45 research outputs found

    Predicting access to persistent objects through static code analysis

    Get PDF
    In this paper, we present a fully-automatic, high-accuracy approach to predict access to persistent objects through static code analysis of object-oriented applications. The most widely-used previous technique uses a simple heuristic to make the predictions while approaches that offer higher accuracy are based on monitoring application execution. These approaches add a non-negligible overhead to the application’s execution time and/or consume a considerable amount of memory. By contrast, we demonstrate in our experimental study that our proposed approach offers better accuracy than the most common technique used to predict access to persistent objects, and makes the predictions farther in advance, without performing any analysis during application executionThis work has been supported by the European Union’s Horizon 2020 research and innovation program (grant H2020-MSCA-ITN-2014-642963), the Spanish Government (grant SEV2015-0493 of the Severo Ochoa Program), the Spanish Ministry of Science and Innovation (contract TIN2015-65316) and Generalitat de Catalunya (contract 2014-SGR-1051). The authors would also like to thank Alex Barceló for his feedback on the formalization included in this paper.Peer ReviewedPostprint (author's final draft

    Computer-language based data prefetching techniques

    Get PDF
    Data prefetching has long been used as a technique to improve access times to persistent data. It is based on retrieving data records from persistent storage to main memory before the records are needed. Data prefetching has been applied to a wide variety of persistent storage systems, from file systems to Relational Database Management Systems and NoSQL databases, with the aim of reducing access times to the data maintained by the system and thus improve the execution times of the applications using this data. However, most existing solutions to data prefetching have been based on information that can be retrieved from the storage system itself, whether in the form of heuristics based on the data schema or data access patterns detected by monitoring access to the system. There are multiple disadvantages of these approaches in terms of the rigidity of the heuristics they use, the accuracy of the predictions they make and / or the time they need to make these predictions, a process often performed while the applications are accessing the data and causing considerable overhead. In light of the above, this thesis proposes two novel approaches to data prefetching based on predictions made by analyzing the instructions and statements of the computer languages used to access persistent data. The proposed approaches take into consideration how the data is accessed by the higher-level applications, make accurate predictions and are performed without causing any additional overhead. The first of the proposed approaches aims at analyzing instructions of applications written in object-oriented languages in order to prefetch data from Persistent Object Stores. The approach is based on static code analysis that is done prior to the application execution and hence does not add any overhead. It also includes various strategies to deal with cases that require runtime information unavailable prior to the execution of the application. We integrate this analysis approach into an existing Persistent Object Store and run a series of extensive experiments to measure the improvement obtained by prefetching the objects predicted by the approach. The second approach analyzes statements and historic logs of the declarative query language SPARQL in order to prefetch data from RDF Triplestores. The approach measures two types of similarity between SPARQL queries in order to detect recurring query patterns in the historic logs. Afterwards, it uses the detected patterns to predict subsequent queries and launch them before they are requested to prefetch the data needed by them. Our evaluation of the proposed approach shows that it high-accuracy prediction and can achieve a high cache hit rate when caching the results of the predicted queries.Precargar datos ha sido una de las técnicas más comunes para mejorar los tiempos de acceso a datos persistentes. Esta técnica se basa en predecir los registros de datos que se van a acceder en el futuro y cargarlos del almacenimiento persistente a la memoria con antelación a su uso. Precargar datos ha sido aplicado en multitud de sistemas de almacenimiento persistente, desde sistemas de ficheros a bases de datos relacionales y NoSQL, con el objetivo de reducir los tiempos de acceso a los datos y por lo tanto mejorar los tiempos de ejecución de las aplicaciones que usan estos datos. Sin embargo, la mayoría de los enfoques existentes utilizan predicciones basadas en información que se encuentra dentro del mismo sistema de almacenimiento, ya sea en forma de heurísticas basadas en el esquema de los datos o patrones de acceso a los datos generados mediante la monitorización del acceso al sistema. Estos enfoques presentan varias desventajas en cuanto a la rigidez de las heurísticas usadas, la precisión de las predicciones generadas y el tiempo que necesitan para generar estas predicciones, un proceso que se realiza con frecuencia mientras las aplicaciones acceden a los datos y que puede tener efectos negativos en el tiempo de ejecución de estas aplicaciones. En vista de lo anterior, esta tesis presenta dos enfoques novedosos para precargar datos basados en predicciones generadas por el análisis de las instrucciones y sentencias del lenguaje informático usado para acceder a los datos persistentes. Los enfoques propuestos toman en consideración cómo las aplicaciones acceden a los datos, generan predicciones precisas y mejoran el rendimiento de las aplicaciones sin causar ningún efecto negativo. El primer enfoque analiza las instrucciones de applicaciones escritas en lenguajes de programación orientados a objetos con el fin de precargar datos de almacenes de objetos persistentes. El enfoque emplea análisis estático de código hecho antes de la ejecución de las aplicaciones, y por lo tanto no afecta negativamente el rendimiento de las mismas. El enfoque también incluye varias estrategias para tratar casos que requieren información de runtime no disponible antes de ejecutar las aplicaciones. Además, integramos este enfoque en un almacén de objetos persistentes y ejecutamos una serie extensa de experimentos para medir la mejora de rendimiento que se puede obtener utilizando el enfoque. Por otro lado, el segundo enfoque analiza las sentencias y logs del lenguaje declarativo de consultas SPARQL para precargar datos de triplestores de RDF. Este enfoque aplica dos medidas para calcular la similtud entre las consultas del lenguaje SPARQL con el objetivo de detectar patrones recurrentes en los logs históricos. Posteriormente, el enfoque utiliza los patrones detectados para predecir las consultas siguientes y precargar con antelación los datos que necesitan. Nuestra evaluación muestra que este enfoque produce predicciones de alta precisión y puede lograr un alto índice de aciertos cuando los resultados de las consultas predichas se guardan en el caché.Postprint (published version

