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Unsupervised CT Lung Image 
Segmentation of a Mycobacterium 
Tuberculosis Infection Model
Pedro M. Gordaliza1,2, Arrate Muñoz-Barrutia1,2, Mónica Abella1,2,3, Manuel Desco1,2,3,4,  
Sally Sharpe5 & Juan José Vaquero1,2

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that produces 
pulmonary damage. Radiological imaging is the preferred technique for the assessment of TB 
longitudinal course. Computer-assisted identification of biomarkers eases the work of the radiologist 
by providing a quantitative assessment of disease. Lung segmentation is the step before biomarker 
extraction. In this study, we present an automatic procedure that enables robust segmentation 
of damaged lungs that have lesions attached to the parenchyma and are affected by respiratory 
movement artifacts in a Mycobacterium Tuberculosis infection model. Its main steps are the extraction 
of the healthy lung tissue and the airway tree followed by elimination of the fuzzy boundaries. Its 
performance was compared with respect to a segmentation obtained using: (1) a semi-automatic tool 
and (2) an approach based on fuzzy connectedness. A consensus segmentation resulting from the 
majority voting of three experts’ annotations was considered our ground truth. The proposed approach 
improves the overlap indicators (Dice similarity coefficient, 94% ± 4%) and the surface similarity 
coefficients (Hausdorff distance, 8.64 mm ± 7.36 mm) in the majority of the most difficult-to-segment 
slices. Results indicate that the refined lung segmentations generated could facilitate the extraction of 
meaningful quantitative data on disease burden.

According to the World Health Organization (WHO)1, in 2016, there were 10.1 million incident cases and 1.4 
million deaths caused by tuberculosis (TB). More strikingly, latent TB is present in one third of the world’s pop-
ulation. Within this infected population, Mycobacterium tuberculosis (Mtb), the causative agent of TB, becomes 
active in 10% of the cases and mainly damages the lungs owing to its airborne nature. Identification and treatment 
of latent TB infection could substantially reduce the risk of developing active disease and could be essential if the 
objective of eradicating TB by 2050 is to be achieved1–3.

The classic view of TB as latent or active is inadequate. Recent literature shows that TB manifests as a contin-
uous spectrum between both states2,4. Conventional tests used to identify latent TB, the tuberculin skin test and 
interferon gamma release assay, are indirect markers of exposure to Mtb and indicate a cellular immune response 
but cannot distinguish between latent and active TB, differentiate reactivation from reinfection, or resolve the 
various stages within the spectrum of Mtb infection3,4.Therefore, better TB biomarkers are needed5.

Non-human primates (NHP) have been proven to be clinically relevant models of human disease because of 
the high level of gene homology which underlies anatomical, physiological and immunological similarities6–8. 
They lead to the development of comparable disease pathology, clinical signs and immune features following Mtb 
infection. Animal models are fundamental for the development of novel treatments, as they provide a platform in 
which the efficacy of new interventions can be evaluated against infectious challenge. Longitudinal images of the 
TB macaque model can be acquired from live animals using medical imaging systems9–11 – e.g., chest radiographs 
(CXR), computed tomography (CT) and position emission tomography(PET) – and employed to visualize the 
evolution of pulmonary disease.
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TB has specific radiological manifestations in chest CT scans that could be used as imaging biomarkers12,13. 
The visual assessment of TB by expert radiologists requires long training, is subjective, prone to errors and is 
subject to wide intra- and inter-expert variability. More importantly, it is extremely time-consuming, thus making 
it inappropriate for large studies14. Consequently, there is a need for quantification tools that are able to automat-
ically, accurately and consistently compute CT imaging biomarkers. The initial step for their computation is to 
extract the lung from the chest CT volume15. This process is crucial, as a rough segmentation produces incorrect 
data that may reduce the accuracy of the disease burden quantification.

Segmentation of TB-infected lungs is especially complex in preclinical studies. The expected variability of the 
pulmonary inflation caused by the respiratory cycle is increased and less predictable than that of healthy subjects 
owing to the changes in lung compliance caused by the disease and to the breathing difficulties experienced by 
anesthetized infected animals. Moreover, CT image acquisition in TB animal models is usually performed on 
free-breathing animals to avoid the additional level of complexity added by the intubation in the manipulation of 
the animal, resulting in the presence of significant respiratory motion artifacts. This effect produces fuzzy bound-
aries, especially in the diaphragm area (Fig. 1), thus implying an uncertain delimitation of the lungs beyond the 
segmentation technique used.

Manual segmentation of the lungs is subject to especially wide intra- and inter-expert variability in the pres-
ence of those fuzzy boundaries14. Most of the state-of-the-art methods for automatic lung segmentation are not 
designed to deal with the specific problems present in Mtb-infected lungs under the presence of strong respiratory 
motion artifacts15. They generally are not able to differentiate between the neighboring soft tissue and the lesions 
attached to the pleura since their density (Hounsfield Units) is similar16. Well-known thresholding methods17 
perform appropriately when extracting healthy tissue but cannot cope with HU variability. Region-based meth-
ods18,19 fail in the presence of abnormalities and are highly user-dependent, and atlas-based methods20 fail to 
obtain a suitable general model able to capture the singularity of the disease. The more recent approaches, which 
are mostly based on supervised learning methods21, require a large dataset labeled by an expert to ensure appro-
priate training and are not free from bias.

