
Prefetching Techniques for Client/Server,
Object-Oriented Database Systems

Nils Knafla

Doctor of Philosophy
University of Edinburgh

1999

To Uwe, my dad,
who died on April 17, 1997.

Abstract
The performance of many object-oriented database applications suffers from

the page fetch latency which is determined by the expense of disk access. In
this work we suggest several prefetching techniques to avoid, or at least to re-
duce, page fetch latency. In practice no prediction technique is perfect and no
prefetching technique can entirely eliminate delay due to page fetch latency.
Therefore we are interested in the trade-off between the level of accuracy re-
quired for obtaining good results in terms of elapsed time reduction and the
processing overhead needed to achieve this level of accuracy. If prefetching
accuracy is high then the total elapsed time of an application can be reduced
significantly otherwise if the prefetching accuracy is low, many incorrect pages
are prefetched and the extra load on the client, network, server and disks de-
creases the whole system performance.

Access pattern of object-oriented databases are often complex and usually
hard to predict accurately. The main thrust of our work therefore concentrates
on analysing the structure of object relationships to obtain knowledge about
page reference patterns. We designed a technique, called OSP, which prefetches
pages according to a time constraint established by the duration of a page fetch.
In addition, every page has an associated weight that decides about the execu-
tion of a prefetch. We implemented OSP in the EXODUS storage manager by
adding multithreading to the database client. The performance of OSP is evalu-
ated on different machines in interaction with buffer management, distributed
databases and other system parameters.

For another prefetch algorithm, called PMC, we used a Discrete-Time Mar-
kov Chain to model object relationships. We assigned transition probabilities
to object relationships and applied the hitting times method to compute page
probabilities and the mean time to access a page. The page probability is used
for the prefetch decision and for the order of the disk queue. If the probability
of a page is higher than a threshold defined by cost/benefit parameters then the
page is a candidate for prefetching. We developed a cost model for the benefit
of a prefetch and the extra cost of an incorrect prefetch. The effectiveness of this
technique was verified in a simulation in view of different degrees of clustering
and buffer replacement strategies.

The granularity of a prefetch is also studied by comparing the performance
of a page server and object server system that perform prefetching. The page
server requests only a single page from the server and the object server always
requests a group of objects. We compare both systems in a simulation in which
we distinguish the case where all pages are resident at the server's buffer pool
and where pages have to be read from disk first when the page is not in buffer
pool. In addition, we suggest some optimisation techniques for the object server.

11

Acknowledgements
I would like to thank Peter Thanisch very much for his supervision and guid-

ance. I am particularly grateful for his timely reading of all the papers and this

thesis.

I would also like to thank my second supervisor David Matthews for many

useful discussions at the beginning of my research; Jane Hillston, Graham Clark

and Isabel Rojas-Mujica for reviewing the work on statistical prefetching; my

examiners Quintin Cutts and Murray Cole for many helpful improvements and

Marcio Fernandes and Thomas Zurek.
Most of all, very warm thanks to my parents who gave me financial support

and encouragement for all the years. Without their support this work would

not exist.

Last but not least, I thank Stephanie Main, my fiancée, for her proof-reading

and loving support.

11

Table of Contents

Chapter 1 	Introduction 	 1 1

1.1 	Hardware Trends 1
1.2 	Application Areas 5
1.3 	Motivation7
1.4 	Thesis Contribution9
1.5 	Thesis Contents 12

1.6 	Summary 14

Chapter 2 	Basics of Object-Oriented Databases 15
2.1 Objects 16
2.2 Object Identifiers 16

2.2.1 	Implementation of Object Identifiers 17
2.2.2 	Performance Aspects of Identifiers 19

2.2.3 	Pointer Swizzling20
2.3 Persistence 22

2.4 Buffer Management 23
2.5. Clustering Techniques 26

2.6 Network Computing Models28
2.7 Performance Issues 29
2.8 The EXODUS Storage Manager 30

2.9 Summary 30

Chapter 3 	Basics of Prefetching Techniques 32
3.1 	Prediction Techniques 34

3.1.1 	Prediction Engines 34

3.1.2 	Program-Based Techniques 40

3.1.3 	Off-line Techniques41
3.1.4 	Hint-Based Techniques43
3.1.5 	Other Classifications 43

3.2 	Clustering Techniques 44

1

3.2.1 	Combined Clustering and Prefetching 44
3.2.2 	Evaluation of Prefetching under Clustering45

3.3 Buffer Management 46
3.3.1 	Buffer Replacement Strategies46
3.3.2 	Integrated Prefetching and Caching48
3.3.3 	Buffer Allocation 50

3.4 Client/Server Architecture 52

3.4.1 	Prefetch Granularity 52

3.4.2 	Prefetching and Multithreading53
3.4.3 	Location of the Prediction Engine54
3.4.4 	System Workload Considerations 56

3.5 Other Issues 57
3.5.1 	Disk Scheduling 57
3.5.2 	Parallel Prefetching58
3.5.3 	Memory Hierarchy Prefetching 58
3.5.4 	Performance Metrics 59

3.6 Summary 60

Chapter 4 	Object Structure-Based Prefetching 61
4.1 Introduction61
4.2 Prefetching Architecture 62

4.2.1 	Implementation Goals 62
4.2.2 	ESM Client 63
4.2.3 	ESM Server 65
4.2.4 	Implementation Issues 65

4.3 The OSP Prefetch Algorithm66
4.3.1 	Prefetch Algorithm 67
4.3.2 	Replacement Policy72

4.4 Implementation Results 72
4.4.1 	System Environment 72
4.4.2 	Benchmark Description 73
4.4.3 	Theoretical Results 75

4.4.4 	Performance Measurements 78

4.5 Summary 89

Chapter 5 Statistical Prefetching 	 91

	

5.1 	Introduction91

	

5.2 	Prediction Model92

11

5.2.1 Model Definitions . 	92
5.2.2 Prefetch Decision Model 	93
5.2.3 Computation of the Page Access Probability 94

5.3 	Cost-Benefit Model 98
5.3.1 Cost of an Incorrect Prefetch Request98
5.3.2 Benefit of a Correct Prefetch Request99
5.3.3 Cost and Benefit of a Multiple-Page-Request100

5.4 	Performance Analysis100

5.4.1 Implementation Results 100
5.4.2 Simulation Results from a Simple Benchmark 103

5.4.3 Simulation Results from the 001 benchmark 106
5.5 	Summary 122

Chapter 6 	Page versus Object Prefetching 125
6.1 Introduction125
6.2 Prefetch Algorithms 127

6.2.1 	Page Prefetch Algorithms 128
6.2.2 	Object Prefetch Algorithms 128

6.3 System Environment 130
6.4 Performance Evaluation 132

6.4.1 	Page Server Result 132
6.4.2 	Object Server Result 133
6.4.3 	Object and Page Server Comparison 135
6.4.4 	Object Server Performance Optimisations 136

6.5 Summary 139

Chapter 7 	Conclusions 141
7.1 Summary 141
7.2 Contribution 143
7.3 Discussion144

7.4 Future Work145
7.4.1 	Integrated Multi-User Prefetching145

7.4.2 	Multithreaded ESM Server146

7.4.3 	Noise Influence on PMC 146

7.4.4 	Buffer Replacement based on Probabilities147

Bibliography 	 148

Index 	 171

111

List of Figures

1.1 	Improvements of areal density in hard disks 	 . 2

1.2 Price/performance development of semiconductor memory and

disk................................... 	3

1.3 Performance improvements of CPU, memory and disk in percent. 	3

1.4 	Commercial CPU roadmap . 	3

1.5 	Prediction of CPU-speed . 	3

1.6 Trade-off between page fetch time reduction and prefetch accuracy. 8

2.1 	Object server architecture . 24

2.2 	Dual-buffer architecture . 25

3.1 	Dependency graph that depicts the frequency of inter-dependent

file accesses . 	36

3.2 	Effect of access streams on buffer replacement 49

4.1 	Prefetching architecture 63

4.2 	Object relationship example 69

4.3 	One entry in the POT70

4.4 	Benchmark structure of one page 74

4.5 	Levels in a typical memory hierarchy 76

.. 4.6 	Expensive components of a page fetch 79

4.7 	The result of the simple benchmark on different machines 80

4.8 	Savings of prefetch applications depending on the number of ob-

ject accesses 81

4.9 	Prefetching with multiple threads 81

4.10 Benefits of prefetching with varied client processing 82

4.11 Effect of incorrect prefetching in the simple benchmark 82

4.12 Effect of an increased server workload due to additional clients. . 83

4.13 Distributed database test 83

4.14 The result of the complex benchmark83

4.15 Demand and prefetching applications under different buffer pool

sizes at the client 85

4.16 Effect of incorrect prefetching in the complex benchmark. 86

4.17 Prefetching under varied client workload levels 86

iv

4.18 Multithreading for CPU-intensive functions, like auditing. 87

4.19 Effect of the number of prefetch threads at the database client. . 88

5.1 Example of page dependencies 91

5.2 Probability graph of object accesses 97

5.3 Savings of one prefetch dependent on the POD 101

5.4 Computation time to solve linear equations 102

5.5 Result of the simple simulation test 105

5.6 Characteristics of the Demand applications under different cluster

factors (elapsed times and number of demand page fetches). . . 108

5.7 Characteristics of the Demand applications under different cluster

factors (number of accessed pages and number of repeated page

accesses 108

5.8 	Characteristics of the Demand applications under different cluster

factors (number of accessed objects per page) 109

5.9 	Result of the prefetch applications: P1, P1-DP, P2 and P2-DP. 	. . 112

5.10 Result of the prefetch applications: P1-DP, P1-DP2, P2-DP and

P2-DP2 112

5.11 Total fetch time of all prefetch applications for transition probab-

ilities from 1.0 to 0.5.........................113

5.12 Disk utilisation for cluster 90 applications113

5.13 Performance of the Demand application and the three prefetch

applications: P1, P2-DP, P2-DP2 with cluster factor 100 and cluster

factor 90.................................114

5.14 Performance of the Demand application and the three prefetch

applications: P1, P2-DP, P2-DP2 with cluster factor 80.......114

5.15 Improvements of the prefetch application P1 in % under the

cluster factors of 90 and 80......................115

5.16 Improvements of the prefetch application P2-DP2 in % under the

cluster factors of 90 and 80......................115

5.17 Normalised values for P1 considering prefetch accuracy, prefetch

object distance and the number of prefetches for the applications

with a cluster factor of 90 and 80....................116

5.18 Normalised values for P2-DP2 considering prefetch accuracy, pre-

fetch object distance and the number of prefetches for the appli-

cations with a cluster factor of 90 and 80..............117

5.19 Prefetch application P1 with varied amount of client object pro-

cessing . 	. 117

V

5.20 Prefetch application P2-DP2 with varied amount of client object
processing 118

5.21 Effect of the buffer pool sizes of 10 and 30 frames on the Demand
and P1 application with LRU replacement 119

5.22 Effect of the buffer pool sizes of 50 and 100 frames on the De-
mand and P1 application with LRU replacement 119

5.23 Effect of a decreasing number of buffer frames on the application
with tp of 0.9 and a cluster factor of 90...............120

5.24 Improvement of the LRU-Prob replacement policy compared with
a simple LRU policy for 10 and 30 buffer frames under a cluster
factor of 80...............................120

5.25 Improvement of the LRU-Prob replacement policy compared with
a simple LRU policy for 50 buffer frames under a cluster factor
of8O..................................121

5.26 Effect of parallel disk accesses on the performance of the prefetch
application P2-DP with n disks 121

5.27 Reduction of fetch time of P2-DP over P2-DP2 122

6.1 Page server result132
6.2 Object server result with threshold 0.0................133
6.3 Object server with all four thresholds 	134
6.4 Final object server result 	134
6.5 Object/page server comparison 	135
6.6 Server prefetch abort 	136
6.7 Server prefetching 	138
6.8 Server prefetch improvements for threshold 0.0...........138
6.9 Direct sending of pages 	138
6.10 Prefetching with a limited demand fetch 	138

vi

List of Tables

3.1 Example LRU buffer . 48

4.1. Computer performance specification 73

	

4.2 	Disk controller performance . 73

4.3 Performance characteristics of a 2 prefetch threads application. . 87

4.4 Performance characteristics of a 3 prefetch threads application. . 88

	

5.1 	Cost/benefit parameters . 99

	

5.2 	Simulation parameters .. 102

	

5.3 	Simulation parameters for one page fetch operation 107

6.1 Shared performance parameter of object/page server 131

6.2 Page server performance specification 131

6.3 Object server performance specification 132

6.4 Object server result with threshold 0.0................134

6.5 Object server result with transition probability 0.95 testing the

0.01 and 0.1 threshold applications 135

6.6 Object prefetching with and without abort. Transition probabil-

ity: 0.7, prefetch distance: 2 and threshold: 0.01..........137

6.7 Direct sending of pages at transition probability 0.85. Prefetch

distance: 10 and threshold: 0.1....................139

vii

Chapter 1

Introduction

The inspiration for this thesis comes from the observation that the ratio of disk

access time to semiconductor memory' access time is increasing year-on-year.

A consequence of this technology trend is that for many client/server object-

based systems, the performance bottleneck will be the delay between the time

at which a client application requests a page of data and the time at which the

page is placed in that application's memory.

The focus of the work in this thesis is an exploration of techniques that

can hide access latency by employing intelligent prefetching. The objective ap-

praisal of prefetching techniques crucially depends on an understanding of the

aforementioned technology trends. In view of this, in Section 1.1 we review

hardware trends, focussing on the increasing gap in access time between suc-

cessive levels in the memory hierarchy. The area of applications and typical

access patterns of applications are explained in Section 1.2. A motivation for

our work is given is Section 1.3. The main contribution of this work is intro-

duced in Section 1.4. An overview of the chapters is given in Section 1.5 and in

Section 1.6 we conclude this chapter.

1.1 Hardware Trends

For many applications that use object-oriented database management systems

(OODBMS) or persistent object stores2, the architectural component that dom-

inates performance is the hard disk. The disk is the slowest part of the system

1Jfl the rest of the thesis we refer to semiconductor memory just as memory.
21n this thesis we refer to applications of OODBMSs which also includes applications of

persistent object stores.

1

10000

1000

D

10

and year-on-year performance improvements in disk technology are only about

5-8%. An example of a fast disk is the Seagate Cheetah 18 with an average

access time of 8.19 ms. Although improvements in access time are modest,

improvements in throughput rates are much higher. This is due to increasing

areal density of disks (see Figure 1.1) and the movement from busses (SCSI)

to fast serial lines, such as Fibre Channel Arbitrated Loop (FC-AL) and Serial

Storage Architecture (SSA). The increasing areal density contributes to the rise

of disk capacity by about 60% per year and improves transfer rates by about

40% per year. Areal density could reach a throughput value of 40 MB/sec in

the year 2000 [Keeton et al., 1998]. The throughput is increased if bits are

packed closer together, the head can read more quickly for a given rotational

speed, due to more bits passing under the head.

I
1970 1980 1990 2000

Figure 1.1: Improvements of areal density in hard disks.

The ultimate limit for hard disk capacity is a hot topic among disk engineers.

As the bits, which are magnetised areas on the disk, get smaller and smaller,

they will eventually reach a point where the energy required to retain magnet-

isation is equal to the thermal energy of the environment. In other words, if

you have small enough magnets, the magnetic fields in effect will not be stable

at room temperature.

The performance/price development of semiconductor memory and mag-

netic disk is important for prefetching. In Figure 1.2 we show the development

over the last two decades. There is a two-order of magnitude gap in access

time between memory and disk. Memory access is faster and the year-on-year

rate of improvement has also been higher. The prices of memory are falling,

thereby making database caches cheaper and buffer replacement less of a prob-

2

DSRAM

01980 0 DRAM

- -------------- - 	AD1Sk

01980
o1985

1985 995.
•

1998 01990 A1980

00 199s 411985
1998

61990

A 1995

1000000

10000

100
0
L)

0.01

1000

-_cPu

800 	- - -. -C-SRAM

-0-DRAM

/
-DiSk

0

0

600 ------

0
0

400

200

0

0

0
0

10000

8000

0!
1999 2002 2005 2008 2011 2014

1500

1250
N4

750

500
1999 2000 2001 2002

6000
>-0 = a,
0 0
U- 4000
a
-c
C)

- 1 .00E+00 	1 .00E*03 	1 .00E.06 	1 .00E*09 	 0

Access time (Os) 	 1980 	1985 	1990 	1995 	1998

Figure 1.2: Price/performance devel- Figure 1.3: Performance improvements
opment of semiconductor memory and of CPU, memory and disk in percent.
disk.

lem. Prices of disks are also falling dramatically which is good for cheap sec-
ondary storage.

CPU performance improves at an even higher rate than memory (Fig-
ure 1.3). CPU is doubling its performance every 18 months whereas disk access
times only improves at about 5-8% per year. Memory access time improves at
about 10% per year. The future trend is that client workstations will become
powerful multi-processor machines with high speed CPUs. Many of these CPUs
will tend to be idle most of the time.

Figure 1.4: Commercial CPU roadmap. Figure 1.5: Prediction of CPU-speed ac-
cording to [Semiconductor Industry As-
sociation, 19971.

3

Figure 1.4 shows the shipment years of future processors from Sun, Intel
and Digital. Intel's Katmai and Willamette are Pentium II processors. Merced
will be Intel's first IA-64 processor and McKinley will probably be a 1 GHz
chip based on 0.13 micron technology and using copper interconnects. Rivals
like Compaq/Digital (Alpha) and Sun (UltraSparc) have even faster processors
nowadays leading to 1.5 GHz in 2001. A further prediction [Semiconductor
Industry Association, 1997] for CPU development is shown in Figure 1.5. This
figure shows an exponential rise in cycle speed of future processors. On the
other side, disk technology is not able to make large improvements in the next
years. These trends cause a widening gap in the memory hierarchy.

The speed of the network also has an impact on the performance of a cli-
ent/server database system. Network transfer rates have improved dramatic-
ally over the last years but the encoding and decoding of messages remains the
main bottleneck of the transfer. Network latency is lower than disk latency and
therefore overcoming it is not the primary study of this work.

Prefetching techniques could hide the latency by requesting data from all
levels in the hierarchy in advance. Our conclusions from this analysis of tech-
nology trends are as follows:

CPU capacity is unlikely to be a performance bottleneck in typical object
database applications;

Cheaper disks mean that the trend for object bases to get bigger, as data-
base designers get more ambitious, will continue;

Although cheaper memory makes it economic to have larger main memory
buffers, for many enterprises it will continue to be the case that the object
base will be disk-resident. Enterprises are tending to store larger amounts
of data these days and there is no sign of this trend abating.

The high improvements in CPU processing power will reduce the I/O over-
lapping time for prefetching. This will mean that the primary benefit we
get will be that an increased number of requests to the disk will allow the
disk scheduler to do a better job of ordering requests; rather than that
we are able to submit requests early enough for their cost to be hidden in
processing time.

Consequently, in many client/server applications, disk technology will
emerge as the performance bottleneck.

1.2 Application Areas

Considering the area of an application can give some general information about

how data are stored and how data are connected. For example design applica-

tions have complex relationships; on the other side business applications have

simpler relationships and are more value-based. The area of an application may

also give some information about the number of users and the amount of data

sharing. Some popular types of applications of OODBMSs are:

1. Design applications (CAD/CAM/CIM/CASE). Engineering design data-

bases are useful in computer-aided design/manufacturing/software en-

gineering systems. In such systems, complex objects can be recursively

partitioned into smaller objects and a prefetching technique for design

applications should consider that:

The design may be very large. For example, in an integrated cir-

cuit, there may be millions of transistors; in a Boeing 747, there are

millions of individual parts.

There may be hundreds of engineers, managers, technicians and

other workers involved. They must work in parallel on multiple ver-

sions. A design is often checked out by a designer and checked in

again after hours or days. This induces a high workload for the server

at check-out and check-in times.

Business applications. These applications have simpler object structures

than design applications and are likely to be more value-based. The re-

quirement from the OODBMS is to provide a very high throughput for

very large numbers of users and 24x7 availability. Data sharing is prob-

lematic for business applications because data pages might be at the client

for exclusive use and other applications that required that page have to

wait.

Web applications. Web applications have unstructured data in the form

of HTML templates and more complicated methods to manage variables,

page logic and database queries. The hyper-links of HTML templates are

stored as pointers in the database. The objects may be stored on fixed-size

pages or as single objects if they are large. The adoption of the extensible

markup language (XML) will help by adding more structure to Web page

templates and other documents.

5

4. Multimedia applications. In a modern office information or other mul-
timedia systems, data include not only text and numbers but also image,
graphics and digital audio and video. Such multimedia data are typically
stored as sequences of bytes with variable lengths and segments of data
are linked together for easy reference. The size of the data is usually very
large and for prefetching it is important to load the segments at the right
time to avoid any hiccups for the user.

In this thesis we do not concentrate on any specific area of application. All
our techniques for page server systems assume a fixed unit of transfer. Therefore
our prefetching algorithms would not be suitable for multimedia applications
which store sequences of bytes with variable lengths. The other three areas
of applications would benefit from our proposed techniques. In general, pre-
fetching will be useful to distributed applications with complex, object-oriented
access patterns that:

. are data intensive, with high read/write ratios.

use varying navigational access patterns that would not all benefit from
any particular data clustering.

create and delete medium or big granularity objects at a slow enough
rate to permit tracking of changes. In our implementation we work with
average object sizes of 80 bytes and 100 objects per page.

preserve some degree of object identity.

have application behaviour that is statistically predictable. This means
that the application has a repeatable access pattern but not necessarily
that every database access is identical to the previous one. Some appli-
cations with random access patterns may not be suitable for obtaining
statistical information whereas other applications, like design databases,
provide more repeatable access patterns. Statistically predictable object
access pattern have been explored before in databases in the area of clus-
tering [Tsangaris and Naughton, 1991; Tsangaris and Naughton, 19921
and prefetching [Palmer and Zdonik, 19911.

provide a reasonable amount of client processing or client waiting time
that can be overlapped with prefetching.

Another characteristic for identifying an OODBMS application is the use of a
distributed environment. Most traditional (including relational and even some
object) database systems, even though they grew up during the 1970s or 80s on
minicomputers, copy the architecture of the mainframe world: all data is stored
and all the processing occurs on the central server, to which the users simply
send requests and get back answers. This is the same model as the mainframe,
with all the computing power accessed from dumb terminals.

This first generation client/server architecture is appropriate for some appli-
cations, such as a simple airline reservation system: a clerk at a dumb terminal
requests a no-smoking aisle seat and receives 17D. However, other applications
wish to store information on many different workstations, on servers, and on
mainframes, to have processing occur on all those locations, and to have users
access and use objects from all those locations.

Using second generation or distributed client/server architecture, an 00-
DBMS can support such distribution transparently, even over heterogeneous
hardware, operating system and networks. In today's computing world the dif-
ference between the computing power of the desktop machine and the back
room server is likely to be only 3-5 times, so there is much more computing
power spread around the desktop, collectively, than in the back room. The 00-
DBMS allows taking advantage of all the resource and incrementally adding
new resources by simply wheeling in the latest greatest price/performance
leader and moving some objects onto it, without changing any application.

1.3 Motivation

In Section 1.1 we described the potential bottlenecks for client/server database
systems. Prefetching is one technique used to reduce this bottleneck. It is an
optimisation technique to initiate the task of loading data from slow, cheap
secondary storage into fast, expensive primary storage before the application
requires the data.

The aim of a successful prefetching technique is to predict the future ap-
plication access with sufficient accuracy to reduce the frequency of expensive
demand fetches. In practice no prediction technique is perfect and no pre-
fetching technique can remove the total demand fetch time. Therefore we are
interested in the trade-off between the level of accuracy required for obtaining
good results in terms of elapsed time reduction, and the processing overhead

FA

needed to achieve this level of accuracy. If prefetching accuracy is high then
the total elapsed time of an application can be reduced significantly otherwise
if the prefetching accuracy is low, many incorrect pages are prefetched and the
extra load on the client, network, server and disks decreases the whole system
performance.

We are also interested in the structure of different object relationship pat-
terns and the consequences for predicting application access. If object access
is repeatable and there are relationships with high probability then we also
perform computation to identify which pages have high access probability. An-
other task of this thesis is to explore the trade-off between page accuracy and
prefetch distance. Under complex object relationships a long prefetch distance
would reduce the page fetch time completely but could result in an incorrect
prefetch due to low accuracy. A prefetch from a short distance could reduce the
page fetch time by only a fraction but this at least results in a correct prefetch.
This trade-off is illustrated in Figure 1.6. In this figure, there is an arc from
one node to another if there is a corresponding pointer in the object. The arc
is labelled with the probability that this pointer will be de-referenced. Suppose
a page fetch costs 3 time units and processing one object 1 unit. The aim of a
prefetching technique could be total page fetch time reduction. For example,
the start of prefetching page 3 at OlD3 1 would contribute to that aim but the
prefetch could turn out to be incorrect if we navigate to page 2. On other hand,
if our aim is high prefetch accuracy then we would start to prefetch page 3 at
OlD 3, 5 or 6. The amount of savings would be less but prefetch accuracy is
100%.

Page 1 	 1 0 01D4 	 01D7

0.5

01D2 0.5 	 Page

0.8
01D

01D I

0 8 0.2 I(orns
D3°' 	T Page 3

1/3 Fetch Time Reduction

2/3 Fetch Time Reduction

3/3 Fetch Time Reduction

Figure 1.6: Trade-off between page fetch time reduction and prefetch accuracy.

301D means Objects Identifier.

[e1

Active prefetching did not obtain much attention from commercial 00DB-

MSs vendors. Bearing in mind the technology trends from the previous section,

OODBMS vendors may have to re-think their system architectures. OODBMS

vendors could employ the prefetching techniques described in this thesis and

the computation-intensive 'algorithms would be even more valuable in the fore-

seeable future because of the rapid development in CPU technology. OODBMS

architects could argue against prefetching with a statement such as : "the I/O

bottleneck can be reduced by larger cache sizes". This is true for repeated page

accesses but not for the first access to the page. Another argument could be:

"average disk access time is improving year-on-year almost at the same rate as

memory and there are even higher improvements in the throughput of disks". This

is also true but there is a two-order of magnitude gap in access time between

disk and memory and CPU improvements are about 8 times higher than disk

improvements year-on-year.

1.4 Thesis Contribution

We started our work by implementing a prefetching environment into the EXO-

DUS storage manager (ESM). The motivation for the ESM-implementation was

firstly to get an understanding of the cost-expensive parts of a page fetch oper-

ation. Secondly, an evaluation in a real environment would give an idea about

all the side-effects caused by prefetching. Thirdly, we are interested in the ef-

fectiveness of threads on multiprocessor machines. In our system model we

created threads to predict and prefetch future page accesses and perform the

application processing. The prefetch threads monitor the application process

and make prefetch decisions on the current context. We incorporated threads

only into the ESM client and left the ESM server unchanged. Every prefetch

thread has an associated socket for communication with the server. Our pro-

posed prefetching architecture differs from the MERLIN implementation [Gerl-

hof and Kemper, 1994a], the sole other OODBMS architecture with prefetching,

because it is based on multiple prefetch threads on multiprocessor machines.

For the evaluation of the prefetching architecture we implemented a simple

algorithm, called OSI in the ESM client [Knafla, 1997a; Knafla, 1997b; Kna-

fla, 1997d; Knafla, 1998a]. The general idea of this technique is to prefetch

pages well in advance according to the context of the client navigation. The

prefetch depth is determined by the time of a page fetch divided by the time

of processing one object. The idea behind this design decision is not to load
the pages too early, since otherwise prefetched pages could be replaced again,
and also not to load the pages too late which would reduce the potential of pre-
fetching. With regard to the prefetch depth, the prefetch thread observes the
navigation of the application thread through the object graph and prefetches
all objects with non-resident pages ahead. If one context has multiple pages to
prefetch then a page q is assigned a weight according to the number of objects,
resident on page p that have a pointer to page q, in the depth n. The pages are
then prefetched according to descending weights. It also considers branches of
object navigation, i.e. the prefetch is delayed until it has passed a branch of
object pointers. Similar to the work of [Patterson et al., 1995] in the area of
operating systems we also use a fixed prefetch distance but this distance is com-
puted by other components and in our work we also have to take the complex
relationships of object-oriented databases into account. Another difference is
the consideration of weights and branch delays in our prediction algorithm.

In another approach, called PMC, we used a more computation-intensive
technique to predict future page access [Knafla, 1997c; Knafla, 1998b]. The
OSP approach has a relatively low prediction cost but it does not consider the
probability of object pointers to be taken. The PMC technique considers the
probability of object traversals and is likely to have a higher prefetch accuracy
under complex object relationships. The drawback of this method is the high
consumption of CPU processing time to compute page probabilities. Therefore it
is more suitable for processors with high processing power and the first method
is more applicable for processors with lower processing power.

The basic idea of the PMC technique is to compute the page access probab-
ility considering the structure of the relationships between persistent objects.
Objects have pointers to other objects with associated transition probabilities.
The object relationships are modelled using a Discrete-Time Markov Chain and
a method called hitting times is used to compute the page access probability.
From the current position of the client navigation we compute the access prob-
ability of all adjacent pages. The level of adjacent pages includes direct adjacent
pages but also higher levels of indirect adjacent pages. The level is determined
by the prefetch object distance which is in turn influenced by the relationship
of microprocessor technology and disk advances. If the probability of a page is
higher than a threshold defined by cost/benefit parameters then the page is a
candidate for prefetching. There have been many studies to compute the page
probability by Markov Chains [Palmer and Zdonik, 1991; Curewitz et al., 1993;

10

Kraiss and Weikum, 19971 but the novelty of this approach lies in the prediction
mechanism of pages based on object transition probabilities. We verified the ef-
fectiveness of this technique in a simulation by considering it under different
degrees of clustering and buffer replacement policies.

Another decisive parameter for the success of prefetching is the granularity.
OODBMSs can be classified as being either page or object server systems. We
want to explore the circumstances under which one system can outperform the
other system. For both server types the important problem to solve is how to
avoid the I/O bottleneck. Here we have to distinguish two cases at the server
side: (1) disk pages are resident at the server and (2) disk pages are not resident
at the server. In theory, if all pages are resident the object prefetching technique
has the advantage that it can put together all the relevant objects for a prefetch
request independent of how these objects are dispersed on pages. If pages are
not likely to be resident, a page prefetching technique has the advantage that
it requests only a few high priority disk pages. All the previous research on
prefetching was conducted in one of these two types but there is no research, to
the best of our knowledge, which assesses a prefetching technique by compar-
ing its performance in a page server and object server implementation [Knafla,
1998c].

In thesis we present many new prediction and prefetching techniques for
object-oriented databases. The main novelty of this work is the synthesis of
analysing object relationships and statistical information for predicting page
accesses. The research chapters will provide a clear analysis of the following
prefetching topics:

. Detailed performance analysis of the page fetch latency in a client/server
environment.

Experimental and theoretical study of the saving of a prefetch request in
elapsed times under different prefetch distances.

Impact of object relationships with associated transition probabilities on
the computation of page probabilities.

Computation of the mean access time of a page depending on the current
position in the object navigation.

Interaction of prefetching and clustering under varied cluster factors.

11

Impact of buffer pool sizes and some replacement strategies on prefetch-

ing.

Side effects of prefetching in a client/server database system, e.g. increas-

ing synchronisation overhead at the client or increased workload at the

server.

Experimental performance study of combined prefetching and multi-

threading..

Effect of the prefetch granularity in a object server system.

We have covered a lot aspects of prefetching in all the chapters but there

is much for further investigation. We would like to motivate the reader of this

thesis to think about the potential extensions of this work. Here is a list of

current limitations, some of which are explained in more detail in Section 7.4:

Most of the experiments are limited to one client, connected to the

server, requesting demand and prefetch pages. Multiple prefetching cli-

ents would provide a more realistic environment for a client/server sys-

tem.

The replacement strategy for prefetched pages is LRU. Using more sophist-

icated buffer management policies, such as the computed page probability

for prefetching and buffer replacement would improve system's perform-

ance even further.

This work is limited to databases with relatively unchanging structures

and most of the prediction information is computed off-line. An efficient

on-line computation would make our prefetching more useful for applica-

tions with frequent updates.

1.5 Thesis Contents

The remaining chapters of this thesis are organised as follows:

Chapter 2 (Basics of Object-Oriented Databases): the next chapter will pre-

sent fundamental components of an object-oriented database manage-

ment system.

12

Chapter 3 (Basics of Prefetching Techniques): this chapter will present a re-
view of research literature in the area of prefetching which is relevant to
our thesis. It will concentrate on topics that are associated with database
prefetching in a client/server architecture but will also include prefetching
algorithms in other areas of computer science.

Chapter 4 (Object Structure-Based Prefetching): the C + + implementation
of a prefetching environment into the EXODUS storage manager is de-
scribed in this section. We designed a simple prefetching technique and
incorporated it into the database client. The results of the performance
evaluation will give an insight into the merits of prefetching.

Chapter 5 (Statistical Prefetching): using the results from Chapter 4, this
chapter will explain a sophisticated prefetching algorithm. At first we give
a formal description of the algorithm and then present the results from a
simulation evaluation.

Chapter 6 (Page versus Object Prefetching): in a simulation test we com-
pared the performance of a prefetching page server with a prefetching
object server. In addition, we will discuss some performance optimisa-
tions for an object server.

Chapter 7 (Conclusions): in the final chapter, we will summarise the result of
the research programme, discuss the original contributions to knowledge
which has been made, and identify further research activities which have
been suggested through the current study.

The first two chapters are the basic background chapters and the following
three chapters are dedicated to our research. The reader's attention is also
drawn to the Index chapter at the end of the thesis. This should provide a
useful and convenient resource locating concise definitions of various technical
terms used within this dissertation.

The following typographic conventions are adopted throughout the thesis:

Italic is used for figure and table captions and to emphasise a keyword in a
sentence.

Slanted is used for names of applications in the performance evaluation sec-
tions.

13

Boldface is used in the main text to introduce a new term. All of these terms
can be found in the index.

Typewriter Font is used to present any algorithms.

1.6 Summary

Upon reading this exordial chapter, we have gained an awareness of hardware
technology trends facing the design of future database architectures. The disk
is the overall bottleneck and the slow average access time will remain a prob-
lem in the future. On the other hand, CPU speeds will increase drastically over
the next years. Memory improvements are similar to disk improvements but
there is a two-order of magnitude gap in access time between these two storage
types. Unless future OODBMSs vendors employ prefetching techniques, many
I/O bound applications will suffer poor response time due to the disk bottle-
neck. OODBMS applications vary strongly in their structure of object relation-
ships. In the thesis we try to give an understanding of which types of object
access patterns are relevant for prefetching. We also want to clarify the effect of
high and low object probability relationships and the consequence for the pre-
fetch accuracy. In practice no prefetching is able to completely avoid demand
fetches. Therefore, a major contribution Of this work is to find the trade-off on
the level of accuracy required for obtaining good results in total elapsed time re-
duction. We designed several prefetching techniques that try to avoid the page
miss or at least to reduce the stall time at the client. Every prefetch operation
will not reduce the total page fetch time because object relationships are often
complex and consequently prediction is difficult, so that the prefetch cannot be
started too early. Another task of this thesis is to explore the trade-off between
page accuracy and prefetch distance. A high accuracy is mostly obtained at
short distances and it becomes lower at longer distances. A prefetching tech-
nique has to make the right choice between distance and accuracy to reduce
total elapsed time.

All these initially described problems will be further discussed in the re-
search chapters. The next two chapters will introduce some background mater-
ial which is relevant for understanding the research chapters.

14

Chapter 2

Basics of Object-Oriented
Databases

OODBMSs have been commercially available over a decade. Three early OODB-

MSs projects laid the foundation in this area - GemStone [Copeland and Maier,

1984; Maier et al., 1986], which was based on Smalitalk, V-base [Andrews

and Harris, 1987], which was based on a CLU-like language, and Orion [Kim

et al., 1994], which was based on CLOS. GemStone originally evolved in an

effort to make the Smalitalk programming language part of a database manage-

ment system. Although work on persistent programming languages [Atkinson

et al., 19831 had been underway for some time in the programming language

community, work on applying those ideas to object-oriented languages was just

taking off. It has to be admitted that the first generation of object-oriented data-

bases was not sufficiently mature for wide use. Using them was like writing an

assembler program; one has extensive possibilities but also a great responsibil-

ity and the task was very complex.