    CAPre: Code-Analysis based Prefetching for Persistent object stores

    Get PDF
    Data prefetching aims to improve access times to data storage systems by predicting data records that are likely to be accessed by subsequent requests and retrieving them into a memory cache before they are needed. In the case of Persistent Object Stores, previous approaches to prefetching have been based on predictions made through analysis of the store’s schema, which generates rigid predictions, or monitoring access patterns to the store while applications are executed, which introduces memory and/or computation overhead. In this paper, we present CAPre, a novel prefetching system for Persistent Object Stores based on static code analysis of object-oriented applications. CAPre generates the predictions at compile-time and does not introduce any overhead to the application execution. Moreover, CAPre is able to predict large amounts of objects that will be accessed in the near future, thus enabling the object store to perform parallel prefetching if the objects are distributed, in a much more aggressive way than in schema-based prediction algorithms. We integrate CAPre into a distributed Persistent Object Store and run a series of experiments that show that it can reduce the execution time of applications from 9% to over 50%, depending on the nature of the application and its persistent data model.This work has been supported by the European Union’s Horizon 2020 research and innovation program under the BigStorage European Training Network (ETN) (grant H2020-MSCA-ITN-2014- 642963), the Spanish Ministry of Science and Innovation (contract TIN2015-65316) and the Generalitat de Catalunya, Spain (contract 2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Prefetching techniques for client server object-oriented database systems

    Get PDF
    The performance of many object-oriented database applications suffers from the page fetch latency which is determined by the expense of disk access. In this work we suggest several prefetching techniques to avoid, or at least to reduce, page fetch latency. In practice no prediction technique is perfect and no prefetching technique can entirely eliminate delay due to page fetch latency. Therefore we are interested in the trade-off between the level of accuracy required for obtaining good results in terms of elapsed time reduction and the processing overhead needed to achieve this level of accuracy. If prefetching accuracy is high then the total elapsed time of an application can be reduced significantly otherwise if the prefetching accuracy is low, many incorrect pages are prefetched and the extra load on the client, network, server and disks decreases the whole system performance. Access pattern of object-oriented databases are often complex and usually hard to predict accurately. The ..