In this work, we present an automatic pipeline able to segment lungs infected with Mtb and place considerable 
importance on the robust and consistent identification of fuzzy boundaries.

Materials
Experimental Animals.  Male cynomolgus macaques, aged 3 to 4 years, were obtained from an established 
UK breeding colony for these studies. Genetic analysis of this colony has previously confirmed the cynomolgus 
macaques to be of Indonesian genotype22. Absence of previous exposure to mycobacterial antigens was con-
firmed. All animal procedures and study designs were approved by the Public Health England Animal Welfare 
and Ethical Review Body, Porton Down, UK, and authorized under an appropriate UK Home Office project 
license. All animal procedures were performed on a facility with biosafety level 3 laboratories.

Aerosol Exposure.  Macaques were challenged by exposure to aerosols of Mtb as previously described23,24. 
Mono-dispersed bacteria in particles were generated using a 3-jet Collison nebuliser (BGI) and, in conjunction 
with a modified Henderson apparatus, delivered to the nares of each sedated primate via a modified veterinary 
anaesthetic mask. Challenge was performed on sedated animals placed within a ‘head-out’, plethysmography 
chamber (Buxco, Wilmington, North Carolina, USA) to enable the aerosol to be delivered simultaneously with 
the measurement of respired volume. The calculations to derive the presented dose (PD) (the number of organ-
isms that the animals inhale) and the retained dose (the number of organisms assumed to be retained in the lung) 
have been described previously23–25.

Figure 1.  Sample slice from a chest CT volume of a subject infected with Mycobacterium tuberculosis. The 
presence of fuzzy boundaries (white arrow) caused by respiratory movement artifacts makes it difficult to 
delimit the lung boundary; (Right) The annotations performed by the experts are combined to explicitly 
illustrate the differences and shown with a red, yellow and green outline, respectively.
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CT Imaging.  Our dataset comprises 63 CT scans of the chest acquired from 9 different subjects at 7 time 
points (0, 3, 12, 16, 20, 24 and 28 weeks after aerosol exposure to Mtb). The subjects were treated with different 
combinations of antibiotics24. The chest CT scans were acquired with a 16-slice Lightspeed CT scanner (General 
Electric Healthcare, Milwaukee, WI, USA) with voxel spacing of 0.23 mm × 0.23 mm × 0.625 mm and in-plane 
resolution of 512 pixels × 512 pixels.

Methods
Automatic Lung Segmentation.  The automatic lung segmentation pipeline is composed of three main 
steps, as depicted in Fig. 2 and explained in the following sections.

Preliminary Lung and Airway Tree Segmentation.  Automatic Adaptive Thresholding: The first step goal is to obtain 
a rough segmentation of the lungs, including the airway tree, based on the well-known algorithm introduced by 
Hu et al.17. It separates air-filled structures (i.e., healthy parenchyma, stomach, airways, image background) from 
more dense tissues in the whole image volume (Fig. 2(a,b)). The two classes (air-like and non–air-like voxels) 
are identified by Otsu thresholding26 on the bimodal distribution of a chest CT volume histogram. Rib Cage 
Extraction: Although the literature contains robust approaches to rib cage and sternum segmentation27–29, it was 
not necessary for our purpose— and beyond the scope of the present study— to implement a highly accurate and 
time consuming segmentation. Instead, we use a simple technique, which although unable to capture the specific 
shape of each bone was good enough to establish a convex hull for the ribcage. First, we defined voxels with a 
value similar to the rib cage bones (over 900 Hounsfield units (HU)) as seeds. Then, we perform region-growing 
segmentation using the criteria given by the confidence connected segmentation method30.

Connectivity and Topological Analysis: In order to isolate the lungs from the rest of the segmented air-filled 
structures, as described in31,32, we utilized the differences in size and anatomical location of the secluded objects 
as follows: (a) excluding the objects located outside the convex hull formed by the partial extracted ribcage 
(Fig. 2(c)) and (b) selecting as lung tissue, the structures at the minimal Euclidean distance to the ribcage centroid 
(Fig. 2(d)).

Airway Tree Extraction.  Due to the intricate morphology of the airway tree, a specific algorithm was needed 
to extract it from the overall lung volume (Fig. 2(d)). Our approach adapted a method based on modeling a 
propagating wavefront through the trachea, as introduced by Schlathoelter et al.33 and extended by Bulöw et al.34. 
In particular, we use the implementation described by Artaecheverria et al. and Ceresa et al.35, which introduced 
improvements in leakage detection. The complete airway tree extraction procedure is concisely explained in the 
Supplementary Material.

Morphological Closing and Fuzzy Boundaries Evaluation.  The last step of the automatic lung segmentation pro-
cedure is a refinement process to include missing lesions attached to the pleura and to remove the fuzzy bounda-
ries produced by the respiratory motion artifact.

Morphological 3D Hole Filling: Holes, defined as black voxels of the mask that are not connected to the bound-
aries of the lung segmentation, are removed with an iterative hole-filling filter using the approach described 
in Janaszewski et al.36 (see Fig. 3(b)). At each iteration, a neighborhood of the hole of (1 mm × 1 mm × 1 mm) 
was evaluated in order to add new voxels to the mask. It is important to remark that the parameters driving the 
morphological operations are fixed based on the prior knowledge about the subjects anatomy (see Experimental 
Animals) and its value is kept the same for all CT volumes.