In the early 1990's many other OODBMSs appeared on the market, e.g. Ob-

jectStore [Lamb et al., 19911, 02 [Bancilhon et al., 19921 and Objectivity/DB

[Objectivity, 19941. The vendors of the systems improved the quality of the

system by making them more user-friendly (through graphical interfaces) and

more stable. In addition, a consortium of OODBMS product vendors banded

together - under the leadership of Rick Cattell of SunSoft - and formed the

Object Database Management Group (ODMG). The ODMG standard [Cattell,

19931 was proposed as a standard interface to all OODBMSs. It includes the

definition of an object model, an object definition language and an object query

language. The first implementations of this standard appeared in 1995. Un-

fortunately, many vendors decided to support only pieces of the standard. The

15

situation today is that there is no consensus among the vendors on the archi-
tectural issues relevant to this thesis. In this chapter, we describe the solutions
adopted by the major OODBMSs vendors.

The remainder of this chapter will be reviewing basic components of 00-
DBMSs which are important for the design of a prefetching technique. At first,
Section 2.1 explains the meaning of an object. Object identifiers are relevant
for identifying prefetched objects and are reviewed in Section 2.2. Section 2.3
describes the principles of persistence. Buffer management (Section 2.4) and
clustering (Section 2.5) are two components that have to be closely integrated
with prefetching. The two basic network computing models for OODBMSs are
described in Section 2.6. Section 2.7 discusses performance issues for OODB-
MSs and the evaluation through benchmarks. We implemented a prefetching
environment into the EXODUS Storage Manager, which is briefly described in
Section 2.8. Finally, in Section 2.9 we summarise this chapter.

2.1 Objects

The term object has many meanings in OODBMSs [Cattell, 1994]. The follow-
ing two terms are used in all systems:

Object Grouping. Objects can serve to group data that pertain to one
real-world entity - a transistor, a document or a person. A weak form
of object grouping is incorporated in implementations of the relational
model that have primary and foreign keys.

Object Identity. Objects can have a unique identity independent of the
values that they contain. A system that is identity-based allows an ob-
ject to be referenced via a unique internally generated number, an object
identifier.

2.2 Object Identifiers

The design of the object identifier is a fundamental decision for the database
implementation. It is also important for prefetching to identify objects that
have to be prefetched and identify the pages on which the objects are resident.

16

The various implementation alternatives are described in Section 2.2.1. In Sec-

tion 2.2.2 we explain the effect of the identifier design on performance. The

preservation of the identity in virtual memory is explained in Section 2.2.3.

2.2.1 Implementation of Object Identifiers

[Khoshafian and Copeland, 19861 classified the implementation of object identi-

fiers. Two parameters are important to measure the information content: Data
independence and location independence. Data independence means that

identity is preserved through changes in either data values or structure. Loca-

tion independence means that identity is preserved through movement of ob-

jects among physical locations or address spaces. The classification is as follows:

Identity Through Physical Address. Perhaps the simplest implementa-

tion of the identity of an object is the physical address of the object. This

physical address could be the real or the virtual address of the object (if

the object system is operating in a virtual memory environment). A phys-

ical address implementation does not permit an object to be moved, so

that there is no location independence. A virtual address implementation

allows only whole pages of objects, not individual objects, to be moved

within one virtual address space, providing minimal location independ-

ence. To improve location independence a forwarder could be used to

point to the new address of an object. Physical address identifiers are em-

ployed by Wiss [Chou et al., 1985], Cricket [Shekita and Zwilling, 19901,

ObjectStore [Lamb et al., 19911, Texas [Singhal et al., 1992] and Quick-

Store [White and DeWitt, 19941.

Identifiers that point to physical disk position are useful for prefetching

because the identity of a page can be obtained from the object identifier.

This reduces the amount of time for predicting pages to be prefetched.

Identity Through Indirection. In Smalltalk-80 [Goldberg and Robson,

19831, an oop (object-oriented pointer) is used to implement identity.

Therefore, identities are implemented through a level of indirection. In

LOOM [Kaehler and Krasner, 19831, it is shown that this scheme could

be used to support secondary-storage resident objects, providing support

for a much larger number of objects. Indirect physical or virtual address

implementations allow individual objects to be moved within one address

17

space, providing stronger location independence than direct address im-

plementation but allowing sharing of objects among multiple programs.

Indirect address implementations provide full data independence.

Identity Through Structured Identifier. This type of identifier is very

popular in relational databases and in some object-oriented databases. It

contains a physical and a logical component. The physical component can

address a page or a segment. The logical component addresses a slot entry

in a page. Structured identifiers provide full data independence and lim-

ited location independence. It is limited because only the logical compon-

ent allows movement of objects. Structured identifiers are employed by

ODE [Agrawal and Gehani, 19891, Mneme [Moss, 1990], Objectivity/DB,

ONTOS [ONTOS, 19951, and Bess [Biliris and Panagos, 19951.

The CORBA approach could be also classified in this section. The specific-

ation of the CORBA/Persistent Object Service [0MG, 19971 defines an ab-

stract identifier based on a data store handle - persistent identifier (PID)

pair. How the implementor wishes to use these to denote some instance

of state is quite arbitrary. For example, the data store handle could indi-

cate the database type and name, or it could denote just a filename. The

PID could indicate the value of some key (if used to map to a relational

database) or might be the offset within some file. It is necessarily abstract

so all forms of database technologies can be covered by the specification.

Identity Through Identifier Keys. The main approach for supporting

identity in commercial relational database management systems is by dir-

ect implementation of user- or system-supplied identifier keys. The tuples

can be physically ordered (in most cases sorted) on the identifier key and

an auxiliary structure (e.g. a B-tree) is constructed on top of the set of

tuples to provide fast access to objects retrieved through their identifier

keys. Identifier key implementations provide full location independence.

They do not provide value independence because they consist of values.

Identity Through Surrogates. The most powerful technique for support-

ing identity is through surrogates (purely logical component). Surrogates

are system-generated globally unique identifiers, completely independent

of any physical location. If surrogates are associated with every object,

then they provide full data independence. The logical address has to be

mapped to a physical address. Surrogates are employed by GemStone and

POSTGRES [Stonebraker et al., 1990].

113

6. Identity Through Typed Surrogates. The typed surrogate is a pair com-
prising a type ID and an object ID. Object IDs are always local to a type ID
and generated by a counter for each type. This technique is employed by
ITASCA [Itasca Systems, 1991] and ORION.

It appears that no single scheme for providing object identity is emerging as
the dominant one. This is partly because of the different performance/flexibility
tradeoffs in the designs of these DBMSs.

2.2.2 Performance Aspects of Identifiers

The design and implementation of an object identifier is critical for the database
performance. A database designed on physical OIDs will generally perform bet-
ter than a database based on logical OIDs. Logical OIDs on the other hand will
provide more flexibility for location independence. The following two paramet-
ers are important for database performance:

Disk Access. Physical OlDs are the fastest way to retrieve an object. The
object can be read by one disk access and no mapping is necessary. Sur-
rogate OlDs have to map the logical address to a physical address by hash
table or btree. At first the information from the hash table has to be made
memory resident and then the object itself. This normally involves at least
two disk accesses (only one if the hash information is already resident).
Structured OlDs, hybrid between physical and logical OlDs, can access
every object with one disk access. Only a mapping from the logical ele-
ment to the physical disk position in the page is necessary. If physical
or structured OIDs use forwarders, the number of disk accesses would be
two.

Size of OlD. Another performance factor to consider is the OlD size; OlDs
longer than 32 to 48 bits can have a substantial effect on the overall size of
a database, particularly because many of the databases contain complex
heavily interrelated objects. In theory, 32 bits is adequate for about 4
billion objects, allowing a reasonably large database. However, OIDs of
64 bits or larger may be necessary for a variety of reasons:

In systems where it is not practical to find all references to an object,
OIDs must be unique for all time, so that dangling references can be
recognised.

19

If OlDs are surrogates generated by a monotonically increasing func-

tion, it is generally not practical to reuse holes produced in the se-
quence by OlDs which are no longer (or never) used.

In a distributed environment, it may be necessary to prefix the OlD

with a machine or database identifier to make the OlD universally

unique.

Many implementations convert OlDs used for references between ob-

jects into memory addresses when objects are fetched from disk, to make

reference-following fast. That is, all references to an object's OlD in cur-

rently cached objects are replaced with the object's address when the ob-

ject is brought into memory. ObjectStore even uses a virtual memory ad-
dress form in the disk representation of OlDs. The replacement of OIDSs
with addresses, called pointer swizzling, can be exercised regardless of

which OlD representation is used (see Section 2.2.3).

2.2.3 Pointer Swizzling

Access to objects in memory can be implemented via pointer swizzling or map-

ping tables. Both techniques require some housekeeping information at client;

the advantage of swizzling is that this overhead is minimised. Pointer swizzling

means the OlD is transformed into a virtual memory pointer. The application

works with the pointer like a normal pointer in a programming language. At

the end of the transaction the virtual memory pointer has to be converted back

in to an OlD again. Pointer swizzling is advantageous for an application in

which there are many operations on the objects. However, swizzling may not

be appropriate when there are only a few operations on the object, since the

overhead of the translation may be too expensive. In view of this, some 00-

DBMSs use mapping tables to find the virtual memory address of an object,

given its OlD. This technique has the advantage that the object can be moved in

memory. Also, through the indirection, the access to an object is safer, because

dangling pointers cannot crash the application.

[White, 19941 classified the following pointer swizzling techniques:

1. Hardware vs. Software-based Swizzling. Software-based checks use

bits of the OlD or tables to distinguish between swizzled and OlD ob-

jects. Hardware-based swizzling schemes [Lamb et al., 1991; Wilson and

20

Kakkad, 1992] that use virtual memory access protection violations to

detect accesses of non-resident objects have been proposed. The main

advantage of the hardware-based approach is that accessing memory-

resident persistent objects is just as efficient as accessing transient objects

because the hardware approach avoids the overhead of residency checks

incurred by software approaches.

A disadvantage of the hardware-based approach is that it makes provid-

ing many useful kinds of database functionality more difficult, such as

fine-granularity locking, referential integrity, crash recovery, and flexible

buffer management policies. In addition, the hardware approach limits

the amount of data that can be accessed during a transaction to the size

of virtual memory. This limitation could conceivably be overcome by using

some form of garbage collection to reclaim memory space, but this would

add additional overhead and complexity to the system. The hardware

approach has been used in several commercial and research systems, in-

cluding Dali [Jagadish et al., 19941, Cricket, ObjectStore, QuickStore and
Texas.

In-place vs. Copy Swizzling Copy and in-place strategies differ primarily

where they cache persistent objects in the main memory. In-place refers

to an approach that allows applications to access objects in the buffer pool

of the underlying storage manager, while the copy approach copies from

the buffer pool into a separate area of memory, typically called an object
cache, and applications are only allowed to access objects In the object

cache. These techniques can be used independently of whether swizzling

is being done. While the copy approach incurs some cost for copying

objects, it has the potential to make more efficient use of memory by only

caching objects that are actually used by the application. In addition, if

pointer swizzling is being done, then the copy approach can save in terms

of unswizzling work since, in the worst case, only .the modified objects

have to be unswizzled. Depending on the type of swizzling used, an in-

place scheme may have to unswizzle an entire page of objects in the buffer

pool whenever any object on the page is updated.

Eager vs. Lazy Swizzling.

A swizzling technique is said to be eager if it swizzles all the pointers of

an object collection on the first access of an object [Moss, 1992]. If pages

are not resident they have to be prefetched from disk. The advantage of

21

this technique is that no residency checks are needed at run-time to distin-

guish swizzled and unswizzled pointers. [Kemper and Kossmann, 19931

and [McAuliffe and Solomon, 19951 define eagerness to be swizzling all

pointers in a page or object.

Lazy swizzling uses a more conservative approach to swizzling. The de-

cision is made at run-time as to what and when to swizzle. The granular-

ity of what to swizzle can be a page, an object or just a pointer. Pointer

swizzling can be initiated on a dereference, a comparison of a pointer or

an object fetch. The advantage of this approach is that less unnecessary

objects are swizzled or even fetched into memory.

4. Direct vs. Indirect Swizzling.

Direct swizzling techniques place the in-memory address of the referenced

persistent object directly into the swizzled pointer itself. By contrast, un-

der indirect swizzling a swizzled pointer points to some intermediate data

object (usually termed a fault block in [Hosking and Moss, 1993]), which

in turn, points to the target object when it is in memory. The advantage

of indirect swizzling is that it provides more flexibility to uncache objects.

If the object is not resident anymore the pointer to the target object in

the fault block is set to zero. It also provides a higher level of safe object

access. The obvious disadvantage is that the overhead of accessing the

object via the fault block is more time-consuming.

2.3 Persistence

Transient data last only for the invocation of a program. Persistent data survive

the program termination and are stored in a persistent object store. Persistence

was first defined by [Atkinson et al., 1983]. To achieve orthogonal persistence

they defined three principles:

The Principle of Persistence Independence. The form of a program is

independent of the longevity of the data that it manipulates. Programs

look the same whether they manipulate short-term or long-term data.

The Principle of Data Type Orthogonality. All data objects should be

allowed the full range of persistence irrespective of their type. There are

no special cases where objects are not allowed to be long-lived or are not

allowed to be transient.

22

The Principle of Persistence Identification. The choice of how to iden-
tify and provide persistent objects is orthogonal to the universe of dis-
course of the system. The mechanism for identifying persistent objects
is not related to the type system. Objects are identified by reachability,
In this, the identification of persistent objects is performed by the system
automatically by computing the transitive closure of all objects reachable
(by following pointers) from some persistent root or roots.

The third Principle of Persistence Identification was implemented in PS Algol
[Atkinson et al., 1983] and GemStone. The advantage of this approach is that
the programmer is free of using persistent type or function calls. This means the
application code is very portable. The disadvantage is that it involves an over-
head for moving objects from the transient to the persistent root. Persistence
can also be implemented using:

The Type of an Object. An object is made persistent by using a persistent
data type. The type might be declared persistent or made persistent by in-
heritance from a persistent class. This approach is used by Objectivity/DB,
ONTOS and POET [Vigna, 19971.

An Explicit Function Call. There exists a method or function to make an
object persistent. For example ObjectStore provides an overloaded new
operator to create persistent objects.

Both approaches are less convenient for the programmer but easier to man-
age for the database system and therefore used in most commercial OODBMSs.

2.4 Buffer Management

An efficient object caching technique is very important for database perform-
ance. The unit of transfer between client and server can be an object, a page, a
segment or a query result. At the client there exists three alternatives to cache
objects or pages:

1. An Object Server Architecture. Figure 2.1 shows the architecture of an
object server. The client has one object buffer whereas the server has an
object buffer and a page buffer. The objects at the server are copied from

23

Client 	 Server

Figure 2.1: Object server architecture.

the page buffer into the object buffer. The transfer between client and

server is an object or a group of objects. The object server stores objects

in units of pages or segments on disk. The advantage of this design is that

there are no unneeded objects in the client buffer pool and it is a finer

granularity for locking. This technique is employed by Versant [Versant,

19921, UniSQL [Cattell, 1994], Thor [Liskov et al., 1996], ORION [Kim

et al., 1994] and ITASCA.

A Page Server Architecture. A page server system transfers pages be-

tween client and server and has a page buffer pool at client and server.

A database page is divided into slots and data. The slots have informa-

tion about the data and a pointer to the offset of the data. An application

pointer points directly to the slot of a page. This architecture normally

outperforms the object-base approach and is incorporated in most com-

mercial object-oriented databases: e.g. EXODUS [Carey et al., 1986a],

ObjectStore, Objectivity/DB.

A Dual-Buffer Architecture. This architecture has both a page buffer and

an object buffer and is depicted in Figure 2.2. In [Kemper and Kossmann,

19941 showed that dual-buffering very often outperforms page-buffering

in the 007 benchmark [Carey et al., 1993]. Dual-buffering is also used

in [Cheng and Hurson, 1991a], DASDBS [Schek et al., 19901, ORION, 02

[Bancilhon et al., 1992] and Shore [Carey et al., 1994a].

There has been a long discussion in the database literature about the per-

formance advantages of these architectures [DeWitt et al., 1990; Hohenstein

24

Client 	 Server

Figure 2.2: Dual-buffer architecture.

et al., 1997]. In cases where network overhead is high and objects cannot be
clustered on pages, the object server approach could conceivably be faster. The
page server approach might provide less performance advantage for applica-
tions that can encapsulate their operations on data in a query language, rather
than operating directly on objects. In a network environment, some applications
could be considerably slower using this approach, because it is more efficient
to ship the operation (query) to where the data is stored, rather than shipping
all the data to a workstation to perform the operation. On the other hand, if
many objects from a page are accessed then the page server will outperform the
object server.

The network cost is an important criteria [Delobel et al., 1995]. The cost
of sending a message on a network is not proportionate to the length of the
character string transmitted; the costs of sending a 100-byte object and a 4
K-byte page are almost the same. The cost of initialising a message transfer
will remain high in relation to the transmission time. This fact is an important
argument for a page server. OODBMSs have the possibility to execute a query
on the server or on the client. For example executing a single query would
perform better on the server whereas repeated queries or operations on the
same data would perform better on the client.

In a client/server database system the disk latency is in general higher than
the network latency. Due to the fact that both object and page servers store
objects on disk pages, both systems retrieve the same number of demand re-
quests from the disk. Therefore the high disk latency has no impact on the
performance comparison of object and page servers.

25

The discussion about the performance advantages of these architectures can

also be extended for prefetching. A client can either prefetch objects, pages or

a group of objects. Prefetching objects would induce a high overhead for the

transferring each object and is therefore not appropriate. The trade-off between

object group prefetching and page prefetching will be evaluated in Chapter 6.

2.5 Clustering Techniques

Clustering techniques for OODBMSs have a strong impact on the database per-

formance. Having objects clustered together on a page reduces the number of

disk I/Os. Clustering is especially important for page server systems because

their intention is to ship related objects to the client. [Bertino et al., 1994]

surveyed clustering techniques used in commercial and research systems:

Type-based Clustering. Objects can be clustered according to their type.

All instances of a class are clustered in one or more segments. This tech-

nique is employed by ORION, ENCORE [Hornick and Zdonik, 19871 and

the ODE Object Manager [Agrawal et al., 1993]. ORION also allows a

graph of the type to be clustered in the same segment. Most relational

databases use this type of clustering to store tuples together. In 00DB-

MSs it would be useful for collection classes.

Value-based Clustering. Objects are clustered according to their values.

A special attribute of the object is the clustering criteria. A special kind of

value-based clustering is index-clustering: it consists of performing value-

based clustering and imposing an index (usually a B+ -tree) on the cluster-

ing attributes. This clustering strategy can be used to optimise frequent

queries.

Composite Object Clustering. In this case an object is clustered with

some or all of its sub-components. This cluster aggregation relationship

can be defined at run-time or in the schema definition. This technique

is beneficial for following the pointer references of an object. All sub-

components would be already resident after the first access to the object.

The DASDBS database and ORION uses this type of clustering.

Clustering based on Greedy Graph Partitioning. The greedy graph al-

gorithm partitions the object composition graph into a set of sub-graphs

26

such that for each sub-graph all objects fit in one page [Gerihof et al.,

19931. The clustering is performed according to the weights of the object

relationships. A list sorts the relationships according to their weights in

descending order. The algorithm then clusters the objects with the highest

weights together.

S. Stochastic Clustering. By representing access patterns as stochastic pro-

cesses, clustering can be formulated as an optimisation problem [Tsan-

garis and Naughton, 1991]. Given a statistical description of the client

access request stream and a frame (physical page) access cost formula,

the problem is to find a mapping from the set of all objects to the set

of frames such that the average cost of access is minimised, while there

are at most n objects per frame and other additional constraints are sat-

isfied. It was shown [Tsangaris and Naughton, 19911 that solving this

problem while considering two consecutive requests is a weighted graph

partitioning problem. Consequently, optimising while considering more

than 2 consecutive requests can be construed as hyper-graph partitioning

problem [Tsangaris and Naughton, 19921.

6. Custom Clustering. The user of the database system can specify a seg-

ment in which he/she wants the objects to be placed. ObjectStore for

example employs this technique. Another possibility is to specify an ob-

ject to be placed near another object (EXODUS, Objectivity/DB).

Most commercial systems use type-based or composite-based clustering. Ap-

plications with complex object structures would benefit from the composite-

based clustering. Type-based clustering is more useful for simple collection

classes, that spawn over many pages. A query over the collection would make

all objects resident. However, some studies devoted primarily to clustering in

object bases ([Tsangaris and Naughton, 19911, [Gerihof et al., 1993]) have

pointed out the need of exploiting behavioural information, which gives hints

about access patterns of objects, in order to approach optimal clustering. Using

this information could be more specific for clustering but also induces overhead

for updating this information.

Another classification of clustering techniques is dependent on the time of

clustering. Static clustering is done when the objects are created. Frequent

access to the object can destroy the object cluster and off-line clustering is ne-

cessary to rebuild the object cluster. Dynamic Clustering changes the objects

27

belonging to a cluster at run time. Dynamic clustering techniques [Cheng and
Hurson, 1991a] usually improve the overall system performance but they have
a great runtime overhead which has to be justified.

Objects can be clustered on pages or segments. Page clustering is useful
when the working set of objects cannot determined precisely. Value-based and
composite object clustering is especially applicable for page clustering. If it is
possible to specify a logical group, a larger conglomerate like a segment could
perform better. Typed-based clustering is applicable for segment clustering.

[Day, 19931 argues that clustering is a zero-sum game: making the clustering
better for one application makes it worse for another. Applications have differ-
ent access pattern (e.g. depth-first vs. breath-first) which can differ in many
cases to the actual clustering structure on disk. Day proposed an idea called
crystals in which each user can specify the desired access pattern. The object
server then reads all related objects from disk and sends this group of objects
to the client. The problem with this approach is that the server becomes an
even higher bottleneck because of additional computation and fetching the set
of objects.

The conclusion concerning clustering techniques is that no technique offers
a perfect solution. The choice of a clustering technique is dependent of the
application data structures and access patterns.

2.6 Network Computing Models

There are two basic network computing models for OODBMSs: client/server
and peer-to-peer communication. The client/server model dictates that one
centralised server is responsible for serving all clients requests and sharing the
resources on the network. This approach is used in most commercial OODBMSs
like ObjectStore, 02, Ontos and Versant. The advantage is that all data are
centralised and query processing is very efficient. Also there is no identification
overhead for addressing an object on a server.

In a peer-to-peer architecture every workstation can act as a server. The
server manages the requests from the local client and client requests from other
workstations. The advantage is that there is no bottleneck server and clients
can store their data locally. The use of resources on the network is far greater
and the sharing of information is easier to accomplish. There is a great deal

more flexibility in this model. The disadvantage of such systems is that they are

hard to manage. Security is also a problem, and performance cannot compete

with the client server model. Bess, ITASCA, Objectivity/DB and Shore are peer-

to-peer systems.

The choice of the network computing model has also relevance for prefetch-

ing. The advantage of a peer-to-peer architecture is that prefetch requests could

be executed in parallel by the servers and therefore unload a centralised server.

2.7 Performance Issues

The efficient implementation of all the aforementioned database components

in the previous sections have an effect on the overall system performance. The

implementor of an OODBMS has to be clear about the importance of perform-

ance. The design of the database is a compromise between security of data,

location independence and high performance, which is important to Objectiv-

ity/DB, Versant and ObjectStore respectively.

A major performance problem for all OODBMSs is the I/O bottleneck. Many

optimisation techniques tried to reduce this bottleneck, e.g. caching (see Sec-

tion 2.4), clustering (see Section 2.5), prefetching (see Chapter 3), main mem-

ory databases [Garcia-Molina and Salem, 1992] or disk striping [Salem and

Garcia-Molina, 19861. For example Objectivity/DB addresses this problem by

distributing objects within an object database across multiple servers and cluster

data into partitions.

To evaluate the performance of an OODBMS there exists two widely used

benchmarks: 001 [Cattell, 19921 and 007 [Carey et al., 1993]. The 001

benchmark has a simple object graph in which every object has three pointers to

other objects. It defines a clustering level of 90%, i.e. 90% of the references are

local to objects in the page. The performance evaluation showed an OODBMS

outperforming a DBMS in lookup, object traversal and insert operations. The

007 benchmark is much more complex in its object graph structure and has

more operations. In contrast to the 001 benchmark, it uses a dense and a sparse

traversal and update and query operations. The benchmark was implemented

to compare the performance of four OODBMSs: Versant, Ontos, Objectivity/DB

and EXODUS; the system with the best results was EXODUS.

RM

2.8 The EXODUS Storage Manager

The EXODUS client/server database system [Carey et al., 1986a; Carey et al.,
1986b; Carey et al., 19901 was developed at the University of Wisconsin. It
aids a database implementor in the task of generating a DBMS by providing a
storage manager, a programming language E (an extension of C++), a library
of access-method implementations, a rule-based query optimiser generator, and
tools for constructing query-language front ends.

The basic representation for data in the storage manager is a variable-length
byte sequence of arbitrary size, incorporating the capability to insert or delete
bytes in the middle of the sequence. In the simplest case, these basic storage
objects are implemented as contiguous sequences of bytes. As the objects be-
come large, or when they are broken into non-contiguous sequences by editing
operations, they are represented using a B-tree of leaf blocks, each containing
a portion of the sequence. Objects are referenced using structured OlDs. The
OlD has the form (volume#, page#, slot#, unique#), with the unique# being
used to make OlD's unique over time (and thus usable as surrogates). The OlD

of a small object points to the object on disk; for a large object, the OlD points
to its large object header.

On these basic storage objects, the storage manager performs buffer man-
agement (LRU or MRU), concurrency control, recovery, and a versioning mech-
anism that can be used to provide a variety of application-specific versioning
schemes. The database client and server communicate via sockets. The client
specifies the requested data in a message structure and sends it to the server.
The server retrieves the requested page and sends it to the client.

2.9 Summary

In this chapter we briefly mentioned the components of an OODBMS architec-
ture relevant to this thesis. The right choice of the object identifier design, the
pointer swizz1ing technique, the buffer replacement strategy and the clustering
technique and the close integration of the components have a big impact on
the performance of an OODBMS. To alleviate the high cost of disk access, all
commercially available systems cluster objects onto pages and equip client and
server with large cache sizes but no system makes use of intelligent prefetch-
ing techniques to reduce I/O costs. The increasing gap in access time between

memory and disk and memory and CPU induces new challenges for future high-
performance object stores. In the next chapter we review previous work on
prefetching in the area of OODBMSs and other subjects.

31

Chapter 3

Basics of Prefetching Techniques

The aim of a prefetching technique is to diminish applications' elapsed times.

There are several aspects of optimisation to reduce response time:

Reduction of Seek Times. In a client/server database system the disk re-

quest queue is an important performance component. Prefetching tries to

insert many requests into the queue to give the queue manager the oppor-

tunity to sort disk accesses [Patterson et al., 1993]. The queue manager

sorts the disk requests according to the position of the pages on disk to

reduce the seek costs, which is the expensive part of the disk access.

Reduction of Idle Times. Year-on-year, improvement in CPU performance

outstrips performance improvement in other aspects of computer techno-

logy,

echno-

1og such as disks. Consequently, in some applications, processor power

may be increasingly under-utilised. Idle system resource could be used to

predict which pages should be prefetched.

Global Resource Optimisation. A carefully designed prefetching tech-

nique should consider the adequate consumption of resources [Voelker

et al., 1998; Kraiss and Weikum, 1998]. For example one client might

use prefetching extensively and consequently acquires a high percentage

of system resources, like network bandwidth, server processing times and

disk retrieval times. This particular client would probably improve its per-

formance but overall system performance would decrease.

Group Requests. A group request has the advantage over a single request

that the average cost per unit is smaller. The origin of a group request may

come from a single user, i.e. one user requests many pages at once or it

32

comes from multiple users, i.e. multiple users request closely-clustered

pages. Applications of group requests can be found in the management of

complex objects [Weikum, 1989; Keller et al., 1991; Maier et al., 19941,

file systems [McVdy and Kleiman, 1991] and big objects [IBM, 19941. Ob-

viously, both the client and server need a group-oriented request interface

[Weikum et al., 19871.

S. Overlapping of CPU and I/O. Prefetch operations are overlapped with

the client application processing. Processing objects must be overlapped

with the time during which the prefetch takes place. If the processing time

is high, the amount of saving will also be high. Otherwise only a small

saving can be achieved. If the application runs on a multiprocessor, the

client processing can be done in parallel with the prediction computation.

Otherwise in the uniprocessor system the prediction information can be

computed at stall times for demand fetches.

6. Parallel Disk Access. Nowadays many database systems share data on

multiple I/O-subsystems to avoid the I/O-bottleneck. This technique is

called de-clustering or disk-striping [Salem and Garcia-Molina, 1986;

Treiber and Menon, 1995]. The idea is to balance the load on many disks

so that many I/O-jobs can be served in parallel. This is supported through

the popular RAID technology' [Chen et al., 1994] which replicates data

on many cheap disks. Disk-striping might help an individual application

directly but this does not directly impact many parallel I/O jobs. Other as-

pects of disk technology, such as replication, could benefit many parallel

I/O jobs. Prefetching a group of pages is an ideal application for the par-

allel execution of disk requests [Pai and Varman, 1992; Wu et al., 19941.

At the same time it reduces the cost of prefetching, i.e. blocking other de-

mand requests. [Patterson, 19971 sees the strength of prefetching in the

parallel execution of the requests.

In this chapter we survey previous work in prefetching. This subject has

been studied extensively over the last two decades so that we can concentrate

on material that is relevant to our work. An important aspect is the collection

of prediction information. Several techniques are classified in Section 3.1. The

interdependency of clustering and prefetching is subject of Section 3.2. Sec-

tion 3.3 surveys ideas about the integration of clustering and buffer manage-

'Redundant Array of Inexpensive Disks.

33

ment. Implementations issues of prefetching in a client/server architecture are
described in Section 3.4 and other implementation issues in Section 3.5.

3.1 Prediction Techniques

The condition for the use of a prefetching technique is that there exists sufficient
knowledge about the access pattern of an application; this means the probable
time of access and the knowledge of which object will be accessed. Therefore
a successful prefetching technique is very dependent on the accuracy of the
prediction technique.

This section classifies all proposed prefetching techniques into four categor-
ies. Prediction Engines in Section 3.1.1 using an internal oracle to decide
which objects or pages should be prefetched. In Section 3.1.2 we describe
program-based techniques, which perform code analysis to obtain prefetch
information. Hint-based techniques, that obtain the prediction information
from a user, are discussed in Section 3.1.4. Other classifications of prefetching
techniques can be found in Section 3.1.5.

3.1.1 Prediction Engines

Most prefetching techniques use a separate prediction engine that exploits
knowledge of future application accesses. Prediction engines have, many realisa-
tion possibilities. A deterministic prediction technique determines a strategy,
e.g. load one block ahead. Statistical prediction techniques generate prob-
abilistic information about future access by analysing past accesses. Object
structure-based prefetching techniques predict the access via pointers from
objects to other objects, which are mostly used in OODBMSs. 	-

3.1.1.1 Deterministic Prediction

Deterministic prefetching determines a strategy concerning when and what to
prefetch. The simplest algorithm is to load on every demand fetch the next ad-
jacent block on disk: One Block Lookahead (OBL) [Joseph, 19701. The OBL-
prediction engine was also used in databases [Smith, 1978b; Smith, 1978a;
Smith, 1982; Smith, 19851 and similarly in parallel file systems [Arunachalam

34

and Choudhary, 1995]. Two hardware solutions can be found in [Fu and Pa-

tel, 1991; Palacharla and Kessler, 19941. A strategy for a parallel merge-sort

algorithm was developed in [Pai and Varman, 1992; Pai et al., 1994; Wu et al.,

19941. Simple strategies were already used in vector programs [Fu and Patel,

19911. Another strategy loads either sequential parts of the file or the whole file

according to the access patterns of parallel applications [Kotz and Ellis, 1990;

Kotz and Ellis, 1991]. Simple deterministic strategies work well for special ap-

plications but cannot be applied to the complex relationships between objects

that typify OODBMSs applications.

Prefetching in Commercial DBMSs. Many commercial DBMSs employ de-

terministic prefetching techniques to load pages from the disk into the server's

buffer pool. IBM's DB2 distinguishes between sequential prefetch and list pre-

fetch [Teng and Gumaer, 1984; Mohan et al., 1993; Gassner et al., 1994; IBM,

1994; IBM, 19971. Sequential prefetch reads several consecutive pages into

the buffer pool using a single I/O operation. The list prefetch is used when

the required pages are not in sequential order. The list of prefetch pages is

obtained from the index structure and all the pages are retrieved in parallel.

The ORACLE database system optimises full table scan operations by data pre-

fetching [Gokhale, 1997] and performs row-prefetching for tuples for Oracle's

JDBC driver [Oracle, 19971. The query optimiser in Sybase's SQLServer also

performs sequential prefetch for consecutive physical pages [Agarwal, 19951.

Broadcast Disks. A hybrid prediction technique with a deterministic com-

ponent and a statistical component was developed for so-called broadcast disks

[Acharya et al., 1996a; Acharya et al., 1996b; Acharya et al., 1997; Acharya,

19981. The idea behind broadcast disks is that the server sends pages in a cycle.

The broadcast program determines the broadcast frequency and cycle lengths.

The client can use this knowledge to replace pages that will be broadcast again

soon under low costs (tag-team caching). This technique was extended for a

wireless environment in which mobile clients may have only a low-bandwidth

channel for sending messages [Zdonik et al., 1994]. The conventional cache

and prefetching management techniques which are mainly designed for fixed

networks are inefficient in the radio environment where the communication

channels are unpredictable and highly variable with time and location. To re-

duce this high latency another prefetching technique fetches adjacent pages

from a faulted page to the mobile client [Liu, 1994].

35

3.1.1.2 Statistical Prediction

The deterministic prediction techniques from the previous section use simple
strategies to prefetch pages with low prediction overhead. Statistical predic-
tion methods monitor the access pattern of an application. After a sufficient
gathering of knowledge about the access pattern the information is used for
prefetching. This information gathering process is far more expensive than the
one associated with deterministic techniques. We define our own statistical pre-
diction technique in Chapter 5.

Table method. To keep track of the inter-dependency of block accesses a
table was used to register blocks which will be accessed after a current block
[Grimsrud et al., 1993]. Each referenced block has an associated weight which
gives information about the probability of accessing the next block. Two other
studies use the same algorithm [Shah and Kumar, 1995; Chee et al., 1997]. In
the area of CPU prefetching a so-called reference-prediction-table was intro-
duced to recognise memory distances with repeatable strides [Chen and Baer,
1992; Chen, 1993; Dahigren and Stenström, 1995; Chen and Baer, 19951.

File B File B

0.5

:Fi 1~e AD 0.25 File C
(:~~D

05
File D

~~D 0 .5

Figure 3.1: Dependency graph that depicts the frequency of inter-dependent file
accesses.

Stochastic process. The probability of future file accesses were established
by a dependency graph that depicts the pattern of accesses to different files
stored at the server [Griffioen and Appleton, 1993; Griffioen and Appleton,
1994; Griffloen and Appleton, 1995a; Griffloen and Appleton, 1995b]. Fig-
ure 3.1 gives an example of a graph that has a node for every file and the arc
from a node gives information about previous file accesses from the node. Every
arc has also an associated weight. A similar approach [Kroeger and Long, 19961
also creates a tree of file dependencies providing information about previous file
system events through a finite multi-order context modelling technique adap-
ted from the data compression technique Prediction by Partial Match (PPM)
[Bell et al., 1990] (see below). Another similar technique keeps track of the

36

file access pattern of processes and forked child processes [Tait and Duchamp,

1990; Lei and Duchamp, 19971.

Prefetching techniques for the World Wide Web use mostly probabilistic

models to compute the page probability. The prediction algorithm of [Pad-

manabhan, 1995; Padmanabhan and Mogul, 19961 is based on the idea of con-

structing a dependency graph [Griffloen and Appleton, 19941 to keep track of

client access pattern. A very similar approach uses the conditional probability of

inter-related document accesses [Bestavros, 1995; Bestavros, 1996; Jiang and

Kleinrock, 1997; Jiang and Kleinrock, 1998]. Changes of the user's access pat-

tern of web pages were also studied [Cunha and Jaccoud, 1997; Cunha, 1997;

Banatre et al., 1997; Loon and Bharghavan, 1997; Yamaguchi et al., 1997].

