Predicting Access to Persistent Objects through
Static Code Analysis *

Rizkallah Touma'!, Anna Queralt!, Toni Cortes'2, and Marfa S. Pérez3

! Barcelona Supercomputing Center (BSC)
% Universitat Politecnica de Catalunya (UPC)
3 Ontology Engineering Group (OEG), Universidad Politécnica de Madrid
{rizk.touma, anna.queralt, toni.cortes}@bsc.es, mperez@fi.upm.es

Abstract. In this paper, we present a fully-automatic, high-accuracy
approach to predict access to persistent objects through static code anal-
ysis of object-oriented applications. The most widely-used previous tech-
nique uses a simple heuristic to make the predictions while approaches
that offer higher accuracy are based on monitoring application execu-
tion. These approaches add a non-negligible overhead to the application’s
execution time and/or consume a considerable amount of memory. By
contrast, we demonstrate in our experimental study that our proposed
approach offers better accuracy than the most common technique used to
predict access to persistent objects, and makes the predictions farther in
advance, without performing any analysis during application execution.

1 Introduction

Persistent Object Stores (POSs), such as object-oriented databases and object-
relational mapping systems (e.g. Hibernate, DataNucleus, dataClay [11]), are
storage systems that expose persistent data in the form of objects and relations
between these objects. This structure is rich in semantics ideal for predicting
access to persistent data [8] and has invited a significant amount of research
due to the importance of these predictions in areas such as prefetching, cache
replacement and dynamic data placement.

In this paper, we present a fully-automatic approach that predicts access to
persistent objects through static code analysis of object-oriented applications.
Our approach takes advantage of the symmetry between application objects and
POS objects to perform the prediction process before the application is executed
and does not cause any overhead. In our experimental study, we demonstrate the
viability of the proposed approach by answering the following research questions:

* This work has been supported by the European Union’s Horizon 2020 research and
innovation program (grant H2020-MSCA-ITN-2014-642963), the Spanish Govern-
ment (grant SEV2015-0493 of the Severo Ochoa Program), the Spanish Ministry
of Science and Innovation (contract TIN2015-65316) and Generalitat de Catalunya
(contract 2014-SGR-1051). The authors would also like to thank Alex Barcel6 for
his feedback on the formalization included in this paper.

Touma, R., Queralt, A., Cortés, A., Pérez, M. Predicting access to persistent objects through static code analysis. A: Conference on Advances in Databases and
Information Systems. "New Trends in Databases and Information Systems: ADBIS 2017: short papers and workshops, AMSD, BigNovelTIl, DAS, SW4CH, DC:
Nicosia, Cyprus, September 24-27, 2017: proceedings". Springer, 2017, p. 54-62.

The final publication is available at https://link.springer.com/chapter/10.1007/978-3-319-67162-8_7

montse aragues
Texto escrito a máquina
Touma, R., Queralt, A., Cortés, A., Pérez, M. Predicting access to persistent objects through static code analysis. A: Conference on Advances in Databases and Information Systems. "New Trends in Databases and Information Systems: ADBIS 2017: short papers and workshops, AMSD, BigNovelTI, DAS, SW4CH, DC: Nicosia, Cyprus, September 24-27, 2017: proceedings". Springer, 2017, p. 54-62.
The final publication is available at https://link.springer.com/chapter/10.1007/978-3-319-67162-8_7

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

— RQ1: What is the accuracy of the proposed approach?
— RQ2: How much in advance can the approach make the predictions?

We also compare our approach with the Referenced-Objects Predictor (see
Section 2) and the experimental results show that our approach offers better
accuracy in all of the studied benchmarks, with reductions in false positives of
as much as 30% in some cases. Moreover, our approach predicts accesses farther
in advance giving additional time for the predictions to be utilized.

2 Related Work

The simplest technique to predict access to persistent objects is the Referenced-
Objects Predictor (ROP), which is based on the following heuristic: each time
an object is accessed, all the objects referenced from it are likely to be accessed
as well [8]. In spite of its simplicity, this predictor is widely used in commercial
POSs because it does not involve a complex and costly prediction process.