Figure 2.  Automatic lung segmentation pipeline: (a) Source chest CT volume; (b) 3D rendering of the air-like 
structures detected in the image using automatic adaptive thresholding; (c) 3D rendering of the preliminary 
lung and connected airways segmentation obtained using a set of topological operations based on the position 
of all pre-segmented structures; (d) Isolated airways tree extracted with a propagating wavefront approach; (e) 
axial slice of the final lung segmentation in which the lesions caused by Mtb and attached to the pleura have 
been included and the motion artifacts discarded; (f) 3D rendering of the final lung segmentation including 
healthy parenchyma, the damaged parenchyma and the blood vessels.
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Fuzzy Lung Border Segmentation and Evaluation: We specifically propose excluding movement artifacts and 
including lesions attached to the pleura in our lung segmentation using level sets and geodesic active contours37, 
which have proven successful in similar tasks38,39. First, the lung surface was extracted from the mask obtained 
after the morphological 3D hole-filling process: the lung surface was computed as the subtraction of the mask 
and an eroded version computed using a kernel of 1 mm radius. Then, to obtain automatically the seeds for the 
level-sets algorithm, we assumed that the fuzzy regions (lesions or respiratory movement artifacts) had the high-
est values at the lung boundary (see Fig. 3(b)). Therefore, the seeds are chosen to be the outliers of the intensity 
distribution at the previously delimited lung boundary (see Fig. 3(c)). We set a voxel, vi, as the seed based on the 
following criteria:

⇔ μ σ∈ ≥ + . ∀ ∈v seeds I v v sp( ) 2 5 (1)i i sp sp i border

where I( )⋅  is the voxel intensity, sp represents the segmented lung parenchyma obtained as the output from the 
morphological hole-filling routine, spborder corresponds to the boundary voxels, and μsp and σsp are the mean and 
standard deviation of the intensities of the voxels within spborder, respectively. Assuming a Gaussian distribution of 
the intensities and by setting beta to 2.5, we retain 1.3% of the voxels, in order to capture just a few reliable 
outliers.

These seeds were used to create the initial contours for the fast marching level sets. Note that several seeds 
could be placed at a given fuzzy boundary, but the level sets will expand evolving into complex shapes and merge 
since the intensity gradient is smooth. However, the level sets placed on the fuzzy boundaries do not merge with 
those placed on the lesion areas as can be observed in Fig. 3(c), where the intensity gradient was too large.

Several coarse level sets were obtained as output. These were used as initial contours (x0) for the geodesic 
active contour algorithm37. Namely, a contour was fitted to the region ruled by the following partial differential 
equation (PDE):

t
P ZA x x x( ) ( ) ( ) , (2)α β γ κ∂Ψ

∂
= − ⋅ ∇Ψ − |∇Ψ| + |∇Ψ|

where Ψ is the level set, x is a point of the contour, A(x) controls the advection, P(x) is the propagation and Z(x) 
is the spatial modification of the mean curvature κ; α, β and γ are scalars which module each term of the contour 
evolution. Their value was heuristically set to α = 1.0, β = 0.25, γ = 2.0. The outputs were refined level-set con-
tours for both the lesions and the fuzzy boundaries. Once the contours were determined, lesions were discrim-
inated from artifacts based on the prior morphological information: contours with a sphericity over 0.85 were 
selected as lesions and included within the segmented lung (see Fig. 3(d)).

Lung Segmentation Evaluation.  The quality of the automatic segmentations for medical imaging appli-
cations is commonly estimated with respect to a manually or semi-automatically generated ground truth. The 
most commonly used evaluation measures are computed as an average of the intersected volumes between both 
segmentations (i.e., Dice similarity coefficient)40,41. For our application, good values of the measures could be mis-
leading, if relatively small volumes at the fuzzy boundaries (i.e., lesions, respiratory motion artifacts) are incor-
rectly segmented. In those cases, the perceived decrease in quality as given by the measure will be minor but these 
errors in lung segmentation would generate considerable bias in subsequent quantification of disease burden.

To mitigate this issue in the evaluation of the goodness of the proposed lung segmentation method, we use 
the procedure described below to select the slices that most probably have fuzzy boundaries. Rough segmen-
tations of the lungs were semi-automatically computed in 63 subjects using an in-house platform42 specifically 
created for the interactive segmentation of TB-infected lung. To segment the lungs using the platform, the user 
specifies at least 1 seed in the center of the left lung and right lung. The segmentation then propagates by means 
of a region-growing algorithm. The user can manually specify frontier surfaces to prevent the segmentation 
from reaching adjacent air-filled regions. The platform has added functionalities to enable manual correction 
of the results. Once the lungs are interactively segmented, the Hausdorff distances between the automatic lung 

Figure 3.  Lung segmentation evaluation workflow illustrated using a sample sagittal CT slice multiplied by its 
lung mask: (a) Axial slice of the segmented lung obtained after the Lung and Airway Segmentation and Airway 
Extraction processes showing holes (black areas inside the parenchyma) and fuzzy boundaries (in yellow); 
(b) Segmentation after the 3D morphological hole filling process including the holes enclosed by the lung 
parenchyma; (c) Seeds extracted on the eroded lung surface both in fuzzy boundaries (in yellow) and in TB 
lesions attached to the pleura (in red); (d) Respiratory motion artifact in the diaphragm area (in yellow) and TB 
lesion mask (in red) extracted by the combined level set and active contour approach; (e) Final segmentation in 
which the lesion attached to the pleura has been included and the fuzzy boundaries excluded.
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segmentation obtained before and after the refinement step with respect to the semi-automatic segmentations 
are computed. The differences in the Hausdorff distances are due to the corrections performed by the refinement 
routine and pointed out to those slices in which the segmentation is more uncertain owing both to the variability 
introduced by each subject and to the disease course. We then choose the 156 slices with the largest differences 
in the Hausdorff distance to build a surrogate ground truth, as described in detail in the Supplementary Material.