Markov-Chains. For a discrete-time stochastic process with a discrete state

space, if the future of the process depends only on the current state of the

system, the process is called a Markov chain. Most Markov chains prefetch-
ing techniques use a discrete-time Markov chain'. The first object-oriented

prediction engine to use a neural net was introduced in [Palmer and Zdonik,

1990; Palmer and Zdonik, 1991]. The prediction engine learns object access

patterns over time. Unfortunately this work does not mention the CPU and

storage overhead of the proposed technique. A Markov chain was also used to

prefetch neighbours of an object in the area of hyper-media systems [Ghande-

harizadeh et al., 19911. The frequency of access to the objects of a hyper-media

application is based on the frequency of access to its hyper-links. A similar tech-

nique learns about relationships among the blocks by looking for patterns in

the stream of block requests [Salem, 1991]. If one block, say y was frequently

requested shortly after past requests to x, then y is included in the prediction

and prefetched.

Data compression techniques have been used to predict future page access

in databases [Curewitz et al., 1993; Krishnan, 19951. A PPM data compressor

was compared with Lempel-Ziv (LZ) algorithm [Ziv and Lempel, 1978]. PPM

has a jth-order Markov predictor on a page access sequence that uses statistics

of context length j from the sequence to make its predictions for the next page.

The applied LZ predictor creates a parse tree with probabilities for each page

access. The PPM technique showed the better performance for data compres-

sion and prefetching. An earlier theoretical study had already demonstrated a

close relationship between prediction and compression techniques [Vitter and

'The time interval between two object accesses is discrete.

37

Krishnan, 19911.

Markov chains are sufficient to model many scientific input/output file ac-

cess patterns; however, if a single file has several predictable patterns the use of

a Hidden Markov Model is more appropriate [Madhyastha and Reed, 1997].

Recently Markov-predictors were also designed for CPU prefetching [Phalke and

Gopinath, 1995; Joseph and Grunwald, 19971. Joseph and Grunwald used the

miss address stream as a prediction source. To incorporate document-specific

client interaction times between successive document requests a continuous-
time Markov chain model was proposed [Kraiss and Weikum, 1997; Kraiss and

Weikum, 1998]. The prefetching techniques which were designed for multime-

dia objects on tertiary storage, which fetches the documents with the highest

number of expected accesses within a specified time horizon into secondary
storage.

Branch prediction. Branch prediction reduces performance degradation

due to branch instructions. A pipeline with branch prediction uses some ad-

ditional logic to predict the outcome of a branch decision before it is deter-

mined. The pipeline then begins prefetching the instruction stream from the

predicted path. If the branch is predicted to be taken, the branch target ad-

dress also must be predicted. The processor may predict the branch either by
a static branch prediction [Calder et al., 1997] or dynamic branch predic-
tion [Lee and Smith, 1984; McFarlin and Hennessy, 1986; Kaeli and Emma,

1991; Baer and Chen, 1991; Fischer and Freudenberger, 1992; Calder and

Grunwald, 1994; Talcott et al., 1994] technique. In the static case, (also called

software-directed), the compiler performs static program analysis and select-

ively inserts prefetch instructions. Whenever the instruction executes, the pro-

cessor prefetches from the same predicted path. In the dynamic case (also

called hardware-based), the hardware maintains some past information on the

branch instruction being executed. The processor uses this information to pre-

dict the branch decision according to some prediction algorithm. A good survey

over branch prediction techniques can be found in [Lilja, 1988; VanderWiel and

Lilja, 19971.

Prefetch Threshold. Some statistical prefetching techniques compare the

document probability with a static threshold [Salem, 1991; Griffloen and Ap-

pleton, 1994; Padmanabhan and Mogul, 19961 or a dynamic threshold. The

advantage of a dynamic threshold is that it can consider factors like system

load and capacity, but it involves a higher computation overhead. One dy-

namic threshold algorithm addresses the trade-off between bandwidth usage

and latency by considering the delay cost per time unit and the system resource

cost per packet [Jiang and Kleinrock, 1997; Jiang and Kleinrock, 1998]. In

multimedia systems the size of a document is not uniform [Kraiss and Weikum,

19971. To avoid unnecessary space consumption every document has an as-

sociated weight which is computed by dividing the number of requests to that

document by the size of the document. A prefetch to a document is only is-

sued when it has a higher weight than a replacement victim. In addition to the

prefetch decision the benefit of the prefetch must exceed the penalty.

3.1.1.3 Object Structure-Based Prefetching

Object structure-based prefetching techniques predict the access via pointer ref-

erences from objects. In our work we present a structure-based technique in

Chapter 4 and combine it with a statistical prediction technique in Chapter 5.

The prefetching technique from [Chang and Katz, 1989; Chang, 1989] is a

hybrid between an object structure-based and hint-based technique. The user

provides hints about the data access, such as "my primary access is via configura-
tion relationships". The hint is used by the client to load then the next immediate

object in advance. Considering the high cost of a page fetch this technique can

achieve only small savings in elapsed time. This study was extended to take

into account: multiple hints, a prefetch depth and physical storage considerations

[Cheng and Hurson, 1991b].

A more general technique was implemented on top of the Volcano query

systems [Keller et al., 1991; Maier et al., 1994]. The client object buffer with

an assembly-operator which makes a breadth-first search on all object refer-

ences and loads successive non-resident objects. The assembly-operator obtains

its object information (object structure, object semantics) from a template. In

addition, the assembly operator considered information about the positioning

of the disk head' and statistics about the degree of object connectivity. The

disadvantage of this technique is, that it fetches many unnecessary objects and

pages because it does not consider the probability of object accesses.

In the commercial OODBMS GemStone [GemStone, 19911 the application

programmer has the choice of three functions for loading objects: full-traversal,

traversal- to-level- n and path-traversal. The first function loads all the objects

3This is only possible with physical OlDs.

39

in the transitive closure, the second function loads all the objects to a level n.
The path-traversal is similar to the technique of [Chang and Katz, 1989]. The

Thor database system prefetches a group of objects from the server [Day, 1995;

Liskov et al., 1996]. Several prefetching variants were tested in the experi-

ments: breadth-first, depth-first and class-hint4. The breadth-first techniques

included variants that check if the object is already resident at the client and

variants that do not check this. The breadth-first method with the client check

emerged as the best prefetching variant.

There has been some other work on prefetching pointers in advance which

is not relevant to our work [Butler, 1987; Burdorf and Cammarata, 1990; Cleal,

1996].

3.1.2 Program-Based Techniques

Program-based prefetching techniques provide functions to prefetch and free

pages from the buffer pool [Trivedi, 1977]. Non-linear data structures like bin-

ary trees are a big challenge for program-based prediction techniques because

the reference order is highly data-dependent and prediction is only possible

for a short lookahead [Klaiber and Levy, 1991; Chen and Baer, 1992]. This is

similar to object-oriented databases which are navigating through object refer-

ences.

[Mowry et al., 19921 suggested to decompose a loop into three parts. The

first part generates the pre-run which loads an object k iterations before access.

In the second part the prefetching of objects continues and objects are accessed

by the application. In the third part all objects are already resident for access.

This transformation is done automatically by an algorithm. The problem is that

the program code size is increased. An alternative would be to use prefetch

predicates. [Mowry et al., 1992] did not consider this approach because of

the relatively high costs at run-time. In database systems these costs are low

compared to I/O-costs.

In real-time databases every database access operation was transformed into

an external procedure call with the known and unknown arguments at com-

pilation time [Wedekind and Zoerntlein, 1986; Kratzer et al., 1990]. Such a

procedure determines the set of database pages which will be accessed. This

computation is executed in parallel with the dual database application. The

4Hints to prefetch relevant pointers of the class.

ME

technical synchronisation of both the application and the page computation is

not an easy task.

Deferment of Prefetch Operations. The aim of deferred prefetch opera-

tions, also called scheduling in program optimisations, is to increase the over-

lapping time between I/O and CPU. All the discussed work in this section comes

from the area of compiler construction and microprocessors. The foundations of

scheduling of a prefetch-operation was produced in [Gornish et al., 19901. They

developed a conservative algorithm that computes the earliest time at which a

prefetch-operation could be started. The deferment of prefetch operations was

limited to data dependencies and the control flow. A measure to reduce wrong

prefetches is to defer the start of a prefetch operation behind a loop or branch

[Rogers and Li, 1992]. Furthermore, it is not worthwhile to start the prefetch

operation too early because the data could be invalidated or already replaced

from the buffer [Tuilsen and Eggers, 1993; Tuilsen and Eggers, 1995]. A solu-

tion to this problem is to limit the deferment of a prefetch to a maximal distance

[Chen and Baer, 1992; Chen and Baer, 1994].

Program-based techniques are not important for databases because they do

not consider the content of the buffer pool for a prefetch decision. Nevertheless

the deferment of a prefetch operation to a maximal distance had an influence

on our work in Chapter 4.

3.1.3 Off-line Techniques

Off-line techniques have a perfect knowledge about the future reference pat-

tern. Assuming a perfect knowledge is in general not practical for database

accesses. One exception is an off-line technique, called Prefetch Support Re-
lation [Gerlhof and Kemper, 1994b], stores the precomputed page answer of

a database operation, i.e. all pages which are referenced by a particular op-

eration invocation. In addition, it stores the frequency of page access and the

ordering of the page answer according to the first reference of a page during

the execution of an operation.

Cao et al. [Cao et al., 1995b; Cao et al., 1995a; Cao et al., 1996; Cao, 19961

also used off-line techniques to develop an optimal combined prefetching and

caching technique (see Section 3.3.2). They proposed three simple prefetching

strategies:

41

The Conservative Strategy. The conservative prefetching strategy tries
to minimise the elapsed time while performing the minimum number of
fetches. The conservative prefetching strategy performs exactly the same
replacements as the optimal off-line demand paging strategy MIN [Belady,
19661, except that each fetch is performed at the earliest opportunity.

The Aggressive Strategy. The aggressive prefetching strategy is the strat-
egy that always prefetches the next missing block at the earliest oppor-
tunity. In order to bring in this next missing block it replaces the block
whose next reference is furthest in the future. Notice that aggressive is
not mindlessly greedy - it at least waits until there is a block to replace
whose next reference is after the request to the missing block.

The Controlled-Aggressive Strategy. The controlled-aggressive strategy
behaves like the aggressive strategy but also considers the disk workload.
A prefetch is issued only when the disk is idle.

Kimbrel and Karlin [Kimbrel et al., 1996a; Kimbrel and Karlin, 1996; Kim-
brel et al., 1996b; Kimbrel, 19971 extended the work of Cao et al. for parallel
disk access with two prefetch algorithms:

The Reverse Aggressive Algorithm. At first the algorithm transforms the
reference string into the reverse reference string. Switching between for-
ward and reverse sequences, i.e. fetches become eviction and vice versa.
In the reverse direction the block to evict is the one not needed for the
longest time which is on the same disk as the free disk. This reverse
sequence is then derived to the forward sequence in which evictions be-
come prefetches. The advantage of reverse aggressive over aggressive is
that aggressive chooses evictions without considering the relative loads
on the disk, whereas reverse aggressive greedily evicts to as many disks as
possible on the reserve sequence. In the forward direction, this translates
to performing a maximal set of fetches in parallel.

The Forestall Algorithm. This algorithm is a hybrid between the fixed
horizon algorithm-' [Patterson et al., 19951 and the aggressive algorithm.
Depending on the number of blocks and remaining time to fetch these
blocks it behaves like fixed horizon or aggressive.

5This algorithm uses the average disk access time divided by a system computation time to
determine the start of a prefetch.

42

All the presented techniques in this section assume perfect knowledge. Hav-
ing this knowledge makes it easy to develop an integrated caching and prefetch-
ing technique. Unfortunately most applications do not have this knowledge
which makes these techniques of marginal use. However, an understanding of
techniques that work with perfect knowledge gives us some insight into what is
possible in more realistic situations.

3.1.4 Hint-Based Techniques

The knowledge about future I/O accesses could be obtained from a programmer
or user of the system. The programmers could give hints about their program's
accesses to the file system. Thus informed, the file system could transparently
prefetch needed data and optimise resource utilisation. One example of hint-
based prefetching is Transparent Informed Prefetching (TIP) [Gibson et al.,
1992; Patterson et al., 1993; Patterson and Gibson, 1994; Patterson et al., 1995;
Rochberg and Gibson, 1997; Tomkins et al., 1997; Tomkins, 1997]. Hints can
be divided into hints that disclose (e.g. I will read these 50 files serially and
sequentially) and hints that advise (cache file F).

Hints that advise do not give a lot of usable knowledge to the file system
because it might not be able to accommodate the file access pattern given its
current resource constraints. An implementation into the Mach operating sys-
tem uses the advice-approach [Song and Cho, 1993; Cho and Cho, 1996]. Hints
that disclose are more valuable for portability and flexibility to support global
system resources. The ELFS file system [Grimshaw and Loyot, 1991; Karpovich
et al., 1994] employs the disclosure approach.

Hints could be also be provided by a user of an object-oriented database
[Chang and Katz, 1989; Chang, 1989; Cheng and Hurson, 1991b]. A user
indicates the object access, e.g. access via configuration relationship or version
history.

3.1.5 Other Classifications

[Vitter and Krishnan, 1991] distinguish prediction-based prefetching techniques
according to the training time: On-line techniques make prefetch decisions
based on the past history and off-line techniques use the perfect knowledge of
the future access. [Staehli and Walpole, 19931 classify prefetching techniques

43

for multimedia-applications as follows: periodic, scripted and probabilistic.
Periodic repeatable events (e.g. video-playback and movie sequences) are the

easiest candidates for prediction. In scripted-prefetching, the pattern of mul-

timedia applications is known. It maintains a list of events with associated

request times. All other types of access pattern fall into the last category.

[Kroeger et al., 19971 categorise prefetching techniques for the World Wide

Web into two categories, local-hint and server-hint, based on where the infor-

mation for determining which objects to prefetch is generated. In the local-hint

prefetching technique, the agent doing the prefetching (e.g. a browser-client

or a proxy) uses local information (e.g. reference patterns) to determine which

objects to prefetch. In server-hint based prefetching, the server is able to use

its content specific knowledge of the objects requested, as well as the reference

patterns from a far greater number of clients to determine which objects should
be prefetched.

3.2 Clustering Techniques

This section discusses the inter-dependency of prefetching and clustering. In

Section 3.2.1 we consider this relationship in detail and in Section 3.2.2 we

look at previous evaluations of prefetching techniques under clustering.

3.2.1 Combined Clustering and Prefetching

The different techniques for clustering are mentioned in Section 2.5. This sec-

tion illustrates the relationship between clustering and prefetching:

1. Quality of Clustering. If the clustering of objects onto pages is very good

then prefetching is limited to prefetch only pointers over the page bound-

aries. The high-probability pointers between objects would be clustered

together on a page and pointers with low probabilities would cross the

page border. Prefetching the low-probability pointer could often result in

an incorrect prefetch and would not be very efficient. If the quality of

clustering is low then prefetching has a greater success in saving elapsed
times.

2. Different Access Pattern. Applications access the database according to

different patterns but clustering can be only performed according to one

access pattern. Therefore clustering is a compromise of access patterns
between the needs of several applications. Individual clients can exploit
the navigation through the database differently and clustering can only be
done according to an average access pattern from all the clients or only
according to one client.

3. Clustering Granularity. Objects can be clustered onto pages or segments.
If all the objects of a database are stored in one segment and the segment
fits into memory then the whole segment is loaded into memory on an
object fault. Clustering objects into a segment can reduce the total number
of faulting pointer traversals since a larger proportion of pointers point to
objects within the same fetch unit. However, prefetching segments can be
less effective because the prefetch of a segment might mean that a larger
proportion of unnecessary objects is fetched. Prefetching pages can be
easier to implement because it avoids a mismatch between the size of a
page and the size of a prefetch Unit. No research so far has compared
clustering granularities for prefetching.

3.2.2 Evaluation of Prefetching under Clustering

In the literature prefetching techniques were evaluated under different
clustering algorithms. [Chang and Katz, 1989; Chang, 1989] proposed a
clustering technique which considers I/O operations to perform cluster-
ing. Since the information used by the clustering algorithm is on an in-
stance basis, the clustering algorithm needs to retrieve the physical page
in order to get the corresponding information for the clustering decision.
When looking for a candidate page for placement, the clustering algorithm
may use only the pages available in the buffer pool, avoiding any I/O. Or,
the algorithm may search a limited number of pages on disk. Alternat-
ively, if the number of I/O requests is unbounded, then the algorithm may
use the entire database as a candidate page pool.

[Ahn and Kim, 1997] used two alternative clustering factors, 90%-1% and
80%-5%, from the 001 benchmark to evaluate the goodness of cluster-
ing. [Cheng and Hurson, 1991a] proposed a levelled clustering scheme
under prefetching in which objects connected by one specific relationship
are tightly (primarily) clustered while objects connected by other relation-
ships are loosely (secondarily) clustered. [Gerlhof and Kemper, 1994a]

45

tested their prefetching technique under the greedy graph partitioning al-
gorithm [Gerihof et al., 1993] and random clustering technique. [Keller
et al., 19911 also clustered data randomly, or according to types or ac-
cording to the structure of a component object.

3.3 Buffer Management

This section discusses the interaction between prefetching and buffer manage-
ment. The replacement strategy and the size of the buffer pool for prefetching
are the most important components. In the past, replacement strategies were a
major research area [Effelsberg and Harder, 1984; Robinson and Devarakonda,
1990; Jauhari et al., 1990; Chan et al., 1992; O'Neil et al., 1993; Johnson and
Shasha, 1994; Weikum et al., 1994]. The problem that prefetched data will be
already replaced again on access was also considered [Patterson et al., 1993;
Tulisen and Eggers, 1993; Lee et al., 19941. This problem is even bigger in
microprocessors because of the small on-chip cache.

An unsolved problem is the prefetching quantity, i.e. how many objects or
pages should be requested by prefetching. The optimal quantity changes at
run-time and its size must be adapted to the buffer management strategy. For
prefetch group requests, the timing of the buffer allocation is another factor.
The key question is whether the allocation should take place before or after the
request to the server. A discussion on the interaction of prefetch quantity and
allocation time can be found in [Gerlhof, 19961.

In Section 3.3.1 we discuss replacement decisions in buffer management. A
description of an integrated prefetching and caching is given in Section 3.3.2.
Issues like buffer frame allocation and allocation time are illustrated in Sec-
tion 3.3.3.

3.3.1 Buffer Replacement Strategies

Although it would make sense to treat prefetched pages and demand pages
differently few researchers have made this distinction. Both types of requests
shared the same buffer pool with the LRU-replacement strategy [Palmer and
Zdonik, 1990; Fu and Patel, 1991; Palmer and Zdonik, 1991; Grimsrud et al.,
1993; Pal and Varman, 1992; Curewitz et al., 1993]. Independent of the type
of request, all new pages get the highest priority. The same is true for pages

that are predicted but already resident [Horspool and Huberman, 1987; Wilson

et al., 1994]. [Chang and Katz, 1989; Chang, 19891 used two priority levels:

high and low. It is unclear in this work when high priority pages become low

priority pages. The authors distinguish between two types of prefetching: pre-

fetching within buffer and prefetching within database. The former type only

increases the priority of pages that are already resident in the buffer and the

latter performs requests to the server.

Prefetched pages could also be assigned a higher ageing policy than demand

pages [Horspool and Huberman, 19871. A speed-up factor k, which determines

the ageing factor, had only a low significance to their strategy towards elapsed

time. In a big buffer the number of page faults were reduced slightly but in-

creased slightly with a small buffer.

3.3.1.1 Inclusion Property

[Horspool and Huberman, 1987] developed a prefetching technique with a so-

called inclusion-property. The inclusion-property means that the replacement

strategy is independent of the buffer pool size. Let MEM(g(s), t) be the set of

resident pages at time t with replacement strategy g. Now, all paging policies

have a control parameter of some kind; e.g. the number of frames of main

memory that are allocated by the operating system. g(x) means the replacement

policy g operating with control parameter x. The memory inclusion property

can now be stated as:

x < y -* MEM(g(x),t) c MEM(g(y),t

Page fault rate anomalies cannot occur with any replacement policy that

possesses the memory inclusion property. That is, if a fault occurs at time t when

using control parameter value x, the fault would have occured for any smaller

value of the control parameter too. Conversely, if no fault occurs for value x,

there could not be a fault for any larger values of the control parameter. Some

simple prefetching techniques which, on every reference load the next page into

the buffer pool, e.g. OBL [Joseph, 1970; Smith, 1978b], possess the inclusion-

property. For clarification consider the following situation in a LRU buffer:

On reference to page P3 a buffer miss occurs only in a buffer pool with

less than four pages. This means that the demand prefetching technique is de-

pendent on the buffer size and does not have the inclusion-property. Horspool

47

Page I P, p7 p2 p3 p6 p5 p4

Position 1 	1 2 3 4 5 6 7

Table 3.1: Example LRU buffer.

and Huberman developed then a demand prefetching technique that suppresses
prefetches if they do not occur in all buffer sizes. The physically adjacent page
on disk is only loaded if it is in the LRU queue before the demand page. In our
example the reference of page P3 would not produce a prefetch of page P4 but
the reference of page P5 would generate of request for P6 . [Wilson et al., 19941
criticised this algorithm on the grounds that it allows only very simple demand
prefetching techniques and suggested a modification of the algorithm for more
complex techniques.

3.3.2 Integrated Prefetching and Caching

The first integrated study of the interaction of prefetching and caching strategies
was performed by [Gao et al., 1995b; Gao et al., 1995a; Gao et al., 1996; Gao,
19961. Although prefetching and caching have been studied extensively, most
studies on prefetching have been conducted in the absence of caching or for a
fixed caching strategy. Cao et al. argued that the main complication is that pre-
fetching blocks into a cache can be harmful, even if the blocks will be accessed
in the near future. This is because a cache block could be reserved for the block
being prefetched at the time the prefetch is initiated (see Section 3.3.3.2)6.

The reservation of a cache block requires performing a cache block replacement
earlier than it would otherwise have been done. Making the decision earlier
may hurt performance because new and possibly better replacement opportun-
ities open up as the program proceeds.

An Example: Consider a program that references blocks according to the
pattern "ABGA'. Assume that the cache holds two blocks, that each reference
takes one time unit, that fetching a block takes four time units, and that blocks
A and B are initially in the cache.

The top half of Figure 3.2 shows a no-prefetching policy using the optimal
replacement algorithm. The first two references hit in the cache. The third
reference (to C) misses the cache, thus triggers a fetch of C, replacing B at time

6This is not true in general because a buffer could be reserved on receipt of a prefetched
page.

No Prefetching
time 	 1 	2 	3 	4 	5 	6 	7 	8

access 	A 	B 	 C 	A fetch C
fetch

r cache contents 	NB

Aggressive Prefetching
time 	 1 	2 	3 	4 	5 	6 	7 	8 	9 	10

access 	A 	B 	 C 	 A

	

fetch C 	 fetch A
fetch

cache contents NA

Figure 3.2: Effect of access streams on buffer replacement. A file access stream
for which prefetching hurts performance. Eight time units are required in the ab-
sence of prefetching; ten time units are required when prefetching is done; optimal
replacement is assumed in both cases.

3. Finally, the fourth reference hits in the cache. The execution time of the
no-prefetch policy would therefore be eight time units (one for each of the four
references, plus four units for the miss).

By contrast, the bottom half of Figure 3.2 shows that a policy that prefetches
whenever possible (while making optimal replacement choices) takes ten time
units to execute this sequence. The policy decides to prefetch C at time 2,
resulting in the replacement of A because B is in use at the time; thus the fourth
reference (to A) misses in the cache.

This example illustrates that aggressive prefetching is not always beneficial.
The no-prefetch policy fetched one block, while the aggressive prefetching al-
gorithm fetched two. The price of performing an extra fetch outweighs the
latency-hiding benefit of prefetching in this case. On the other hand, prefetch-
ing might have been beneficial under slightly different circumstances. If the ref-
erence stream had been "ABCB" instead of "ABCA", then aggressive prefetching
would have outperformed the no-prefetch policy. Thus we see that aggressive
prefetching is a double-edged sword: it hides fetch latency but it may increase
the number of fetches.

Gao et al. defined four rules that an optimal prefetching and caching strategy
must follow:

Optimal Prefetching. Every prefetch should bring into the cache the next
block in the reference stream that is not in the cache.

Optimal Replacement. Every prefetch should discard the block whose next
reference is furthest in the future.

Do Not Harm. Never discard block A to prefetch block B when A will be
referenced before B.

First Opportunity. Never perform a prefetch-and-replace operation when
the same operations (fetching the same block and replacing the same block)
could have been performed previously.

These rules are mandatory, in the sense that any algorithm can easily be
transformed into another algorithm, with performance at least as good, that
follows the rules. Cao et al. assume the knowledge of a complete reference
string of blocks. In practice, this knowledge is in most cases not available which
makes it difficult to follow the rules. This study was extended by a polynomial
time algorithm for an optimal prefetching/caching on a single disk [Albers et al.,
19961.

The study of integrated prefetching was recently extended to a network-
wide global memory system [Voelker et al., 19981. Co-operative prefetching
permits multiple network nodes with idle CPU cycles and memory pages to co-
operate in prefetching on behalf of active nodes. This prefetching to global
memory can reduce stall time without the risks of aggressive prefetching on the
active nodes. The prefetching algorithm is a hybrid that combines aggressive
prefetching into global memory with more conservative prefetching into local
memory.

3.3.3 Buffer Allocation

Buffer allocation can be distinguished in the number of frames that we allocate
for prefetching and the time when we allocate frames.

3.3.3.1 Buffer Frame Allocation

Prefetched pages can be placed in the demand buffer pool or in a separate buffer
pool for prefetching. The advantage of two separate buffer pools is:

50

A prefetch never replaces a valuable demand page.

Prefetched pages that are never referenced by the program are easier to
manage.

Even if a prefetched page is referenced by the program it cannot replace
a demand page too early.

Separate buffers for demand fetches and prefetches were introduced for the
first time in the IBM DB2 system [Teng and Gumaer, 19841. DB2 manages two
buffer pools for two types of access pattern: all pages come at first into the buf-
fer pool for sequential access. If a page is referenced again it is moved into the
buffer pool for multiple accessed pages.7 This arrangement was made to avoid
problems with both access patterns in one buffer pool [Sacco and Schkolnick,
19861. Due to the fact that DB2 prefetches only sequential access pages the dif-
ferent treatment of demand and prefetch pages is an artefact of the DB2 buffer
philosophy.

The work of [Freedman and DeWitt, 1995] also separated demand and pre-
fetched pages in two buffer pools. In contrast to [Teng and Gumaer, 1984]
they gave repeatedly accessed pages a lower priority. The reason was that video
access pattern are mostly sequential and are low in locality.

In the area of operating systems [Gao et al., 19961 used a two-level cache
management strategy. The kernel decides how many cache blocks each pro-
cess may use. Each process decides how to use its own blocks for caching and
prefetching.

3.3.3.2 Buffer Allocation Time

The time for the buffer allocation can be classified into two possibilities:

Binding load. The client allocates a buffer before the request to the server
and fixes it.

Non-binding load. On receipt of the data the client checks the buffer
pool. The advantage is that until receipt no data will be replaced that

'This is similar to the 2Q-buffer [Johnson and Shasha, 1994] which is in turn a simple
implementation of the LRU-2-buffer [O'Neil et al., 1993] and similar to the W 2R algorithm
[Jeon and Noh, 1997; Jeon and Noh, 1998].

51

i

could be still in use. The disadvantage is that if many pages are fixed in

the buffer pool the client cannot allocate enough space.

In the microprocessor area the distinction between binding load and non-

binding load is even more significant. In the case of the binding load the target

address (in most cases in a register) must be known [Farkas et al., 1995] which

is not the case with a non-bind load. The idea of the non-bind load is only to

bring the data closer to the microprocessor cache [Chen and Baer, 1992]. In the

database area, the IBM DB2 system [Teng and Gumaer, 1984] is one of the few

known systems that reserves buffer space before the request.

Overruns. Smith [Smith, 19821 reported that prefetching can produce so-

called overruns if the client is not able to service the incoming data. The con-

sequence is that the client has to request the data again. Buffer replacement is

an expensive operation in databases. At the time when the client is looking for

a free buffer this overrun effect can happen. Data packets have to be dropped

because the client is otherwise busy with the buffer management. Nowadays

thread technology could alleviate this problem.

3.4 Client/Server Architecture

The efficient implementation of a prefetching technique is important for im-

proving performance. One consideration is the prefetch unit of I/O between

client and server, see Section 3.4.1. In Section 3.4.2 we discuss implementation

issues of prefetching in multithreaded systems. The location of the prefetch en-

gine, at the client or server, is explained in Section 3.4.3. Aggressive prefetching

can also have negative effects on performance. These issues are mentioned in

Section 3.4.4.

3.4.1 Prefetch Granularity

A further classification characteristic for prefetching techniques is the unit of

prefetching. The oldest prefetching technique are from the area of operating

systems and are based on pages [Joseph, 1970; Baler and Sager, 1976]. A cost

model for the optimal prefetching quantity was developed [Smith, 1978b]. The

model is based on sequential access and uses the probability values to estimate

the access of the next k pages. An object-based prediction technique can be

52

adopted to load either segments or a group of objects from the server [Palmer
and Zdonik, 1991]. The disadvantage of an object-based prediction technique
is that it involves a very high cost of predicting object access.

Many techniques restrict the quantity on a system constant, e.g. a page
size [Teng and Gumaer, 1984; Fu and Patel, 1991; Palmer and Zdonik, 1990;
Palmer and Zdonik, 1991; Pai and Varman, 1992; Pal and Varman, 1992; Cure-
witz et al., 1993; Mohan et al., 1993; Wu et al., 19941. In [Bianchini and LeB-
lanc, 19941 different prefetch quantities were investigated through profiling
and compiled into the application. For news-on-demand applications a spe-
cial prefetching technique was developed to increase the throughput by using
unused buffer space. Other systems limit the number of concurrent pending re-
quests through a system constant [Klaiber and Levy, 1991; Mowry et al., 1992;
Chen and Baer, 1994; Patterson et al., 19951.

For the reason of completeness we also want to mention that there ex-
ists prefetching techniques for files [Griffloen and Appleton, 1993; Griffloen
and Appleton, 1994; Griffloen and Appleton, 1995a; Griffioen and Appleton,
1995b; Patterson and Gibson, 1994; Cortes et al., 1997] and multimedia objects
[Staehli and Walpole, 1993; Ng and Yang, 1994; Rubine et al., 1994; Chaudhuri
et al., 1995; Jeong et al., 1997; Gollapudi and Zhang, 1998] but they are not
relevant for the database area. File systems save data on blocks which are sim-
ilar to database pages and most of the work in file systems concentrates on
inter-block access patterns. In constrast, we are interested in obtaining inter-
page access patterns by analysing object relationships.

3.4.2 Prefetching and Multithreading

The first implementation of a multithreaded architecture in a client/server data-
base system was conducted by [Gerlhof and Kemper, 1994a] in the MERLIN
system. The implementation was a motivation for our implementation of a
multithreaded prefetching architecture into EXODUS. In the MERLIN system
each client creates three threads: one for application processing, one for pre-
fetching and a third for receiving pages from the server. The server creates two
threads for each client: one for demand requests and one for prefetch requests.
It seems that the multithreaded software was only evaluated on a uniprocessor;
a multi-processor platform would even ensure higher potential in the reduction
of elapsed times.

53

Combined multithreading and prefetching was also the subject of a study in
the area of microprocessors [Lim and Bianchini, 1996]. The implementation on
the MIT Alewife Machine showed that only a few of the applications can be-
nefit significantly from multithreading (up to 10% improvement), while some
but not all applications can benefit from prefetching (20-50% improvement).
The main reason behind this is the relatively short remote cache miss latencies
(< 150 cycles). With short latencies, prefetching has an advantage over mul-
tithreading because a context-switch usually consumes more processor cycles
than a prefetch instruction.

Another study evaluated prefetching and multithreading for a bus-based
shared memory multiprocessor [Moreno et al., 1997]. The result of the tests
was that sequential-prefetching can reduce the influence of medium latencies.
The traffic on the bus is the key bottleneck and limits the effect of prefetching
when access probabilities are close to 0.5 percent. Multithreaded architectures
with 2 to 8 contexts' have better processor utilisation than single-threaded ar-
chitectures with the same overall number of contexts. This increase in the pro-
cessor utilisation can be exploited to speed up parallel applications.

3.4.3 Location of the Prediction Engine

The most important information that is exchanged between application and
prediction engine is the actual navigation context, i.e. on which page or object
the application is currently working. This information exchange should not
be expensive because it is needed frequently. That is why the location of the
prediction engine is important for the success of prefetching. In the following
sections we discuss the advantages and disadvantages of having the prediction
engine at the client or at the server. Please note that this discussion is only
important for the prediction-based prefetching techniques.

3.4.3.1 Prediction Engine at the Client

If the prediction engine is at the client the request for prediction information is
faster and more efficient than requesting this information from the server. An-
other big advantage is that the prediction component is able to check whether
objects or pages are resident in the local buffer pool. In this case the prediction

8A context contains information about the page tables of a process.

54

engine can make prefetches that are-worthwhile. In addition, the communic-

ation overhead and buffer management will be reduced and the server load

decreases as well.

The problem of training-based prediction techniques at the client is that

the loading of the prediction information is expensive. Either the prediction

information is built into the application program (at compile time) or the client

requests these pages from the server. The last approach is more efficient in

memory management but involves high run-time costs. In parallel database

applications it was discovered [DeWitt, David; Gray, Jim, 19921 that long start

and initial set-up costs for achieving parallelism consumed a major part of the

application elapsed time. This is probably also true for the prediction engine at

the client side.

In [Palmer and Zdonik, 1990; Palmer and Zdonik, 19911 a training-based

object-prediction engine at the client side was used; in [Curewitz et al., 19931

a similar prediction engine was developed, this time page-based, in which they

concluded that in general the prediction engine cannot be build up to its full

size because of memory restrictions. In our architecture a client side prediction

engine is also employed.

3.4.3.2 Prediction Engine at the Server

At the first glance it seems to be a good idea to have the prediction engine at the

server because that is where the database pages are stored and the prediction

information that is associated with them. Unfortunately there are some new

problems that did not occur when the information was located at the client:

The prediction engine has no access to the buffer pool of the client which

makes the prediction more difficult. The server does not recognise when

the client stalls for an object. To make the prediction work successfully

the server has to keep track of all the objects or pages that are in the

client buffer pool and the client has to update the server when these items

of information are changed. For example this is a necessary assumption

in buffer-coherence protocols with a call-back mechanism, which caches

locks after the transaction end [Franklin et al., 1993]. This information

can be piggy-backed with the data transfer.

The client does not know the currently prefetched data from the server.

Therefore on a cache miss the client has to send a request to the server

55

which could be already on its way.

The server is already the bottleneck of the system and prefetching would

increase the server workload.

In the Thor database [Liskov et al., 1996; Day, 1995] a prediction engine

was implemented at the server. Various prefetching techniques were tested on

the transitive closure of an object graph to the client. The transfer to the client

was always a group of objects. [Ger1hof, 19961 also implemented a server-side

prediction engine.

Rather than speculatively serving document to clients, servers could assist

clients in prefetching decisions [Bestavros, 1996]. In particular, servers could

attach to each document they serve a list of document identifiers that are highly

likely to be accessed in the near future, leaving it to clients what to prefetch.

Consumer-oriented (client-side) prefetching and producer-oriented (server-

side) prefetching has also been studied in the area of shared-memory multi-

processors [Ohara, 1996]. The simulation result showed that the qualitative

advantage of producer-oriented prefetching can yield a slight performance ad-

vantage when the cache size and the memory latency are very large. Overall,

however, deliver turns out to be less effective than prefetch for two reasons.

First, prefetch benefits from a filtering effect9 and thus generates less traffic

than deliver. Second, deliver suffers more from cache interference than pre-
fetch.

3.4.4 System Workload Considerations

Incorrect prefetches have a negative effect on the network bandwidth [Wang

and Crowcroft, 1996]. There is a general trade-off between bandwidth and

latency. As we reduce the threshold for statistical prefetching, the latency may

improve but at the price of increased bandwidth consumption. A study on FTP

shows that the latency can be reduced by 67% with a 7-fold increase in band-

width [Touch and Farber, 19941.

Prefetching also affects the queuing behaviour of the network [Crovella and

Barford, 1997]. Even when prefetching adds no useless traffic to the network, it

can have serious performance effects. This occurs because prefetching changes

9Prefetch only cache lines that are not in the cache.

56

the pattern of demands that the application places on the network, leading
to increased variability in the demands placed by individual sources and the
network traffic as a whole. Increases in traffic variability directly results in
increased average packet delays due to queuing effects.

3.5 Other Issues

This section discusses other issues that do not fit in the previous categories.
The efficient scheduling of disk requests is the subject of Section 3.5.1. In Sec-
tion 3.5.2 we briefly mention the prefetch from multiple disks or multiple pro-
cessors in parallel. Prefetching multiple levels in memory hierarchy is explained
in Section 3.5.3 and finally Section 3.5.4 lists some performance metrics to
measure the success of prefetching.

