochromatosis”. In: The Journal of Biological Chemistry
(2002).

[364] Olakanmi, O. et al. “The Nature of Extracellular Iron Influences Iron Acquisi-
tion by Mycobacterium tuberculosis Residing within Human Macrophages”. In:
Infection and Immunity (2004).

[365] Oldridge, D. A. et al. “The mycobacterial iron dependent regulator IdeR in-
duces ferritin (bfrB) by alleviating Lsr2 repression”. In: Molecular Microbiology
(2016).

[366] OpenLink Software Inc. iSPARQL. 2007. URL: https : / / github . com /
openlink/iSPARQL.

[367] Orth, J. D., Thiele, I., and Palsson, B. O. “What is flux balance analysis?” In:
Nature Biotechnology (2010).

[368] Orth, J. D. et al. “A comprehensive genome-scale reconstruction of Escherichia
coli metabolism”. In: Molecular Systems Biology (2011).

[369] Otero, J. M. and Nielsen, J. “Industrial systems biology”. In: Biotechnology and
Bioengineering (2010).

[370] Outten, F. W. and Theil, E. C. “Iron-based redox switches in biology”. In: An-
tioxidants & Redox Signaling (2009).

[371] Overbeek, R. et al. “The SEED and the Rapid Annotation of microbial genomes
using Subsystems Technology (RAST)”. In: Nucleic Acids Research (2014).

[372] Page, A. J. et al. “Roary: rapid large-scale prokaryote pan genome analysis”. In:
Bioinformatics (2015).



BIBLIOGRAPHY 231

[373] Paige, C. and Bishai, W. R. “Penitentiary or penthouse condo: the tuberculous
granuloma from the microbe’s point of view”. In: Cellular Microbiology (2010).

[374] Pandey, R. and Rodriguez, G. M. “IdeR is required for iron homeostasis and
virulence in Mycobacterium tuberculosis”. In: Molecular Microbiology (2014).

[375] Pandey, R. et al. “MntR(Rv2788): a transcriptional regulator that controls man-
ganese homeostasis in M ycobacterium tuberculosis”. In: Molecular Microbiology
(2015).

[376] Pandey, S. D. et al. “Iron-regulated protein HupB of Mycobacterium tuberculo-
sis positively regulates siderophore biosynthesis and is essential for growth in
macrophages”. In: Journal of Bacteriology (2014).

[377] Pang, X. et al. “Evidence for Complex Interactions of Stress-Associated Regu-
lons in an mprAB Deletion Mutant of Mycobacterium Tuberculosis”. In: Microbi-
ology (2007).

[378] Pang, X. et al. “The β-propeller gene Rv1057 of Mycobacterium tuberculosis has
a complex promoter directly regulated by both the MprAB and TrcRS two-
component systems”. In: Tuberculosis (2011).

[379] Pang, X. et al. “MprAB regulates the espA operon in Mycobacterium tuberculo-
sis and modulates ESX-1 function and host cytokine response”. In: Journal of
Bacteriology (2013).

[380] Papp-Wallace, K. M. and Maguire, M. E. “Manganese transport and the role of
manganese in virulence”. In: Annual Review of Microbiology (2006).

[381] Park, H.-D. et al. “Rv3133c/dosR is a transcription factor that mediates the hy-
poxic response of Mycobacterium tuberculosis”. In: Molecular Microbiology (2003).

[382] Pasek, S., Risler, J.-L., and Brézellec, P. “Gene fusion/fission is a major contrib-
utor to evolution of multi-domain bacterial proteins”. In: Bioinformatics (2006).

[383] Pavlopoulos, G. A. et al. “Using graph theory to analyze biological networks”.
In: BioData Mining (2011).

[384] Pechter, K. B. et al. “Two roles for aconitase in the regulation of tricarboxylic
acid branch gene expression in Bacillus subtilis”. In: Journal of Bacteriology
(2013).