Three experts interactively segmented the selected slices, paying particular attention to the boundary 
delimitation. The very accurate segmentations obtained were then combined by consensus to provide a surro-
gate ground truth. Characterization of the agreement, computing the intra-class correlation coefficient (ICC), 
between the lung segmentations performed by the experts showed excellent consistency (details can be found in 
Supplementary Material).

The individual expert segmentations and the surrogate ground truth are compared with the proposed method 
(referred to as refined -Ref-) and two other approaches intended for healthy or slightly damaged lung segmenta-
tion: the aforementioned manual segmentation (referred to as semi-auto -Semi-) and the traditional fuzzy con-
nectedness–based lung segmentation (referred to as FC), which has a publicly available open-source software 
lung segmentation tool (http://www.nitrc.org/projects/nihlungseg/)43. For the latter, we used the best performing 
manual seeding mode, as recommended by the authors for refining segmented region maps, namely, filling holes 
with a 0.44 mm-diameter binary filter and checking fuzzy connectedness.

The similarity is measured as both volume overlap and distance between surfaces with the following metrics: 
Dice similarity coefficient (DSC), Hausdorff distance (HD), Hausdorff distance averaged (HDA), false-positive 
error (FPE), false-negative error (FNE) and volume dissimilarity (VD). The HD and HDA measures are indicators 
of a given method’s ability to delineate the tissue boundaries. The FPE, FNE and VD indexes provide additional 
information for the volume overlap measured by the DSC. In particular, FPE is related to over-segmentation, FNE 
to under-segmentation and VD, evidently, to volume differences.

In order to better understand the dispersion of the measures for this comparison, box plot charts for each sim-
ilarity index are also obtained. The characterization of the dispersion of the similarity indexes is particularly inter-
esting in our case owing to the complexity of the dataset used. We refer to each comparison between a method 
and the surrogate ground truth for a given similarity index specifying the method as sub-index (e.g., DSCRef. refers 
to the median DSC of the comparison between the refined segmentation and the surrogate ground truth).

Finally, we studied the statistical significance of our results to assure the objectivity of our conclusions. For 
each evaluation metric and for each reference segmentation, the outputs of the three segmentation methods were 
compared using a paired t-test. A p value below 0.05 was considered statistically significant.

Data availability.  The dataset analysed during the current study are available from the corresponding author 
on reasonable request.

Ethical approval.  All animal procedures and study designs were approved by the Public Health England 
Animal Welfare and Ethical Review Body, Porton Down, UK, and authorized under an appropriate UK Home 
Office project license.

Results
Qualitative Results.  Figure 4 illustrates the computed lung segmentations on a representative slice from 
those retained (i.e., those in which the segmentation is most uncertain). The segmentations corresponding to the 
semi-automatic approach (panel c) are subject to over-segmentation: the delimitation of the lungs goes beyond 
the lung parenchyma including respiratory movement artifacts. As per the FC approach (panel d), we observed 
that a number of lesions, independently of their localization, were not included in the segmentation owing to the 
lack of sensitivity of the method to those areas. The amount of over- and under-segmentation (highlighted in 
red and yellow, respectively) caused by the proposed method was clearly reduced with respect to the other two 
approaches.

Quantitative Results.  Figure 5 shows the box plot charts for each similarity index of the refined (Ref), the 
semi-automatic (Semi) and the fuzzy connectedness lung segmentation (FC) against the manual annotations per-
formed by each expert (Exp. #) and the consensus surrogate ground truth (Maj.). The numerical results are pro-
vided in Table 3 of the Supplementary Material. The refined segmentation provides the most similar results with 
respect to the experts’ delimitation and, thus, with respect to the surrogate ground truth. In this sense, our method 
achieves the largest volume overlap, as reflected by the DSC (mean DSCRef = 0.933; median DSCRef = 0.943). The 
second best-performing method, the FC, which was intended for the segmentation of slightly infected lungs, 
presents a close mean DSC (mean DSCFC = 0.926) but more distant median DSC (median DSCFC = 0.922). Our 
method achieves much lower distances (HD and HDA) with respect to the surfaces of the surrogate ground 
truth than the others (between 1.2 and 5.1 mm with respect to the median (HDRef = 5.537 mm) and between 2.8 
and 11 mm with respect to the average value (HDRef = 8.642 mm)). Our method presents similar rates of under- 
and over-segmentation, around 6%. In contrast, the semi-auto approach achieve a larger over-segmentation 
rate (median FPESemi = 15%, mean FPESemi = 16%) but a much smaller under-segmentation rate (median 
FNESemi = 0.2%, mean = 0.6%) while the FC method provide the opposite results (mean FPEFC = 2.4%, median 
FPEFC = 2.2%, mean FNEFC = 11% and median FPEFC = 10.4%). These imbalances make the differences between 
the volumes obtained by the experts (consensus) and those obtained with the semi-automatic and the fuzzy con-
nectedness methods much higher than those measured for our approach. The volume dissimilarity index for the 
latter is close to zero in all cases (mean VDRef = 0.026, median VDRef = −0.0009). All the differences as illustrated 
in Fig. 5, are statistically significant except for the HDA index on the Refined and FC segmentations when Expert 
2 is used as reference.
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Figure 6 displays DSC, HD and HDA plots over the slices arranged in ascending order as given by the DSC of 
the semi- automatic segmentation with respect to the surrogate ground truth. The data have been filtered follow-
ing the locally weighted scatterplot smoothing (LOESS)44 model in order to achieve a better appreciation of the 
patterns and the differences between the approaches. The DSC plot shows that the gap between the proposed and 
the semi-automatic method (about 10% for the first slice) decreases as we move towards higher DSC slice values, 
while the difference with the FC method remains more stable. The HD index corresponding to the proposed 
method is smaller than the one for the other methods for all the slices. The improvement is 5–10 mm with respect 
to the Semi-Automatic approach and 0.5–7.5 mm with respect to the FC approach. Finally, the HDA index exhib-
its an exponential decay for all the methods.