3.5.1 Disk Scheduling

Because of the physical attributes of disks, careful scheduling of disk accesses
can provide significant improvement in performance [Seltzer et al., 19901.
Without prefetching, scheduling opportunities only come from asynchronous
I/O activities or multiple processes. Prefetching provides new opportunities for
disk scheduling because prefetch requests can be generated in group. A simple
heuristic, limited batch scheduling, considers the workload of disks [Gao et al.,
1996]. Every time the disk becomes idle, the prefetcher tries to issue a batch of
prefetch requests, instead of just one request. There is a batch size limit on B to
ensure that the prefetcher will not issue more than B requests. ,These requests
are issued to the disk driver, which then sorts them and all other requests into
order of increasing logical block number, so that disk fetches are performed in
sorted order.

In addition to sorting disk requests, throughput can be increased even more
when page requests are in exactly sequential order (e.g. 1,2,3) [Tan et al.,
19951. A test on the SP2 showed that when requests are read from disk the
exact order in which they arrive (roughly sequential order), the filesystem
and disk throughput is about 1 MB/s. However, measurements also showed
that an SP2 filesystem and disk are capable of delivering about 3.5 MB/s when
the access is in exactly sequential order. Therefore the prefetching technique

57

fetches disk pages always in exactly sequential order and also fetches unneces-

sary pages to maintain this order. For example, the last fetched page from the

disk was p2. When the next request for page arrives (page pj) then the server

reads pages Pi+1 through pa+k (k is some arbitrary constant) into the buffet

In the database literature some authors recommend giving prefetch opera-

tions low priority [Palmer and Zdonik, 1990; Palmer and Zdonik, 1991; Pat-

terson et al., 1993; Curewitz et al., 1993; Datta et al., 1995] and similar in

microprocessors [Chen and Baer, 1992; Rogers and Li, 1992]. Some authors

even suggested to start prefetches only when the disk is idle, i.e. not serving a

demand page request [Datta et al., 1995; Gao, 1996; Kimbrel, 19971. Imple-

menting priorities into queues induces a higher CPU overhead but it is small

cost in comparison to the disk retrieval time.

3.5.2 Parallel Prefetching

The effectiveness of caching and prefetching in the parallel environment in

MIMD multiprocessors has been studied in [Kotz and Ellis, 1990; Kotz and El-

lis, 1991]. For the efficient use of multiple disks there are theoretical [Varman

and Verma, 1996; Barve et al., 1997] and practical [Lee et al., 1997; Kallahalla

and Varman, 19981 studies on parallel disk prefetching. The special problem

of improving the performance of external merging in a parallel I/O system us-

ing read-ahead prefetching and disk scheduling was studied by Lee and Varman

[Lee and Varman, 1995b; Lee and Varman, 1995a].

3.5.3 Memory Hierarchy Prefetching

Prefetching techniques in databases can be basically applied to two levels in the

client/server architecture:

Disk-Server. The server prefetches disk pages from its local disk into

memory to avoid the most expensive cost: seek time and rotational latency

[Ghandeharizadeh et al., 1991].

Disk-Client. The prefetched page is inserted into the server's memory and

client's memory. This type of prefetch has the highest savings in elapsed

time because it masks disk and network access, and it used in most sys-

tems.

3. Server-Client. The client prefetches only pages that are resident at the
server's buffer pool. The advantage of this approach is that prefetch re-
quests do not block demand requests at the disk but the full potential of
latency reduction cannot be achieved.

To improve CPU performance some researchers suggested to prefetch into
a disk cache. A disk cache is part of a computer system's memory hierarchy
between the disk device and the CPU of the computer. Disk caches typically
have 5%-30% miss ratios and prefetching into the disk cache can reduce the
miss ratio [Smith, 1985; Grimsrud et al., 1993; Zivkov and Smith, 19961.

Proxy servers are a conduit between a world wide web browser and the in-
ternet. A proxy server is usually installed beside a firewall gateway on a border
network segment where an enterprise network and the internet are connected.
Each client sends its HTTP request to the proxy server instead of sending it dir-
ectly to the servers. To avoid request stall times, data could be forwarded by a
pre-push technique from the proxy to the client browser [Fleming et al., 1997;
Jacobsen and Gao, 19981.

An integrated approach was proposed by Kraiss and Weikum [Kraiss and
Weikum, 19981 to the vertical data migration between the tertiary, secondary
and primary storage. This approach reconciles speculative prefetching to mask
the high latency of the tertiary storage, with the replacement policy of the doc-
ument caches at the secondary and primary storage level. It also considers
the interaction of these policies with the tertiary and secondary storage request
scheduling. Tertiary storage provides huge and cheap storage capacities but the
transfer rate and the robot arm of the storage library are potential bottlenecks.
The transfer rate is fairly limited and so prefetching can lead to substantial
queuing delays in serving other pending document requests. Also, the robot
arm incurs a high latency in every volume exchange.

3.5.4 Performance Metrics

The obvious aim of a prefetching technique is the reduction of latency but there
are several important performance metrics:

1. Latency reduction. In most cases, latency reduction is expressed as the
amount of savings of the prefetch application in proportion to the demand
application. Latency reduction can be further classified into:

59

. Hidden latency. The user-visible latency that is avoided because the
page has been prefetched completely before access.

Reduced latency. At the time of a page fault the page is currently
prefetched and the client stalls for a period that is less than the whole
page fetch time.

Number of page faults. The accuracy of a prefetching technique could
also be measured by the number of page faults at the client. The prob-
lem of this metric is that it does not consider reduced latency, which is
important for object-oriented databases.

Wasted system resources. Idle times of the client and server CPU, the
network and the disk could be used for prefetching. This metric measures
the wasted system time in percent.

Time and space consumptions. The amount of CPU consumption for
predicting and prefetching pages. The space consumption considers the
size of prediction information on disk.

3.6 Summary

Prefetching techniques have been studied extensively in many areas of com-
puter science. Even in OODBMSs, prefetching has been the subject of some
studies. Most of these concentrated on showing the benefits of prefetching. In
this thesis we want to give a better understanding under which circumstances
prefetching is more and less successful.

A major difference to previous work in OODBMS prefetching is that our
work considers the probability of navigation from one object to another object.
We study prefetching under different object relationship structures with high
and low object relationship probabilities. By doing so we get an idea which
access patterns are most suitable for prefetching.

In the next research chapter we describe our implementation into the EXO-
DUS storage manager.

TO

Chapter 4

Object Structure-Based Prefetching

4.1 Introduction

A serious evaluation of a prefetching technique requires a real client/server sys-
tem environment. For that reason we decided at the beginning of our research
to implement a prefetching environment into an existing storage manager. The
requirements for the selection of a storage manager were:

Client/Server Architecture;

Source Code Availability;

Widespread Use of the System;

Support for Sun C++ and Solaris.

All these requirements were met by ESM. We implemented a prefetching
environment into ESM by using Solaris threads. The design of the prefetching
client and the interaction with the server is described in Section 4.2. We also
implemented a simple prefetching technique into ESM which is explained in
Section 4.3. The basic idea is to prefetch all the objects to a depth which is in-
fluenced by the current client navigation. The depth is determined by the page
fetch latency divided by the time of object processing. The technique also con-
siders the branch of object relationships and the frequency of non-resident ob-
jects in the transitive closure. We created two benchmarks to study the general
benefit of a prefetch and our proposed technique. All the results are presented
in Section 4.4. Finally, in Section 4.5 we summarise our experience from the
ESM implementation.

61

4.2 Prefetching Architecture

In this section we describe our implementation of a prefetching environment
into the ESM client. At the beginning, in Section 4.2.1, we mention the goals
for the implementation. The changes to the ESM client are explained in Sec-
tion 4.2.2 and to the ESM server in Section 4.2.3. In Section 4.2.4 we discuss
other detailed implementation issues.

4.2.1 Implementation Goals

To achieve the main goal of a prefetching technique, i.e. saving elapsed time,
an efficient implementation is essential. As a consequence, we defined the fol-
lowing design goals for the ESM implementation:

Minimal Synchronisation Cost. Access to global data is protected by
mutexes. Mutexes allow only one thread at a time to access global data;
other threads have to wait until the mutex is released. If the global datum
is frequently used then the waiting time of other threads is increased.
Special care must be taken to reduce the waiting time of the application
thread because this has a direct effect on the total elapsed time.

Concurrent Thread Execution. The concurrent execution of threads can
be achieved through multiprocessor machines. This is especially import-
ant for the CPU-bound threads, e.g. application processing and prediction.

Minimal Prediction Cost. The amount of storage space and computation
time is obviously dependent on the prediction algorithm. For the imple-
mentation we have to use the adequate data structures to compromise
between time and space.

For the concurrent execution of the application and the prefetch system we
used the Solaris thread interface. Multithreading on its own has the following
benefits:

Increased application throughput and responsiveness;

Performance gains from multiprocessing hardware (parallelism);

Efficient use of system resources.

62

We also considered the POSIX thread interface for our implementation but
abandoned this concept by reason of its higher implementation overhead.

4.2.2 ESM Client

Figure 4.1: Prefetching architecture.

As depicted in Figure 4.1, the database client is multithreaded. The AppThread
is responsible for the processing of the application program and the Prefetch-
Thread is responsible for fetching pages in advance into the buffer pool. There
can be one or multiple PrefetchThreads. Each thread has one associated socket-
connection to the server. The task of the PredictThread is to compute the rel-
evant pages for prefetching. This computation can be done either on-line or
off-line. The FlushThread pre-flushed dirty pages out of the buffer pool to the
server and disk. The Prefetch Object Table (POT) informs the PrefetchThread
which pages are candidates for prefetching from the current processing of the
application. The PrefetchList is a list of pages which are currently prefetched.

At the beginning of a transaction the AppThread requests the first page from
the server by a demand read. The PrefetchThread always checks which objects
the AppThread is processing. Having obtained this information, it consults the
POT for a page to prefetch and checks if this page is already resident. If there is
no page to be prefetched the PrefetchThread waits on a semaphore, otherwise
the page is inserted in the PrefetchList and the request is sent to the server.
The PrefetchThread goes into the sleep state until the server responds with the

63

required page and the client inserts the page into its buffer pool. Eventually the
page is removed from the PrefetchList and inserted into the hash table of the
buffer pool.

When the Applhread requests a new page, it first checks if the page is in the
buffer pool. If the page is not resident then it checks the PrefetchList. In case
the page has been prefetched the AppThread waits on a semaphore until the
page arrives, otherwise it sends a demand request to the server and also inserts
the page into the PrefetchList to avoid a double request for a page.

One prefetch thread can request multiple pages by one request but when
a new context requires another prefetch then multiple prefetch threads are re-
quired. The prefetch threads are allocated to a prefetch thread pool in which
prefetch threads are either idle or busy. The number of simultaneous prefetch
requests determines the number of threads. Most of our prefetch algorithms
analyse past behaviour which also gives us information about how many threads
are required at each time interval.

Prefetch threads are mostly idle as they await the completion of I/O. This
means that several threads can be allocated to a single processor and the threads
will not have to wait for an operating system time-slice to complete before
they can execute. Each prefetch thread runs on its own LWP1 and while one
prefetch thread blocks on I/O, its LWP gives up the control of the processor and
another LWP with its prefetch thread can work on the processor. This concept of
LWPs is valuable for prefetching in view of the fact that pending requests never
block the processors. The Solaris operating system interface offers a function
to bind one LWP to one processor to ensure the parallel execution of threads.
However, this facility is not very flexible and did not show any improvements in
our performance measurements.

In the asynchronous prefetching architecture of [Gerlhof and Kemper,
1994a] the client has one thread for application processing and two prefetch
threads, one for predicting and prefetching pages and one for receiving pages
from the server. Presumably this architecture was designed for a uniprocessor
machine. The general advantage is that the synchronisation cost between the
threads is minimal. On the other hand, the major disadvantage is that if the
prediction cost is high it unnecessarily delays the prefetching operation which
is contradictory to the aim of a prefetching technique. Another disadvantage is

'Lightweight process (LWP) can be thought of as a virtual CPU that is available for executing
code.

M.

the neglect of parallelism. In Figure 4.6 we have shown that receiving a page

from the network is an expensive operation. If this operation is not done in par-

allel, it has the following two implications (1) elapsed time could be increased

(if applications stall) and (2) the network receive buffer could get exhausted

so that incoming data cannot be stored anymore and consequently have to be

requested again.

4.2.3 ESM Server

The multithreaded software was not incorporated into the ESM server because

of its complexity. Although it is not multithreaded it can run many tasks as

concurrent processes on one processor. If one task stalls for I/O another task

is scheduled on the processor. The server also forks a new process, the disk

manager, for every disk volume. Communication between server and disk ma-

nager is achieved by shared memory. The server puts a request for a new page

in a disk queue and the disk manager retrieves the page from the volume and

copies it into the buffer pool of the server. These interprocess communication

costs could be drastically reduced by using lightweight threads. The efficient

support of parallelism by threads is another performance improvement and is

part of future work. Nowadays most OODBMS servers employ multithreading.

One change that we had to make to the server is the collection of object re-

lationship information. This information is essential for the client to make pre-

fetch decisions. Every time a user updates an object relationship all prefetching

clients have to be informed about the change. The content of this information

simply comprises the OlD with the list of referenced OlDs. The size of an ESM

OlD is 12 bytes. If we let flop be the number of pointers of an object and fiCO

be the number of updated objects then the occupied space can be computed as

follows:

space in bytes = 12 . (nop + 1) . rico 	 (4.1)

This information can be piggybacked to the data transfer to the client.

4.2.4 Implementation Issues

For the parallel execution of threads on the client, synchronisation mechanisms

are required. The access to the buffer pool is protected by mutexes, which

65

means that only one thread at a time is able to make a residency check or ma-
nipulation. Mutexes are also used for access to the PrefetchList, the hash table
for resident pages and some other global variables. When either the AppThread
or the PrefetchThread is idle they wait on a semaphore.

The Solaris thread interface provides a function to give threads priorities'.
The AppThread has the highest priority to make sure that the application pro-
cessing always gets scheduling priority on one of the CPUs before the pre-
fetch threads. PrefetchThreads have lower priorities but higher than the Pre-
dictThread and the FlushThread. The FlushThread has the lowest priority
because prefetching guarantees higher savings in elapsed time than flushing.
The assumption of this design is that prefetch threads get scheduled on other
processors; otherwise the AppThread gets a lower priority than the prefetch
threads. On a uniprocessor, a subtler approach to allocating priorities would
be needed in order to strike a balance between application processing and pre-
fetching. The AppThread is a CPU-bound thread which runs until an object
fault occurs. On the other hand, the PrefetchThread is I/O-bound which means
it needs only a short CPU processing time and spends most of its time waiting
for the completion of I/O. Now if the AppThread has a high priority on a uni-
processor, the PrefetchThread would be only be scheduled when the AppThread
gives up control, i.e. on a object fault. By that time the prefetch would unne-
cessary. Therefore on a uniprocessor the PrefetchThread gets a higher priority
than the AppThread. To avoid the endless running of the AppThread, it has to
give up control after a change of context.

4.3 The OSP Prefetch Algorithm

The basic idea of the object structure-based prefetch algorithm OSP is ex-
plained in Section 4.3.1 and the buffer replacement strategy is described in
Section 4.3.2.

2Priorities in Solaris are integer values from 0 to 127.

4.3.1 Prefetch Algorithm

4.3.1.1 Description

The general idea of this technique is to prefetch pages well in advance accord-
ing to the context of the client navigation. The depth of the number of objects
to be prefetched is determined by the time of a page fetch divided by the time of
processing one object. The PrefetchThread observes the navigation of the App-
Thread through the object graph and prefetches all objects with non-resident
pages ahead. The PrefetchThread operates like a moving window in front of
the Applhread.

We obtain the prediction information from the object references without
knowledge of the object semantics. Considering the object structure in a page,
we identify the objects which have references to other pages (out-refs). One
page could possibly have many out-refs but sometimes it is not possible to pre-
fetch all pages due to time and resource limitations. Instead, we observe the
client navigation through the object net. We define an object that has a refer-
ence to an object in another page as an Out-Ref-Object (ORO) and the object
in the other page as a Page-Border-Object (PBO). We know which objects have
out-refs and when we identify that the application is processing towards such
an PBO, the out-ref page becomes a candidate for prefetching.

The prefetch starts when the application encounters a so-called Prefetch
Start Object (PSO). Although the determination of OROs and PBOs is easy,
determining PSOs is slightly more complicated. There are two factors that com-
plicate finding PSOs:

1. Prefetch Object Distance (POD)

For prefetching a page it is important that the prefetch request arrives at
the client before application access to achieve a maximum saving. The
POD defines the distance of n objects from the PSO to the PBO object
which is necessary to provide enough processing to overlap with prefetch-
ing. If there are several paths to an object, then we compute a mean
distance from the PSO to the PBO.

Let C f denote the cost of a page fetch and let CO3 denote the cost of object
processing, i.e. the client processing time required before the object can
be used by the ongoing computation.' We distinguish between a page

3Also called inter reference time.

M.

fetch from server memory and one from the server's disk. The cost of
object processing is the ESM client processing time before the application
can work on the object. Additionally we could use the expected amount
of processing from the application plus user waiting time'. We assume
both parameters, C 1 and CO3, to be constant. In practice, the page fetch
costs depends on the server and disk workload which could be taken into
account in our model by using different page fetch cost values according
to the systems workload. Then POD is computed as follows:

POD =L cop

If the prefetch starts before the POD, a maximum saving is ensured, how-
ever, if it starts after the POD, but before access, some saving can still be
achieved (see Section 4.4.3).

2. Branch Objects

A complex object has references to other objects. The user of the appli-
cation decides at a higher level the sequence of references with which to
navigate through the object net. We define a branch object as an ob-
ject which has at least two references to other objects. Objects that are
referenced by a branch object are defined as a post-branch object. For
example in Figure 4.2 we have a object hierarchy. The object with the OlD
1 would be defined as a branch object as it contains a branch in the tree
of objects. Objects with OlD 2, OlD 6 and OlD 10 would be defined as
post-branch objects because they are the first objects de-referenced by a
branch object.

For every identified ORO in the page we compute the PSO by the following
reverse algorithm:

Identify the referenced PBO by the ORO.

Compute the POD to get the distance of n objects from the PSO to the
PBO.

Determine the PSO by following the object reference n objects in reverse
order from the PBO. If there are not enough objects in the page before the

4User waiting time means the time the user is not entering new commands, i.e. watching
results at the screen.

Figure 4.2: Object relationship example.

PBO, then we would identify an object of a previous page in the object
graph as a PSO.

If the object is already identified as a PSO and the previously identified
PSO has different post-branch objects and a different out-ref page then
we would identify the post-branch objects of the object as PSOs. This
modification makes sense because many object-oriented relationships are
organised like tree structures. This step is executed after we have defined
all PSOs from the PBOs in a page.

If a PSO has multiple pages to prefetch then a page q is assigned a weight
according to the number of objects, resident on current page p that have
a pointer to page q, in the forward sequence of depth n from the PSO. The
pages are then prefetched according to descending weights.

4.3.1.2 An Example Identification Process

Defining post-branch objects as PSOs can improve the accuracy for the predic-
tion and reduces the number of adjacent pages to prefetch. For example in
Figure 4.2 we would identify OlDs 5, 9 and 13 as OROs and OlDs 14, 17 and
20 as PBOs. In this example we assume a POD of 5 objects. From OlD 14 we
would go through the chain backwards by 5 objects and identify OlD 1 as a

PSO. Then we would do the same for the OlDs 17 and 20 and identify OlD 1 as
the PSO for both. After analysing the whole page we would find out that OlD
1 has three PSOs with different post-branch objects and different out-ref pages.
In this case we would identify the post-branch objects of OlD 1 (OlD 2, 6 and
10) as PSOs instead of OlD 1.

4.3.1.3 Design Issues

The novel idea about our technique is to make prefetching adaptable to the
client processing on the object net. Because the cost of a page fetch is high we
try to start the prefetch early enough to achieve a high saving but not too early
to prefetch inaccurately. In contrast to the work of [Keller et al., 19911, we do
not prefetch all references recursively; instead we select the pages to prefetch,
dependent on the client processing. Recursive object prefetching also has the
problem that prefetched pages can be replaced again before access. Adaptive
object prefetching limits the number of prefetch pages to the adjacent pages.

LIIPSO IIIIIII1-H RefPage1 	RefPagej
[PID] 	[PID]

Figure 4.3: One entry in the POT

Each page of the database is analysed off-line. The Analyser stores this
information in the POT for every database root'. Figure 4.3 depicts the layout
of one entry in the POT. A PSO has one or more associated RefPages to prefetch.
Entries for one page are clustered together on disk. The overhead for this table
is quite low as it only contains a few objects of the page. At run time, the
information from the POT is used to start the prefetch requests. Using the
defined PSOs by the reverse algorithm in the forward sequence means that we
prefetch all the objects in the time depth of POD f . Let 0 be a set of persistent
objects. Then we define o, to be the current object in the navigation process
and o . . 	be the set of objects in the depth of PODpf to be prefetched.

We assume that the run time system allocates enough threads for prefetch-
ing. If essential pointers for the navigation are updated in a transaction we
would invalidate the POT for this page and modify it after the completion of
the transaction. This prefetching technique is not only useful for complex ob-
jects, it can also be used for collection classes (linked list, bag, set or array) in

'This is important because objects on the same page could belong to different roots.

70

OODBMSs. Applications traverse an object collection with a cursor. With PSO

and PBO it would be possible to prefetch the next page from a cursor position.

In the description of our technique, the object size is assumed to be smaller

than the page size. If the object is larger than a page, prefetching can be used

to bring the whole object into memory.

The prediction information can be gathered either by an online-forward or

by an offline-reverse algorithm (described above). An online-forward algorithm

seeks non-resident objects in the forward direction of the object graph. Both

algorithms have advantages and disadvantages. The advantages of the offline-

reverse algorithm are:

It has no online computation for every object which delays the prefetch

unnecessarily and reduces the saving times.

If complex relationships exist, we could use a method called hitting times
(see Section 5.2.3) to compute the mean access time.

There is no PredictThread which could interfere and delay the AppThread

or PrefetchThread.

The online-forward has the following advantages:

Object pointers may change their values dynamically during execution.

An online approach is therefore more up-to-date.

It consumes no disk space for prefetch information.

It can more easily consider variable parameters, e.g. the page fetch time

varies according to the workload of the system.

If object relationships are complex, identifying objects with the reverse

algorithm may be difficult and results in many PSOs.

We opted for the offline-reverse approach in our implementation because of

its higher savings in elapsed time. OODBMSs often do not have high processing

times on objects which makes an offline approach more pertinent.

71

4.3.2 Replacement Policy

In the ESM client it is possible to open buffer groups with different replacement

policies (LRU and MRU). Freedman and DeWitt [Freedman and DeWitt, 1995]

proposed a LRU replacement strategy with one chain for demand reads and

one chain for prefetching. We also plan to use two chains with the difference

that when a page in the demand chain is moved to the top of the chain, the pre-

fetched pages for this page are also moved to the top. The idea of this algorithm

is that when the demand page is accessed, it is likely that the prefetched pages

are accessed too. If a page from the prefetch chain is requested it is moved into

the demand chain.

4.4 Implementation Results

To understand the results of our implementation we must first explain the

system environment in Section 4.4.1 and the benchmark description in Sec-

tion 4.4.2. Then we present some theoretical results in Section 4.4.3 and the

implementation results in Section 4.4.4.

4.4.1 System Environment

For the ESM server we need a machine (called Dual-I6) configured with a large

quantity of shared memory and enough main memory to hold pages in the buf-

fer pool. To take full advantage of multithreading we chose a four-processor

machine (called Quad) for the client. Table 4.1 presents the performance para-

meters of the machines. Dual-I! and Uni are also used as database clients.

The network is Ethernet running at 10Mb/s. The disk controller is a Seagate

5T15150W and its performance parameters are explained in Table 4.2.

The estimation of the average disk access time is very important for the

correct timing of prefetch requests. The seek latency depends on the physical

distance that the disk arm has to move and latency of the read depends on the

amount of data to be transferred. In an experiment we tried to measure average

disk access times. We created a big database and measured the time for a disk

seek and a disk read. The disk seek operation was positioned to a list of file

offsets and we always read an 8 KB page. All tests were repeated several times.

6The names of the machines indicate the number of processors

72

Unfortunately, we observed very high variations in the measurements which
made an approximation of an average value for the seek and read operation
impossible. Therefore we used the performance specification of the Seagate
ST15 150W for our experiments. Using an average value will improve system's
performance but in some cases the prefetch will be incorrectly timed, i.e. either
it arrives too early or too late.

Parameter]_Dual -I I 	Quad I 	Dual-II Uni
SPARCstation 20/612 10/514 20/502 ELC(4/25)
Main Memory 192 MB 224 MB 512 MB 24 MB
Virtual Memory 624 MB 515 MB 491 MB 60 MB
Number of CPUs 2 4 2 1
Cycle speed 60 MHz 50 MHz 50 MHz 33 MHz

Table 4.1: Computer performance specification.

I Parameter 	 I Disk controller
External Transfer Rate 9 Mbytes/s
Average Seek (Read/Write) 8 ms
Average Latency 4.17 ms

Table 4.2: Disk controller performance.

4.4.2 Benchmark Description

In all our experiments we used synthetic benchmarks to evaluate our prefetch-
ing techniques. Using synthetic benchmarks was especially important for this
chapter to get a clear understanding of how much elapsed time can be reduced
by prefetching. In contrast, real benchmarks provide a more realistic workload
environment but the timing results might be more difficult to understand. We
constructed two benchmarks: one simple benchmark to get a first impression
about the benefits of prefetching and a more complex benchmark.

In the simple benchmark every object in the data structure has two pointers
to other objects. Most of the objects point to another object in the same page;
only one object in a page has two pointers to objects that are resident in two
other pages, e.g. the current object is in page 1 and it has one pointer to an
object in page 2 and one pointer to an object in page 3. Having this object

73

structure, the pages are connected like a tree. The size of one object is 64
bytes which gives space for 101 objects in one 8K page. In one run 200 pages
are accessed, i.e. equal to the size of the buffer pool at the client and server.
The application reads only one object from the first faulted page and then all
objects from the second faulted page. Every object is fetched into memory with
no computation or waiting time on the object.

The requirements for the complex benchmark were:

The application access pattern should be dynamic and different for every
run;

The sizes of the objects should be fairly uniform;

Object references should be complex;

The number of pages accessed in one run should be equal to, or less than,
the number of pages in the buffer pool at the client and server.

Figure 4.4: Benchmark structure of one page.

In Figure 4.4 we depict the design of one page from the complex bench-
mark 7. There are three types of objects: branch objects, OROs and normal
objects. A branch object decides by a random operator which object reference
to follow in the tree. An ORO has pointers to objects in other pages which are

7Every page has the same structure.

74

all accessed when encountered. A normal object points to three other objects in
the same page. The type for all objects has four pointers and a size of 72 bytes.
In one run 195 pages are accessed and each page contains 112 objects.

The application starts with one root object from the first page. The branch
objects decide the navigation in the page. When a reference to another page
from the upper level (e.g. pages 2 to 7) is encountered only the first object from
the other page is de-referenced and then the application continues in the current
page. At the lower levels (e.g. pages 8 to 19) two pages are de-referenced
with 1 object (the same as at the upper level) and in one page the application
continues the navigation. Having two or three references to other pages gives
us the possibility to test prefetching under strict time conditions. It also means
that the program is quite I/O intensive and the savings in percentage terms are
potentially high.

Figure 4.4 needs some explanation concerning the number of normal ob-
jects. The number of normal objects before a PBO is 15. The cost of processing
20 objects is equal to the cost of one page fetch in our system environment.
Every object is fetched into memory with no computation or waiting time on
the object which would clearly reduce the prefetch distance.

4.4.3 Theoretical Results

4.4.3.1 Performance Improvements

Given the huge gap between disk access time and main memory access time,
it might appear that orders of magnitude improvements in elapsed time might
be possible with prefetching. In this section, we explain why only relatively
modest improvements are possible in practical situations.

Figure 4.5 shows a multilevel memory hierarchy, including typical sizes and
speeds of access. In this thesis we are only interested in avoiding the disk
latency and not memory latency because the cache is often too small for data-
base applications. Assume we have a prefetching technique that has the follow-
ing characteristics:

. Prefetching accuracy is always 100%;

Every prefetch arrives in memory before access;

VAI

CPU

HU"
.

	

I
Registers 	 Memory 	110 devices

Register 	Cache 	Memory 	Disk memory
reference 	reference 	reference 	reference

Size <1KB <4MB 	<4GB 	>1GB

Speed 	2 n 	3 n 	80 n 	8 m

Figure 4.5: Levels in a typical memory hierarchy (Hennessy and Patterson, 19961.

. Memory size is infinite.

This perfect prefetching technique would find all objects resident in memory
compared with a demand application that would often stall for disk requests.
According to Figure 4.5 memory access is 100,000 times faster than disk access.
Would this mean that the prefetching application is also 100,000 times faster
than the demand application?

To answer this question we have to consider at first the number of objects
accessed in a page. If we would access always one object of a page then a
speedup of 100,000 is feasible. On the other hand, if we access multiple objects
in each page then we have to use the following formula to compute the speedup
in access time:

Speedup fetcht jme
 = AD+(n-1).AM 	

(4.2)

where n is the number of accessed objects in each page, AD is the access cost
for disk and AM the access cost for memory. For our client/server environment
we could use the cost of a page fetch instead of AD. The result of Equation 4.2
is to reduce the speedup factor of 100,000 according to n.

For the overall computation of the speedup of a prefetch application we also
have to consider the fraction of the fetch time in comparison to computation
time of an application. We therefore apply Amdahl's Law [Amdahl, 19671 to
compute the overall speedup factor:

76

	

I 	
(4.3)

Fraction fetchtme
Speedupover 	

(1 - Fraction fetchtjme) + Speedupfetchtjme

Fraction fetchtime is the proportion of elapsed time during which the applica-
tion is idle, awaiting the arrival of a fetched page.

An Example: Let the number of accessed objects per page (n) be 100. We
use the access times for memory and disk from Figure 4.5.

8rns + (100 - 1) . 80ns = 1000.99
	(4.4) Speedupfetchtjme 	

100 . 8Ons

Now the speedup in fetch time is reduced from 100,000 to 1,000. Suppose
the fetch time is 50% of the whole application then the overall speedup is:

Speedapovra j =
1

(1 	\j_ 0.5 " 	'i"-') —I— 1000.99
= 1.998 	(4.5)

Finally, the total speed up of the prefetch application is only about a factor
of 2. The percentage of page fetch time is very application dependent. Lower
percentages than 50 would reduce the savings potential even further.

4.4.3.2 Savings in Elapsed Times

The success of prefetching is dependent on the accuracy of the prediction and
the completion of the prefetch before access. We define the cost of object pro-
cessing to be C0 . Let Coe denote the cost/elapsed time of processing an object
by ESM and let Coa denote the cost of processing an object by the application
plus waiting time. Cop is calculated by:

Cop = Coe + Coa 	 (4.6)

The cost of a page fetch, C, is dependent on client and server processing,
the network and the disk. C denotes the cost of client processing; C"t denotes
the cost of network transfer; C. is the cost of server processing; Csq is the server
queuing cost, Cdr is cost for the disk retrieval. C is then calculated by:

77

C7, = Cp + Ct + C37, + Csq + Cdr 	 (4.7)

The saving for one out-going reference to a non-resident page Sor is depend-
ent on the number of objects between the start of the prefetch and application
access to the prefetched object (n) and C7,:

S'or
- { c 	if(C07, n > C7 ,)
- C07, n 	otherwise

	 (4.8)

If there is enough processing to overlap then the saving is the cost of a page
fetch. If not, there is also a saving, albeit lower, of the amount of processing
from prefetch start to access (C07, . n). Pages normally have many out-going
references. The number of references to different pages is denoted by p. 8pags,

the saving for a whole page, is given by:

Spage =
	

Sor(j)
	

(4.9)

Finally, the saving of the total run is defined by Srun which is influenced by
the cost of the thread management (CJ, by the cost of the socket management
(C5) and by the number of pages in the run (q):

Srun = 	S7,(j)) - Ct C3 	 (4.10)

4.4.4 Performance Measurements

Although the tests were made in a multi-user environment the workload of
the machines, disk and network was low. The results of the benchmark are
dependent on the workload of the machines: using busy machines and networks
would increase the page fetch latency. Since there were different workloads
during the tests, it is not possible to compare the absolute times in multifarious
tests. Savings in percent mean the percentage saving of a prefetching version

VA

compared with a version without prefetching and multithreading, i.e. Demand

version.

In repeated tests, we at first measured the cost of a page fetch and the cost

of the ESM client processing for one object. The average result for the page

fetch was 11.577 ms and for the ESM processing 604 Ms. The page fetch cost

does not comprise the expensive disk seek and rotational latency cost since this

is conditional on the current position of the disk arm. Most of the ESM client

processing is due to an audit function that calculates the slot space of the page.

Receive Page (C)

Network Transfer

Send Page from (5) to (C)

IPC with Disk process (S)

Disk Read (S)

Auditing (C,S)

Buffering (C,S)

Figure 4.6: Expensive components of a page fetch.

A major cost factor of the page fetch is the cost for sending and receiving a

page (setup costs) via the network. The network transfer cost is low, compared

with the setup costs. All elapsed times of the cost components (apart from

network transfer and disk read) are dependent on the speed of the processor.

Thus these costs could be reduced using up-to-date processors and network

transfer could be reduced by higher bandwidths in which case the disk access

would emerge as the major bottleneck. The seek cost is the most expensive part

of the disk access but does not appear in Figure 4.6 because we read all pages

sequentially from disk. The IPC cost could be reduced by using a disk thread

instead of a disk process.

4.4.4.1 Results of the Simple Benchmark

In Figure 4.7 we present the results of our benchmark. The prefetching ver-

sion is always faster than the Demand version. The best result was made on

the slow Uni machine because of its low cycle speed and slower access to the

79

35

30

25

20
E

15
0 a
w

10

5

0

18.58

8 .94

Quad 	Dual-C 	Uni

Quad 	Dual-C 	Uni

(a) 	 (b)
Figure 4.7: The result of the simple benchmark on different machines: (a) shows
results in total elapsed time and (b) depicts only the savings of the prefetch versions
in percent.

socket. Quad has the same cycle speed as Dual-11 but a higher saving by virtue
of the larger number of processors. Dual-II and Quad have, in contrast to Uni,
two processors or more, allowing threads to run on different processors concur-
rently. This would be more beneficial with more prefetch requests at the same
time. In this test every prefetch is done with 100% accuracy to give an idea
of the maximum speedup that can be achieved with prefetching. All the pages
in this test are read in sequential order. Prefetching could achieve even higher
savings with access pattern that produce higher disk seek times.

As mentioned in Section 4.4.3 the saving of prefetching is dependent on the
amount of processing from the application. Having 101 objects on one page,
we compared the elapsed-time savings under varying object access rates from
the application (from 10 objects to 100 objects accessed). Figure 4.8 shows that
the highest saving is with an object access of 20 because the object processing
cost is almost equal to the page fetch cost. For the access of 10 objects there is
not enough CPU overlap for prefetching to reduce complete page fetch latency.
Increasing the number of objects gradually decreases the savings because the
application gets more CPU dominated.

The amount of savings at the object access of 20 should be closer to 100%
than to 45% but there are two possible reasons why the savings are not higher:

The prefetch might arrive late because of delays in the client/server archi-
tecture.

14.5

13.5

10.5
1 5 10 20 40 60 80 100

POD

We have no control over any caching in the operating system or hardware.
For example, data items could be resident in the disk cache.

Figure 4.8: Savings of prefetch applica- Figure 4.9: Prefetching with multiple
tions depending 'on the number of object threads.
accesses.

When two pages have to be prefetched under strong time restrictions such
that there would only be enough time to prefetch one page successfully, we use
multiple prefetch threads simultaneously. This is especially appropriate under
fast changing application contexts; otherwise we could request multiple pages
by a single message to the server. We compared different prefetch object dis-
tance parameters to see under which conditions more prefetch threads are use-
ful. In Figure 4.9 Prefetchl means a prefetching version with just one prefetch
thread and Prefetch2 means a version with two prefetch threads. Above the
distance of 40, both prefetching versions perform equally well. Then Prefetch2
can improve performance and, even at a distance of 1, is better than Demand
(Prefetchl is worse than Demand at a POD of 1).

