25 research outputs found

    Automatic Inference of Upper Bounds for Recurrence Relations in Cost Analysis

    Get PDF
    The classical approach to automatic cost analysis consists of two phases. Given a program and some measure of cost, we first produce recurrence relations (RRs) which capture the cost of our program in terms of the size of its input data. Second, we convert such RRs into closed form (i.e., without recurrences). Whereas the first phase has received considerable attention, with a number of cost analyses available for a variety of programming languages, the second phase has received comparatively little attention. In this paper we first study the features of RRs generated by automatic cost analysis and discuss why existing computer algebra systems are not appropriate for automatically obtaining closed form solutions nor upper bounds of them. Then we present, to our knowledge, the first practical framework for the fully automatic generation of reasonably accurate upper bounds of RRs originating from cost analysis of a wide range of programs. It is based on the inference of ranking functions and loop invariants and on partial evaluation

    On Decidable Growth-Rate Properties of Imperative Programs

    Full text link
    In 2008, Ben-Amram, Jones and Kristiansen showed that for a simple "core" programming language - an imperative language with bounded loops, and arithmetics limited to addition and multiplication - it was possible to decide precisely whether a program had certain growth-rate properties, namely polynomial (or linear) bounds on computed values, or on the running time. This work emphasized the role of the core language in mitigating the notorious undecidability of program properties, so that one deals with decidable problems. A natural and intriguing problem was whether more elements can be added to the core language, improving its utility, while keeping the growth-rate properties decidable. In particular, the method presented could not handle a command that resets a variable to zero. This paper shows how to handle resets. The analysis is given in a logical style (proof rules), and its complexity is shown to be PSPACE-complete (in contrast, without resets, the problem was PTIME). The analysis algorithm evolved from the previous solution in an interesting way: focus was shifted from proving a bound to disproving it, and the algorithm works top-down rather than bottom-up

    Comparing Cost Functions in Resource Analysis

    Get PDF
    Cost functions provide information about the amount of resources required to execute a program in terms of the sizes of input arguments. They can provide an upper-bound, a lower-bound, or the average-case cost. Motivated by the existence of a number of automatic cost analyzers which produce cost functions, we propose an approach for automatically proving that a cost function is smaller than another one. In all applications of resource analysis, such as resource-usage verification, program synthesis and optimization, etc., it is essential to compare cost functions. This allows choosing an implementation with smaller cost or guaranteeing that the given resource-usage bounds are preserved. Unfortunately, automatically generated cost functions for realistic programs tend to be rather intricate, defined by multiple cases, involving non-linear subexpressions (e.g., exponential, polynomial and logarithmic) and they can contain multiple variables, possibly related by means of constraints. Thus, comparing cost functions is far from trivial. Our approach first syntactically transforms functions into simpler forms and then applies a number of su!cient conditions which guarantee that a set of expressions is smaller than another expression. Our preliminary implementation in the COSTA system indicates that the approach can be useful in practic

    Asymptotic Resource Usage Bounds

    Get PDF
    When describing the resource usage of a program, it is usual to talk in asymptotic terms, such as the well-known “big O” notation, whereby we focus on the behaviour of the program for large input data and make a rough approximation by considering as equivalent programs whose resource usage grows at the same rate. Motivated by the existence of non-asymptotic resource usage analyzers, in this paper, we develop a novel transformation from a non-asymptotic cost function (which can be produced by multiple resource analyzers) into its asymptotic form. Our transformation aims at producing tight asymptotic forms which do not contain redundant subexpressions (i.e., expressions asymptotically subsumed by others). Interestingly, we integrate our transformation at the heart of a cost analyzer to generate asymptotic upper bounds without having to first compute their non-asymptotic counterparts. Our experimental results show that, while non-asymptotic cost functions become very complex, their asymptotic forms are much more compact and manageable. This is essential to improve scalability and to enable the application of cost analysis in resource-aware verification/certification

    Polynomial Size Analysis of First-Order Shapely Functions

    Get PDF
    We present a size-aware type system for first-order shapely function definitions. Here, a function definition is called shapely when the size of the result is determined exactly by a polynomial in the sizes of the arguments. Examples of shapely function definitions may be implementations of matrix multiplication and the Cartesian product of two lists. The type system is proved to be sound w.r.t. the operational semantics of the language. The type checking problem is shown to be undecidable in general. We define a natural syntactic restriction such that the type checking becomes decidable, even though size polynomials are not necessarily linear or monotonic. Furthermore, we have shown that the type-inference problem is at least semi-decidable (under this restriction). We have implemented a procedure that combines run-time testing and type-checking to automatically obtain size dependencies. It terminates on total typable function definitions.Comment: 35 pages, 1 figur

    Size-Change Termination, Monotonicity Constraints and Ranking Functions

    Full text link
    Size-Change Termination (SCT) is a method of proving program termination based on the impossibility of infinite descent. To this end we may use a program abstraction in which transitions are described by monotonicity constraints over (abstract) variables. When only constraints of the form x>y' and x>=y' are allowed, we have size-change graphs. Both theory and practice are now more evolved in this restricted framework then in the general framework of monotonicity constraints. This paper shows that it is possible to extend and adapt some theory from the domain of size-change graphs to the general case, thus complementing previous work on monotonicity constraints. In particular, we present precise decision procedures for termination; and we provide a procedure to construct explicit global ranking functions from monotonicity constraints in singly-exponential time, which is better than what has been published so far even for size-change graphs.Comment: revised version of September 2
    corecore