Discussion
We present a novel method for the automatic unsupervised segmentation of Mtb-infected lungs on chest CT vol-
umes. The experiments performed reveal important improvements when an input volume is processed through 
our pipeline. As could be expected from a method focused on improving boundary detection, the Hausdorff 
distance is significantly smaller than with other methods while, at the same time, it does present reasonably good 
results for the volume overlap measures. This behavior is explained by the ability to reject fuzzy boundary artifacts 
while retaining most of the damaged tissue (especially the lesions attached to the pleura). Since the Hausdorff dis-
tance computes the maximum among the minimal distances for the all points in the two surfaces compared, small 
changes when delimiting a complex shape (such as those generated by the diseased lung) result in large Hausdorff 
distance values. Fortunately, the boundaries created by our method are consistent and stable, and inaccuracies 
in the boundary delimitation are less frequent. Moreover, improved delimitation enables the target volume to be 
filled more accurately, as reflected in the DSC values.

In our context, where the lung segmentation is a preparatory step for the quantification of the TB lesions bur-
den during the course of the disease, these small differences are vital. High-quality segmentation is particularly 
important in the early stages. The sensitivity given by the radiological images is especially important when assess-
ing latent tuberculosis due to the small parenchymal damage associated with this stage of the disease. Therefore, 
the fact that the refined method achieves the lowest Hausdorff distance measured by far in almost all the slices 
(Fig. 6) is a major step towards the proper quantification of disease burden, even with the current dispersion of 
the measure. This dispersion is mostly due to the intrinsic noise inherent in the delineation of complex slices. 
Thus, it is likely to appear in any segmentation method including manual delineations14. In the Methodological 
Results Section in supplementary materials, the inter-agreement differences between the experts’ delimitation 
are presented and show a good intra-class correlation coefficient (ICC) for the overall surface delimitation 
(HD = 0.88, HDA = 0.85) and lower values for the volume indicators of performance (DSC = 0.74, FPE = 0.71 and 
FNE = 0.6). The fact that small variations in delineation produce large dissimilarity values is even more obvious 
for the Hausdorff distance averaged, although, as observed in Fig. 5, the values of this measure are much smaller 

Figure 4.  Sample lung segmentations on a representative slice (a) corresponding with the surrogate ground 
truth (b), the semi-automatic segmentation (c), the fuzzy connectedness segmentation (d), and our proposed 
method (e). The regions in which there is overlap with the surrogate ground truth are colored in green, the 
false-positive errors in red and the false-negative errors in yellow.
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than the plain Hausdorff distance. A considerable number of outliers are present owing to the constant relatively 
large distance that exists between the surfaces corresponding to pairs of compared segmentations at several of the 
slices within the data set.

The more conservative segmentations, ie., those provided by the fuzzy connectedness–based method and our 
proposal perform better in terms of HD and HDA (Fig. 4). Hence, the segmentations provided are more suitable 
for subsequent quantification of the TB lesion burden.

Figure 5.  Boxplot charts for the similarity indexes: (a) Dice Similarity Coefficient (DSC); (b) Hausdorff 
Distance (HD); (c) False Positive Error (FPE); (d) Volume Dissimilarity (VD); (e) Hausdorff Distance Averaged 
(HDA); (f) False Negative Error (FNE). The lung segmentation obtained with the proposed method (refined) is 
compared with the semi-automatic (semi-auto) and the fuzzy connectedness approaches in the individual 
expert annotations (Exp. 1, Exp. 2 and Exp. 3) and the surrogate ground truth obtained by the expert consensus 
as explained in the Supplementary Material (Maj.). The asterisks over each group of boxes indicate statistically 
significant differences between the lung segmentation methods compared: < . ≡ ∗p 0 05 , p 0 01< . ≡ ∗∗ and 
p 0 001< . ≡ ∗∗∗.