    Computer-language based data prefetching techniques

    Get PDF
    Data prefetching has long been used as a technique to improve access times to persistent data. It is based on retrieving data records from persistent storage to main memory before the records are needed. Data prefetching has been applied to a wide variety of persistent storage systems, from file systems to Relational Database Management Systems and NoSQL databases, with the aim of reducing access times to the data maintained by the system and thus improve the execution times of the applications using this data. However, most existing solutions to data prefetching have been based on information that can be retrieved from the storage system itself, whether in the form of heuristics based on the data schema or data access patterns detected by monitoring access to the system. There are multiple disadvantages of these approaches in terms of the rigidity of the heuristics they use, the accuracy of the predictions they make and / or the time they need to make these predictions, a process often performed while the applications are accessing the data and causing considerable overhead. In light of the above, this thesis proposes two novel approaches to data prefetching based on predictions made by analyzing the instructions and statements of the computer languages used to access persistent data. The proposed approaches take into consideration how the data is accessed by the higher-level applications, make accurate predictions and are performed without causing any additional overhead. The first of the proposed approaches aims at analyzing instructions of applications written in object-oriented languages in order to prefetch data from Persistent Object Stores. The approach is based on static code analysis that is done prior to the application execution and hence does not add any overhead. It also includes various strategies to deal with cases that require runtime information unavailable prior to the execution of the application. We integrate this analysis approach into an existing Persistent Object Store and run a series of extensive experiments to measure the improvement obtained by prefetching the objects predicted by the approach. The second approach analyzes statements and historic logs of the declarative query language SPARQL in order to prefetch data from RDF Triplestores. The approach measures two types of similarity between SPARQL queries in order to detect recurring query patterns in the historic logs. Afterwards, it uses the detected patterns to predict subsequent queries and launch them before they are requested to prefetch the data needed by them. Our evaluation of the proposed approach shows that it high-accuracy prediction and can achieve a high cache hit rate when caching the results of the predicted queries.Precargar datos ha sido una de las técnicas más comunes para mejorar los tiempos de acceso a datos persistentes. Esta técnica se basa en predecir los registros de datos que se van a acceder en el futuro y cargarlos del almacenimiento persistente a la memoria con antelación a su uso. Precargar datos ha sido aplicado en multitud de sistemas de almacenimiento persistente, desde sistemas de ficheros a bases de datos relacionales y NoSQL, con el objetivo de reducir los tiempos de acceso a los datos y por lo tanto mejorar los tiempos de ejecución de las aplicaciones que usan estos datos. Sin embargo, la mayoría de los enfoques existentes utilizan predicciones basadas en información que se encuentra dentro del mismo sistema de almacenimiento, ya sea en forma de heurísticas basadas en el esquema de los datos o patrones de acceso a los datos generados mediante la monitorización del acceso al sistema. Estos enfoques presentan varias desventajas en cuanto a la rigidez de las heurísticas usadas, la precisión de las predicciones generadas y el tiempo que necesitan para generar estas predicciones, un proceso que se realiza con frecuencia mientras las aplicaciones acceden a los datos y que puede tener efectos negativos en el tiempo de ejecución de estas aplicaciones. En vista de lo anterior, esta tesis presenta dos enfoques novedosos para precargar datos basados en predicciones generadas por el análisis de las instrucciones y sentencias del lenguaje informático usado para acceder a los datos persistentes. Los enfoques propuestos toman en consideración cómo las aplicaciones acceden a los datos, generan predicciones precisas y mejoran el rendimiento de las aplicaciones sin causar ningún efecto negativo. El primer enfoque analiza las instrucciones de applicaciones escritas en lenguajes de programación orientados a objetos con el fin de precargar datos de almacenes de objetos persistentes. El enfoque emplea análisis estático de código hecho antes de la ejecución de las aplicaciones, y por lo tanto no afecta negativamente el rendimiento de las mismas. El enfoque también incluye varias estrategias para tratar casos que requieren información de runtime no disponible antes de ejecutar las aplicaciones. Además, integramos este enfoque en un almacén de objetos persistentes y ejecutamos una serie extensa de experimentos para medir la mejora de rendimiento que se puede obtener utilizando el enfoque. Por otro lado, el segundo enfoque analiza las sentencias y logs del lenguaje declarativo de consultas SPARQL para precargar datos de triplestores de RDF. Este enfoque aplica dos medidas para calcular la similtud entre las consultas del lenguaje SPARQL con el objetivo de detectar patrones recurrentes en los logs históricos. Posteriormente, el enfoque utiliza los patrones detectados para predecir las consultas siguientes y precargar con antelación los datos que necesitan. Nuestra evaluación muestra que este enfoque produce predicciones de alta precisión y puede lograr un alto índice de aciertos cuando los resultados de las consultas predichas se guardan en el caché

    Generalized database index structures on massively parallel processor architectures