The application fetches all objects by OlD into memory without any pro-
cessing on the objects or any waiting time. In addition, a pointer swizzling
technique is necessary for real applications to translate the OlD into a virtual
memory pointer. All this would produce more processing overhead for the cli-
ent. We simulate this overhead with a loop after every object fetch. The results
in Figure 4.10 show that with more processing the savings in percent get smal-
ler. The reason for this outcome is that the application is increasingly dominated
by CPU processing and the prefetch engine had enough time for completing the

81

request before access. In other circumstances, when there is not enough over-
lapping time for prefetching, an expansion of client processing would culminate
in a better result for prefetching.

25

22.75

20 --
18.68

15

10. 	 8.76 cn

:11 1.
0 	 1000 	10000

Iterations

Figure 4.10: Benefits of prefetching with Figure 4.11: Effect of incorrect prefetch-
varied client processing. 	 ing in the simple benchmark.

Most previous work in prefetching focussed on the reduction in elapsed
times but neglected the impact of incorrect prefetches. We always fetched one
incorrect page and one correct page at the same time; 100 each in total. The
other important parameter is the prefetch object distance. We used the dis-
tances of 1, 20 and 100. The distance of 100 is enough to do an incorrect
prefetch, the distance of 20 makes it critical to do one prefetch right on time
and with the distance of 1, the prefetch is always late. Figure 4.11 shows the.
best result of 27 percent savings with a distance of 100, but even with a distance
of 1 there is still a saving albeit of only 4 percent. The outcome of this test is
also crucial to the scheduling of the requests at the disk. In this test the correct
prefetch is scheduled before the incorrect prefetch in most cases.

In a client/server environment with multiple clients, prefetching has benefits
and drawbacks. On one hand, the page fetch latency is increased due to the
higher workload of all system components which yields in higher savings. On
the other hand, prefetch requests can seriously delay demand requests from
other clients. This is particularly true for the slow disk. In our test the requests
from other clients access different data pages. Figure 4.12 shows that Demand
decreases performance significantly with 4 clients and the prefetching versions
decline with 7 clients. Prefetching does not show any negative effects here as a
consequence of the good prediction possibilities and high prefetch distance. The

25

20

5

general conclusion of this test result is that every additional client slows down
the Demand application but as long as the prefetch is started in compliance with
the POD, f the prefetch application attains consistently good results.

4

0
1 4 7 10 13

	
Demand P1 82 P3

Number of Clients

Figure 4.12: Effect of an increased server Figure 4.13: Distributed database test.
workload due to additional clients. 	For example, P1 represents a prefetch

application with 1 thread.

4.4.4.2 Results of the Complex Benchmark

4

—3
a,

P
I-
-o

1 I 	 0 	
P1 	P2 	P3

Demand P1 P2 P3

(a) 	 (b)
Figure 4.14: The result of the complex benchmark is presented in (a) total elapsed
times and (b) in relative saving of the prefetch versions.

In Figure 4.14 we present the results of our complex benchmark. The num-
ber after the prefetch applications indicates the number of prefetch threads.
Figure 4.14(a) shows that with an increased number of prefetch threads the

83

elapsed time of the applications is reduced. Recall from the benchmark struc-
ture that an ORO has three references to other pages, therefore P3 has the best
performance because it achieves the optimal number of prefetch threads for
page requests. Figure 4.14(b) shows the savings of the prefetching versions in
percent. P1 only provides a 5% improvement, compared with P3 which achieves
a saving of 23%.

In Figure 4.13 we present the upshot of our distributed database test. Pre-
fetching always generates additional workload for the server, so that a multi-
server environment is more suitable for prefetching. For this test we split the
database into two databases, each managed by one server. The servers both
run on the same machine so as to have the same circumstances. Figure 4.13
shows that all versions improve slightly performance in the distributed environ-
ment. This result does not show the full speed-up potential of multiple servers.
Firstly, every ORO has three pointers to non-resident pages which means that
one server has still to fetch two pages and consequently slows down the client.
Secondly, the two servers run on the same machine and each server also forks a
disk process. All four processes interfere with each other on the two processors
of the server machine.

The size of the buffer pool has an important impact on the performance
of the prefetch technique. We balance the difference between 10, 100 and 200
frames in the buffer pool. The update versions write just one object on the page,
which causes the page to be marked dirty. The time for this test was stopped
just before the commit of the transaction. Comparing both read versions in
Figure 4.15, the prefetch version can slightly increase the amount of saving
with increased buffer size. The elapsed time of the demand version increases
whereas the elapsed time of the prefetch version stays almost constant. The
prefetch version performs better with a larger number of buffer frames because
this reduces locking of synchronisation variables. The extended buffer pool size
has an enormous impact on the write applications. A larger number of available
frames reduces the number of server flushes at transaction time, which has a
direct effect on the response time.

In the next test, Figure 4.15(b), we stopped the time after the commit of the
transaction. For the read versions the result are the same as in Figure 4.15(a),
the demand version increases slightly and the prefetch version stays almost
constant. For the write versions we created one version, called Prefetch write,
which flushes all dirty pages at the end of the transaction sequentially and an-

7

6

I

8

7

3

10 	 100 	 200
Number of Pages in Buffer Pool

-0- Demand read
-0- Demand write
-D-Prefetch read
-0- Pref etch write

Hi
2-I

10 	50 	100 	150 	200
Number of Pages in Buffer Pool

(a) 	 (b)
Figure 4.15: Demand and prefetching applications under different buffer pool sizes
at the client. The result of figure (a) shows the elapsed time before transaction
commit and (b) after the commit.

other version, called Prefetch write mt flush which has two FlushThreads to
do the flushing in parallel. All write versions reduce elapsed time with a buffer
size of 50 compared with 10, but they deteriorate after 50 buffer frames because
more pages have to be flushed sequentially at the end of the transaction. Over
a buffer size of 100 the multithreaded flush version outperforms the sequential
flush version; at a buffer size of 200, the advantage of the multithreaded ver-
sion is 1.23 seconds. This outcome makes clear that multithreading is not only
useful for prefetching; flushing dirty pages to the server is an ideal application
for multithreading.

With this benchmark we made another test to evaluate the influence of
incorrect prefetches. From the three references to other pages we used one
reference for the application navigation and the other two pages for incorrect
prefetches. In Figure 4.16 Two incorrect means prefetching two pages incor-
rectly from an ORO; One incorrect means prefetching one incorrectly and Cor-
rect means optimal prefetching. We produced some application processing after
every object access by using a loop iteration. For example, the elapsed time of
3560 iterations is equal to the ESM processing time of one object, i.e. with 3560
iterations the total object processing time is doubled. One incorrect and Correct
always perform better than Demand. After an IRT value of 850, Two incorrect
also performs better than Demand.

The workload of the database client is important for the scheduling of the
prefetch threads. If the prefetch thread is scheduled at the time of encoun-

99

2.5

2 . 0

W
E

1.0
0

18

16

14

12
421

10

6

4

2
850 	1675 3560 	 0.6 1.7 2.8 3.8 5 6.1 7.2

Iterations 	 Client Workload

Figure 4.16: Effect of incorrect prefetch- Figure 4.17: Prefetching under varied
ing in the complex benchmark. 	client workload levels.

tering a PSO and the operating system time slice ends after sending the pre-
fetch request to the server, prefetching can be even more successful under a
high workload. Otherwise, if the prefetch thread is not scheduled before appli-
cation accessing the prefetch request is unnecessary and produces processing
overhead. In Figure 4.17 we varied the workload on the client workstation.
A workload of 4 means that all four processors are fully utilised and the idle
time is almost 0%. The Prefetch version performs well under a workload of
2.8 and even better above the workload of 5, i.e. where there is queuing for
CPU resources. At the workload level around 4, i.e. just at the point where all
processors are busy, the performance of the prefetch threads suffers as a result
of operating system scheduling and therefore prefetch requests are arriving late
or after the object fault.

Multithreading on the database client side can be used not only for I/O but
also for very expensive CPU functions. On analysing the client code we found
out that there is an expensive function to calculate the free slot space in the
ESM client software. This function is called on every object access and then
calculates the free slot space of the whole page. We created another thread for
this function (called Audit application) and the result of this test can be found
in Figure 4.18. In the examination of Figure 4.18 we varied the number of
objects accessed in a leaf page8. With an increasing number of objects in access
the Audit application speeds up. All the pages that have to be checked by the

'Recall the structure of the benchmark in which we accessed only one object in a page and
then followed the navigation through other pages. We define such a page as a leaf page.

ts7
[S1.SJ

10

9
70

60

50

5

4

- I 	 30

-0- Prefetch

-0--Audit

80

8

7
E

40

110 	 20 	 30 	 1 	 10 	 20 	 30

Number of Objects Accessed in a Leaf Page 	 Number of Objects Accessed in a Leaf Page

(a) 	 (b)
Figure 4.18: Multithreading for CPU-intensive functions, like auditing. Figure (a)
depicts the results in elapsed times and figure (b) in the number of buffer misses.

AuditThread are put into a queue and then the application thread continues

with processing. If the audit page is already in the queue it is not inserted again

which reduces the amount of client processing and biases the success of the

AuditThread slightly9. Figure 4.18(b) shows that the AuditThread has actually•

a higher number of buffer misses because we used the same POD but the total

amount of overhead is less.

Pref.Thr. 1 Pref.Thr. 2 A pp. Thr.
file reads (bytes) 956,768 643,344 8,248
file reads (ops) 627 412 5
file write (bytes) 6,496 4,368 56
file write (ops) 116 78 1
CPU time 34.01 34.24 31.23
CV'°wait time 163.23 0.00 0.00
mutex wait time 3.39 1.61 0.02
read wait time 0.56 0.40 0.00
semaphore wait time 0.70 184.89 0.00
total sync wait time 167.32 186.50 0.02

Table 4.3: Performance characteristics of a 2 prefetch threads application.

Increasing the number of prefetch threads also intensifies the total synchro-

nisation time of the application. We analysed an application with two prefetch

9To ensure the integrity of the database pages the AuditThread must be finished before the
commit of the transaction.

I0C\1 means condition variable.

Pref.Thr. 1 Pref.Thr. 2 Pref.Thr. 3 1 App.Thr.
file reads (bytes) 643,344 486,632 470,136 8,248
file reads (ops) 385 302 297 6
file write (bytes) 4,368 3,304 3,192 56
file write (ops) 78 59 57 1
CPU time 35.75 35.99 35.94 32.67
CV wait time 170.88 0.00 0.00 0.00
mutex wait time 2.57 2.29 2.17 0.02
read wait time 0.28 0.19 0.20 0.00
semaphore wait time 0.74 182.33 180.53 0.00
total sync wait time 174.19 184.61 182.70 0.02

Table 4.4: Performance characteristics of a 3 prefetch threads application.

threads (Table 4.3) and an application with three prefetch threads (Table 4.4)

using the Solaris Thread Analyser [SPARCworks, 1995]. The first four rows
show the I/O per second. The prefetch threads do most of the I/O. The 3 pre-
fetch threads distribute the I/O work more evenly. The synchronisation costs
are higher with 3 prefetch threads. Three prefetch threads have a total mutex
wait time of 7.05 seconds whereas the two prefetch threads only require 5.02

seconds. Moreover 3 prefetch threads consume more condition variable and
semaphore time. The semaphore time is mostly waiting time for a prefetch.
The conclusion of this test is that more prefetch threads increase synchronisa-
tion time for the prefetch threads but not for the AppThread.

1.8
1 2 3 4 5 6 7 8

Number of Prefetch Threads

Figure 4.19: Effect of the number of prefetch threads at the database client.

For the last test we created a benchmark in which every ORO has 7 refer-
ences to other pages. This benchmark was designed to test the scalability of

[•1s]
[sill

prefetch threads. We diversified the number of prefetch threads from 1 to 8. In
theory, if the thread overhead is low and all prefetch threads are scheduled in
time by the operating system, the best result could be achieved with 8 threads.
On the other hand, if the synchronisation cost of the threads is high and the pre-
fetch threads are scheduled late then best performance is achieved by about 3
prefetch threads, i.e. 4 threads run on 4 processors. We established 4 prefetch-
ing versions which start the prefetch operation with different PODs. We used
the values of 20, 30, 40 and 50 as a POD. Figure 4.19 shows the result of this
benchmark. All prefetching applications show the highest decrease from 1 to 2
threads. The best result is achieved at the level of 3 threads since all threads
are executed on the same processor without any context switching. After the
level of 3 all applications deteriorate.

4.5 Summary

In this chapter we presented a new architecture for prefetching. The imple-
mentation results demonstrated under which circumstances prefetching is ad-
vantageous. The key findings of this chapter are:

. The total reduction of elapsed time is dependent on CPU-I/O ratio. We
achieved a reduction of up to 23%.

Multiple prefetch threads improve performance as a result of intensified
parallelism at the client.

The demand application slows down with every additional client connec-
ted to the server while a prefetch application can achieve a constant, lower
elapsed time as long as the prefetch is started according to POD.

A multiple-server architecture is more attractive for prefetching than a
single server architecture, even where the single server has a power that
is comparable to the combined power of the multiple servers.

The buffer pool size has a prodigious impact on update applications. The
results measured before the commit showed that an increased buffer pool
size improves the applications performance. Stopping the time after the
commit showed the opposite result, i.e. a higher buffer pool size decreases
the performance of the update applications. Using one additional flush
thread can improve performance by 22% at the level of 200 buffer frames.

The percentage of incorrect prefetches is vital for the success of prefetch-

ing. The complex benchmark result substantiated that one incorrect pre-

fetch was acceptable but two incorrect prefetches without additional client

processing were unacceptable.

Using multithreading for CPU-intensive functions also reduces elapsed

time.

The number of all the threads for prefetching and processing should not

be higher than the number of processors available.

In this chapter we also described a new structure-based prefetching tech-

nique. This technique has a low overhead and works effectively when the num-

ber of adjacent pages is small. If the number of non-resident pages is high

or the prediction computation is becoming less of a problem, owing to faster

processors, we investigated more intelligent prediction techniques in the next

chapter.

Chapter 5

Statistical Prefetching

5.1 Introduction

The idea of the prefetching technique presented in this chapter, called PMC, is

to compute the page access probability considering the structure of the relation-

ships between persistent objects. We assume that there are transition probabil-

ities associated with inter-object pointers. Furthermore, we assume that every

object belongs to exactly one page. From the current position of the client nav-

igation we compute the access probability of all adjacent pages. The depth of

adjacent pages (for explanation see Figure 5.1) includes directly adjacent pages

but can also include higher depths of indirectly adjacent pages. The prefetch

object distance determines the depth. If the distance is short then the depth is

limited to the directly adjacent pages otherwise multiple depths could be pre-

fetched. Recent and future developments in microprocessor technology suggest

to prefetch higher depths in the future.

Depth 1 	 Depth 2

Figure 5.1: Example of page dependencies. Page 2 and 3 are directly adjacent to
page 1 and page 4 and 5 are indirectly adjacent.

We compute the page probability by evaluating all paths from the current

object to objects in the adjacent pages. The object relationships are modeled

91

using a Discrete-Time Markov Chain (DTMC) and a method called hitting times
is used to compute the page access probability. If the probability of a page is
higher than a threshold defined by cost/benefit parameters then the page is a
candidate for prefetching. In Section 5.2 we will give an introduction to the
model definitions, explain the decision process for prefetching and the compu-
tation of a page probability. To determine the prefetching threshold we consider
various cost parameters to compare the benefit of a correct prefetch with the
cost of an incorrect prefetch which are presented in Section 5.3. The results
from the implementation of the prefetching technique and simulation results
of the 001 benchmark are presented in Section 5.4. Finally, in Section 5.5 we
conclude this chapter.

5.2 Prediction Model

At the beginning we give some formal definition of objects and object rela-
tionships in Section 5.2.1. The decision process for carrying out a prefetch is
explained in Section 5.2.2. In Section 5.2.3 we describe how we compute the
access probability of a page and the mean time to access the page.

5.2.1 Model Definitions

In OODBMSs objects have relationships with other objects. 'Let 0 denote the
set of objects in the store and let R ç 0 x [0, 1] x 0 denote the set of object
relationships between objects, along with a weight for each such relationship.'
The weight denotes the probability that we traverse from one object to another.
Further, let o, e 0 be the current object that the database client is processing.
Let o e 0 and x E [0, 1]. If (o, x, o) E R then we let o, -- o j denote that we
go from oi to oj with probability x.

Let PG be the set of database pages and pg, E PG the page that contains
the object o, i.e. the page on which the client is currently processing. A page
pg3 is said not to be resident in the client buffer pool BP, with BP c PC,
if pgj E PG\BP. The condition for an object relationship is Voi E 0, >{x

'We assume that these relationships are invariant to the history of the computation. Where
this assumption does not hold, the probability associated with a particular relationship will
have to be obtained from behaviour observed in several different computations exemplifying
these different histories. More information about profiling graph access pattern can be found
in [Banatre et al., 1997].

92

O3 E 0 : (o, x, 02) e R} = 1, i.e. the sum of the probabilities associated with
the emerging arcs from o, must add up to 1. For the case when the traversal
terminates at an object we introduce a self-loop for an object oi such that o
o, denotes the probability x that the traversal will be terminated at object o.

5.2.2 Prefetch Decision Model

In Chapter 4 we used a Prefetch Object Distance (POD) to start the prefetch
operation d object processing units (steps) before application access. Recall that
the prefetch object distance is the amount of client processing to be overlapped
with the prefetch to receive the page before application access. The advantage
of this approach is that the savings in elapsed time are high but the probability
that the traversal will be from the P80 (Prefetch Start Object) to an object in
a non-resident page could be low. Prefetching a page less than d objects before
access has certainly a lower saving but the probability that we traverse from the
current object to an object in a non-resident page could be higher.

In this chapter we introduce a Prefetch Distance Range (PDR) with a min-
imal POD (POD min) and maximal POD (POD,,,,,) in which we would identify
a P80. PODmin is defined to be the break-even-point when the prefetch benefit
starts to outweigh the prefetch costs. POD,,,, has a higher value than POD pf
because its value takes into account possible delays of the page fetch. A prefetch
started earlier than POD,,, would result in the same benefit. Starting a pre-
fetch too early could result in a bad replacement decision which is considered
in our model and explained later.

Firstly we explain when we prefetch pages and in the next sections we de-
scribe the components that influence this decision process. Suppose i E 0 is
the current object and a E PG\BP is a page then we will denote by Pi, the
probability that starting in i, we hit' page a (definition in Section 5.2.3). Also
let CIP be the Cost of an Incorrect Prefetch (definition in Section 5.3.1) and
BCP(d) the Benefit of a Correct Prefetch (definition in Section 5.3.2) which is
dependent on the POD parameter d. The decision whether to prefetch a page is
made by the following constraint:

P. > 	 (5.1) ia BCP(d)+CIP

'To hit a page means the traversal from a current object to an object in that page.

93

To explain this inequality it was derived from:

IPi,a BCP(d) > (1 - Pj,a) CIP 	 (5.2)

If the probability that the page will be accessed, multiplied by the benefit of
the page, is greater than the probability that the page is not accessed, multiplied
by the cost of an incorrect prefetch, then we will prefetch the page.

Let ONR (ONR c 0 and ONR 9 PC\BP) be the set of objects which are
not in the buffer pool where there are paths from the current page pgj. For the
purpose of our model, for every element 0j (Ok E ONR) we check constraint
(5.1) for every object oi which has path to 0k in the distance range (POD11

d < POD,,,,). If constraint (5.1) is fulfilled then we define object o, as a P80.
There may be a number of paths from oi to 0k that is exponential in d. However,
as we shall see, we do not have to examine each path individually.

Let °PDR (OPDR c 0) be the objects in the PDR which have a path to a
page a. Then we compute the heat of an object oi E °PDR to access page a by:

heat(o, a) = 	•BCP(d) - (1 - 	CIP 	(5.3)

For objects, like o, we compare the heat(o, a) value of oi with objects that
are referenced by o, and other objects in the forward direction of the object
graph up to a depth dp. The object with the highest heat value executes the
prefetch. This process could involve a comparison over multiple objects. The
identified P80 has then the theoretical optimal distance to prefetch a page
(P0DOP).

After the analysing process we decide whether to prefetch from the persist-
ent store. If the estimated benefits outweigh the fixed costs (thread and socket
creation) then we will use prefetching.

5.2.3 Computation of the Page Access Probability

A DTMC is a stochastic process which is the simplest generalisation of a se-
quence of independent random variables. A Markov Chain is a random se-
quence in which the dependency of the successive events goes back only one

unit in time.' In other words, the future probabilistic behaviour of the process

depends only on the present state of the process and is not influenced by its

past history. This assumption is valid for OODBMSs due to the fact that the

object traversal is not concerned with how we navigated to an object instead it

is interested in the navigation from the current object.

Let (X) >0 be a DTMC with transition matrix P. We associate one state

in the DTMC with one object and the current state is associated with the cur-

rent object. The hitting time of a page a is the random variable H 	ç

{O, 1, 2,...J U fool given by

	

Ha(w) = inf{n > 0 X(w) E a}
	

(5.4)

H (w) is one state of a (one object in page a) to be hit at time w. The

probability starting in object i that (X) >0 ever hits a is then

= P(Ha <oo). 	 (5.5)

The mean time taken for (X) >0 (the navigation process) to reach a (a

non-resident page) is either n steps or oc steps and given by

k' = E(Ha) = 	nP(Ha = n)+ OOFHa = oc) 	(5.6)
fl<co

The mean hitting time and the hitting probability can be calculated by linear

equations. With Theorem 1 we are able to establish the equations for the hitting

probability.

Theorem 1 The vector of hitting probabilities h = (h' : i e 0) is the minimal

non-negative solution to the system of linear equations

{ h 	= 1 	 for iea

= 	pi j h for 	a 	 (5.7)

'Time in the context of a DTMC means simply a number of steps.

95

The mean hitting time can also be calculated by linear equations:

Theorem 2 The vector of mean hitting times ko = (ka : i e 0) is the minimal
non-negative solution to the system of linear equations

	

I k 	0 	 for iea

	

k 	= 1 + 	 for 	a 	 (5.8)

The proof for both theorems can be found in [Norris, 1997]. We solve these
equations online by an iterative method called conjugate gradient and off-line
by the LU decomposition algorithm (for more implementation details see Sec-
tion 5.4.1). In addition, we define the two following rules describing the adap-
tion to our environment:

Rule 1: Let A be the set of states corresponding to the objects in 0 that have a
path to an object in a page a. For the setting of the equations to calculate
the hitting probability (according to Theorem 1) and the mean hitting
time (according to Theorem 2) we only consider states that are elements
of) (0i E A).

Rule 2: To calculate the mean time that we hit a page a we have to consider
only transitions from states in A to states in A. If the condition Voi E

0,{x : Joj E 0 : (o,x,o) E R} = 1 is not fulfilled anymore because
a state is not in A then we have to recalculate the probability transitions.
The new probability values for x are computed by a method called re-
normalisation:

Xi
Xi = m 	 (5.9)

Ij1 x

where we only consider transition probabilities xj to the objects corres-
ponding to the states in A. The new value for x is computed by dividing
its old value by sum of object transitions that have a path to states in a.

Example re-normalisation: Suppose we have o, o, o, o E 0 and
X1, x2, x3 e [0, 1] with the transitions ot --- o,, o -- o,, and o -+ o.
Let o, o,, o, e A and oIL, A. Then the values for x and x'2 are computed
by x =x1/(x1 + x2) and for x'2 = x 2/(x1 + x 2).

W.

Example hitting equations: Figure 5.2 depicts a simple example of objects

that are resident in a page with references to other objects. The probability to

hit page 2 starting in object ol is computed as follows:

Page 1 	 Page 2

Figure 5.2: Probability graph of object accesses.

h5 	= 1

h4 	= 1

h3 	= 0.25h5

h2 	= 0.75h4

h1 	= 0.5h2 + 0.25h3

These linear equations can be solved by the method of substitution or other

methods. After solving the equations each variable, corresponding to objects,

has then a value indicating the probability of traversing to page 2. As a re-

sult, the access probability of page 2 is 0.4375 and doing the same for page 3

would result in 0.5625. The mean time to access page 2, starting in 01, is then

computed by the following equations:

k5 = 0

= 0

k3 = 1+1k5

Ic2 = 1+1k4
2 	1

k1 = 1+ —k2+—k3

97

Starting from 01 the mean time to access page 2 is 2 and to page 3 is 1.75.
The transition values in the formulae to compute k1 to k3 are obtained according
to Rule 2.

5.3 Cost-Benefit Model

This section gives details of the definition of an incorrect prefetch in Sec-
tion 5.3.1 and the definition of a correct prefetch in Section 5.3.2. At the end
we also discuss the advantage of a multiple page request.

5.3.1 Cost of an Incorrect Prefetch Request

This cost describes the additional elapsed time for the application due to an
incorrect prefetch. Every incorrect prefetch imposes a higher synchronisation
cost for the DemandThread to access global data. Table 5.1 shows the cost
parameters which influence the cost of an incorrect prefetch. The escalating
use of synchronisation variables has a negative influence on the DemandThread
which can be formally described by:

CIP = C + CM + CR 	 (5.10)

The replacement cost CR is a problematic parameter for a system imple-
mentation because the accurate prediction of a buffer replacement is difficult.
If we would use always the high value of CR, i.e. the cost of a page fetch, then
the value of CIP would be imprecise for most prefetch decisions. On the other
side if we use the lower value, i.e. 0, we would neglect the re-access of the
evicted page. We have decided to use the value of 0 for our simulation. In
the future we will investigate applying page probabilities for the replacement
decision. If we would have a value for the access probability of a page then we
could multiply the probabilty with CR which gives a more accurate value for
CIP.

Parameter [Description
Ccp Cost for client processing which includes auditing, buffer man-

agement (except CR), JO, concurrency control, network pro-
cessing and memory management.

Ccs Increased cost of context switches due to prefetch threads. Let
Ccs(l) be the context switch cost for one prefetch thread and
let o() be the scale-factor dependent on the number of prefetch
threads p.

Ccs = CCs(l) . 7()

CM Additional waiting time and processing cost for the Demand-
Thread to acquire and release mutexes. Let CCM(1) be the mu-
tex cost for one prefetch thread.

CCM = CCM(1) . 0()

CPR Cost for using prefetch information (not for solving the hitting
times equations).

CPW Cost for waiting for a page request from sending to receipt.
Let Cpw(l) be the waiting cost for a request to the server with
1 client and 8(c) a scale-factor for the delay of a page fetch
dependent on the number of clients c at the server.

CPW = Cpw(l) 	8(c)

CR Cost for the replacement of a page with a prefetched page.
The evicted page must be accessed again before the prefetched
page.

f Cpw + Ccp 	if page is accessed again
CR

= o 	otherwise

CS Cost for the DemandThread to wait on a semaphore (only
when the DemandThread stalls for the prefetched page).

Bp Benefit for prefetching one page. 	Let Co be the cost of pro-
cessing one object; recall that d is the prefetch distance para-
meter.

B 	- I Cpw + Cp 	if prefetched page is resident on access -
Co . d 	otherwise

Table 5.1: Cost/benefit parameters.

5.3.2 Benefit of a Correct Prefetch Request

The maximum saving for a prefetch is only achieved when the prefetched page
arrives at the client before application access. The benefit BCP depends on the

amount of savings minus the prefetch costs:

BCP=BP — CCS — CM — CPR — CR — CS 	(5.11)

The appropriate setting of Bp is another influential parameter. Its value
is mainly determined by the stall time for a server request, Cpw. We try to
estimate CPW according to the workload of the server. This estimation process
is naturally very complex in real OODBMS but also crucial to start the prefetch
at the right time.

5.3.3 Cost and Benefit of a Multiple-Page-Request

If we predict multiple pages to prefetch according to constraint (5.1) we could
demand them by a single request from the server. The server would read the
pages from disk and send them back to the client either (a) separately when
time constraints are tight or (b) in a batch if time is not a problem.

A multiple-page-request has the advantage that the processing cost on the
client and the server is lower than a sequence of single requests (which reduces
Ccp and C) because some functions have to be executed only once. It also
reduces the network costs (which affects Cp). The costs of thread manage-
ment (CM and C) are also lower because multiple pages are requested by just
one thread.

5.4 Performance Analysis

The relevant performance parameters from the ESM implementation for the
simulation are described in Section 5.4.1. Then we present the results from our
simple benchmark test in Section 5.4.2 and from the 001 test in Section 5.4.3.

5.4.1 Implementation Results

5.4.1.1 Simulation Parameters

In this section we present the results that we obtained from timing ESM with
one client connected to the server. We used the same machines and disks as

100

1 3 5 7 9 11 13
POD

Figure 5.3: Savings of one prefetch dependent on the POD.

described in Section 4.4.1 with the only difference being that Dual-TI is now
used as the server. The Sun Fast Ethernet network runs at 100 Mb/sec.

For a start we have to compute POD. Dividing the cost of a page fetch
from disk (7943 js4) by the cost of processing one object (799 [is) results in a
value of 10 for PODPf

In Figure 5.3 we show how the amount of savings that can be achieved by
one prefetch request depends on the prefetch distance. A prefetch is already
successful with a distance of 1 (PODmin) and the maximum improvement is
achieved at a distance of 11 objects (PODmax). From these empirical results
we developed a benefit formula (5.12) which computes the amount of savings
of a prefetch given the distance. We used the least squares method to find the
line of best fit relating distance and benefit which results in:

benefit(d) = —782is . d + 109s 	 (5.12)

The variable benefit in formula 5.12 is almost as high as the cost of object
processing. The benefit values are highly influenced by the settings of the ob-
ject processing cost and the page fetch cost. We also measured the cost of an
incorrect prefetch which is about 1573 js higher than a demand fetch.

For an efficient implementation to solve the hitting times equations we com-
pared 5 algorithms. We used two direct methods - Gauss-Jordan (GJ) and.

'This is an optimistic value. We assume disk pages to be stored in clusters which reduces the
average seek time.

101

10000

1000

100

LU-decomposition (LU), which compute an exact solution; and three iterative

methods - Successive Over-Relaxation (SOR), Gauss-Seidel (GS) and Conjug-

ate Gradient (CG). A detailed description of these algorithms can be found in

[Stewart, 19941.

10 	25 	50 	100
Number of Objects

Figure 5.4: Computation time to solve linear equations.

Parameter Setting (us)
Object processing 799
1 Page Prefetch: Page fetch 7943

Incorrect prefetch 1573
Variable benefit -782
Fixed cost benefit 109
PODmin / POD,,, 1/11

2 Page Prefetch: Page fetch 9804
Incorrect prefetch 2360
Variable benefit -782
Fixed cost benefit 163
POD,-,,in / PODmax 1/13

Table 5.2: Simulation parameters.

5.4.1.2 Prediction Costs

Figure 5.4 shows the elapsed times of these algorithms to compute a matrix

with n objects. LU is the faster direct method and CG is the fastest iterative

method. Therefore we use the CG method in a separate thread on-line and the

LU method off-line. In our application the number of objects in the matrix is de-

termined by the number of objects in the equivalence class, i.e. all the objects

102

that have a path from the current page to the adjacent pages that have to be
computed. If the thread for the computation gets too busy we have to continue
the computation after the transaction. Please note that all the computation is
done automatically and the database administrator has only a few adjustments
to make, e.g. determining the user object processing cost.

The amount of computation that we can do on-line is dependent on the
amount of client processing time per object. For example if we process 10
objects with a processing time of ims each then we could compute in parallel
an equivalence with 64 objects using the CG algorithm. Higher object process
times would even provide more overlapping time for prediction. The amount
of overlapping time therefore restricts how far we can predict future object
access. At the moment we predict only the directly adjacent pages but according
to rapid developments in CPU technology (Figure 1.4) it is soon possible to
compute multiple depths of adjacent pages.'

5.4.2 Simulation Results from a Simple Benchmark

In the simulation we want to present the benefits of prefetching whiëh are very
dependent on the object relationship structures and the probability transitions.
For example a linked list is a very easy candidate for prediction whereas objects
with a fan-out of 10 referenced objects are very difficult to predict.

We used the discrete process based simulation package C+ +Sim [Little
and McCue, 1993]. Every component of our client/server architecture (client,
server, disk, prefetch engine and network) is simulated as a process so that each
component can run in parallel. Each process has an associated queue for incom-
ing requests and on completion the request is passed on to the next component.
For the hold times of a process we used the timing results from the ESM imple-
mentation, e.g. time of a buffer replacement. The network cost is computed by
a fixed transmission cost and a variable cost depending on the number of bytes
to be transferred. The success of prefetching is measured by the waiting time of
the client. If a prefetch is performed and the client requires the page then it will
wait until the receipt of the page and the total elapsed time of the application
will only consider the client waiting time. In Table 5.2 we present the constant
cost factors of our simulation. The values for the incorrect prefetch indicate the

5Prediction computation then still dependent on client processing but can also be overlapped
with user waiting time.

103

extra elapsed times due to an incorrect prefetch. We assume that the buffer
space is infinite.

Algorithm 5.1 Prefetch Algorithm P0 at analysing time

Compute hitting probabilities according to Theorem 1
Compute mean hitting times according to Theorem 2

Algorithm 5.2 Prefetch Algorithm P0 at run time

/* get highest probability page from probability data structure */
get highest probability page and assign to pp
if pp is not in buffer and not prefetched then

1* get object distance from current object to pp */

get d from hitting times data structure for pp
1* if d is in prefetch range */

if d >= PODm in and d <= POD,,,, then
if probability(pp) > CIP / BCP(d) + CIP then

/* get highest heat of all objects within depth dp *1

get heat(oh, pp)
/* if heat from current object > oj */

if heat(o, pp) > heat(oh, pp) then
prefetch pp

end if
end if

end if
end if

The prefetch algorithm for this set of experiments consists of two parts. The
first part computes the hitting times and hitting probabilities (Algorithm 5.1).
This computation can take place on-line or off-line but has to be finished before
starting part two. The second part is executed at application run time and
makes a prefetch decision (Algorithm 5.2).

To test our prefetch algorithm we created two simple benchmarks. In both
benchmarks every branch object has an out-degree of 2. In the first benchmark
the distance from the entry object in the page to an object in another page is
10. In this distance there are 4 branch objects and 6 non-branch objects which
makes a total of 62 objects in a page and 16 references to different pages.
Every page has the same structure and we access 1000 pages. In Figure 5.5(a)
we show the result of this test with 3 applications: Demand, a 1 Page Prefetch
(1PP) and a 2 Page Prefetch (2PP) technique. 1PP and 2PP are variations of
Algorithm 5.2 which fetch either 1 or 2 pages at the same time respectively.

104

The applications with a + sign consider the heat parameter to start the prefetch
at the best possible object.

16 22

20
14

CD

12
CD CD

16 as
LU

10 -C3-1 Page Prefetch

-X- 1 Page Prefelch,
14

8 -----i--- - - 	 __ 	 12
1.0 0.9 0.8 0.7 0.6 0.5

	 1.0 0.9 0.8 0.7 0.6 0.5
Transition Probabilities

	 Transition Probabilities

(a) 	 (b)
Figure 5.5: Result of the simple simulation test.

We varied the transition probabilities (tp) of the branch objects from 1.0
down to 0.5. Every branch object has two pointers to other objects which have
to sum up to 1.0. On the x-axis of all figures we state the tp of the first pointer of
an object. High probability transitions result in the computation of high prob-
ability pages, for example a tp of 1.0 always produces pages with an access
probability of 1.0. The navigation through the object graph was controlled by a
draw-operator 6. The Demand application has constant values and is independ-
ent of the transition probabilities. 1PP and 1PP+ perform equally well until the
tp of 0.8, after which IPP+ is better because of a later but more accurate pre-
fetch. 2PP+ is always better than 2PP and the 1 page prefetching techniques
because it has a higher hit ratio. At the tps of 0.65 and 0.6 all prefetching
applications suffer from a bad hit ratio imposed by difficult page predictions.
Figure 5.5(a) shows the general advantage of our technique: If the tps allow
prefetching it can reduce elapsed time drastically but if not it will not decrease
performance.7

In the second benchmark the distance from an entry object to an object in
another page is now 16, with 3 branch objects in between which results in 8
references to other pages. The major difference to benchmark 1 is that the last
branch object in the high probability path has a 0.5 probability to both objects;

6Given a probability value it decides to continue navigation with reference 1 or 2.
7This assume that the prefetched pages do not evict pages that will be accessed earlier and

incorrect prefetches do not replace pages that will be accessed again.

105

This results in 2 referenced pages with high probabilities. Figure 5.5(b) shows

the result of this test. In general the prefetching application shows a better

performance than in the previous benchmark because there are only 8 adjacent

pages and these pages are easier to predict. 1PP and 1PP+ show the same

elapsed time for all tps. Neither application performs well at the probability of

1.0 because the last branch object with 0.5 probability imposes a high incorrect
prefetching time for both. 2PP+ shows its superiority again especially with

lower probabilities because of a more accurate prefetch. Figure 5.5(b) also

shows that it is beneficial to prefetch given all possible probabilities.