Figure 6.  Dice similarity coefficient (DSC), Haussdorff distance (HD) and Haussdorff distance averaged 
(HDA) plots along the slices sorted in ascending order based on the DSC of the semi-automatic segmentation 
with respect to the surrogate ground truth. Data have been filtered with the locally weighted scatterplot 
smoothing (LOESS) model. The 95% confidence interval is drawn as a shadow of the same color as the 
corresponding line.
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It is important to emphasize that our method achieves a good balance between-false positive and false-negative 
errors, in contrast to the semi-auto segmentation results, which show, on average, 15% over-segmentation. 
The lung segmentation includes fuzzy regions, which will contaminate the subsequent analysis. In contrast, 
the FC segmentation is excessively conservative. It presents a tiny percentage of over-segmentation and 15% 
false-negative errors on average for the most uncertain slices in the dataset, thus potentially generating a mis-
leading evaluation of TB infection. Although the refined method balances out possible errors, it still exhibits 5% 
false-negative errors on average, which could still influence the quantification of disease burden although less 
severely than the FC method.

The information from the error types makes it possible to explain the volume dissimilarities shown in Fig. 5. 
The semi-auto method presents the previously mentioned problems of over-segmentation, which account for the 
almost parabolic shape of the HD when the DSC increases in Fig. 6. The method presents a limit (at the parabola 
vertex), from where the segmentation is unable to fill the region of interest without growing beyond, thus pre-
senting a few slices with better overlap (DSC) than the proposed method at the expense of losing sensitivity at the 
boundaries. Consequently, the HD remains flat, between the 90th and the 120th slice, only to increase dramati-
cally afterwards, while a suitable segmentation should decrease or, at least, keep a low constant distance. The HD 
plot for the FC method in Fig. 6 presents similar behavior to the semi-auto method albeit for different reasons. 
As illustrated with the examples in Fig. 4, the FC method misses an important part of the volume-of-interest, 
resulting in considerable volume dissimilarity (see Fig. 5). Although the DSC trend in Fig. 6 is flatter than the one 
corresponding to the semi-auto method, it also presents a parabola vertex, which indicates an inability to capture 
the intricate shape of the selected surrogate ground truth. In contrast, the refined method shows a negligible value 
of volume dissimilarity (see Fig. 5) and a much less marked parabola shape (see Fig. 6). To further improve the 
accuracy of the lung segmentation, it could be much more appropriate to use novel indicators of segmentation 
performance that are more closely associated with the ulterior quantification than the overlap and surface indi-
cators, which are clearly of limited validity owing to the variability of human criteria during the segmentation 
process. To this aim, we have introduced a quantification method which makes use of the proposed pipeline for 
lung segmentation and that presents satisfactory results45.

Regarding the possible extensibility and use of the proposed framework on a particular animal model, the 
framework allows easy re-parametrization by fine tuning of the parameters (shown at Table 1, Supplementary 
Materials) to other models (e.g., mice, humans). In order to improve our results and extend the framework to the 
segmentation of extremely damaged lungs, recent literature points out to the use of artificial intelligence/deep 
learning techniques. These have shown promising results lately, but further developments are needed to cope 
with their common limitations like the loss of resolution46, which impede the proper identification of boundaries, 
and the need of a large refined ground truth47, which results quite difficult to obtain. Considering these recent 
techniques and working extensively on them, it would be possible to employ the segmentations obtained with the 
proposed framework to train larger datasets which nowadays are not available for our specific model

To conclude, we present a novel lung segmentation method that can address the particularities of TB-infected 
lungs, which, in a subsequent step, would be able to produce meaningful quantitative data on disease burden.

References
	 1.	 World Health Organization. Global Tuberculosis Report 2017; http://www.who.int/tb/publications/global_report/gtbr2017_main_

text.pdf (2017).
	 2.	 Young, D. B., Gideon, H. P. & Wilkinson, R. J. Eliminating latent tuberculosis. Trends Microbiol. 17, 183–188 (2009).
	 3.	 Barry, C. E. III. et al. The spectrum of latent tuberculosis: rethinking the goals of prophylaxis. Nat Rev Microbiol. 7, 845–855 (2009).
	 4.	  Pai, M. et al. Tuberculosis. Nat Rev Dis Primers 2 (2016).
	 5.	 Chen, R. Y. et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl 

Med. 6, 166–265 (2014).
	 6.	 Scanga, C. A. & Flynn, J. L. Modeling Tuberculosis in Nonhuman Primates. Cold Spring Harb. Perspectives Medicine 4, 1–17 (2014).
	 7.	 Peña, J. C. & Ho, W. Z. Monkey models of tuberculosis: Lessons learned. Infect Immun. 83, 852–862 (2015).
	 8.	 Kaushal, D., Mehra, S., Didier, P. J. & Lackner, A. A. The non-human primate model of tuberculosis. J Med Primatol. 41, 191–201 

(2012).
	 9.	 Lewinsohn, D. M. et al. High resolution radiographic and fine immunologic definition of TB disease progression in the rhesus 

macaque. Microbes Infect. 8, 2587–2598 (2006).
	10.	  Dennis, M. J. et al. A Flexible Approach to Imaging in ABSL-3 Laboratories. Applied Biosafety. 20 (2015).
	11.	 Scanga, C. A. et al. In vivo imaging in an ABSL-3 regional biocontainment laboratory. Pathog Dis. 71, 207–212 (2014).
	12.	 Nachiappan, A. C. et al. Pulmonary Tuberculosis: Role of Radiology in Diagnosis and Management. RadioGraphics 37, 52–72 

(2017).
	13.	 Galbán, C. J. et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and 

disease progression. Nat Med. 18, 1711–1715 (2012).
	14.	 Udupa, J. K. et al. A framework for evaluating image segmentation algorithms. Comput Med Imag Grap. 30, 75–87 (2006).
	15.	 Mansoor, A. et al. Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends. 