More complex approaches have been based on analysis done during appli-
cation execution using various techniques such as Markov-Chains [9], traversal
profiling [5,6] and the Lempel-Ziv compression algorithm [2]. The approach pre-
sented in [4] introduces type-level prediction based on the argument that patterns
do not necessarily exist between individual objects but rather between object
types. Type-level access prediction can capture patterns even when different
objects of the same type are accessed and does not store information for each
individual object, which reduces the amount of used memory. In general, the
main drawbacks of these approaches are the overhead they add to application
execution time and the fact that they are based on a most-common case scenario
which might lead to erroneous predictions in some cases.

The approach brought forward in this paper combines the idea of application
type graphs, presented in [6], with type-level prediction. The work in [6] proceeds
by creating an object graph and generating object-level access hints based on
profiling done during application execution. On the other hand, our approach
generates type-level access hints based on static code analysis, thus benefiting
from the advantages of type-level prediction while avoiding the issues stemming
from performing the process during application execution.

Previous approaches that use static analysis to predict access to persistent
data have targeted specific types of data structures such as linked data structures
[1,3,7], recursive data structures [10, 13] or matrices [12]. To the best of our
knowledge, our work is the first that predicts access to persistent objects of any
type prior to application execution.

3 Running Example

Figure 1 shows the partial implementation of a bank management system, all
classes represent persistent types except the BankManagement class. The method
setAllTransCustomers() updates the customers of all the transactions to a new
customer restricting such updates to customers of the same company. In order

23 }

1 | public class BankManagement { 24 return acc;
2 private List<Transaction> trans; 25)
3 private Customer manager; 26 }
4 27
5 public void setAllTransCustomers () 28 |public class Account {

{ 29 private Customer cust;
6 for (Transaction t : trans) { 30 }
7 t.getAccount () 31

-setCustomer (manager) ; 32 public void setCustomer (Customer

8 } newCust) {
9 } 33 if (cust.comp == newCust.comp) {
10 } 34 cust = newCust;
11 35 }
12 /+* Persistent Classes =/ 36 }
13 | public class Transaction { 37 |}
14 private Account acc; 38
15 private Employee emp; 39 |public class Customer {
16 private TransactionType type; 40 public Company comp;
17
18 public Account getAccount () { i;)
19 if (type.typeID == 1) { 43 | public class Employee {
20 emp.doSomething () ; 44 public Department dept;
21 } else { 45 }
22 emp.dept .doSomethingElse () ;

Fig. 1. Example Object-Oriented Application Code

to do so, it retrieves and iterates through all the Transaction objects and then
navigates to the referenced Account and Customer until reaching the Company
of each transaction and compares it with the new customer’s company.

For this example, ROP would predict that each time a Transaction object is
accessed, the referenced Transaction Type, Account and Employee objects will be
accessed as well. However, the method setAllTransCustomers() does not access
the predicted Transaction Type and Employee objects but needs the Customer
and Company objects which are not predicted.

On the other hand, using static code analysis we can see that when se-
tAllTransCustomers() is executed it accesses: (1) the object BankManagement.
manager, (2) all the Transaction objects, and (3) the Account, Customer and
Company objects of each transaction by calling getAccount() and setCustomer().
We can also see that getAccount() might access the Department of the Employee
of a Transaction, depending on which branch of the conditional statement start-
ing on line 19 is executed. Using this information, we can automatically generate
method-specific access hints that predict which objects are going to be accessed.

4 Proposed Approach

Assuming we have an object-oriented application that uses a POS, we define T as
the set of types of the application and PT C T as its subset of persistent types.
Furthermore, V¢t € T we define (1) F; : the set of persistent member fields of ¢
such that Vf € F; : type(f) € PT, (2) My : the set of member methods of ¢.

cust type i
’ Customer Account ‘ Department Transaction YP€ [Transaction
(ine 19y | Type
manager acc dept

emp

line 20 -Employee
Bank . Employee zTepZZ) ‘)
Management| emp

dept
Employee - Department
H (line 22)
comp trans,

type -
. Transaction acc
Transaction - Account
Type (line 24)

Fig. 2. Type graph Gr of the application Fig.3. Method type graph G,, of
from Fig. 1. Solid lines represent single asso- the method getAccount() from Fig. 1.
ciations and dashed lines represent collection = Navigations highlighted in gray are
associations. branch-dependent.