[385] Peracino, B., Buracco, S., and Bozzaro, S. “The Nramp (Slc11) proteins regulate
development, resistance to pathogenic bacteria and iron homeostasis in Dic-
tyostelium discoideum”. In: Journal of Cell Science (2013).

[386] Pereira, C. P., Bachli, E. B., and Schoedon, G. “The Wnt pathway: A macrophage
effector molecule that triggers inflammation”. In: Current Atherosclerosis Reports
(2009).

[387] Pérez, E et al. “An essential role for phoP in Mycobacterium tuberculosis viru-
lence”. In: Molecular Microbiology (2001).

[388] Perez-Urbina, H., Siren, E., and Clark, K. Validating Semantic Web Data with OWL
Integrity Constraints. 2010. URL: https://www.stardog.com/docs/4.1.
3/icv/icv-specification.

[389] Petersen, T. N. et al. “SignalP 4.0: discriminating signal peptides from trans-
membrane regions”. In: Nature Methods (2011).

[390] Phetsuksiri, B. et al. “Antimycobacterial Activities of Isoxyl and New Deriva-
tives through the Inhibition of Mycolic Acid Synthesis”. In: Antimicrobial Agents
and Chemotherapy (1999).

[391] Pohl, E, Holmes, R. K., and Hol, W. G. “Crystal structure of the iron-dependent
regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites
fully occupied”. In: Journal of Molecular Biology (1999).

[392] Popov, I. O. et al. “Connecting the Dots: A Multi-pivot Approach to Data Ex-
ploration”. In: The Semantic Web – International Semantic Web Conference (2011).



232 BIBLIOGRAPHY

[393] Poveda-Villalón, M., Gómez-Pérez, A., and Suárez-Figueroa, M. C. “OOPS!
(OntOlogy Pitfall Scanner!): An On-line Tool for Ontology Evaluation”. In: In-
ternational Journal on Semantic Web and Information Systems (2014).

[394] Prados-Rosales, R. et al. “Role for mycobacterium tuberculosis membrane vesicles
in iron acquisition”. In: Journal of Bacteriology (2014).

[395] Prud’hommeaux, E., Labra Gayo, J. E., and Solbrig, H. “Shape expressions: an
RDF validation and transformation language”. In: Proceedings of the 10th Inter-
national Conference on Semantic Systems (2014).

[396] Prud’hommeaux, E. and Seaborne, A. SPARQL Query Language for RDF. 2008.
URL: http://www.w3.org/TR/rdf-sparql-query/.

[397] Puchalka, J et al. “Genome-Scale Reconstruction and Analysis of the Pseu-
domonas putida KT2440 Metabolic Network Facilitates Applications in
Biotechnology”. In: PLoS Computational Biology (2008).

[398] Qu, K. et al. “Integrative genomic analysis by interoperation of bioinformatics
tools in GenomeSpace”. In: Nature Methods (2016).

[399] R Core Team. R: A language and environment for statistical computing. 2017.
[400] Rabiner, L. and Juang, B. “An introduction to hidden Markov models”. In: IEEE

ASSP Magazine (1986).
[401] Raghunand, T. R. and Bishai, W. R. “Mycobacterium smegmatis whmD and its

homologue Mycobacterium tuberculosis whiB2 are functionally equivalent”. In:
Microbiology (2006).

[402] Raman, K., Bhat, A. G., and Chandra, N. “A systems perspective of host-
pathogen interactions: predicting disease outcome in tuberculosis”. In: Molecu-
lar Biosystems (2010).

[403] Ranganathan, S. et al. “Characterization of a cAMP responsive transcription
factor, Cmr (Rv1675c), in TB complex mycobacteria reveals overlap with the
DosR (DevR) dormancy regulon”. In: Nucleic Acids Research (2002).

[404] Ravasz, E et al. “Hierarchical organization of modularity in metabolic net-
works”. In: Science (2002).

[405] Reddy, S. K. et al. “Eukaryotic-like adenylyl cyclases in Mycobacterium tubercu-
losis H37Rv: cloning and characterization”. In: The Journal of Biological Chemistry
(2001).