RadioGraphics 35, 1056–1076 (2015).
	16.	 Messay, T., Hardie, R. C. & Tuinstra, T. R. Segmentation of pulmonary nodules in computed tomography using a regression neural 

network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset. Med 
Image Anal. 22, 48–62 (2015).

	17.	 Hu, S., Hoffman, E. A. & Reinhardt, J. M. Automatic Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images. 
IEEE T Med Imaging 20, 490–498 (2001).

	18.	 Hojjatoleslami, S. A. & Kittler, J. Region growing: A new approach. IEEE T Image Process. 7, 1079–1084 (1998).
	19.	 Grady, L. Random Walks for Image Segmentation. IEEE T Pattern Anal. 28, 1768–1783 (2006).
	20.	 Li, B., Christensen, G. E., Hoffman, E. A., McLennan, G. & Reinhardt, J. M. Establishing a normative atlas of the human lung: 

Intersubject warping and registration of volumetric CT images. Acad Radiol. 10, 255–265 (2003).
	21.	 Yip, S. S. F. & Aerts, H. J. W. L. Applications and limitations of radiomics. Phys Med Biol. 61, 150–66 (2016).
	22.	 Mitchell, J. L., Mee, E. T., Almond, N. M., Cutler, K. & Rose, N. J. Characterisation of MHC haplotypes in a breeding colony of 

Indonesian cynomolgus macaques reveals a high level of diversity. Immunogenetics. 64, 123–129 (2012).

http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf
http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf


www.nature.com/scientificreports/

9SCIeNtIfIC REPOrTS |  (2018) 8:9802  | DOI:10.1038/s41598-018-28100-x

	23.	 Sharpe, S. A. et al. Establishment of an aerosol challenge model of tuberculosis in rhesus macaques and an evaluation of endpoints 
for vaccine testing. Clin Vaccine Immunol. 17, 1170–1182 (2010).

	24.	 Sharpe, S. et al. Ultra low dose aerosol challenge with Mycobacterium tuberculosis leads to divergent outcomes in rhesus and 
cynomolgus macaques. Tuberculosis. 96, 1–12 (2016).

	25.	 Harper, G. J. & Morton, J. D. The respiratory retention of bacterial aerosols: experiments with radioactive spores. Epidemiol Infect. 
51, 372–85 (1953).

	26.	 Vala, M. H. J. & Baxi, A. A review on Otsu image segmentation algorithm. International Journal of Advanced Research in Computer 
Engineering & Technology. 2, 387–389 (2013).

	27.	 Kang, Y., Engelke, K. & Kalender, W. A. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric 
CT data. IEEE T Med Imaging 22, 586–598 (2003).

	28.	 Staal, J., van Ginneken, B. & Viergever, M. A. Automatic rib segmentation and labeling in computed tomography scans using a 
general framework for detection, recognition and segmentation of objects in volumetric data. Med Image Anal. 11, 35–46 (2007).

	29.	 Liu, S., Xie, Y. & Reeves, A. P. Segmentation of the sternum from low-dose chest CT images. In Proc of SPIE (Medical Imaging 2015: 
Computer-Aided Diagnosis). 9414, 91403 (2015).

	30.	 Piekos, T. Confidence Connected Segmentation With ITK; Insight J. http://hdl.handle.net/1926/1306 (2007).
	31.	 Lehmann, G. Label object representation and manipulation with ITK; http://hdl.handle.net/1926/584 (2007).
	32.	 Artaechevarria, X., Pérez-Martín, D., Reinhardt, J. M., Muñoz-Barrutia, A. & Ortiz-De-Solórzano, C. Automated Quantitative 

Analysis of a Mouse Model of Chronic Pulmonary Inflammation using Micro X-ray Computed Tomography. In Medical Image 
Computing and Computer Assisted Intervention Society (Pulmonary Imaging Workshop) (2010).

	33.	  Schlathoelter, T., Lorenz, C., Carlsen, I. C., Renisch, S. & Deschamps, T. Simultaneous segmentation and tree reconstruction of the 
airways for virtual bronchoscopy. In Proc. SPIE, 103–113 (2002).

	34.	 Bülow, T., Lorenz, C. & Renisch, S. A General Framework for Tree Segmentation and Reconstruction from Medical Volume Data. 
In International Conference on Medical Image Computing and Computer-Assisted Intervention, 533–540 (2004).

	35.	 Artaechevarria, X. et al. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT. Phys Med 
Biol 54, 7009–7024 (2009).