    Get PDF
    Height-balanced search trees are ubiquitous in database management systems as well as in other applications that require efficient access methods in order to identify entries in large data volumes. They can be configured with various strategies for structuring the search space for a given data set and for pruning it when different kinds of search queries are answered. In order to facilitate the development of application-specific tree variants, index frameworks, such as GiST, exist that provide a reusable library of commonly shared tree management functionality. By specializing internal data organization strategies, the framework can be customized to create an index that is efficient for an application's data access characteristics. Because the majority of the framework's code can be reused development and testing efforts are significantly lower, compared to an implementation from scratch. However, none of the existing frameworks supports the execution of index operations on massively parallel processor architectures, such as GPUs. Enabling the use of such processors for generalized index frameworks is the goal of this thesis. By compiling state-of-the-art techniques from a wide range of CPU- and GPU-optimized indexes, a GiST extension is developed that abstracts the physical execution aspect of generic, tree-based search queries. Tree traversals are broken-down into vectorized processing primitives that can be scheduled to one of the available (co-)processors for execution. Further, a CPU-based implementation is provided as well as a new GPU-based algorithm that, unlike prior art in this area, does not require that the index is fully stored inside a GPU's main memory buffer. The applicability of the extended framework is assessed for image rendering engines and, based on microbenchmarks, the parallelized algorithm performance is compared for different CPU and GPU generations. It will be shown that cases exist, where the GPU clearly outperforms the CPU and vice versa. In order to leverage the strengths of each processor type, an adaptive scheduler is presented that can be calibrated to schedule index operations to the best-fitting device in a hybrid system. With the help of a tree traversal simulation different scheduling strategies are evaluated and it will be shown that the adaptive scheduler can be used to make near-optimal decisions.Suchbäume sind allgegenwärtig in Datenbanksystemen und anderen Anwendungen, die eine effiziente Möglichkeit benötigen um in großen Datensätzen nach Einträgen zu suchen, die bestimmte Suchkriterien erfüllen. Sie können mit verschiedenen Strategien konfiguriert werden um den Suchraum zu strukturieren und die für ein Suchergebnis irrelevante Bereiche von der Bearbeitung auszuschließen. Die Entwicklung von anwendungsspezifischen Indexen wird durch Frameworks wie GiST unterstützt. Jedoch unterstützt keines der heute bereits existierenden Frameworks die Verwendung von hochgradig parallelen Prozessorarchitekturen wie GPUs. Solche Prozessoren für generische Index Frameworks nutzbar zu machen, ist Ziel dieser Arbeit. Dazu werden Techniken aus verschiedensten CPU- und GPU-optimierten Indexen analysiert und für die Entwicklung einer GiST-Erweiterung verwendet, welche die für eine Suche in Suchbäumen nötigen Berechnungen abstrahiert. Traversierungsoperationen werden dabei auf vektorisierte Primitive abgebildet, die auf parallelen Prozessoren implementiert werden können. Die Verwendung dieser Erweiterung wird beispielhaft an einem CPU Algorithmus demonstriert. Weiterhin wird ein neuer GPU-basierter Algorithmus vorgestellt, der im Vergleich zu bisherigen Verfahren, ein dynamisches Nachladen der Index Daten in den Hauptspeicher der GPU unterstützt. Die Praktikabilität des erweiterten Frameworks wird am Beispiel von Anwendungen aus der Computergrafik untersucht und die Performanz der verwendeten Algorithmen mit Hilfe eines Benchmarks auf verschiedenen CPU- und GPU-Modellen analysiert. Dabei wird gezeigt, unter welchen Bedingungen die parallele GPU-basierte Ausführung schneller ist als die CPU-basierte Variante - und umgekehrt. Um die Stärken beider Prozessortypen in einem hybriden System ausnutzen zu können, wird ein Scheduler entwickelt, der nach einer Kalibrierungsphase für eine gegebene Operation den geeignetsten Prozessor wählen kann. Mit Hilfe eines Simulators für Baumtraversierungen werden verschiedenste Scheduling Strategien verglichen. Dabei wird gezeigt, dass die Entscheidungen des Schedulers kaum vom Optimum abweichen und, abhängig von der simulierten Last, die erzielbaren Durchsätze für die parallele Ausführung mehrerer Suchoperationen durch hybrides Scheduling um eine Größenordnung und mehr erhöht werden können

    Compiler and Runtime Optimizations for Fine-Grained Distributed Shared Memory Systems

    Get PDF
    Bal, H.E. [Promotor

    Hardware/Software Codesign of Embedded Systems with Reconfigurable and Heterogeneous Platforms

    Full text link
    corecore