[406] Reddy, T. B. K. et al. “TB database: an integrated platform for tuberculosis re-
search”. In: Nucleic Acids Research (2009).

[407] Reed, J. L. et al. “Systems approach to refining genome annotation”. In: Proceed-
ings of the National Academy of Sciences of the United States of America of the United
States of America (2006).

[408] Reeves, A. Z. et al. “Aminoglycoside cross-resistance in Mycobacterium tubercu-
losis due to mutations in the 5’ untranslated region of whiB7”. In: Antimicrobial
Agents and Chemotherapy (2013).

[409] Reiss, D. J., Baliga, N. S., and Bonneau, R. “Integrated biclustering of heteroge-
neous genome-wide datasets for the inference of global regulatory networks”.
In: BMC Bioinformatics (2006).

[410] Reshef, D. N. et al. “Detecting Novel Associations in Large Data Sets”. In: Sci-
ence (2011).

[411] Rickman, L. et al. “A member of the cAMP receptor protein family of transcrip-
tion regulators in Mycobacterium tuberculosis is required for virulence in mice
and controls transcription of the rpfA gene coding for a resuscitation promot-
ing factor”. In: Molecular Microbiology (2005).



BIBLIOGRAPHY 233

[412] Rienksma, R. A. et al. “Comprehensive insights into transcriptional adaptation
of intracellular mycobacteria by microbe-enriched dual RNA sequencing”. In:
BMC Genomics (2015).

[413] Rishi, P. et al. “Salmonella-macrophage interactions upon manganese supple-
mentation”. In: Biological Trace Element Research (2010).

[414] Roback, P et al. “A predicted operon map for Mycobacterium tuberculosis”. In:
Nucleic Acids Research (2007).

[415] Rocca-Serra, P. et al. “ISA software suite: Supporting standards-compliant ex-
perimental annotation and enabling curation at the community level”. In: Bioin-
formatics (2010).

[416] Rodriguez, G. M. and Smith, I. “Mechanisms of iron regulation in mycobacteria:
role in physiology and virulence”. In: Molecular Microbiology (2003).

[417] Rodriguez, G. M. et al. “ideR, an Essential Gene in Mycobacterium tuberculosis:
Role of IdeR in Iron-Dependent Gene Expression, Iron Metabolism, and Oxida-
tive Stress Response”. In: Infection and Immunity (2002).

[418] Rohde, K. H., Abramovitch, R. B., and Russell, D. G. “Mycobacterium tuberculosis
invasion of macrophages: linking bacterial gene expression to environmental
cues”. In: Cell Host & Microbe (2007).

[419] Rohde, K. H. et al. “Linking the transcriptional profiles and the physiological
states of Mycobacterium tuberculosis during an extended intracellular infection”.
In: PLoS Pathogens (2012).

[420] Rosselló-Móra, R. and Amann, R. “Past and future species definitions for Bac-
teria and Archaea”. In: Systematic and Applied Microbiology (2015).

[421] Rowley, J. “The wisdom hierarchy: Representations of the DIKW hierarchy”.
In: Journal of Information Science (2007).

[422] Russell, D. G. et al. “Foamy macrophages and the progression of the human TB
granuloma”. In: Nature Immunology (2010).

[423] Russell, S & Norvig, P. Artificial intelligence: a modern approach. 2009.
[424] Rustad, T. R. et al. “The enduring hypoxic response of Mycobacterium tuberculo-

sis”. In: PLoS ONE (2008).
[425] Saccenti, E. et al. “Probabilistic networks of blood metabolites in healthy sub-

jects as indicators of latent cardiovascular risk”. In: Journal of Proteome Research
(2015).

[426] Sachdeva, P et al. “The sigma factors of Mycobacterium tuberculosis:regulation of
the regulators”. In: FEBS Journal (2010).