	36.	 Janaszewski, M., Couprie, M. & Babout, L. Hole filling in 3D volumetric objects. Pattern Recogn. 43, 3548–3559 (2010).
	37.	 Caselles, V., Kimmel, R. & Sapiro, G. Geodesic Active Contours. Int J Comput Vis. 22, 61–79 (1997).
	38.	 Suzuki, K. et al. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled 

with level-set algorithms. Med Phys. 37, 2159–2166 (2010).
	39.	 Farag, A. A., Abd, H. E., Munim, E., Graham, J. H. & Farag, A. A. A Novel Approach for Lung Nodules Segmentation in Chest CT 

Using Level Sets. IEEE T Image Process. 22, 5202–5213 (2013).
	40.	 Noor, N. M. et al. Performance Evaluation of Lung Segmentation. In Medical Imaging Technology: Reviews and Computational 

Applications, chap. 5, 111–127 (Springer, 2015).
	41.	 Mansoor, A. et al. A Generic Approach to Pathological Lung Segmentation. IEEE T Med Imaging 33, 2293–2310 (2014).
	42.	 Pascau, J. et al. Multimodality Workstation For Small Animal Image Visualization and Analysis. Molecular Imaging and Biology. 8(2), 

97–98 (2006).
	43.	 Mansoor, A. et al. CIDI-lung-seg: A single-click annotation tool for automatic delineation of lungs from CT scans. In Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society, 1087–1090 (2014).
	44.	 Cleveland, W. S. & Devlin, S. J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J Am Stat Assoc. 

83, 596–610 (1988).
	45.	 Gordaliza, P. M. et al. Computed Tomography-Based Biomarkers For Longitudinal Assesment of Disease Burden in Pulmonary 

Tuberculosis. Mol Imaging Biol. 1–6 (2018).
	46.	 Harrison, A. P. et al. Progressive and Multi-path Holistically Nested Neural Networks for Pathological Lung Segmentation from CT 

Images. In Medical Image Computing and Computer-Assisted Intervention, 10434, 621–629 (2017).
	47.	 Roy, A. G., Conjeti, S., Navab, N. & Wachinger, C. QuickNAT: Segmenting MRI Neuroanatomy in 20 seconds. Preprint at http://

arxiv.org/abs/1801.04161 (2018).

Acknowledgements
We thank Estibaliz Gomez de Mariscal, Paula Martin Gonzalez and Mario Gonzalez Arjona for helping 
with the manual lung annotation. The research leading to these results received funding from the Innovative 
Medicines Initiative (www.imi.europa.eu) Joint Undertaking under grant agreement no. 115337, whose 
resources comprise funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) and 
EFPIA companies’ in kind contribution. This work was partially funded by projects TEC2013-48552-C2-1-R, 
RTC-2015-3772-1, TEC2015-73064-EXP and TEC2016-78052-R from the Spanish Ministerio de Economía, 
Industria y Competitividad, TOPUS S2013/MIT-3024 project from the regional government of Madrid and by 
the Department of Health, UK.

Author Contributions
P.M.G. contribute to the conception of the study and the design of the experimental framework, implementation 
of the method, and analysis and interpretation of the results. He also took part in the literature review 
and contribute writing the manuscript. A.M.B. contribute to the conception of the study, the design of the 
experimental framework, and analysis and interpretation of the results. She took part in the literature review and 
contribute writing the manuscript. M.A. provided the semi-automatic lung segmentation tool and contributed 
to the revision of the manuscript. M.D. provided the semi-automatic lung segmentation tool and contributed 
to the revision of the manuscript. S.S. provided the CT data and contributed to the revision of the manuscript. 
J.J.V. contribute to the conception of the study, the interpretation of the results, provided advice/mentoring and 
participated in writing the manuscript. All authors reviewed and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-28100-x.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://hdl.handle.net/1926/1306
http://hdl.handle.net/1926/584
http://dx.doi.org/10.1038/s41598-018-28100-x


www.nature.com/scientificreports/

1 0SCIeNtIfIC REPOrTS |  (2018) 8:9802  | DOI:10.1038/s41598-018-28100-x

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Unsupervised CT Lung Image Segmentation of a Mycobacterium Tuberculosis Infection Model

	Materials

	Experimental Animals. 
	Aerosol Exposure. 
	CT Imaging. 

	Methods

	Automatic Lung Segmentation. 
	Preliminary Lung and Airway Tree Segmentation. 
	Airway Tree Extraction. 
	Morphological Closing and Fuzzy Boundaries Evaluation. 

	Lung Segmentation Evaluation. 
	Data availability. 
	Ethical approval. 

	Results

	Qualitative Results. 
	Quantitative Results. 

	Discussion

	Acknowledgements

	Figure 1 Sample slice from a chest CT volume of a subject infected with Mycobacterium tuberculosis.
	Figure 2 Automatic lung segmentation pipeline: (a) Source chest CT volume (b) 3D rendering of the air-like structures detected in the image using automatic adaptive thresholding (c) 3D rendering of the preliminary lung and connected airways segmentation o
	Figure 3 Lung segmentation evaluation workflow illustrated using a sample sagittal CT slice multiplied by its lung mask: (a) Axial slice of the segmented lung obtained after the Lung and Airway Segmentation and Airway Extraction processes showing holes (b
	Figure 4 Sample lung segmentations on a representative slice (a) corresponding with the surrogate ground truth (b), the semi-automatic segmentation (c), the fuzzy connectedness segmentation (d), and our proposed method (e).
	Figure 5 Boxplot charts for the similarity indexes: (a) Dice Similarity Coefficient (DSC) (b) Hausdorff Distance (HD) (c) False Positive Error (FPE) (d) Volume Dissimilarity (VD) (e) Hausdorff Distance Averaged (HDA) (f) False Negative Error (FNE).
	Figure 6 Dice similarity coefficient (DSC), Haussdorff distance (HD) and Haussdorff distance averaged (HDA) plots along the slices sorted in ascending order based on the DSC of the semi-automatic segmentation with respect to the surrogate ground truth.