5.4.3 Simulation Results from the 001 benchmark

In another set of experiments, we tested our prefetching technique with the

001 benchmark structures [Cattell, 19921. We opted for the 001 benchmark

because it is possible to specify the degree of clustering and furthermore ob-

ject relationships are not too complex. To recall the benchmark structure, every

object has a medium size and has three pointers to other objects. In our envi-

ronment we restrict the number of out-going pointers to two because it makes

the navigation of pointers easier to understand.

The random connections between objects are selected to produce some loc-

ality of reference. Specifically, 90 percent of the connections are randomly se-

lected among the 1 percent of objects that are "closest" and the remaining con-

nections are made to any randomly selected object. Closeness is defined using

the object with the numerically closest object ID's. In our experiments we var-

ied the closeness between 80, 90 and 100 percent and call it to cluster factor.
Objects are clustered according to their OlD.8

The simulation cost parameters for one page fetch are presented in Table 5.3.

The value for the average disk access is obtained from the performance specific-

ation of the Seagate Cheetah 18. The values for the client and server processing

costs are the timing results from our ESM implementation. The tests were per-

formed on a machine with 50 MHz but state-of-the-art machines have a cycle

speed of up to 600 MHz. We therefore divided the timing values for sole pro-

cessing by 12 and improved the values for the memory access by about 0.35%.

The amount of object processing is an important parameter for the overlapping

time with the prefetch and a variation of this value can be found in Figure 5.19.

8For example, if there are 50 objects in page then objects with OlD 1-50 are placed in page
1 and objects with OlD 51-100 are placed in page 2 and so on.

iftI.

Parameter Setting (us)
Client Object Processing Cost 1000
Average Disk Access Cost 8527
Total Network Transfer Cost 231
Total Client Processing Cost 557
Total Server Processing Cost (page resident) 336
Total Server Processing Cost (page not resident) 493

Table 5.3: Simulation parameters for one page fetch operation.

In the first set of experiments we evaluate the benefits of prefetching under
different levels of clustering. Therefore we set the buffer pool size to infinite and
access only a part of all database pages in order to prefetch correct and incorrect
pages from the server. In the second part of the tests we examine the effect of
limited buffer pool space on prefetching and the choice of a buffer replacement
strategy. In these tests we access every database page several times. Please note
that the database size and the number of accessed pages is quite small but the
results with a higher number of pages would be very similar.

In our experiments we navigate through the object graph by traversing
pointers. Every object has two pointers to other objects. In the experiments
the tp of the first reference is varied from 1.0 down to 0.5 in 0.1 steps and the
tp of the second reference is the remaining amount to sum both reference up
to 1.0. At run time the navigation through the object graph is determined by
a draw-operator which decides to follow either object reference 1 or 2 depend-
ing on the tp. The simulation is terminated when we have processed a fixed
number of objects.

5.4.3.1 Result of the Demand Applications

In Figure 5.6(a) we see the elapsed times of all demand applications under
different cluster factors. Due to the fact that the client processing time of all
applications is the same, the elapsed times is solely dependent on the page fetch
times. Figure 5.6(b) shows the number of demand fetches of all applications
under different cluster factors. The shapes of the graphs are very similar to
the graphs in Figure 5.6(a). In Figure 5.6(a) we can see that a lower clustering
factor induces a higher application elapsed time. The values of the tps have only
a limited effect on the demand applications. For example, at tp 1.0 the number
of demand fetches is much lower for Cluster 80 because a higher number of

107

60
a,
a
0
a,

40
at
0
a)
E

20

0.8 60

50

6 40
CD Li-

E 30

a0•5
-a-Cluster 100 -

-

-C-Clustergo - 20
-D-Cluster 8o

0 - 4
10

0.3
1.0 0 018 017 0.6 0.5 	 1.0 0.9 018 0.7 0.6 0.5

Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.6: Characteristics of the Demand applications under different cluster
factors. Figure (a) shows the elapsed times of the applications and Figure (b)
shows the number of demand page fetches.

cycles in the object graph causes less pages to be fetched. The Cluster 100 has a
modest increase in the number of demand fetches since the number of accessed
objects per page is lower.

80 3.0

-a-Cluster 100
82.5
8
...

Cluster 90

TT 0

0 	 1.0 -------o----.-o------o-----4
1.0 0.9 0.8 07 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.7: Characteristics of the Demand applications under different cluster
factors. The number of accessed pages is illustrated in Figure (a) and number
of repeated page accesses in Figure (b).

The total number of accessed pages is shown in Figure 5.7(a). The basic
finding of this test is that a smaller cluster factor increases the number of ac-
cessed pages. Cluster 90 and Cluster 100 have a slight increase in the number
of page accesses with lower tps whereas Cluster 80 decreases after tp 0.8. For

example, Cluster 100 traverses at lower tps more often via the second object

reference to the next object. The second referenced object has a higher OlD

than the first object, therefore the number of accessed objects in the page gets

lower and consequently the total number of accessed pages gets higher. The

number of repeated accesses to a page is shown in Figure 5.7(b). Cluster 80

has a high repetition value at tp 1.0 which reflects the result of the low number

of demand fetches in Figure 5.6(b). In general most pages are accessed only

once or twice and the 0.7 tp application has a slightly higher page access factor.

35

Q 30
0)
Co
0

25

20

15
OZ

10 a,
0
E

5

0
1.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities

Figure 5.8: Number of accessed objects per page.

The number of accessed objects per page is important for having some over-

lapping time for prefetching. As Figure 5.8 shows, a lower cluster factor reduces

the number of accessed objects in a page. Cluster 80 and Cluster 90 display an

almost independent behaviour of the tps whereas Cluster 100 reduces the num-

ber of accessed objects with lower tps. As previously explained, the reason for

this behaviour is that with lower tps the number of second pointer traversals

increases.

109

5.4.3.2 Result of the Prefetch Applications

Algorithm 5.3 Prefetch Algorithm P1

/* pp is one page or a set of pages with the same probability */
get highest probability page and assigri to pp
for each pp,

if ppj is not in buffer and not pref etched then
/* if page probability is higher than threshold i */

if probability(pp2) > t then
prefetch pp2

end if
end if

end for

Algorithm 5.4 Prefetch Algorithm P2

/* get all the pages with a probability over threshold t */
get all pages with a probability > t and assign to pp
for each pp

if ppi is not in buffer and not pref etched then
prefetch pp

end if
end for

The prefetch algorithms for these experiments are slightly different from the
techniques we used for the simple benchmark. For this set of experiments we
only consider the probability of a page and not the mean time to access a page.
We designed two techniques: P1 (Algorithm 5.3) and P2 (Algorithm 5.4) which
prefetch pages with probability higher than a specific threshold. We varied the
threshold from 0.0 to 1.0 and show only the result of best performing prefetch
application.

110

Algorithm 5.5 Disk Probability Algorithm DP

1* look for demand request in queue q *1
get demand requests dr from q
if dp exists then
serve pd

else
1* get information from client via network *1

get probabilities for disk requests and other infos
get prefetch request pr from q that stalls client
if pr exists then

serve pr
else
get page pp with highest probability from q
serve pp

end if
end if

Algorithm 5.6 Disk Probability Algorithm DP2

1* look for demand request in queue q */

get demand requests di' from q
if dp exists then
serve pd

else
1* get information from client via network */

get probabilities for disk requests and other infos
get prefetch request pr from q that stalls client
if pr exists then

serve pr
else

/* difference to DP: probability must be higher than zero *1

get page pp with highest probability (> 0) from q
serve pp

end if
end if

The probabilities that we used for the prefetch decision could also be used
for the disk queue. The transfer of the page probabilities increases the net-
work workload but network processing is cheaper than disk processing. We
developed two techniques: DP (Algorithm 5.5) and DP2 (Algorithm 5.6) which
are very similar but differ in the threshold parameter. DP serves requests with
a current page probability of 0 and DP2 does not. We combined both prefetch
algorithms with both disk queue algorithms and show also the results for the
prefetch algorithms which do not consider the probabilities at the disk.

111

0.4

CD

-O-P1-DP
0.

--P2-DP

0.1

0.4
	

0.5

1.0 0.9 0.8 0.7 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5
Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.9: Result of the prefetch applications: P1, P1-DP, P2 and P2-DP. Figure
(a) shows the result for the cluster factor 90 and Figure (b) for the cluster factor
80.

0.4 --------- 	 0.5

-O-P1-DP

:: --__

P2-DP

IDp

0--------------------i 	 0.1I

1.0 0.9 0.8 0.7 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5
Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.10: Result of the prefetch applications: P1 -DP, P1 -DP2, P2-DP and P2-
DP2. Figure (a) shows the result for the cluster factor 90 and Figure (b) for the
cluster factor 80.

In Figure 5.9 and Figure 5.10 we show the results of all prefetch applica-
tions. The total fetch time of all transition probabilities is presented in Fig-
ure 5.11. Prefetch application P2-DP2 clearly performs best and P2-DP second
best. This result shows that prefetching multiple pages over a specific thresh-
old at the same time is more effective than only prefetching the highest page.
Behind applications P2-DP and P2DP2 the P1 -DP and P1 -DP2 show an average
result. The worst prefetch applications are P1 and P2 which perform similarly
for both cluster factors. The conclusion of this test is that applications that use

112

1.2

0,9

2.1

1.8

P1 	P1-OP P1-DP2 P2 P2-OP P2-DP2

Fur# i rIuø
LItILILD1

P1 	P1-DP P1-DP2 P2 P2-DP P2-DP2

(a) 	 (b)

Figure 5.1 1: Totalfetch time of all prefetch applications for transition probabilities
from 1.0 to 0.5. Figure (a) shows the result for the cluster factor 90 and Figure
(b) for the cluster factor 80.

page probabilities for the disk queue perform much better.

100

10 80

92
=
=
0

=

90

70

60

0.9 0.8 0.7 0.6 0.5
Transition Probabilities

Figure 5.12: Disk utilisation for cluster 90 applications.

For every prefetching technique it is important to achieve a high utilisation
of the disk. In Figure 5.12 the disk processing time of the prefetch applications
is presented as a percentage of the total simulation time. P2-DP clearly has the
highest utilisation, and with P2-DP2 having the second highest. This result is
no surprise because P2-DP retrieves many pages with low priorities. P2-DP2
uses the disk more effectively as low priority requests do not block high priority
requests. The lowest utilisation has P1-DP2 followed by P2 and P1. All DP2
applications have a lower utilisation than DP applications because they do not
serve low priority disk pages.

113

0.6

0.5

5.4.3.3 Comparison of the Demand and Prefetch Applications

0.15 ________1 0.5 .

-0-Pi
-0- P2-OP -0 Demand

-
-- P2-DP2 . 0- P1

-O-P2-DP

0.1 	/...

0.00 	 0 -----------------
1.0 0.9 0.8 0.7 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.13: Performance of the Demand application and the three prefetch ap-
plications: P1, P2-DP, P2-DP2 with cluster factor 100 in Figure (a) and cluster
factor 90 in Figure (b).

0.1
1.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities

Figure 5.14: Performance of the Demand application and the three prefetch appli-
cations: P1, P2-DP, P2-DP2 with cluster factor 80.

The result of the Demand and three prefetch applications P1, P2-DP and P2-DP2

under the cluster factors of 100, 90 and 80 can be found in Figure 5.13 and

Figure 5.14. The corresponding improvements in % of the prefetch applications

P1 and P2-DP2 for the cluster degree of 90 and 80 are presented in Figure 5.15

and Figure 5.16 respectively. The improvements of prefetch applications with a

cluster factor of 100 are always 100%. The results show two basic facts: Firstly,

lower tps reduce the savings potential of prefetching. Secondly, lower cluster

114

50.9

46-2

n!e37.2

29-0

20

60

C a,
E a, > 0

40

1.0 0.9 0.8 0.7 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5
Transition Probabilities 	 Transition Probabilities

(a) 	 (b)

Figure 5.15: Improvements of the prefetch application P1 in % under the cluster
factors of 90 (a) and 80 (b).

80

42.7

33.1

- 30
26.8

253

2 2.

	

22.

20
1.0 0.9 0.8 0.7 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities 	 Transition Probabilities

(a) 	 (b)

Figure 5.16: Improvements of the prefetch application P2-DP2 in % under the
cluster factors of 90 (a) and 80 (b).

factors reduce the benefits of prefetching. This result is mainly due to the fact
that we prefetch only adjacent pages in these experiments and not multiple
pages in depth. If we would prefetch multiple depths then the reductions in
page fetch time would be higher, but the prediction costs would be much higher
as well. Prefetching multiple depths will be more feasible in the future with
higher performance processors. At the end of the section we demonstrate the
higher potential of the Cluster 80 version in fetch time reduction.

To explain the shrinking improvements of the P1 applications with lower tps
we compared three decisive parameters for prefetching: the prefetch accuracy,

50

8 40

W
E Q)

0.

115

the prefetch object distance and the number of prefetches in Figure 5.17. For

the Cluster 90 applications we observe that the POD has probably the highest

effect on the prefetch improvements. It decreases from tp 1.0 to tp 0.5 like the

prefetch improvements. The prefetch accuracy decreases to tp 0.7, inline with

the prefetch improvements, but then increases again. The number of prefetches

increases with lower tps, resulting in only a small effect on the fetch times. The

applications with a cluster factor of 80 show a similar result. The prefetch dis-

tance and prefetch accuracy decreases with lower tps. The number of prefetches

is high for medium tps. The improvements at tp 0.8 is lower because accuracy

and the number of prefetches are reduced. Ip 0.7 achieves a higher improve-

ment due to a larger number of prefetches. Tp 0.5 has a higher POD and a

higher accuracy but a much lower number of prefetches results only in a small

saving.

2.3 -- 7

-0- Pret etch Accuracy

-0- Number of

~Pref POD

1. 0
1

07 	06 	05
Transition Probabilities Transition Probabilities

(a) 	 (b)
Figure 5.17: Normalised values for P1 considering prefetch accuracy, prefetch ob-
ject distance and the number of prefetches for the applications with a cluster factor
of 90 (a) and 80 (b).

The improvements for the P2-DP2 (Figure 5.16) are higher than for P1, es-

pecially at lower tps. The improvements for the cluster 90 applications fall from

tp 1.0 down to tp 0.5, with the exception of the tp 0.9 application. The reason

for this exception is that the POD and the number of prefetches is quite low

(Figure 5.18). At the tps of 0.8 and 0.7 there is a high number of prefetches

combined with a high POD which results in a low prefetch accuracy. The appli-

cations with a cluster factor of 80 have low improvements at middle tps. For

example at tp 0. 7, the P2-DP2 has a similar fetch time to tp 0.6 but the explan-

ation for the low improvement is the good result of the Demand application

116

3.5

3.0

Cl)
ci)

2.5

a)
U,
Cl)

2.0

1.5
2

1.00 	 1 4 	i 	i o-

1.0 0.9 0.8 0.7 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5
Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.18: Normalised values for P2-DP2 considering prefetch accuracy, prefetch
object distance and the number of prefetches for the applications with a cluster
factor of 90 (a) and 80 (b). We do not show the POD in Figure (b) because of
difficulties in the measurements.

which cannot be compensated by P2-DP2.

0 .5 0 .6

-0-Demand
-O-Profl000
~Pr. 0.5

0-4 2000 r
f 3000

000 P r.f 10000 0.4

Yi

02

02

0-1
0.1

01 i 	 0T

1.0 0.9 0.8 0.7 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5
Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.19: Prefetch application P1 with varied amount of client object processing.
Figure (a) show the results for the cluster factor 90 and Figure (b) for the cluster
factor 80.

In another experiment we want to show the full potential of prefetching

versions with lower cluster factors. Therefore, we started the prefetch appli-

cations with different amounts of client processing. Higher amounts of client

processing ensures more overlapping time for prefetching. We varied the client

processing time from 1000 to 12000 is per object. The results in Figure 5.19

117

0.5 . 0.6

I 	Demand --Pref 1000 	I
I

	
1:1- Pref2000 -- Prof 3000 	I

I -X-Pref 4000 -X-Pref 6000 	I
I -+-Pref 8000 --Prefi0OOOI 0.5

0.4 - Pref 12000 _J..

0.3
C.) C.)

0-3
I- . F-

0.2
0.2

0.1
0.1

0.OT 	T
1.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities
0.9 0.8 0.7 0.6 0.5
Transition Probabilities

0.0
1.0

(a) 	 (b)

Figure 5.20: Prefetch application P2-DP2 with varied amount of client object pro-
cessing. Figure (a) show the results for the cluster factor 90 and Figure (b) for the
cluster factor 80.

and Figure 5.20 show that higher client processing times ensure higher savings.
The prefetch applications with a cluster factor of 80 reveal higher reductions in
fetch time than the cluster 90 prefetch applications. The conclusion of this test
is that lower cluster factors result in more page fetch time that can, potentially,
be reduced by prefetching.

The result of Figure 5.20 also shows that P2-DP2 can achieve higher pro-
cessing times to reduce fetch time to a minimum. P1 cannot reduce fetch times
any further with higher processing times because it would refuse to prefetch a
page with high probability if there is another page with a higher probability.

5.4.3.4 Effect of Buffer Pool Sizes

In this set of experiments we evaluated the effect of buffer pool sizes on pre-
fetching technique P1. We varied the pool size between 10, 30, 50 and 100
buffers using LRU replacement. We increased the total number of objects to be
accessed to have more repeated accesses to every page. Figure 5.21 and Fig-
ure 5.22 show that smaller buffer sizes are beneficial for prefetching because
the hit rate is low and many pages have to be fetched from the server. In Fig-
ure 5.21 neither prefetch application performs well at tp 0.7. The reason for this
behaviour is that although the prefetch distance and the number of prefetches
is higher than the neighbour application of tp 0.8; it suffers from low accuracy
with many incorrect prefetches. Another observation is that low tps increase

IJ Demand 	

I 	:: m

0.7 0.6 0.5 	 0.5
Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.21: Effect of the buffer pool sizes on the Demand and P1 application with
LRU replacement and a cluster factor of 90. Figure (a) shows the result for 10
buffer frames and Figure (b) for 30 frames.

6

5

—4
0
0)

E3
H-

U.. 2

1

0
1.0 0.9 0.8 0.7 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.22: Effect of the buffer pool sizes on the Demand and P1 application with
LRU replacement and a cluster factor of 90. Figure (a) shows the result for 50
buffer frames and Figure (b) for 100 frames.

fetch time with only a few page buffers. The direct effect of decreasing buffer
pool size on the tp 0.9 application is shown in Figure 5.23.

The current LRU-replacement strategy is not very efficient because it does
not consider the computed page probabilities for replacement decisions. We

designed a replacement policy, called LRU-Prob, which does not replace a page

if it has a probability higher than some threshold. We varied the threshold for
the replacement decision between 0.0 and 0.5. The best results are presented

119

5

4

1

0
10 	30 	50 	100

Number of Buffer Frames

Figure 5.23: Effect of a decreasing number of buffer frames on the application with
tp of 0.9 and a cluster factor of 90.

70

60

50

40
0S

ca 30
C,)

20

10

3

2

=
0) =
5. Ca

C')

03 	 0
1

1.0 0.9 0.8 0.7 0.6 0.5 	
.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities 	 Transition Probabilities

(a) 	 (b)

Figure 5.24: Improvement of the LRU-Prob replacement policy compared with a
simple LRU policy under a cluster factor of 80. Figure (a) shows the result for 10
buffer frames and Figure (b) for 30 buffer frames.

in Figure 5.24 and Figure 5.25. Generally, the consideration of the page prob-

ability improves the total fetch time between 1 and 3%. A surprisingly high
improvement of 65% is achieved at tp 1.0 with 10 buffer frames. The client hit
rate of LRU is identical to LRU-Prob but LRU-Prob has a much higher hit rate at
the server which reduces the page fetch time.

=
=
Cl)

3

2

1

1.0 0.9 0.8 0.7 0.6 0.5
Transition Probabilities

Figure 5.25: Improvement of the LRU-Prob replacement policy compared with a
simple LRU policy for 50 buffer frames under a cluster factor of 80.

0.5-------- --- 0 . 6
-0- Demand

-0-3 disks

O1 disk
-0-2 disks

0-5

F
0.0 	 0.0

1.0 0.90.8 0.7 0.6 0.5 	 1.0 0.9 0.8 0.7 0.6 0.5
Transition Probabilities 	 Transition Probabilities

(a) 	 (b)
Figure 5.26: Effect of parallel disk accesses on the performance of the prefetch
application P2-DP with n disks. Figure (a) shows the result for the applications
with a cluster factor of 90 and Figure (b) for a cluster factor of 80.

5.4.3.5 Effect of Parallel Disk Accesses

The disk access has a high percentage of the total page fetch cost and this per-
centage will increase in the future. In this experiment we use a technique called
disk striping with which we try to parallelise disk accesses by increasing the
number of disks at the server for processing client requests. We assume that

database pages are perfectly partitioned over multiple disks so that a free disk
can perform any outstanding request. The result of this experiment is shown in
Figure 5.26. The prefetch application P2-DP shows good improvements on up

121

120

60

—60

—120

to 3 disks. The 4 disks application improves even further for a cluster factor of
80. In general, a larger number of disks has a higher benefit for the applications
with a cluster factor of 80.

60

30

0,

7
a)

-30 	 .111
—60

I disk 2 disks 3 disks 4 disks 5 disks 1 disk 2 disks 3 disks 4 disks 5 disks

(a) 	 (b)

Figure 5.27: Reduction of fetch time of P2-DP over P2-DP2 (negative values show
improvements of P2-DP). We compare the sum of the fetch times of all transition
probabilities in Figure (a) for cluster factor 90 and in Figure (b) for cluster factor
80.

P2-DP did not achieve such a good result as P2-DP2 with 1 disk, however
the result could be different with multiple disks. If there is more disk processing
power then prefetching pages that have a reduced probability,even as small as
zero, could be beneficial under two different circumstances. Firstly, during the
expensive seek operation the probability could rise and secondly the prefetched
page could be accessed at a later time. In Figure 5.27 we demonstrate that P2-
DP performs better with 3 disks for cluster factor 90 and with only 2 disks for
cluster factor of 80.

5.5 Summary

In this chapter we presented a prefetch algorithm that uses page probabilities
for the prefetch decision. We compute the page probability by evaluating all
paths from the current object to objects in the adjacent pages. The object re-
lationships are modelled using a Discrete-Time Markov Chain (DTMC) and a
method called hitting times is used to compute the page access probability. If
the probability of a page is higher than a threshold defined by cost/benefit para-
meters then the page is a candidate for prefetching. We developed a model that

122

distinguishes between costs for an incorrect prefetch and benefits of a correct
prefetch.

We evaluated the prefetching technique with our own, simple benchmark
and the 001 benchmark. The key findings of the simple benchmark tests are:

High transition probabilities result in high page probabilities and con-
sequently prefetching can reduce elapsed time drastically.

Prefetch applications that consider the heat parameter for the start of the
prefetch show better performance than applications which do not.

Pages with fewer out-going references are easier to predict and ensure
higher prefetch savings.

The general advantage of our prefetching technique is that if the transition
probabilities allow prefetching it can reduce elapsed time drastically but
if not it will not decrease performance.

The key results of the 001 benchmark implementation are:

The prefetch application P2-DP2 which considers the page probability at
the disk queue and prefetches multiple pages at the same time, performs
best.

All prefetch applications that consider page probabilities at the disk queue
perform better than applications that do not.

Lower cluster factors provide higher amounts of fetch time that can be
reduced by prefetching.

Prefetching only direct adjacent pages results in bigger improvements for
prefetch applications with higher cluster factors.

Prefetch accuracy and prefetch object distance are the most important
parameters for fetch time reduction.

A lower number of buffer frames increases the savings potential of pre-
fetching applications.

Our LRU-Prob replacement strategy outperforms simple LRU replacement.

123

Multiple parallel disks increase the performance of prefetching applica-
tions.

Prefetch application P2-DP performs better than P2-DP2 with multiple
disks.

In this chapter we studied extensively the performance of the prefetch algo-
rithm PMC and its variants PO, P1 and P2. P1, which fetches only the highest
probability page at a time could not achieve the good performance of P2, which
fetches all pages above a threshold. Now we have studied prefetching com-
bined with buffer management and clustering but the granularity of a prefetch
is another important issue. In Chapter 6 we compare the unit of a page versus
the unit of a group of objects to be transferred between client and server.

124

Chapter 6

Page versus Object Prefetching

6.1 Introduction

Most OODBMSs and prefetching techniques can be classified as either page or

object server systems.' If the system is a page server the prefetching technique

will prefetch one or multiple pages [Krishnan, 1995; Gerlhof, 1996; Knafla,

1997d; Knafla, 1998b] and in case of an object server one or a group of objects

[Chang, 1989; Keller et al., 1991; Palmer and Zdonik, 1991; Day, 1995].

All the previous research was conducted in one of these two types but there

is no research, to the best of our knowledge, which assesses a prefetching tech-

nique by comparing its performance in a page server and object server imple-

mentation. For both systems the important problem to solve is how to avoid the

I/O bottleneck. Here we have to distinguish two cases at the server side: disk

pages are resident at the server and disk pages are not resident at the server.

In theory, if all pages are resident the object prefetching technique has the ad-

vantage that it can put together all the relevant objects for a prefetch request

independent of how these objects are dispersed on pages. If pages are not likely

to be resident, a page prefetching technique has the advantage that it requests

only a few high priority disk pages.

Day [Day, 1995; Liskov et al., 1996] made an interesting study in the Thor

database in which he compared the performance of a page server system (with-

out prefetching) with an object server system that prefetches groups of objects.

The motivation was that the performance of a single-object fetching system

is unacceptable [DeWitt et al., 1990; Hosking and Moss, 1993]. Thor trans-

'Some OODBMSs products, e.g. GemStone, avoid the problem by executing the request on
the server and only return the result to the client.

125

fers groups of objects from server to client. On receiving a fetch request, a
Thor server selects objects to send in response. The group of objects selected is
called a prefetch group. Thor's dynamic selection of the group contrasts with
most distributed object databases which cluster objects statically into pages and
transfer pages. The selection of objects considers various techniques that pre-
fetch objects in the transitive closure of the current object. It can use depth-first
or breadth-first search and considers whether the object is resident at client or
not. The performance evaluation was made with the 007 benchmark [Carey
et al., 1993] using the dense and sparse traversals. The general result showed
that the best technique was bf-cutoff: a simple breadth-first traversal that cuts
off its exploration upon encountering an object already sent to the client. The
page server system performed reasonably well in the dense traversal where the
access pattern was similar to the clustering. The problem with this study is that
it does not give a fair comparison between an object and page server prefetching
system because:

It assumes that all pages are resident in the server buffer pool. This is
advantageous to object prefetching as explained before.

It compares an object prefetching technique with a demand paging sys-
tem.

A general problem with this type of group prefetching is that if the server
is already the bottleneck of the system then the additional selection process of
objects costs valuable server execution time. Another problem is the knowledge
about the client cache: either it discards this information or it needs to be
transferred to the server. The advantage is that the prefetching information is
available locally.

The differences between a demand object, page and file server systems was
studied by DeWitt et al. [DeWitt et al., 1990]. The object server transfers
only one object between client and server at a time and both client and server
can execute methods. The page server transfers 4-KB pages. The file server
uses NFS to access files and is not relevant to our study. The general result
of this research was that the object-server architecture is relatively insensitive
to clustering. It is sensitive to a client's buffer size up to a certain point, after
which the cost of fetching objects using the RPC mechanism dominates. They
conclude that for the object server it is viable to send a group of objects. The
page-server architecture is very sensitive to the size of the client's buffer pool

126

and to clustering when traversing or updating complex objects. While the page-

server architecture is far superior on sequential scan queries, the object server

architecture demonstrates superior performance when the database is poorly

clustered or the workstation's buffer pool is very small in relation to the size of

the database.

Another study concentrated on the interaction of locking and the database

architecture [Carey et al., 1994c]. They presented three page server variants

that allow concurrent data sharing at the object level while retaining the per-

formance advantages of shipping pages to the client. The results indicated that

a page server is preferable to an object server. Moreover, the adaptive page

server with object locking was shown to provide very good performance and

outperformed the pure page and object server. Both Carey et al. [Carey et al.,

1994c] and DeWitt et al. [DeWitt et al., 1990] study the difference in the ob-

ject/page architectures without considering prefetching.

The performance evaluation of three commercial OODBMSs was subject to

the study of [Hohenstein et al., 19971. Two of the three systems were page

servers and one object server. In contrast to previous benchmark studies this

evaluation was performed with a concrete data warehouse application. One re-

sult is that OODBMSs differ substantially in their performance, often more than

standard benchmarks had shown [Carey et al., 1994b]. Another outcome is

that numerous tuning possibilities can improve the performance considerably.

Results showed that the architecture of the system (page vs. object server) is

often more important than the object-oriented paradigm itself. For the appli-

cation, the object server has, besides the superior performance, an additional

advantage due to the finer locking granularity.

In this chapter we compare the performance of a prefetching page server

system with a prefetching object server system. The prefetching algorithms are

presented in Section 6.2. Section 6.3 presents the environment for the simu-

lation. All the results of the performance evaluation are given in Section 6.4.

Finally, Section 6.5 summarises this evaluation.

6.2 Prefetch Algorithms

We compare some page prefetch techniques with several variants of object pre-

fetch techniques. Every pointer has an assigned transition probability (tp). All

127

techniques compute the access probability of objects according to the tps be-
tween objects which can be between 0 and .1. The page prefetch algorithms are
described in Section 6.2.1 and the object algorithms in Section 6.2.2.

6.2.1 Page Prefetch Algorithms

The page prefetch technique loads the page with the highest access probability
from the current object being processed. We described the computation process
in the previous chapter. One way in which this technique differs is that we are
not using a minimal threshold to start the prefetch; instead it always prefetches
the page with the highest probability and only one page at a time. Moreover,
it does not take into account any negative effects of prefetching. We compare
four different techniques:

PSDem

A demand application without any prefetching which loads every missing
page on an object fault.

PSPref

A prefetch application that fetches always the highest probability page. It
can fetch only one page at the time.

PSDemHit, PSPreFH1t

Identical applications as PSDem and PSPref but all the requested pages
are resident in the servers' buffer pool. No disk request is required.

6.2.2 Object Prefetch Algorithms

The object prefetch techniques always load a group of objects in advance. The
relevant group of objects is computed by the Chap man-Kolmogorov equations
[Ross, 1997]. Let i be the current object and j another object, then pn+m de-
notes the probability to access object j from object i in n + rn steps2. Let k be
an intermediate object between i and j which could be one object or a set of
objects. Then we compute Pm firstly from object i to k in ii steps and then
secondly from object k to j in rn steps:

2A step means the traversal from one object to another object.

128

n+m -
— 	ZO IP 1l' for all n, rn > 0, all i, j 	(6.1)

These equations can be solved by matrix multiplications.3 If the probability
of an object is higher than a threshold then we insert this object into the request
group. We use four different threshold parameters (0.0, 0.001, 0.01 and 0.1).
Another important parameter for the prediction is the lookahead n. We vary the
depth of this parameter from 1 to 19 objects. In our tests we will compare the
following object prefetch and demand techniques:

OSDem

On an object fault, this technique fetches the missing object and all the
objects in the lookahead n. It fetches all the non-resident pages from disk
and sends the whole group of objects to the client.

OSPref

It prefetches all the objects in the lookahead n. In the case of a miss it
sends a demand request to the server.

OSDemHit, OSPrefHit

Identical applications as OSDem and OSPref but all disk pages are resident
in the servers' buffer.

OSServPref

The server prefetches the page with the highest priority into its buffer
pool. The prefetch is executed so far in advance that when a client request
arrives for a page it will be already resident in the buffer pool.

OSPrefLimDem

The prefetch operations are executed as in OSPref but the demand opera-
tion fetches only objects from the page to which the faulted object belongs.
The idea behind this optimisation is that stalling client time is reduced to
the lowest level.

3These computations are very expensive and are used to compare equal probability values
with a page server. We do not compare these computation costs in this study.

129

OSAbortPref, OSAbortPrefNotDem

On the arrival of a new prefetch request, OSAbortPref will destroy all
previous requests at the server from that client and will execute only the
new request. It will also destroy all disk requests from the old client re-
quests. All the objects that are resident are sent to the client from the
aborted request. If the server would not destroy previous requests then
new prefetch request, determined by the new context, would have to wait
for old prefetch request to be served. The old requests could already be
out-of-context and the savings potential of the new request is reduced.
OSAbortPrefNotDem will only abort previous prefetch request but no de-
mand requests.

OSServSendDirect

The server sends the objects of the arriving disk pages directly to the cli-
ent. This means one request could result in many initiated transfers from
the server. Considering the fact that the disk is the slowest system part
and that the network is much faster, nowadays, it could be advantageous
to send every set of incoming objects separately to the client. Especially
when the client is only interested in a small set of objects it does not have
to wait until all objects are at the server side.

6.3 System Environment

For the performance evaluation we used the simulation language C++Sim
[Little and McCue, 1993]. We used the same simulation that we have described
in Section 5.4.1. In addition, we created two processes for prefetching: one for
sending requests to the server and one for receiving data from the server. Both
processes run in parallel with the client process. We also created two object
buffers, one at the client and one at the server.

Table 6.1 shows the shared performance settings of both object and page
server, Table 6.2 shows the values of the page server and Table 6.3 the values
from the object server.

The cost of the network transfer depends on the number of bytes to be trans-
ferred. These variable costs are split, according to a measured percentage, into

'This is an optimistic value. We assume disk pages to be stored in clusters which reduces the
average seek time.

130

Parameter Ys
Object processing time 1200
Fixed network cost for one transfer 1557
Variable network time for one transfer (per KB) 132
Var. network time client/network/server in % 45%/18%/37%
Client message send 267
Server message receive 156
Client message receive 156
Average disk access (seek+ transfer) 4 5615
Client server-request processing 1530

Table 6.1: Shared performance parameter of object/page server.

Parameter 	 I 	Its
Page fetch time 12000
Server processing (page resident) 1359
Server processing (page not resident) 1664

Table 6.2: Page server performance specification.

processing at the client side (for receiving data), at the network (for transfer-
ring data) and at the server (for sending data). Every network data transfer
has also an associated message block at the beginning which is read before the
data. The total network cost is then ascertained by the variable cost plus the
fixed network cost and message cost.

The page server has a page fetch time of 12 ms. If the object server fetches
the same number of objects from the same page as the page server then its
fetch time will be 12.1 ms (slightly higher because of the object overhead in-
volved). At the server we distinguish between costs for processing resident or
non-resident pages. If the page is not resident there is an overhead involved to
communicate with the disk thread. A prefetch in a page server system must be
started 10 processing objects ahead to achieve the total amount of savings. This
is also true for the object server system if it fetches only one page from disk.

For the object server we have a low processing cost for the initial processing
of a receipt. Moreover, we hold the server for processing, e.g. buffer man-
agement, before the disk request and after the disk request, e.g. auditing the
page.

The benchmark structure we used for this test is a simple tree structure.
Branch objects have two pointers to other objects. At each level in the depth of

131

2.4

2.2

2.0
ci)
ci)
E
= 1.8
0
0

cci
W 1.8

1.4

1.2
1.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities

Parameter Ps
Initial processing 18
Call disk 105
Processing non-resident page 790
Object lookup 5
Processing after disk arrival 978

Table 6.3: Object server performance specification.

the tree structure one branch object alternates with an object which has only
one pointer to another object. Every branch object has an associated probability
which is varied from 0.5 to 1.0. The navigation through the object graph was
controlled by a draw-operator5 There are 62 objects on a disk page (8 KB) and
the object size is 132 bytes. A depth-first traversal would access 10 objects from
the same page and the 11th would be an object from the next page. We assume
perfect clustering for the objects on disk pages. Prefetching is only used to
prefetch the objects/pages at the page border. We also assume the buffer space
to be infinite and we do not consider any locking in our tests.

6.4 Performance Evaluation

6.4.1 Page Server Result

Figure 6.1: Page server result.

'Given a probability value it decides to continue navigation with reference 1 or 2.

132

Figure 6.1 shows the result of the page server applications. The performance

of the demand applications is independent of the tps. At the probability of

1.0 PSPref is almost as good as PSPrefHit. With lower tps the prediction is less

accurate which causes more incorrect prefetches and the elapsed time increases.

6.4.2 Object Server Result

The result of the object server with a threshold of 0.0 is presented in Figure 6.2.