[427] Saini, V., Farhana, A., and Steyn, A. J. C. “Mycobacterium tuberculosis WhiB3:
a novel iron-sulfur cluster protein that regulates redox homeostasis and viru-
lence”. In: Antioxidants & Redox Signaling (2012).

[428] Samuel, L. P. et al. “Expression, production and release of the Eis protein by
Mycobacterium tuberculosis during infection of macrophages and its effect on
cytokine secretion”. In: Microbiology (2007).

[429] Sani, M. et al. “Direct Visualization by Cryo-EM of the Mycobacterial Capsu-
lar Layer: A Labile Structure Containing ESX-1-Secreted Proteins”. In: PLoS
Pathogens (2010).

[430] Sanyal, S. et al. “Polyphosphate kinase 1, a central node in the stress re-
sponse network of Mycobacterium tuberculosis, connects the two-component sys-
tems MprAB and SenX3-RegX3 and the extracytoplasmic function sigma factor,
sigma E”. In: Microbiology (2013).

[431] Sanz, J et al. “The Transcriptional Regulatory Network of Mycobacterium tuber-
culosis”. In: PLoS ONE (2011).



234 BIBLIOGRAPHY

[432] Satish Kumar, V., Dasika, M. S., and Maranas, C. D. “Optimization based auto-
mated curation of metabolic reconstructions”. In: BMC Bioinformatics (2007).

[433] Schaible, U. E. and Kaufmann, S. H. E. “Iron and microbial infection”. In: Nature
Reviews Microbiology (2004).

[434] Schellenberger, J. et al. “Quantitative prediction of cellular metabolism with
constraint-based models: the COBRA Toolbox v2. 0”. In: Nature Protocols (2011).

[435] Schomburg, I. et al. “BRENDA, the enzyme database: updates and major new
developments”. In: Nucleic Acids Research (2004).

[436] Schweiger, D., Trajanoski, Z., and Pabinger, S. “SPARQLGraph: a web-based
platform for graphically querying biological Semantic Web databases”. In: BMC
Bioinformatics (2014).

[437] Seemann, T. “Prokka: rapid prokaryotic genome annotation”. In: Bioinformatics
(2014).

[438] Serafini, A. et al. “Characterization of a Mycobacterium tuberculosis ESX-3 Con-
ditional Mutant: Essentiality and Rescue by Iron and Zinc”. In: Journal of Bacte-
riology (2009).

[439] Serafini, A. et al. “The ESX-3 Secretion System Is Necessary for Iron and Zinc
Homeostasis in Mycobacterium tuberculosis”. In: PLoS ONE (2013).

[440] Sethi, D. et al. “Lipoprotein LprI of Mycobacterium tuberculosis Acts as a
Lysozyme Inhibitor *”. In: The Journal of Biological Chemistry (2016).

[441] Seto, S., Tsujimura, K., and Koide, Y. “Rab GTPases regulating phagosome mat-
uration are differentially recruited to mycobacterial phagosomes”. In: Traffic
(2011).

[442] Shaler, C. R. et al. “Within the Enemy’s Camp: contribution of the granuloma
to the dissemination, persistence and transmission of Mycobacterium tubercu-
losis”. In: Frontiers in Immunology (2013).

[443] Shannon, P. et al. “Cytoscape: A software Environment for integrated models
of biomolecular interaction networks”. In: Genome Research (2003).

[444] Shannon, P. et al. “Cytoscape: A software Environment for integrated models
of biomolecular interaction networks”. In: Genome Research (2003).

[445] Sharma, S. and Tyagi, J. S. “Mycobacterium tuberculosis DevR/DosR dormancy
regulator activation mechanism: Dispensability of phosphorylation, coopera-
tivity and essentiality of α10 Helix”. In: PLoS ONE (2016).

[446] Shea, A. et al. “Biolog phenotype microarrays”. In: Methods in Molecular Biology
(2012).

[447] Siegrist, M. S. et al. “Mycobacterial Esx-3 is required for mycobactin-mediated
iron acquisition”. In: PNAS (2009).