’ Company

4.1 Type Graphs

Application Type Graph The type graph of an application, as defined in [6],
is a directed graph Gt = (T, A) where:

— T is the set of types defined by the application.

— Aisa function Tx F — PT x{single, collection} representing a set of associ-
ations between types. Given types t and ¢’ and field f, if A(¢, f) — (¢, ¢) then
there is an association from ¢ to ¢’ represented by f € F; where type(f) =t
with cardinality ¢ indicating whether the association is single or collection.
Example. Figure 2 shows the type graph of the application from Fig. 1.

Some of the associations of this type graph are: (1) A(Bank Management, trans)
— (Transaction, collection), (2) A(Transaction, acc) — (Account, single).

Method Type Graph We construct the type graph G,, of a method m €
M, from the associations that are navigated by the method’s instructions. A
navigation of an association t —7/ t' is triggered when an instruction accesses
a field f in an object of type ¢ (navigation source) to navigate to an object of
type t’ (navigation target) such that A(t, f) — (¥, ¢). A navigation of a collection
association has multiple target objects corresponding to the collection’s elements.
Example. Figure 3 shows G,,, of method getAccount() from Fig. 1.

Augmented Method Type Graph We construct the augmented method
type graph AG,, of a method m € M; by adding association navigations that
are caused by the invocation of another method m’ € My to G, as follows:

— The type graph of the invoked method G, is added to G,, through the

navigation ¢t —7 ¢’ that caused the invocation of m/.

— The association navigations that are triggered by passing a persistent object

as a parameter to m’ are added directly to G,,.

Example. Figure 4 shows the augmented method type graph AG,,, of method
setAllTransCustomers(). Note that the navigations BankManagement —™mm*9¢"
Customer —°"P Clompany are triggered by passing the persistent object Bank
Management.manager as a parameter to the method setCustomer(newCust).

setAllTransCustomer() getAccount() setCustomer(newCust)

‘I'ET‘S){ Transaction }7 tyPe[Transaction
(line 6) (line 19) Type
e

(line 20) mployee

acc cust com|

[Account }— Customer ’—%{ Company
(line 24) | (line 33) (line 33)
manager|
9 Customer comp Company
(line 7) (line 33)

Bank
Management

Fig. 4. Augmented method type graph AG,, of setAllTransCustomers() from Fig. 1.

4.2 Access Hints

We traverse a method’s augmented graph and generate its set of access hints as:
AH,, = {ah | ah = f1.fo.... .fn, wheret; —fiti 1 € AGy 1 <i< n}
Each access hint ah € AH,,, corresponds to a sequence of association navigations

in AG,, and indicates that the navigations’ target object(s) is/are accessed.
Example. The augmented method type graph AG,, of Fig. 4 results in the
following set of access hints for method setAllTransCustomers() (hints starting
with the collection trans predict that all its elements will be accessed):
AH,, = {trans.type, trans.emp, trans.acc.cust.comp, manager.comp}

4.3 Nondeterministic Application Behavior

Branch-Dependent Navigations They are navigations that might not be
triggered depending on a method’s branching behavior and which of its branches
are executed. Including branch-dependent navigations in G, might result in false
positives if the branch from which the navigation is triggered is not executed
while excluding them might result in a miss if the branch is indeed executed
(both strategies are evaluated in Section 5). We divide them in two types:
— Navigations not triggered inside all the branches of a conditional statement.
— Navigations of collection associations not triggered in all the iterations of a
loop statement due to branching instructions (continue, break, return).
Example. In Fig. 3, the navigations Transaction —°"P Employee —
Department, highlighted in gray, are branch dependent (they are only triggered
in one of the conditional statement’s branches) while the navigation T'ransaction
—"P Employee is not (it is triggered inside both branches).

dept

Overridden Methods A method m € M; might have overridden methods
OM,, in the subtypes of its type ST;. When an object is defined of type ¢ but
initialized to a subtype ' € ST}, the methods executed on the object are not
known until runtime. Hence, using the access hints of m might lead to erroneous
predictions. We propose to handle this case by adding one of the following sets
of access hints to AH,, (both strategies are evaluated in Section 5):

= Nurcon,, AHpms: intersection of access hints of overridden versions of m.