The number of the applications with the lookahead parameter indicates the

depth of the object graph to be prefetched. At the tp of 1.0 Lookahead 19

performs best. A lower lookahead reduces the amount of savings. At the other

tps (0.95 down to 0.5) the elapsed times for all versions are immutable. The

high lookahead applications perform very badly since they fetch a lot of pages

from disk and consume a lot of server time.

9

7

3

1700

1500

1300

1100

900

700

500

300

-0-Lookahead II
-0-Lookahead 13
-D-Lookahead 15
-ó-Lookahead 17
-X-Lookahead 19

ii 	 100 >T-

1.0 	0.9 	0.8 	0.7 	0.6 	0.5
	 1.0

	0.9 	0.6 	0.7 	0.6 	0.5
Transition Probabilities

	 Transition Probabilities

(a) 	 (b)
Figure 6.2: Object server result with threshold 0.0. In Figure (a) the result is
measured in elapsed times and in Figure (b) in the number of disk requests.

The explanation for these times can be found in Figure 6.2(b). This chart

shows the number of disk requests of the different applications and its shape is

similar to the graph of Figure 6.2(a). The number of disk requests determines

the elapsed time of the applications. All the main differences of single compon-

ents can be found in Table 6.4. The Lookahead 19 application always prefetches

16 pages from the current location of client processing and accesses only one of

these pages. The number of server and disk waits means the number of times a

request has to wait in a queue until it can be served.

133

Parameter Lookahead 11 Lookahead 15 Lookahead 19
Server processing time 0.3 1.07 3.74
Disk processing time 0.65 2.32 8.99
Number of object requests 6292 23414 73346
Number of server waits 0 0 493
Number of disk waits 0 297 1583

Table 6.4: Object server result with threshold 0.0.

2.6

2.4

2.2

g

2.0
S

1.8

-

1.6

1.4

1.2
1.0 0.9 0.8 0.7 0.6 0.5

Transition Probabilities

2.6

2.4---

2.2

2.0
E

1.8-'

1.6 /

1.4

1.2 e
1.0 0.9 	0.8 	0.7 	0.6 	0.5

Transition Probabilities

Figure 6.3: Object server with all four Figure 6.4: Final object server result.
thresholds.

Figure 6.3 shows the results of all four threshold applications. All appli-
cations with a threshold smaller than or equal to 0.01 have the same elapsed
time between the tps of 0.75 down to 0.5 and at 1.0. At the other probabilit-
ies these applications vary slightly because of the different number of disk and
object requests. A higher threshold reduces the number of object fetches but if
it is too high it also aggrandises the number of demand fetches (e.g. threshold
0.1 has 4 additional demand fetches). In Figure 6.3, we see that Threshold 0.1
performs well for tps lower than 0.8 because of the high probability relation-
ships but then deteriorates due to a higher number of demand fetches. The
Threshold 0.01 application shows a high improvement between 0.95 and 0.85.
The main difference of the application with the 0.95 tp can be seen in Table 6.5.
The Threshold 0.01 application starts the prefetch just two objects before access
whereas Threshold 0.1 has the best performance with a prefetch distance of 10
objects. The Threshold 0.01 application has a short demand fetch time but a
long prefetch wait time as it starts the prefetch too late. It fetches many objects
with a few disk requests. The Threshold 0.1 application prefetches more incor-

134

2.8

2.6

2.4

2.2

E j 2.0

1.8

1.6

1.4

1.2
1.0 0.9 	0.8 	0.7 	0.6 	0.5

Transition Probabilities

rect pages because of the prefetch distance but prefetches always arrive before
access.

Parameter Threshold 0.01 1 Threshold 0.1
Prefetch distance 2 10
Demand fetch time 0.109 0.335
Prefetch wait time 0.862 0.000
Number of disk requests 109 127
Number of object requests 3094 1386
Number of obj. demand group req. 5 27

Table 6.5: Object server result with transition probability 0.95 testing the 0.01
and 0.1 threshold applications.

In Figure 6.4 we see the final result of the object server performance. The
OSDem has a constant performance; only at the transition probability of 1.0 is
it slightly better because of fewer object fetches. OSPref has a sharp increase
in performance until the probability of 0.75 and then stays constant. The ex-
planation for this is the same as the difference between the Threshold 0.01 and
Threshold 0.1 application in Figure 6.3. Before the 0.75 tp the prefetch distance
is 10 and savings are high; after 0.8 the distance is 2. OSDemHit shows similar
shape as OSDem. OSPrefI-lit performs best at all tps. Its elapsed time increases
slightly with lower tps because of lower object destination probabilities and a
later start of the prefetch.

6.4.3 Object and Page Server Comparison

Figure 6.5: Object/page server comparison.

135

In Figure 6.5 all, previously presented results are compiled into one graphic.
OSPref is worse at every tp than PSPref. The highest difference is at 0.8 when
OSPref uses a prefetch distance of 2 and PSPref still achieves the best result at
a distance of 8. The result is different for the applications where the pages are
resident at the server. OSPrefHit is able to select all the important objects for
an object group without doing any expensive page fetches whereas PSPrefHit
is restricted to objects of one page. PSDem and OSDem are almost identical:
at 1.0 OSDem is slightly better because of less object fetches and after 1.0 PS-
Dem improves as it has less overhead in object management. OSDemHit clearly
performs better than PSDemHit in all probabilities.

6.4.4 Object Server Performance Optimisations

2.6

2.2

1.6 PSPref

1.2
1.0

0.90.8Trarsition ProbabIities

Figure 6.6: Server prefetch abort.

In the previous object prefetch technique the client sends many prefetch re-
quests to the server. The server can only respond to such requests once all of the
required objects are resident in its address space. Consequently, there are per-
formance advantages if the server handles multiple requests concurrently from
this point the server can do useful work whilst awaiting the arrival of pages
from the disks. Some of these requests could be out of date, i.e. the applica-
tions' navigation is ahead of the prefetch request or the application changed its
navigation totally.

We developed the two algorithms OSAbortPref and OSAbortPrefNotDem,
shown in Figure 6.6, that abort all previous requests from the client at the
server on the receipt of a new request. Every new client request contains all

136

the relevant objects for the client processing; some of the objects in the new
request could be part of older requests. Therefore we are able to abort all older
requests. The server will abort all the disk requests from a client request and the
client request itself. OSAbortPref also aborts previous demand requests from the
client whereas OSAbortPrefNotDem only aborts previous prefetch requests. The
performance of both abort versions are close to the OSPref version. Between
the tps of 0.7 and 0.8 both abort versions perform badly. The reason for these
performance characteristics can be gleaned from Table 6.6.

[Parameter No Abort Abort
Demand fetch time 0.109 0.097
Prefetch wait time 0.941 1.151
Total server time 0.354 1.850
Total disk time 0.646 2.184
Number of disk requests 115 389
Number of object requests 6090 15101
Number of prefetch group requests 99 199

Table 6.6: Object prefetching with and without abort. Transition probability: 0.7;
prefetch distance: 2 and threshold: 0.01.

The abort prefetch application does not check which objects are currently
prefetched. It computes the relevant objects from the current context and sends
this request away. This approach obviously increases the number of object re-
quests. The server and disk processing time is also higher because of the pro-
cessing overhead at the server. More object requests involve more disk requests
and the disk system is busy with requests that are later not needed because of
an abort. Every time a served disk request arrives at the server, the server will
check if the request is aborted. If yes, it sends all the objects that are resident
to the client and reduces the open request list from the client. The overhead for
the server processing and the higher number of the network transfers increases
the server time. OSAbortPrefNotDem and OSAbortPref do better than PSPref

and OSPref at the 0.5 probability but cannot improve performance at the other
probabilities.

The object server showed its superiority when all pages are resident at the
server. For times when the server workload is low the server could prefetch
pages from disk according to the prefetch information from a client. OSServPref

starts a disk request after the service of a prefetch request. The server prefetches
the highest probability page of an additional lookahead that is not in the current

137

Figure 6.7: Server prefetching

WA 0

._.._

F IUIUI

IiTITI1
• • 	: 	• 	S 	- 	S

Figure 6.8: Server prefetch improve-
ments for threshold 0.0.

request. Server prefetches have an extra low priority queue at the disk. If
the queue still has requests from the same client it will delete all old requests.
Figure 6.7 demonstrates that OSServPref performs much better than OSPref
and very close to PSPref at higher tps. Of course, PSPref could also do server
prefetching. In the current implementation OSServPref fetches only one page
at a time from the disk. Fetching multiple pages could provide an even better•
result. Figure 6.8 shows that most of the savings can be achieved at higher
tps because these are associated with the best prediction possibilities. Also the
applications with the shorter distances achieve the best savings. The distance
10 application cannot achieve any improvement.

2.4

2.2

2 .0 . . .

................

.

I __ --
W 1.6

-0-OSPref

1.4OSSeSendDirect

......-O-PSPref

1.2
1.0 0.9 	0.8 	0.7 	0.6 	0.5

Transition Probabilities

Figure 6.9: Direct sending of pages.

2 	4 - - -

~PSPre

f 1.4

1.2

1.0 	0.9 	0.8 	0.7 	0.6 	0.5
Transition Probabilities

Figure 6.10: Prefetching with a limited
demand fetch.

138

Another performance optimisation for the object server is the separate send-
ing of pages to the client after receiving them from disk. This disk access is
the most expensive part of the object fetch. The client could be waiting already
for objects of that page and therefore it would make sense to start a network
transfer after the disk receipt. Figure 6.9 presents the result of this test. OSServ-
SendDirect shows a good improvement between the tps of 0.65 and 0.85 but
cannot achieve the result of PSPref. The best improvement is at 0.85. Table 6.7
shows the differences of a 0.85 transition probability version. The prefetch wait
time of the send early version is much lower because this version does not wait
for the complete service at the server. The disadvantage of the send early ap-
plication is that it increases the network service time with a fixed cost for every
message. The server time is also increased because of the encoding of the mes-
sage.

Parameter 	I Normal (sec.) I Send Direct (sec.)
Prefetch wait time 0.154 0.009
Total network time 0.049 0.068
Total server time 0.424 0.462

Table 6.7: Direct sending of pages at transition probability 0.85. Prefetch distance:
10 and threshold: 0.1.

In general every demand read requests all the objects according to a depth
value from the server without considering the location of the objects in pages.
OSPrefLimDem limits the object transfer to objects that are located on the same
page as the faulted object. Figure 6.10 shows the result of OSPrefLimDem appli-
cation. It performs worse than OSPref at tps of less than 0.85 but then performs
better than OSPref at higher tps. At tp below 0.8 PSPref fetches many objects
in the demand fetch unnecessary which can be avoided with OSPrefLimDem.
However, OSPrefLimDem cannot achieve the performance of PSPref. At tps
greater than 0.8, the better prediction possibilities combined with higher PODs
give OSPref better conditions for prefetching.

6.5 Summary

We compared the performance of a prefetching page server with that of a pre-
fetching object server. We simulated the object access pattern by assigning tps to
the object relationships. According to the tps we compute the access probability

139

of pages and objects. The key findings of this simulation study are:

. The prefetching page server outperforms the prefetching object server due
to the higher number of disk requests of the object server.

If all pages are resident at the server the prefetching object server per-
forms better because it can select the group of objects to be prefetched.

Applications that abort previous requests from the same client offer no
performance advantage. Only at the tps around 0.5 did the prefetching
abort applications show encouraging results.

Combined client-initiated and server-initiated prefetching is attractive for
object servers.

An object server should limit the number of objects in a demand fetch
if server pages are not resident and extend the number of object fetches
with prefetching.

If an object group request involves many pages to be fetched from disk,
the direct sending of the page to the client is most efficient.

This chapter completes the research work. In the next chapter we will sum-
manse all chapters of this thesis and give an outlook to future work.

140

Chapter 7

Conclusions

This final chapter will consolidate all of the material presented thus far and
focus the aims and achievements of this thesis. This will involve a summary of
all of the earlier chapters in Section 7.1. In Section 7.2 we explicitly highlight
the original contribution to knowledge which has been made. We discuss the
technology trends on PMC in Section 7.3. Finally, in Section 7.4 we will offer a
number of topics for further research. This will conclude the main body of our
thesis.

7.1 Summary

In the thesis we discussed several aspects of prefetching algorithms for object-
oriented databases. We now give a short summary of the main issues that have
been studied.

In Chapter 2 we gave an insight into the basic components of OODBMSs
which have to be closely co-ordinated with a prefetching technique. The ob-
ject identifier is used at prediction and prefetch time, and consequently has a
big impact on the computation speed and occupied disk space of prediction in-
formation. The choice between an object or page server architecture has also
an influence on the savings potential of prefetching which has been studied in
Chapter 6. Another strong dependency exists between clustering and prefetch-
ing which is the subject of Chapter 5.

Prefetching has been studied extensively over the last 20 years. Chapter 3
gave an overview of related work. We concentrated on subjects that are relevant
to OODBMSs. There are several aspects of optimisation to reduce response time
in a client/server environment:

141

Reduction of seek times.

Reduction of idle times.

Global resource optimisation.

Group requests for multiple pages.

Overlapping of CPU and I/O.

Parallel disk access.

Previous prefetching techniques in the area of OODBMS concentrated on
loading a set of objects in the forward direction from the current object. The
physical storage consideration of object relationships and the timing of a pre-
fetch were neglected. In addition, no study took the probability of traversing
object relationships into account.

We implemented a prefetch environment into the EXODUS storage mana-
ger in Chapter 4. We extended the database client with threads for predicting
and prefetching data from the server. We also designed a structure-based pre-
fetching technique called OSP It looks for non-resident objects in the forward
direction up to a depth determined by the time a page fetch and the expected
time of object processing. It also assigns weights to pages by counting the num-
ber of objects that have references to that page. OSP has a low overhead and
works effectively when the number of adjacent pages is small.'

From ESM implementation we learned that the total reduction of elapsed
time is dependent on the CPU-I/O ratio. We achieved a reduction of up to
23%. Using multiple prefetch threads can improve performance as a result of
intensified parallelism at the client. The maximum number of all threads for
prefetching and processing should not be higher than the number of processors
available. Another finding was that a multiple-server architecture is more at-
tractive for prefetching than a single server architecture, even where the single
server has a power that is comparable to the combined power of the multiple
servers. Finally, the percentage of incorrect prefetches is vital for the success
of prefetching. The complex benchmark result substantiated that one incorrect
prefetch was acceptable but two incorrect prefetches without additional client
processing were unacceptable.

In Chapter 5 we developed a prefetch algorithm to compute the access prob-
ability of pages by analysing object relationships. We compute the probability

142

of accessing a page and the mean time to access. The object relationships are
modelled using a Discrete-Time Markov Chain and a method called hitting times
is used to compute the page access probability. The simulation results show that
high transition probabilities result in high page probabilities and consequently
prefetching can reduce elapsed time drastically. In addition, pages with fewer
out-going references to adjacent pages are easier to predict and ensure higher
prefetch savings. Other key findings from the 001 simulation are:

All prefetch applications that consider page probabilities at the disk queue
perform better than applications that do not.

. Lower cluster factors provide higher amounts of fetch time that can be
reduced by prefetching.

Prefetching only directly adjacent pages results in bigger improvements
for prefetch applications with higher cluster factors.

Prefetch accuracy and prefetch object distance are the most important
parameters for fetch time reduction.

A smaller number of buffer frames increases the savings potential of pre-
fetching applications.

Multiple parallel disks increase the performance of prefetching applica-
tions.

Finally, in Chapter 6 we compared the performance of a prefetching page
server with that of a prefetching object server. The general result of the test was
that the prefetching page server outperforms the prefetching object server due
to fewer disk requests at the server. In a test where all the pages are resident
at the server the prefetching object server performs better because it can select
the group of objects to be prefetched.

7.2 Contribution

Now that we have summarised the conclusions of this thesis, we will explicitly
highlight how our work makes an original contribution to knowledge. Accord-
ingly, the following points are offered as the principal scholarly contributions
that have been made by this thesis:

143

A classification of prefetching techniques according to their applied pre-
diction method and other aspects.

An OODBMS implementation of a client/server prefetching architecture
on multiprocessor machines. We evaluated the behavior and performance
of multiple threads on multiprocessors.

We designed a new object structure-based prefetching technique, called
OSl which considers the weight of pages and the timing of a prefetch.

A theoretical study about the speedup of prefetch applications.

A prefetching algorithm PMC, which analyses the probability of object re-
lationships, computes the page probability and mean time to access. From
this basic idea we developed multiple deviated prefetch algorithms. We
also developed a cost model for the benefit and extra costs of prefetching.

We evaluated the performance of a prefetching object server versus a pre-
fetching page server.

We conducted the first experimental study that considers the probability
of object traversal for prefetching.

7.3 Discussion

We have seen the good performance of prefetch algorithm PMC in Chapter 5,
but in the future PMC will be even more valuable. CPU performance is improv-
ing quickly and the parallel use of CPUs also provides more processing power.
The performance of disk is expected to rise only at a slow rate. This means that
disk retrieval time will increase its percentage in page fetch time. This trend
suggests that the scheduling of disk requests will be even more important.

Faster CPUs reduce the duration of the computation-intensive parts of a page
fetch, and they also reduce the client processing time to be overlapped with the
prefetch. Either the prefetch has to be started earlier or user waiting time is used
for overlapping. On the other side applications also grow in their complexity
which increases the overlapping time again.

Comparing the future performance development of disks and CPUs, in-
dicates that powerful CPUs should be used to predict application access and
thereby avoid slow disk processing. CPUs of the future generation tend be idle

144

most of time: this idle time is perfect for off-line prediction. A higher amount
of disk requests gives the disk optimiser also the chance to order requests and
take advantage of the high disk transfer rates.

Another future trend is that network transfer times also improve at a high
speed. This makes the transfer of prediction information cheaper. Besides the
actual page transfer, the server sends updates on the object structure to the
client and the client sends updated values of the page probabilities to the server.
Therefore, information can often be piggy-backed to the data transfer.

7.4 Future Work

To complete the thesis we will present a few suggestions for further research.
We have covered a lot aspects of prefetching, e.g. the interaction with clustering
and buffer management; overlapping times for prefetching; prediction costs and
the granularity of a prefetch. There is therefore much for further investigation.
However, to contain the discussion, we have selected the following topics which
we feel offer the most potential for expansion.

7.4.1 Integrated Multi-User Prefetching

The size of future applications and the amount of data every client will request
from the server will rise. All the prefetch requests from multiple clients have to
be integrated by a multiple user prefetching technique. The integration process
is important at the server to decide about the relevance of all incoming prefetch
requests. The client could provide information such as the mean time to access
and the access probability to the server. The server then decides which client has
to be served first. This is especially important for the order of the disk queue
as we have seen in Section 5.4.3. Of similar importance is the replacement
decision of pages in the buffer pool. The server can use the page probabilities for
ordering disk requests but keeping them up-to-date for a replacement decision is
difficult. Therefore the replacement strategy depends on the trade-off between
a high-accuracy solution with page probabilities and the communication cost
for providing this information.

145

7.4.2 Multithreaded ESM Server

The ESM server is not multithreaded at the moment but it can run many tasks
as concurrent processes on one processor. If one task stalls for I/O another
task is scheduled on the processor. The server also forks a new process, the
disk manager, for every disk volume. Communication between server and disk
manager is achieved by shared memory.

This current architecture does not exploit parallelism as much as it could do.
It only allows to run one server process on a multiprocessor and the communic-
ation via shared memory is expensive. Using threads at the server would avoid
both problems and would speed up our client/server prefetching architecture.
Every client request would be performed by a separate thread. When the thread
is waiting for I/O, another thread can be executed on the processor. This archi-
tecture would be especially valuable for the idea presented in Section 7.4.1.

7.4.3 Noise Influence on PMC

In a multi-user environment many clients make read and write requests to the
server. Many requests increase the average page fetch time and influence the
time when a prefetch has to be started. In our model it affects the right setting
of POD,,,,. The server could give the client information about the current
workload and the client considers it in the prefetch decision. The problem is
the object relationship patterns are often complex and if we start the prefetch
too early it may turn out to be incorrect. Therefore if we set POD,,,, too high it
may cause more harm than good. Another problem may be a high fluctuation in
the server workload and until the client is notified many requests are wrongly
timed.

Another noise parameter is frequency of updates. Updates on data values are
no problem but updates on pointers are problematic. If pointers are updated
the current prediction information of the equivalence class have to be invalid-
ated and to be rebuilt. As long as the information is invalidated no prefetch can
be issued. The server has to send information of the new object relationship
structure to all affected clients and the clients have to re-compute the predic-
tion information. Therefore a large number of updates on pointers increases
the prediction computation time at the client, the network workload and the
server processing time. In general, we want to investigate all aspects of higher
workloads induced by a multi-user environment.

146

7.4.4 Buffer Replacement based on Probabilities

In Chapter 5 we learned that the probability computation of direct adjacent
pages is feasible with up-to-date computers. The computation for multiple
depths of adjacent pages may be difficult at the moment. In the future the pro-
cessing power of CPUs will increase drastically which will enable us to compute
future access much further ahead. The enhanced information could be used for
prefetching and buffer replacement. Every page has an associated probability
depending on the current position in the navigation. If a candidate page has a
higher probability than the lowest probability of a page in the buffer pool then
we would start the prefetch and replace the low probability page. The prob-
ability information is important for a replacement decision at the client and
the server. At the server we have to integrate the navigation process of many
clients.

147

Bibliography

Acharya, S. (1998). Broadcast Disk: Disseminiation-based Data Management

for Asymmetric Communication Environments. PhD thesis, Department of

Computer Science, Brown University.

Acharya, S., Franklin, M., and Zdonik, S. (1996a). Disseminating Updates on

Broadcast Disks. In Proc. of the 22th mt. Conf on Very Large Data Bases,

pages 354-365, Bombay, India. Morgan Kaufmann Publishers.

Acharya, S., Franklin, M., and Zdonik, S. (1996b). Prefetching from a Broadcast

Disk. In Proc. of the 11th mt. Conf on Data Engineering, pages 276-287,

New Orleans, LA, USA.

Acharya, S., Franklin, M., and Zdonik, S. (1997). Balancing Push and Pull for

Data Broadcast. In Proc. of the 1997 ACM Sigmod Conf, pages 183-194,
Tucson, Arizona.

Agarwal, B. (1995). Configuring and Tuning the Data Cache in SQL Server 11.0.

Sybase Engineering TechNotes.

Agrawal, R., Dar, S., and Gehani, N. (1993). The 0+ + Database Programming

Language: Implementation and Experience. In [ICDE, 19931, pages 61-70.

Agrawal, R. and Gehani, N. (1989). ODE (Object Database and Environment):

The Language and the Data Model. In [SIGMOD, 19891, pages 36-45.

Ahn, J. and Kim, H. (1997). SEOF: An Adaptable Object Prefetch Policy For

Object-Oriented Database Systems. In Proc. of the 13th mt. Conf on Data

Engineering, pages 4-13, Birmingham, UK.

Albers, S., Garg, N., and Leonardi, S. (1996). Minimizing Stall Time in Single

and Parallel Disk Systems. Technical Report MPI-I-97-1-024, Max-Planck-

Institut für Informatik, Saarbrücken, Germany.

UM

Amdahl, G. M. (1967). Validity of the single processor approach to achieving

large scale computing capabilities. AFIPS Proc. of the SJCC, 31:483-485.

Andrews, T. and Harris, C. (1987). Combining Language and Database Ad-

vances in an Object-Oriented Development Environment. In Proc. of the

Confi on Object-Oriented Programming Systems, Languages and Applications,

pages 430-440, Orlando, FL. ACM.

Arunachalam, M. and Choudhary, A. (1995). A Prefetching Prototype for the

Parallel File System on the Paragon. In [SIGMETRICS, 19951, pages 321-

323.

ASPLOS (1992). Fifth mt. Confi on Architectural Support for Programming Lan-

guages and Operating Systems, Boston, MA.

Atkinson, M., Bailey, P, Chisholm, K., Cockshott, W, and Morrison, R.

(1983). An Approach to Persistent Programming. The Computer Journal,
26(4):360-365.

Baer, J.-L. and Chen, T.-E (1991). An effective on-chip preloading scheme to

reduce data access penalty. In Proc. of the mt. Conf on Supercomputing,

pages 176-186, Cologne, Germany.

Baier, J. and Sager, G. (1976). Dynamic Improvement of Locality in Virtual

Memory Systems. IEEE Transactions on Software Engineering, 2(1):54-62.

Banatre, M., Issarny, V, Leleu, F., and Charpiot, B. (1997). Providing quality

of service over the Web: a newspaper-based approach. Computer Networks

and ISDN Systems, 29(8):1457-1465.

Bancilhon, E, Delobel, C., and Kanellakis, p (1992). Building an Object-Oriented

Database System - The Story of 02. Morgan Kaufmann Publishers.

Barve, R., Kallahalla, M., Varman, P, and Vitter, J. (1997). Competitive Parallel

Disk Prefetching and Buffer Management. In [IOPADS, 19971, pages 47-

56.

Belady, L. (1966). A study of replacement algorithms for virtual storage. IBM
Systems Journal, 5:78-101.

Bell, T., Cleary, J., and Witten, I. (1990). Text Compression. Prentice-Hall.

149

Bertino, E., Saad, A., and Ismail, M. (1994). Clustering techniques in object
bases: a survey. Data & Knowledge Engineering, 12(3):255-275.

Bestavros, A. (1995). Using Speculation to Reduce Server Load and Service
Time on the WWW. In Proc. of the 1995 ACM CIKM mt. Confi on Information
and Knowledge Management., pages 403-410. ACM.

Bestavros, A. (1996). Speculative Data Dissemination and Service to Reduce
Server Load, Network Traffic and Service Time. In Proc. of the 1996 mt.
Conf on Data Engineering, pages 180-189, New Orleans, Louisiana.

Bianchini, R. and LeBlanc, 1. (1994). A preliminary evaluation of cache-missed-
initiated prefetching techniques in scalable multiprocessors. Technical
Report 515, University of Rochester, Computer Science Department, N,
14627.

Biliris, A. and Panagos, E. (1995). A High Performance Configurable Storage
Manager. In [ICDE, 19951, pages 35-43.

Burdorf, C. and Cammarata, S. (1990). Prefetching Simulation Objects in a Per-
sistent Simulation Environment. In Antonio Guasch, editor, Proc. of the SCS
Multiconference on Object Oriented Simulation, pages 68-74, San Diego, CA.
Society for Computer Simulation.

Butler, H. (1987). Persistent Lisp: Storing Interobject References in a Database.
PhD thesis, Computer Science Division, EECS Department, University of
California at Berkeley.

Calder, B. and Grunwald, D. (1994). Fast and accurate instruction fetch and
branch prediction. In Proc. of the mt. Symp. on Computer Architecture, pages
22-32, Chicago, IL.

Calder, B., Grunwald, D., Jones, M., Lindsay, D., Martin, J., Mozer, M., and Zorn,
B. (1997). Evidence-Based Static Branch Prediction Using Machine Learn-
ing. ACM Transactions on Programming Languages and Systems, 19(1): 188-
222.

Cao, P (1996). Application-controlled File Caching and Prefetching. PhD thesis,
Department of Computer Science, Princeton University.

Cao, P, Felten, E., Karlin, A., and Li, K. (1995a). A Study of Integrated Prefetch-
ing and Caching Strategies. In [SIGMETRICS, 1995], pages 188-197.

150

Cao, P, Felten, E., Karlin, A., and Li, K. (1995b). Implementation and Perform-

ance of Integrated Application-Controlled Caching, Prefetching and Disk

Scheduling. Technical Report CS-TR-493-95, Department of Computer Sci-

ence, Princeton University.

Cao, P, Felten, E., Karlin, A., and Li, L. (1996). Implementation and Perform-

ance of Integrated Application-Controlled File Caching, Prefetching, and

Disk Scheduling. ACM Transactions on Computer Systems, 14(4):311-343.

Carey, M., DeWitt, D., Frank, D., Graefe, G.; Richardson, J., Shekita, E., and

Muralikrishna, M. (1986a). The Architecture of the EXODUS Extensible

DBMS. In Dittrich, K. and Dayal, U., editors, Proc. of the ACM/IEEE

Int. Workshop on Object-Oriented Database Systems, pages 233-255, Pacific

Grove, CA. IEEE Computer Society Press.

Carey, M., DeWitt, D., Franklin, M., Hall, N., McAuliffe, M., Naughton, J.,

Schuh, D., Solomon, M., Tan, C., Tsatalos, 0., White, S., and Zwilling, M.

(1994a). Shoring Up Persistent Applications. In [SIGMOD, 19941, pages

383-394.

Carey, M., DeWitt, D., Graefe, G., Haight, D., Richardson, J., Schuh, D., Shekita,

E., and Vandenberg, S. (1990). The EXODUS Extensible DBMS Project: An

Overview. In Zdonik, S. and Maier, D., editors, Readings in Object-Oriented

Database Systems, pages 474-499. Morgan Kaufmann Publishers.

Carey, M., DeWitt, D., and Naughton, J. (1994b). The 007 Benchmark. Tech-

nical Report Technical Report 1140, Computer Science Department, Uni-

versity of Wisconsin- Madison.

Carey, M., DeWitt, D., Richardson, J., and Shekita, E. (1986b). Object and File

Management in the EXODUS Extensible Database System. In Proc. of the

Twelfth mt. Confi on Very Large Data Bases, pages 91-100, Kyoto, Japan.

Carey, M., DeWitt, J., and Naughton, J. (1993). The 007 Benchmark. In [SIG-

MOD, 19931, pages 12-21.

Carey, M., Franklin, M., and Zaharioudakis, M. (1994c). Fine-Grained Sharing

in a Page Server OODBMS. SIGMOD Records, 5:359-370.

Cattell, R. (1992). Object Operations Benchmark. ACM Transactions on Data-

base Systems, 17(1):1-31.

151

Cattell, R., editor (1993). The Object Database Standard ODMG-93. Morgan

Kaufmann Publishers.

Cattell, R. (1994). Object Data Management. Addison-Wesley.

Chan, C., Ooi, B., and Lu, H. (1992). Extensible buffer management of indexes.

In Proc. of the Eighteenth mt. Confi on Very Large Data Bases, pages 444-454,

Vancouver, Canada.

Chang, E. and Katz, R. (1989). Exploiting Inheritance and Structure Semantics

for Effective Clustering and Buffering in an Object-Oriented DBMS. In [SIG-

MOD, 1989], pages 348-357.

Chang, E.-L. (1989). Effective Clustering and Buffering in an Object-Oriented

DBMS. PhD thesis, Computer Science Division, EECS Department, Uni-

versity of California at Berkeley.

Chaudhuri, S., Ghandeharizadeh, S., and Shahabi, C. (1995). Avoiding Re-

trieval Contention for Composite Multimedia Objects. In Proc. of the 21st

Int. Confi on Very Large Data Bases, pages 287-298, Zurich, Switzerland.

Chee, C., Lu, H., Tang, H., and Ramamoorthy, C. (1997). Improving I/O Re-

sponse Times Via Prefetching and Storage System Reorganization. In The

21st Ann. mt. Computer Software and Applications Conf, pages 143-148,
Washington, D.C.

Chen, P, Lee, E., Gibson, G., Katz, R., and Patterson, D. (1994). RAID:

High-performance, reliable secondary storage. ACM Computing Surveys,

26(2):145-185.

Chen, T.-F. (1993). Data prefetching for high-performance processors. PhD thesis,

Department of Computer Science and Engineering, University of Washing-

ton.

Chen, T.-F. and Baer, J. (1994). A Performance Study of Software and Hardware

Data Prefetching Schemes. In Proc. of the 21st Ann. mt. Symp. on Computer

Architecture, pages 223-232, Chicago, IL. IEEE Computer Society Press.

Chen, T.-E and Baer, J.-L. (1992). Reducing Memory Latency via Non-blocking

and Prefetching Caches. In [ASPLOS, 19921, pages 51-61.

152

Chen, T.-F. and Baer, J.-L. (1995). Effective Hardware-Based Data Prefetch-

ing for High-Performance Processors. IEEE Transactions on Computers,

44(5):609-623.

Cheng, J. and Hurson, A. (1991a). Effective Clustering of Complex Objects in

Object-Oriented Databases. In [SIGMOD, 1991], pages 22-31.

Cheng, J. and Hurson, A. (1991b). On the Performance Issues of Object-Based

Buffering. In [PDIS, 19911, pages 30-37.

Cho, S. and Cho, Y. (1996). Page Fault Behavior and Two Prepaging Schemes.

In Proc. of the 1996 IEEE 15th Ann. mt. Phoenix Conf on Computers and

Communications, pages 15-24, New York.

Chou, H.-T., DeWitt, D., Katz, R., and KIug, A. (1985). Design and Implement-

ation of the Wisconsin Storage System. Software - Practice and Experience,

15(10):943-962.

Cleal, D. (1996). Optimising Relational Database Access. Object Expert,

1(3):32-38

Copeland, G. and Maier, D. (1984). Making Smalltalk a Database System. In

Proc. of the ACM SIGMOD Int. Conf on Management of Data, pages 316-

325, Boston, MA.

Cortes, T., Girona, S., and Labarta, J. (1997). Avoiding the Cache-Coherence

Problem in a Parallel/Distributed File System. Technical Report UPC-CEP-

BRA-1996-13, Departament d'Arquitectura de Computadors, Universitat

Politecnica de Catalunya, Barcelona.

Crovella, M. and Barford, P (1997). The Network Effects of Prefetching. Tech-

nical Report 97-002, Computer Science Department, Boston University.

Cunha, C. (1997). Trace Analysis and its Applications to Performance Enhance-

ments of Distributed Informations Systems. PhD thesis, Computer Science

Department, Boston University.

Cunha, C. and Jaccoud, C. (1997). Determining WWW User's Next Access and

Its Application to Pre-fetching. Technical Report TR-95-011, Computer Sci-

ence Department, Boston University.

Curewitz, K., Krishnan, P, and Vitter, J. (1993). Practical Prefetching via Data

Compression. In [SIGMOD, 1993], pages 257-266.

153

Dahigren, F. and Stenström, p (1995). Effectiveness of hardware-based stride

and sequential prefetching in shared-memory multiporocessors. In Proc.

IEEE Symp. on High-Performance Computer Archictecture, pages 68-77,

Raleigh, North Carolina.

Datta, A., Mukherjee, S., Viguiei, I., and Veloo, R. (1995). PAPER (Prefetch-

ing Anticipatorily and Priority basEd Replacement): A High Performance,

Low Overhead Buffer Management Scheme for Real-Time, Active Database

Systems. Technical Report RTRG-TR-95-02, Department of Management

Information Systems, University of Arizona.

Day, M. (1993). Object Groups May Be Better Than Pages. In Penny Storms,

editor, Fourth Workshop on Workstation Operating Systems, pages 119-122,

Napa, California. IEEE Computer Society Press.

Day, M. (1995). Client Cache Management in a Distributed Object Database.

PhD thesis, Massachusetts Institute of Technology Laboratory for Computer

Science.

Delobel, C., Lecluse, C., and Richard, P (1995). Databases: From Relational to

Object-Oriented Systems. International Thomson Publishing.

DeWitt, D., Maier, D., Futtersack, P, and Velez, F. (1990). A Study of Three

Alternative Workstation-Server Architecture for Object-Oriented Database

Systems. In [VLDB, 19901, pages 107-121.

DeWitt, David; Gray, Jim (1992). Parallel Database Systems: The Future of High

Performance Database Systems. Communications of the ACM, 35(6):85-98.

Effelsberg, W. and Harder, T. (1984). Principles of Database Buffer Manage-

ment. ACM Transactions on Database Systems, 9(4):560-595.

Farkas, K., Jouppi, N., and Chow, p (1995). How useful are non-blocking loads,

stream buffers and speculative executions in multiple issue processors? In

[HPCA, 1995], pages 78-89.

Fischer, J. and Freudenberger, S. (1992). Predicting conditional branch direc-

tions from previous runs of a program. In [ASPLOS, 19921, pages 85-95.

Fleming, T., Midkiff, S., and Davies, N. (1997). Improving the Performance

of the World Wide Web over Wireless Networks. In GLOBECOM 97. IEEE

Global Telecommunications Confi, pages 1937-42, Phoenix, AZ, USA.

154

Franklin, M., Carey, M., and Livry, M. (1993). Local Disk Caching for Client-

Server Database Systems. In Proc. of the Nineteenth mt. Con f on Very Large

Data Bases, pages 641-664, Dublin, Ireland. Morgan Kaufmann Publishers.

Freedman, C. and DeWitt, D. (1995). The SPIFFI Scalable Video-on-Demand

System. In Proc. of the ACM SIGMOD/PODS95 Joint Confi on Management

of Data, pages 352-363, San Jose, CA.