[448] Silva-Gomes, S. et al. “Heme catabolism by heme oxygenase-1 confers host re-
sistance to Mycobacterium infection”. In: Infection and Immunity (2013).

[449] Silva Miranda, M. et al. “The tuberculous granuloma: an unsuccessful host de-
fence mechanism providing a safety shelter for the bacteria?” In: Clinical & De-
velopmental Immunology (2012).

[450] Silvester, N. et al. “The European Nucleotide Archive in 2017”. In: Nucleic Acids
Research (2018).

[451] Simeone, R., Bottai, D., and Brosch, R. “ESX/type VII secretion systems and
their role in host-pathogen interaction”. In: Current Opinion in Microbiology
(2009).

[452] Simeone, R. et al. “Phagosomal rupture by Mycobacterium tuberculosis results in
toxicity and host cell death”. In: PLoS Pathogens (2012).



BIBLIOGRAPHY 235

[453] Singh, A. et al. “Mycobacterium tuberculosis WhiB3 responds to O2 and nitric
oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival”.
In: PNAS (2007).

[454] Singh, A. et al. “Mycobacterium tuberculosis WhiB3 maintains redox homeostasis
by regulating virulence lipid anabolism to modulate macrophage response”.
In: PLoS Pathogens (2009).

[455] Singh, R. et al. “Polyphosphate deficiency in Mycobacterium tuberculosis is asso-
ciated with enhanced drug susceptibility and impaired growth in guinea pigs”.
In: Journal of Bacteriology (2013).

[456] Sinha, A. et al. “PhoP-PhoP interaction at adjacent PhoP binding sites is influ-
enced by protein phosphorylation”. In: Journal of Bacteriology (2008).
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Summary

The goal of this thesis is to improve the prediction of genotype to phenotype
associations with a focus on metabolic phenotypes of prokaryotes. This goal is
achieved through data integration, which in turn required the development of
supporting solutions based on semantic web technologies. Chapter 1 provides
an introduction to the challenges associated to data integration. Semantic web
technologies provide solutions to some of these challenges and the basics of
these technologies are explained in the Introduction. Furthermore, the ba-
sics of constraint based metabolic modeling and construction of genome scale
models (GEM) are also provided. The chapters in the thesis are separated in
three related topics: chapters 2, 3 and 4 focus on data integration based on
heterogeneous networks and their application to the human pathogen M. tu-
berculosis; chapters 5, 6, 7, 8 and 9 focus on the semantic web based solutions
to genome annotation and applications thereof; and chapter 10 focus on the
final goal to associate genotypes to phenotypes using GEMs.

Chapter 2 provides the prototype of a workflow to efficiently analyze in-
formation generated by different inference and prediction methods. This me-
thod relies on providing the user the means to simultaneously visualize and
analyze the coexisting networks generated by different algorithms, heteroge-
neous data sets, and a suite of analysis tools. As a show case, we have ana-
lyzed the gene co-expression networks of M. tuberculosis generated using over
600 expression experiments. Hereby we gained new knowledge about the
regulation of the DNA repair, dormancy, iron uptake and zinc uptake sys-
tems. Furthermore, it enabled us to develop a pipeline to integrate ChIP-seq
dat and a tool to uncover multiple regulatory layers.

In chapter 3 the prototype presented in chapter 2 is further developed
into the Synchronous Network Data Integration (SyNDI) framework, which
is based on Cytoscape and Galaxy. The functionality and usability of the
framework is highlighted with three biological examples. We analyzed the
distinct connectivity of plasma metabolites in networks associated with high
or low latent cardiovascular disease risk. We obtained deeper insights from
a few similar inflammatory response pathways in Staphylococcus aureus infec-
tion common to human and mouse. We identified not yet reported regulatory
motifs associated with transcriptional adaptations of M. tuberculosis.