= Unreonr,, AHms: union of access hints of overridden versions of m.

1.0

0.8
« 0.6
= 04
0.2
o0 0.01 e
02 A 0.01 0.030.03
x 0.4
= 0.6
0.8
1.0 1
~BDNs ~BDNs BDNs BDNs | depth depth . -BDNs ~BDNs BDNs BDNs idepth depth
NOMs UOMs NnOMs UOMs 1 3 NOMs UOMs nNOMs UOMs 1 3

(a) OOT7 (b) JPAB

1.0
0.8
4 0.6
= 04
0.2
0.0

0.2 0.10 0.10 0.2 0.07 007 | 012 0.12
x 04 « 0.4
w06 = 0.6
0.8 0.8
1.0 1.0
~BDNs ~BDNs BDNs BDNs! depth depth ~BDNs ~BDNs BDNs BDNs | depth depth
NOMs UOMs NOMs UOMs 1 3 NOMs UOMs NnOMs UOMs 1 3
(c) K-Means (d) Princeton Graph Algorithms

Fig. 5. True Positive Ratio (TPR) and False Positive Ratio (FPR) of our approach (left
of the dashed line) compared with ROP (right of the dashed line). Columns represent:
- BDNs /| BDNs : exclude / include branch-dependent navigations

- UOMs / NOM:s : intersection / union of overridden methods’ access hints

5 Evaluation

We implemented a prototype of our approach in Java using IBM Wala and eval-
uated it on two benchmarks specifically designed for POSs and two benchmarks
typically used for computation-intensive workloads:

— OOT: the de facto standard benchmark for POSs and OO databases.

— JPAB: measures the performance of ORMs compliant with Java Persistent

APT (JPA) using 4 types of workloads (persist, retrieve, query and update).

— K-Means: a clustering algorithm typically used as a big data benchmark.
— Princeton Graph Algorithms (PGA): a set of various graph algorithms
with different types of graphs (undirected, directed, weighted).

We compared our approach with the ROP explained in Section 2 using the
minimum possible depth of 1 as well as a depth of 3 to predict access to objects.
In all the experiments, we used Hibernate 4.1.0 with PostgreSQL 9.3 as the
persistent storage. In the following, we present our experimental results.

RQ1: What is the accuracy of the proposed approach?

We answered this question by testing the different strategies proposed in Section
4.3 to deal with branch-dependent navigations and overridden methods. Figure
5 shows the True Positive Ratio (correctly predicted objects / accessed objects)
and False Positive Ratio (incorrectly predicted objects / total predicted objects)

100% - 100%
80% |
60%
40%
20%

0% +

0 1 10 100 1,000 10,000

(b) JPAB

100%
80% “".
60%
40%
20%

0% + ™ 0% - ™ ™ ™ ™ d
0 1 10 100 1,000 10,000 0 1 10 100 1,000 10,000

(c) K-Means (d) PGA

Fig. 6. The x-axis represents the number of persistent accesses between the prediction
that a persistent object o will be accessed and the actual access to o. The y-axis
represents the percentage of accesses that are predicted for each x-axis value. Solid
lines represent our approach and dashed lines represent ROP.

of these strategies compared with ROP. Regardless of the used strategy, our
approach results in fewer false positives in all of the studied benchmarks.