Fu, J. and Patel, J. (1991). Data prefetching in multiprocessor vector cache

memoies. In Proc. of the Intl. Symp. on Computer Architecture, pages 54-63.

Garcia-Molina, H. and Salem, K. (1992). Main Memory Database Systems: An

Overview. IEEE Knowledge and Data Engineering, 4(6):509-516.

Gassner, P, Lohman, G., Schiefer, K., and Wang, Y. (1994). Query optimization

in the IBM DB2 family. Technical Report RJ9734, IBM Almaden Research

Center.

GemStone (1991). Product Overview.

Gerlhof, C. (1996). Optimierung von Speicherzugriffskosten in Objektbanken:

Clustering und Prefetching. PhD thesis, Faculty for Mathematics and Com-

puter Science, University of Passau.

Gerlhof, C. and Kemper, A. (1994a). A Multi-Threaded Architecture for Pre-

fetching in Object Bases. In Proc. of the mt. Conf on Extending Database

Technology, pages 351-364, Cambridge, UK.

Gerlhof, C. and Kemper, A. (1994b). Prefetch Support Relations in Object Bases.

In Proc. of the Sixth mt. Workshop on Persistent Object Systems, pages 115-

126, Tarascon, France.

Gerlhof, C., Kemper, A., Kilger, C., and Moerkotte, G. (1993). Partition-Based

Clustering in Object Bases: From Theory to Practice. In Foundations of

Data Organization and Algorithms. Proc. of the Seventh mt. Confi, number

730 in Lecture Notes in Computer Science, pages 301-316, Chicago, IL,

USA. Springer-Verlag.

Ghandeharizadeh, S., Ramos, L., Mad, Z., and Qureshi, W. (1991). Object

Placement in Parallel Hypermedia Systems. In [VLDB, 1991], pages 242-

254.

155

Gibson, G., Patterson, R., and Satyanarayanan, M. (1992). Disk Reads with

DRAM Latency. In Penny Storms, editor, Proc. Third Workshop on Worksta-

tion Operating Systems, pages 126-131, Key Biscayne, FL. IEEE Computer

Society Press.

Gokhale, V. (1997). Design of the 64-bit Option for the Oracle7 Relational

Database Management System. Digital Technical Journal.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and Its Imple-

mentation. Addison-Wesley.

Gollapudi, S. and Zhang, A. (1998). Buffer model and management in distrib-

uted multimedia presentation systems. Multimedia Systems, 6(3) :206-18.

Gornish, E., Granston, E., and Veidenbaum, A. (1990). Compiler-directed data

prefetching in multiprocessors with memory hierarchies. In Proc. of the mt.

Confi on Supercomputing, pages 354-368, Amsterdam, Netherlands.

Griffioen, J. and Appleton, R. (1993). Automatic Prefetching in a WAN. In

IEEE Workshop on Advances in Parallel and Distributed Systems, pages 8-13,

Princeton, NJ.

Griffioen, J. and Appleton, R. (1994). Reducing File System Latency using a

Predictive Approach. In Proc. of the 1994 USENIX Confi, pages 197-207,

Boston, MA.

Griffloen, J. and Appleton, R. (1995a). Improving File System Performance via

Predictive Caching. In {PDCS95, 19951, pages 165-170.

Griffioen, J. and Appleton, R. (1995b). Performance Measurements of Auto-

matic Prefetching. In [PDCS95, 19951.

Grimshaw, A. and Loyot, E. (1991). ELFS : Object-Oriented Extensible File

Systems. Technical Report TR-91-14, Department of Computer Science,

University of Virginia.

Grimsrud, K., Archibald, J., and Nelson, B. (1993). Multiple Prefetch Adaptive

Disk Caching. IEEE Knowledge and Data Engineering, 5(1):88-103.

Hennessy, J. and Patterson, D. (1996). Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers.

156

Hohenstein, U., PleIner, V, and Heller, R. (1997). Evaluating the Perform-

ance of Object-Oriented Database Systems by Means of a Concrete Appli-

cation. In Proc. of the 8th mt. Workshop on Database and Expert Applications,

Toulouse, France.

Hornick, M. and Zdonik, S. (1987). A shared, segmented memory system for an

object-oriented database. ACM Transactions on Office Information Systems,

5(l):70-95.

Horspool, R. and Huberman, R. (1987). Analysis and Development of Demand

Prepaging Policies. Journal of Systems and Software, 7:183-194.

Hosking, A. and Moss, J. (1993). Object Fault Handling for Persistent Pro-

gramming Languages: A Performance Evaluation. In Proc. of the Confi on

Object-Oriented Programming Systems, Languages and Applications, pages

288-303, Washington, DC.

HPCA (1995). Proc. First IEEE Symp. on High-Performance Computer Architec-

ture. IEEE Computer Society Press.

IBM (1994). DB2/6000 Version 2 and DB2/2 Version 2. Annoucement number

294-320.

IBM (1997). DB2 Administration Guide.

ICDE (1993). Proc. of the 9th mt. Confi on Data Engineering, Vienna, Austria.

ICDE (1995). Proc. of the 11th mt. Conf on Data Engineering, Taipei, Taiwan.

IOPADS (1997). Fifth Workshop on I/O in Parallel and Distributed Systems, San

Jose, CA.

Itasca Systems, I. (1991). ITASCA Technical Summary Release 2.0.

Jacobsen, Q. and Cao, p (1998). Potential and Limits of Web Prefetching Be-

tween Low-Bandwidth Clients and Proxies. Technical Report 1372, Com-

puter Science Department, University of Wisconsin- Madison.

Jagadish, H., Lieuwen, D., Rastogi, R., Silberschatz, A., and Sudarshan, S.

(1994). Dali: A High Performance Main Memory Storage Manager. In

[VLDB, 1994], pages 48-59.

Jauhari, R., Carey, M., and Livny, M. (1990). Priority-Hints: An Algorithm for

Priority-Based Buffer Management. In [VLDB, 19901, pages 708-721.

157

Jeon, H. and Noh, S. (1997). Improving Buffer Cache Performance with Pre-

fetching: A Minimal Overhead Solution. Technical Report D&PSTR.-

E97702, Department of Computer Engineering, Hong-Ik University.

Jeon, H. and Noh, S. (1998). A Database Disk Buffer Management Algorithm

based on Prefetching. In Seventh mt. Confi on Information and Knowledge

Management, Washington, DC.

Jeong, 1., Ham, J., and Kim, S. (1997). A Pre-scheduling Mechanism for Multi-

media Presentation Synchonization. In Proc. IEEE mt. Confi on Multimedia

Computing and Systems, pages 379-386, Ottawa, Canada.

Jiang, Z. and Kleinrock, L. (1997). Prefetching Links on the WWW. In ICC'97.

Jiang, Z. and Kleinrock, L. (1998). An Adaptive Network Prefetch Scheme.

Journal of Selected Areas in Communications, 0(0).

Johnson, T. and Shasha, D. (1994). 2Q: a low overhead high performance buffer

management replacement algorithm. In [VLDB, 1994], pages 439-450.

Joseph, D. and Grunwald, D. (1997). Prefetching using Markov Predictors.

Computer Architecture News, 25(2): 252-263.

Joseph, M. (1970). An analysis of paging and program behaviour. The Computer

Journal, 13(1):48-54.

Kaehler, T. and Krasner, G. (1983). LOOM - Large Object-Oriented Memory

for Smalltalk-80 Systems. In Smalltalk-80: Bits of History, Words of Advice,

pages 251-270. Addison-Wesley.

Kaeli, D. and Emma, P (1991). Branch history table prediction of moving target

branches due to subroutine returns. In Proc. of the mt. Symp. on Computer

Architecture, pages 34-42.

Kallahalla, M. and Varman, p (1998). Improving Competitiveness of Parallel-

Disk Buffer Management using Randomization. In Proc. of 1998 mt. Confi

on Parallel Processing, Minneapolis, Minnesota.

Karpovich, J., Grimshaw, A., and French, J. (1994). Extensible File Systems

(ELFS) An Object-Oriented Approach to High Performance File I/O. In

Ninth Ann. Confi on Object-Oriented Programming Systems, Languages, and

Applications, pages 191-204, Portland, Oregon.

Keeton, K., Patterson, D., and Hellerstein, J. (1998). A Case for Intelligent Disks

(IDISKs). SIGMOD Records, 27(3):42-52.

Keller, T., Graefe, G., and Maier, D. (1991). Efficient Assembly of Complex

Objects. In [SIGMOD, 19911, pages 148-157.

Kemper, A. and Kossmann, D. (1993). Adaptable Pointer Swizzling Strategies

in Object Bases. In {ICDE, 19931, pages 155-162.

Kemper, A. and Kossmann, D. (1994). Dual-Buffering Strategies in Object Bases.

In [VLDB, 19941, pages 427-438.

Khoshafian, S. and Copeland, G. (1986). Object identity. In OOPSLA, pages

406-416, Portland, Oregon.

Kim, W, Garza, J., Ballou, N., and Woelk, D. (1994). Architecture of the ORION

Next-Generation Database System. In Stonebraker, M., editor, Readings in

Database Systems, pages 857-872. Morgan Kaufmann Publishers, second

edition.

Kimbrel, T. (1997). Parallel Prefetching and Caching. PhD thesis, Department of

Computer Science and Engineering, University of Washington.

Kimbrel, T., Gao, P, Felten, E., Karlin, A., and Li, K. (1996a). Integral Parallel

Prefetching and Caching. In [SIGMETRICS, 1996].

Kimbrel, T. and Karlin, A. (1996). Near-Optimal Parallel Prefetching and Cach-

ing. In Proc. of the 37th Ann. Symp. Foundations of Computer Science, pages

540-549, Burlington, Vermont.

Kimbrel, T., Tomkins, A., Patterson, H., B., B., Gao, P, Felten, E., Gibson, G.,

Karlin, A., and Li, K. (1996b). A Trace-Driven Comparison of Algorithms for

Parallel Prefetching and Caching. Technical Report 96-09-01, Department

of Computer Science and Engineering, University of Washington.

Klaiber, A. and Levy H. (1991). An Architecture for Software-Controlled Data

Prefetching. Computer Architecture News, 19(3):43-52.

Knafla, N. (1997a). A Prefetching Technique for Object-Oriented Databases.

Technical Report ECS-CSG-28-97, Department of Computer Science, Uni-

versity of Edinburgh.

159

Knafla, N. (1997b). A Prefetching Technique for Object-Oriented Databases.

In Advances in Databases, 15th British National Conf on Databases, Lec-

ture Notes in Computer Science, pages 154-168, London, United Kingdom.

Springer-Verlag.

Knafla, N. (1997c). Predicting Future Page Access by Analysing Object Relation-

ships. Technical Report ECS-CSG-35-97, Department of Computer Science,

University of Edinburgh.

Knafla, N. (1997d). Speed Up Your Database Client with Adaptable Multi-

threaded Prefetching. In Proc. of the Sixth IEEE mt. Symp. on High Per-

formance Distributed Computing, pages 102-111, Portland, Oregon. IEEE

Computer Society Press.

Knafla, N. (1998a). An Adaptable Multithreaded Prefetching Technique for

Client-Server Object Bases. Cluster Computing, 1(1):27-37.

Knafla, N. (1998b). Analysing Object Relationships to Predict Page Access for

Prefetching. In Proc. of the Eighth mt. Workshop on Persistent Object Sys-

tems: Design, Implementation and Use (POS-8), pages 160-170, Tiburon,

California. Morgan Kaufmann Publishers.

Knafla, N. (1998c). Page versus Object Prefetching: A Performance Evaluation.

Technical Report ECS-CSG-43-98, Division of Informatics, University of Ed-

inburgh.

Kotz, D. and Ellis, C. (1990). Prefetching in File Systems for MIMD Multipro-

cessors. IEEE Knowledge and Data Engineering, 1(2):218-230.

Kotz, D. and Ellis, C. (1991). Practical Prefetching Techniques for Parallel File

Systems. In [PDIS, 1991], pages 182-189.

Kraiss, A. and Weikum, G. (1997). Vertical Data Migration in Large Near-Line

Document Archives Based on Markov-Chain Predictions. In Proc. of the

23rd mt. Confi on Very Large Databases, pages 246-255, Athens, Greece.

Kraiss, A. and Weikum, G. (1998). Integrated Document Caching and Pre-

fetching in Storage Hierarchies Based on Markov-Chain Predictions. VLDB

Journal, 7(3):141-162.

Kratzer, K., Wedekind, H., and Zörntlein, G. (1990). Prefetching - A Perform-

ance Analysis. Information Systems, 15(4):445-452.

160

Krishnan, P (1995). Online Prediction Algorithms for Databases and Operating
Systems. PhD thesis, Department of Computer Science, Brown University.

Kroeger, T. and Long, D. (1996). Predicting File System Actions from Prior
Events. In Proc. of the USENIX 1996 Ann. Technical Conf, pages 319-328,
San Diego, CA.

Kroeger, T., Long, D., and Mogul, J.
Latency Reduction from Caching
pages 13-22.

:1997). Exploring the Bounds of Web
and Prefetching. In [USENIX, 19971,

Lamb, C., Landis, G., Orenstein, J., and Weinreb, D. (1991). The Objectstore
Database System. Communications of the ACM, 34(10):50-63.

Lee, J. and Smith, A. (1984). Branch Prediction Strategies and Branch Target
Buffer Design. IEEE Computer, 17(1):6-22.

Lee, J.-H., Lee, M.-Y., Choi, S.-U., and Park, M. (1994). Reducing cache conficts
in data cache prefetching. Computer Architecture News, 22(4): 71-77.

Lee, K., Kallahalla, M., Lee, B., and Varman, p (1997). Performance Compar-
ison of Sequential Prefetch and Forecasting using Parallel I/O. In Proc. of
the LASTED mt. Conf on Parallel and Distributed Computing and Networks,
Singapore.

Lee, K. and Varman, P (1995a). Improving Parallelism in I/O Systems. In
Proc. of IEEE Singapore mt. Conf on Networks / mt. Conf on Information
Engineering, pages 210-214, Singapore.

Lee, K.-K. and Varman, P (1995b). Prefetching and I/O Parallelism in Multiple
Disk Systems. In Proc. of the 1995 mt. Conf on Parallel Processing, pages

160-163, Urbana, IL.

Lei, H. and Duchamp, D. (1997). An Analytical Approach to File Prefetching. In
Proc. of the 1997 USENIXAnn. Technical Conf (Anaheim CA, January 1997),
pages 6-10.

Lilja, D. (1988). Reducing the Branch Penalty in Pipelined Processors. IEEE

Computer Society Press, 21 (7) :47-55.

Lim, B. and Bianchini, R. (1996). Limits on the Performance Benefits of Multi-
threading and Prefetching. In [SIGMETRICS, 19961, pages 37-46.

161

Liskov, B., Adya, A., Castro, M., Day, M., Ghemawat, S., Gruber, R., Maheshwari,
U., Myers, A., and Shira, L. (1996). Safe and Efficient Sharing of Persist-
ent Objects in Thor. In Proc. of the ACM SIGMOD/PODS96 Joint Confi on
Management of Data, pages 318-329, Montreal, Canada.

Little, M. and McCue, D. (1993). Construction and Use of a Simulation Pack-
age in C++. Technical Report 437, Department of Computing Science,
University of Newcastle, UK.

Liu, G. (1994). Exploitation of Location-dependent Caching and Prefetching
Techniques for Supporting Mobile Computing and Communications. In The
6th mt. Conf on Wireless Communications, Calgary Canada.

Loon, T. and Bharghavan, V. (1997). Alleviating the latency and bandwidth
problems in WWW browsing. In [USENIX, 19971, pages 219-230.

Madhyastha, T. and Reed, D. (1997). Input/Output Access Pattern Classification
Using Hidden Markov Models. In [IOPADS, 19971, pages 57-67.

Maier, D., Graefe, G., Shapiro, L., Daniels, S., Keller, T., and Vance, B. (1994).
Issues in Distributed Complex Object Assembly. In Ozsu, M., Dayal, U.,
and Valduriez, P, editors, Proc. of the mt. Workshop on Distributed Object
Management, pages 165-181, Edmonton, Canada.

Maier, D., Stein, J., Otis, A., and Purdy, A. (1986). Development of an Object-
Oriented DBMS. ACM SIGPLAN Notices, 21:472-482.

McAuliffe, M. and Solomon, M. (1995). A Trace-Based Simulation of Pointer
Swizzling Techniques. In [ICDE, 19951, pages 52-61.

McFarlin, S. and Hennessy, J. (1986). Reducing the costs of branches. In Proc.
of the mt. Symp. on Computer Architecture, pages 396-403.

McVoy, L. and Kleiman, S. (1991). Extent-like performance from a UNIX file
system. In Proc. of the Winter 1991 USENIX Confi, pages 33-43, Dallas,
Texas.

Mohan, C., Pirahesh, H., Tang, G., and Wang, Y. (1993). Parallelism in relational
DBMSs: Possible approaches and a DB2 implementation. Technical report,
IBM Almaden Research Center.

162

Moreno, E., Kofuji, S., and Cintra, M. (1997). Prefetching and Multithreading

Performance in a Bus-Based Multiprocessors with Petri Nets. In Proc. of the

3rd mt. Euro-Par Confi, pages 1017-1024, Passau, Germany.

Moss, J. (1990). Design of the Mneme Persistent Object Store. ACM Transactions

on Information Systems, 8(2):103-139.

Moss, J. (1992). Working With Objects: To Swizzle or Not to Swizzle? IEEE

Transactions on Software Engineering, 18(8):657-673.

Mowry T., Lam, M., and Gupta, A. (1992). Design and Evaluation of a Compiler

Algorithm for Prefetching. In [ASPLOS, 19921, pages 62-73.

Ng, R. and Yang, J. (1994). Maximizing Buffer and Disk Utilizations for News

On-Demand. In [VLDB, 19941, pages 451-462.

Norris, J. (1997). Markov Chains. Cambridge series on statistical and probabil-

istic mathematics. Cambridge Uni Press.

Objectivity (1994). Objectivity/DB Technical Overview.

Ohara, M. (1996). Producer-oriented versus consumer-oriented prefetching: A

comparison and analysis of parallel application programs. Technical Re-

port CSL-TR-96-695, Department of Electrical Engineering and Computer

Systems, Stanford University

0MG (1997). CORBAservices: Common Object Services Specification 2.1.

O'Neil, E., O'Neil, P, and Weikum, G. (1993). The LRU-K page replacement

algorithm for database disk buffering. In [SIGMOD, 19931, pages 297-

306.

ONTOS (1995). ONTOS Object Integration Server (ONTOS OIS) Integrating

Objects with Relational Databases. Technical Overview.

Oracle (1997). Oracle's JDBC Drivers Accessing the Oracle RDBMS from Java.

An Oracle Technical White Paper.

Padmanabhan, \ (1995). Improving World Wide Web Latency. Technical

Report UCB/CSD-95-875, Computer Science Division, EECS Department,

University of California at Berkeley.

163

Padmanabhan, V and Mogul, J. (1996). Using Predictive Prefetching to Improve

World Wide Web Latency. ACM SIGCOMM Computer Communications Re-

view, 26(3).

Pai, V, Schaefer, A., and PJ., V (1994). Markov analysis of multiple-disk

prefetching strategies for external merging. Theoretical Computer Science,

128(1):211-239.

Pai, V and Varman, p (1992). Prefetching with Multiple Disks for External

Mergesort: Simulation and Analysis. In Proc. of the 8th mt. Conf on Data

Engineering, pages 273-282, Tempe, Arizona.

Palacharla, S. and Kessler, P (1994). Evaluting stream buffers as a secondary

cache replacement. In Proc. of the mt. Symp. on Computer Architecture,

pages 24-33, Chicago, IL.

Palmer, M. and Zdonik, S. (1990). Predictive caching. Technical Report CS-90-

29, Department of Computer Science, Brown University.

Palmer, M. and Zdonik, S. (1991). Fido: A Cache That Learns to Fetch. In

[VLDB, 19911, pages 255-264.

Patterson, R. (1997). Informed Prefetching and Caching. PhD thesis, Department

of Computer Science, Carnegie Mellon University.

Patterson, R. and Gibson, G. (1994). Exposing I/O Concurrency with Informed

Prefetching. In 3rd Int. Conf on Parallel and Distributed Information Sys-

tems, pages 7-16, Austin, Texas.

Patterson, R., Gibson, G.i, Ginting, E., Stodolsky, D., and Zelenka, J. (1995).

Informed Prefetching and Caching. In Proc. of the Fifteenth ACM Symp. on

Operating Systems Principles, pages 79-95, Copper Mountain Resort, Colo-

rado. ACM.

Patterson, R., Gibson, G., and Satyanarayanan, M. (1993). A Status Report

on Research in Transparent Informed Prefetching. Technical Report CMU-

CS-93-133, School of Computer Science, Carnegie Mellon University Pitts-

burgh, PA 15213, USA.

PDCS95 (1995). Parallel and Distributed Computing Systems, Orlando, Florida.

PDIS (1991). Proc. First Int. Conf on Parallel and Distributed Information Sys-

tems, Miami Beach, Florida.

164

Phalke, V and Gopinath, B. (1995). A miss history-based architecture for cache

prefetching. In Proc. of the mt. Workshop on Memory Management (IWMM),

pages 381-398, Kinross, UK.

Robinson, J. and Devarakonda, M. (1990). Data cache management using

frequency-based replacement. Performance Evaluation Review, 18(l):134-

142.

Rochberg, D. and Gibson, G. (1997). Prefetching Over a Network: Early Exper-

ience with CTIP. Performance Evaluation Review, 25(3):29-36.

Rogers, A. and Li, K. (1992). Software Support for Speculative Loads. In [AS-

PLOS, 19921, pages 38-50.

Ross, S. (1997). Introduction to Probability Models. Academic Press.

Rubine, D., Dannenberg, R., Anderson, D., and Neuendorffer, T. (1994). Low-,

Latency Interaction through Choice-Points, Buffering and Cuts in Tactus.

In Proceedins of the Int. Confi on Multimedia Computing and Systems, pages

224-233, Boston, MA.

Sacco, G. and Schkolnick, M. (1986). 'Buffer management in relational database

systems. ACM Transactions on Database Systems, 11 (4) :473-498.

Salem, K. (1991). Adaptive Prefetching for Disk Buffers. Technical Report TR-

9 1-46, Department of Computer Science, University of Maryland.

Salem, K. and Garcia-Molina, H. (1986). Disk Striping. In Proc. of the 2nd Int.

Conf on Data Engineering, pages 336-42, Los Angeles, CA.

Schek, H., Paul, H., Scholl, M., and Weikum, G. (1990). DASDBS project: Ob-

jectives, experiences and future prospects. IEEE Knowledge and Data Engin-

eering, 2(1):25-43.

Seltzer, M., Chen, P, and Ousterhout, J. (1990). Disk Scheduling Revisited. In

USENIX Proc. C+ + Confi, pages 313-324, Washington DC.

Semiconductor Industry Association (1997). The National Technology Road-

map for Semiconductors.

Shah, V. and Kumar, B. (1995). Cluster Alignment and Parallel Algorithm for

Multiple Prefetch Adaptive Disk Cache. CSI Communications, 18(11):22-

24.

165

Shekita, E. and Zwilling, M. (1990). Cricket: A Mapped, Persistent Object Store.
In Proc. of the Fourth mt. Workshop on Persistent Object Systems, pages 89-
102, Martha's Vineyard, USA.

SIGMETRICS (1995). 1995 ACM SIGMETRICS Joint mt. Conf on Measurement
and Modeling of Computer Systems. SIGMETRICS '95/ PERFORMANCE '95,
Ottawa, Canada. ACM Press.

SIGMETRICS (1996). Conf on Measurement and Modeling of Computer Systems,
Philadelphia, PA. ACM.

SIGMOD (1989). Proc. of the ACM SIGMOD mt. Conf on the Management of
Data, Portland, Oregon.

SIGMOD (1991). Proc.-of the ACM SIGMOD mt. Conf on Management of Data,
Denver, USA.

SIGMOD (1993). Proc; of the ACM SIGMOD mt. Conf on Management of Data,
Washington, USA.

SIGMOD (1994). Proc. of the ACM SIGMOD mt. Conf on Management of Data,
Minneapolis, Minnesota.

Singhal, V, Kakkad, S., and Wilson, P (1992). Texas: An Efficient, Portable
Persistent Store. In Proc. of the Fifth mt. Workshop on Persistent Object
Systems, pages 11-33, San Miniato, Italy.

Smith, A. (1978a). Sequential Program Prefetching in Memory Hierarchies.
IEEE Computer, 11(12):7-21.

Smith, A. (1978b). Sequentiality and Prefetching in Database Systems. ACM
Transactions on Database Systems, 3(3) :223-247.

Smith, A. (1982). Cache Memories. ACM Computing Surveys, 14(3):473--530.

Smith, A. (1985). Disk Cache - Miss Ratio Analysis and Design Considerations.
ACM Transactions on Computer Systems, 3(3):161-203.

Song, I. and Cho, Y. (1993). Page Prefetching Based on Fault History. In Proc.

of the USENIX Mach III Symp., pages 203-213, Santa Fe, USA.

SPARCworks (1995). SPARCworks / iMPact: Tools for Multithreaded Program-
ming. SunSoft, Mountain View, CA, USA.

166

Staehli, R. and Walpole, J. (1993). Constrained-Latency Storage Access. IEEE

Computer, 26(3):44-53.

Stewart, W (1994). Introduction to the Numerical Solution of Markov Chains.

Princeton.

Stonebraker, M., Rowe, L., and Hirohama, M. (1990). The Implementation of

POSTGRES. IEEE Knowledge and Data Engineering, 2(1): 125-142

Tait, C. and Duchamp, D. (1990). Detection and Exploitation of File Work-

ing Sets. Technical Report CUCS-050-90, Computer Science Department,

University of Columbia.

Talcott, A., Yamamoto, W, Serrano, M., Wood, R., and Nemirovsky, M. (1994).

The impact of unresolved branches on branch prediction scheme perform-

ance. In Prof of the mt. Symp. on Computer Architecture, pages 12-21,

Chicago, IL.

Tan, M., Roussopoulos, N., and Kelley, S. (1995). The Tower of Pizzas. Technical

Report UMIACS-TR-95-52, Department of Computer Science, University of

Maryland.

Teng, J. and Gumaer, R. (1984). Managing IBM Database 2 buffers to maximize

performance. IBM Systems Journal, 23(2): 211-218.

Tomkins, A. (1997). Practical and Theoretical Issues in Prefetching and Caching.

PhD thesis, Department of Computer Science, Carnegie Mellon University.

Tomkins, A., Patterson, R., and Gibson, G. (1997). Informed Multi-Process

Prefetching and Caching. In Proc. of the ACM mt. Conf on Measurements

and Modeling of Computer Systems, pages 100-114, Seattle, Washington.

Touch, J. and Farber, D. (1994). An Experiment in Latency Reduction. In Proc.

of the IEEE INFOCOM'94, pages 175-183, Toronto, Canada.

Treiber, R. and Menon, J. (1995). Simulation Study of Cached RAID5 Designs.

In [HPCA, 1995], pages 186-197.

Trivedi, K. (1977). An Analysis of Prepaging. Computing, 22(3):191-210.

Tsangaris, M. and Naughton, J. (1992). On the Performance of Object Cluster-

ing Techniques. Technical Report 1090 - 1992, Computer Science Depart-

ment, University of Wisconsin- Madison.

167

Tsangaris, M. and Naughton, J. F. (1991). A Stochastic Approach for Clustering

in Object Bases. In [SIGMOD, 19911, pages 12-21.

Tullsen, D. and Eggers, S. (1993). Limitations of cache prefetching on a bus-

based multiprocessor. In Proc. of the mt. Symp. on Computer Architecture,

pages 278-288, San Diego, CA.

Tulisen, D. and Eggers, S. (1995). Effective cache prefetching on bus-based

multiprocessors. ACM Transactions on Database Systems, 13(1):57-88.

USENIX (1997). Proc. of the USENIXSymp. on Internet Technologies and Systems,

Monterey, CA, USA.

VanderWiel, S. and Lilja, D. (1997). When Caches Aren't Enough: Data Pre-

fetching Techniques. IEEE Computer, 30(7):23-30.

Varman, P and Verma, R. (1996). Tight Bounds for Prefetching and Buffer Man-

agement Algorithms for Parallel I/O Systems. In Proc. 16th Symp. Founda-

tions of Software Technology and Theoretical Computer Science, pages 200-

211, Hyderabad, India.

Versant (1992). How to Evaluate Object Database Management Systems.

Vigna, E. (1997). Optimizing POET - Application-Specific Benchmarks. POET

White Paper.

Vittei; J. and Krishnan, P (1991). Optimal Prefetching via Data Compression. In

Proc. 32nd Ann. Symp. on Foundations of Computer Science, pages 121-130,

San Juan, Puerto Rico. IEEE Computer Society Press.

VLDB (1990). Proc. of the 16th mt. Conf on Very Large Data Bases, Brisbane,

Australia.

VLDB (1991). Proc. of the 17th mt. Conf on Very Large Data Bases, Barcelona,

Spain.

VLDB (1994). Proc. of the 20th mt. Conf on Very Large Data Bases, Santiago,

Chile.

Voelker, G., Anderson, E., Kimbrel, T., Feeley, M., Chase, J., Karlin, A., and

H.M., L. (1998). Implementing Cooperative Prefetching and Caching in a

Globally-Managed Memory System. In Proc. of the 1998 ACM SIGMETRICS

Conf on Performance Measurement, Modeling, and Evaluation, pages 33-43,

Madison, Wisconsin.

TM

Wang, Z. and Crowcroft, J. (1996). Prefetching in World Wide Web. In Proc. of

the 1996 IEEE Global Telecommunications Conf, London, UK.

Wedekind, H. and Zoerntlein, G. (1986). Prefetching in Realtime Database

Applications. In Zaniolo, C., editor, Proc. of the ACM SIGMOD 1986 Conf

on the Management of Data, pages 215-226, Washington, DC. ACM.

Weikum, G. (1989). Set-oriented disk access to large objects. In Proc. of the

IEEE Conf on Data Engineering, pages 426-433, Los Angeles, CA.

Weikum, G., B., N., and Paul, H.-B. (1987). Konzeption und Realisierung einer

mengenorientierten Seitenschnittstelle zum effizienten Zugriff auf Kom-

plexe Objekte. In Proc. of the GI Conf Database Systems For Office Engineer-

ing and Scientific Applications, pages 212-230.

Weikum, G., Hasse, C., Monkeberg, A., and Zabback, p (1994). The COMFORT

automatic tuning project. Information Systems, 19(5):381-432.

White, S. (1994). Pointer Swizzling Techniques for Object-Oriented Database Sys-

tems. PhD thesis, Computer Science Department, University of Wisconsin-

Madison.

White, S. and DeWitt, D. (1994). QuickStore: A High Performance Mapped

Object Store. In [SIGMOD, 1994].

Wilson, P and Kakkad, S. (1992). Pointer Swizzling at Page Fault Time: Ef-

ficiently and Compatibly Supporting Huge Address Spaces on Standard

Hardware. In Proc. of the 1992 Workshop on Object Orientation in Oper-

ating Systems, pages 364-377, Dourdan, France.

Wilson, P R., Mukherjee, S., and Kakkad, S. (1994). Anomalies and Adaptation

in the Analysis and Development of Prepaging Policies. Journal of Systems

and Software, 27(2):147-153.

Wu, K.-L., Yu, P, and Teng, J. (1994). Data Placement and Buffer Management

for Concurrent Mergesort with Parallel Prefetching. In Tenth Int. Conf on

Data Engineering, pages 418-427, Houston, Texas.

Yamaguchi, S., Chinen, K., and Unoue, H. (1997). WWW Cache Management

and Its International Deployment. In Worldwide Computing and its Applica-

tions WWCA97, pages 267-280, Tsukuba, Japan.

169

Zdonik, S., Franklin, M. Alonso, R., and Acharya, S. (1994). Are Disks in the

Air Just Pie in the Sky? In Proc.. Workshop on Mobile Computing Systems

and Applications, pages 12-19. IEEE Computer Society Press.

Ziv, J. and Lempel, A. (1978). Compression of individual sequences via variable

rate coding. IEEE Trans. on Information Theory, 24:530-536.

Zivkov, B. and Smith, A. (1996). Disk Caching in Large Databases and Time-

shared Systems. Technical Report CSD-96-913, Computer Science Division,

EECS Department, University of California at Berkeley.

170

Index

BCP, 100 allocation time, 51

CIP, 98 frame allocation, 50

CO3 67

Cr1, 67
client/server communication, 28

H(w), 95
cluster factor, 106

POD,,,,, 93
clustering, 26, 44

PODmin , 93
composite object, 26

PODOP , 94
custom, 27

a, 93
dynamic, 27

V, 95
granularity,45

heat(o, a), 94
greedy graph partitioning, 26

k, 95
static, 27

stochastic, 27

AppThread, 63 type-based, 26

architecture value-based, 26

dual-buffer, 24 crystals, 28

object server, 23

page server, 24
data independence, 17

assembly- operator, 39
de-clustering, 33

dependency graph, 36

benchmark disk scheduling, 57

001,29 disk-striping, 33

007,29 Dl 111

bf-cutoff, 126 DP2, 111

branch object, 68 draw-operator, 105

branch prediction, 38 DTMC, 92, 94, 122

dynamic, 38

hardware-based, 38
ELFS, 43

software-directed, 38
equivalence class, 102

static, 38
ESM, 30

broadcast disk, 35
EXODUS Storage Manager, 30

buffer allocation, 50 fault block, 22

171

FC-AL, 2 OBL, 34
filtering effect, 56 ODMG, 15
fixed horizon algorithm, 42 OlD, 8
FlushThread, 63 OODBMS, 1
forestall algorithm, 42 oop, 17

optimal prefetching, 50
GemStone, 39

optimal replacement, 50
group request, 32

ORO, 67

hitting time, 95 OSI 66
Out-Ref-Object 67

inclusion-property, 47 out-refs, 67

latency reduction, 59 overruns, 52

leaf page, 87 P0, 104
list prefetch, 35 110
location independence, 17 110
LRU-replacement, 46 page server, see architecture
LWl 64 Page-Border-Object, 67

Markov-chain, 37 PBO, 67

jth-order predictor, 37 PDR, 93

continuous-time, 38 peer-to-peer communication, 28

discrete-time, 37 performance metrics, 59

hidden, 38 persistence, 22

PPM, 37 PID, 18

miss address stream, 38 PMC, 91
POD, 67

news-on-demand, 53 pointer swizzling, 20

object, 16 direct, 22

object identity eager, 21

identifier key, 18 hardware, 20

indirection, 17 indirect, 22

physical address, 17 lazy, 21

structured identifier, 18 software, 20

surrogate, 18 pointer swizzling

typed surrogate, 19 copy, 21

object server, see architecture in-place, 21

object cache, 21 post-branch object, 68

object grouping, 16 POT, 63

172

PPM, 36
pre-push technique, 59
prediction, 34

branch, 38
deterministic, 34
hint-based, 43
local-hint, 44
object structure-based, 39
off-line, 41
on-line, 43
periodic, 44
probabilistic, 44
program-based, 40
scripted, 44
server-hint, 44
statistical, 36

PredictThread, 63
prefetch distance range, 93
prefetch group, 126
Prefetch Object Distance, 67
Prefetch Support Relation, 41
prefetch thread pool, 64
prefetching

buffer management, 46
client/server architecture, 52
disk scheduling, 57
granularity, 52
memory hierarchy, 58
multithreading, 53
parallel, 58
replacement strategy, 46

PrefetchList, 63
PrefetchThread, 63
prefetch application

Audit, 87
Demand, 78
OSAbortPref, 130

OSAbortPrefNotDem, 130
OSDem, 129
OSDemHit, 129
OSPref, 129
OSPrefHit, 129
OSPrefLimDem, 129
OSServPref, 129
OSServSendDirect, 130
Prefetch write, 84
Prefetch write mt flush, 84
Prefetchi, 81
Prefetch2, 81
PSDem, 128
PSDemHit, 128
PSPref, 128
PSPrefHit, 128

Prefetch Object Table, 63
Prefetch Start Object, 67
prefetch threshold, 38

dynamic, 38
static, 38

PSO, 67

RAID, 33
re-normalisation, 96
reference-prediction-table, 36
reverse aggressive algorithm, 42
row-prefetching, 35

sequential prefetch, 35
SSA, 2
state, 95
stochastic process, 36

tag-team caching, 35
thread

AppThread, 63
FlushThread, 63
PredictThread, 63

173

PrefetchThread, 63
TIP, 43
tp, 105

working set, 28

174