In chapter 4 we present a review providing a systems level overview of
the molecular and cellular components involved in divalent metal homeosta-
sis and their role in regulating the three main virulence strategies of M. tu-
berculosis: immune modulation, dormancy and phagosome escape. With the
use of the tools presented in chapter 2 and 3 we identified a single regulatory
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cascade for these three virulence strategies that respond to limited availability
of divalent metals in the phagosome.

The tools presented in chapter 2 and 3 achieve data integration through
the use of multiple similarity, coexistence, coexpression and interaction gene
and protein networks. However, the presented tools cannot store additional
(genome) annotations. Therefore, we applied semantic web technologies to
store and integrate heterogeneous annotation data sets. An increasing num-
ber of widely used biological resources are already available in the RDF data
model. There are however, no tools available that provide structural overviews
of these resources. Such structural overviews are essential to efficiently query
these resources and to assess their structural integrity and design. There-
fore, in chapter 5, I present RDF2Graph, a tool that automatically recovers
the structure of an RDF resource. The generated overview enables users to
create complex queries on these resources and to structurally validate newly
created resources.

Direct functional comparison support genotype to phenotype predictions.
A prerequisite for a direct functional comparison is consistent annotation of
the genetic elements with evidence statements. However, the standard struc-
tured formats used by the public sequence databases to present genome an-
notations provide limited support for data mining, hampering comparative
analyses at large scale. To enable interoperability of genome annotations for
data mining application, we have developed the Genome Biology Ontology
Language (GBOL) and associated infrastructure (GBOL stack), which is pre-
sented in chapter 6. GBOL is provenance aware and thus provides a consistent
representation of functional genome annotations linked to the provenance.
The provenance of a genome annotation describes the contextual details and
derivation history of the process that resulted in the annotation. GBOL is mod-
ular in design, extensible and linked to existing ontologies. The GBOL stack
of supporting tools enforces consistency within and between the GBOL defi-
nitions in the ontology.

Based on GBOL, we developed the genome annotation pipeline SAPP (Se-
mantic Annotation Platform with Provenance) presented in chapter 7. SAPP
automatically predicts, tracks and stores structural and functional annotations
and associated dataset- and element-wise provenance in a Linked Data for-
mat, thereby enabling information mining and retrieval with Semantic Web
technologies. This greatly reduces the administrative burden of handling mul-
tiple analysis tools and versions thereof and facilitates multi-level large scale
comparative analysis. In turn this can be used to make genotype to phenotype
predictions.

The development of GBOL and SAPP was done simultaneously. During
the development we realized that we had to constantly validated the data ex-
ported to RDF to ensure coherence with the ontology. This was an extremely
time consuming process and prone to error, therefore we developed the Em-
pusa code generator. Empusa is presented in chapter 8.

SAPP has been successfully used to annotate 432 sequenced Pseudomonas
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strains and integrate the resulting annotation in a large scale functional com-
parison using protein domains. This comparison is presented in chapter 9.
Additionally, data from six metabolic models, nearly a thousand transcrip-
tome measurements and four large scale transposon mutagenesis experiments
were integrated with the genome annotations. In this way, we linked gene es-
sentiality, persistence and expression variability. This gave us insight into the
diversity, versatility and evolutionary history of the Pseudomonas genus, which
contains some important pathogens as well some useful species for bioengi-
neering and bioremediation purposes.

Genome annotation can be used to create GEM, which can be used to better
link genotypes to phenotypes. Bio-Growmatch, presented in chapter 10, is
tool that can automatically suggest modification to improve a GEM based on
phenotype data. Thereby integrating growth data into the complete process
of modelling the metabolism of an organism.

Chapter 11 presents a general discussion on how the chapters contributed
the central goal. After which I discuss provenance requirements for data reuse
and integration. I further discuss how this can be used to further improve
knowledge generation. The acquired knowledge could, in turn, be used to de-
sign new experiments. The principles of the dry-lab cycle and how semantic
technologies can contribute to establish these cycles are discussed in chapter
11. Finally a discussion is presented on how to apply these principles to im-
prove the creation and usability of GEM’s.
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