The only exception is taking the union of overridden methods’ access hints
with JPAB, represented by the solid-colored set of columuns in Figure 5(b), which
results in a sharp increase in false positives. This is due to the implementation
of JPAB which includes five different tests each with its independent persistent
classes, all of which are subclasses of a common abstract class. Hence, taking the
union of overridden methods’ access hints results in predicting access to many
objects unrelated to the test being executed. We reran the analysis excluding the
methods of the common abstract class and their overridden versions. The results
are shown by the dotted set of columns in Figure 5(b) and indicate that excluding
this case, the behavior of JPAB is similar to that of the other benchmarks.

Based on the results of this experiment, we recommend excluding branch-
dependent navigations when memory resources are scarce, since this strategy
does not result in any false positives. By contrast, branch-dependent navigations
should be included when we are willing to sacrifice some memory, which will be
occupied with false positives, in return of a higher true positive ratio. Finally, we
recommend to always take the intersection of overridden methods’ access hints
in order to avoid problems with special cases similar to JPAB.

RQ2: How much in advance can the approach make the predictions?

We measured how much in advance our approach can make the predictions and
compared it with ROP by calculating the number of persistent accesses between
the time that an object o is predicted to be accessed and the actual access to
o. For example, Figure 6 shows that with 007, 95% of predictions made by our
approach are done at least 1 persistent access in advance and 70% of predictions

at least 10 persistent accesses in advance. The results shown in Fig. 6 indicate
that in the case of JPAB, the improvement we obtain over ROP is very small
because the benchmark’s data model does not allow for predictions to be made
far in advance. However, with the other benchmarks, most significantly with
K-Means, our approach is able to predict accesses much farther in advance.

6 Conclusions

In this paper, we presented a novel approach to automatically predict access to
persistent objects through static code analysis of object-oriented applications.
The approach performs the analysis before application execution and hence does
not add any overhead. The experimental results show that our approach achieves
better accuracy than the most common prediction technique, the Referenced-
Objects Predictor. Moreover, the true advantage of our approach comes from
the fact that it can predict access to persistent objects farther in advance which
indicates that the predictions can be exploited to apply smarter prefetching,
cache replacement policies and/or dynamic data placement mechanisms.

References

1. B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked
data structures in Java. In Proceedings of PACT 2001, pages 280-291, 2001.

2. K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via data
compression. SIGMOD Rec., 22(2):257-266, 1993.

3. E. H. Gornish, E. D. Granston, and A. V. Veidenbaum. Compiler-directed data
prefetching in multiprocessors with memory hierarchies. In Proceedings of ICS
1990, pages 354-368. ACM, 1990.

4. W. Han, K. Whang, and Y. Moon. A formal framework for prefetching based on
the type-level access pattern in object-relational DBMSs. IEEE Trans. Knowledge
Data Eng., 17(10):1436-1448, 2005.

5. Z. He and A. Marquez. Path and cache conscious prefetching (PCCP). The VLDB
journal, 16(2):235-249, 2007.

6. A. Ibrahim and W. Cook. Automatic prefetching by traversal profiling in object
persistence architectures. In Proceedings of ECOOP 2006, pages 50-73. 2006.

7. M. Karlsson, F. Dahlgren, and P. Stenstrom. A prefetching technique for irregular
accesses to linked data structures. In Proceedings of HPCA, pages 206—217. 2000.

8. N. Knafla. A prefetching technique for object-oriented databases. In Advances in
Databases, volume 1271, pages 154-168. Springer-Verlag, 1997.

9. N. Knafla. Analysing object relationships to predict page access for prefetching.
In Proceedings of POS-8 and PJW-3, pages 160-170. Morgan Kaufmann, 1999.

10. C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data struc-
tures. In Proceedings of ASPLOS VII, pages 222-233. ACM, 1996.

11. J. Mart, A. Queralt, D. Gasull, et al. Dataclay: A distributed data store for effective
inter-player data sharing. Journal of Systems and Software, 131:129 — 145, 2017.

12. T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler
algorithm for prefetching. In Proceedings of ASPLOS V, pages 62-73. ACM, 1992.

13. A. Stoutchinin, J. N. Amaral, G. R. Gao, et al. Speculative prefetching of induction
pointers. In Proceedings of CC 2001, pages 289-303. Springer-Verlag, 2001.

