
Asymptotic Resource Usage Bounds

E. Albert1, D. Alonso1, P. Arenas1, S. Genaim1, and G. Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. When describing the resource usage of a program, it is usual
to talk in asymptotic terms, such as the well-known “big O” notation,
whereby we focus on the behaviour of the program for large input data
and make a rough approximation by considering as equivalent programs
whose resource usage grows at the same rate. Motivated by the existence
of non-asymptotic resource usage analyzers, in this paper, we develop a
novel transformation from a non-asymptotic cost function (which can be
produced by multiple resource analyzers) into its asymptotic form. Our
transformation aims at producing tight asymptotic forms which do not
contain redundant subexpressions (i.e., expressions asymptotically sub-
sumed by others). Interestingly, we integrate our transformation at the
heart of a cost analyzer to generate asymptotic upper bounds without
having to first compute their non-asymptotic counterparts. Our exper-
imental results show that, while non-asymptotic cost functions become
very complex, their asymptotic forms are much more compact and man-
ageable. This is essential to improve scalability and to enable the appli-
cation of cost analysis in resource-aware verification/certification.

1 Introduction

A fundamental characteristics of a program is the amount of resources that
its execution will require, i.e., its resource usage. Typical examples of resources
include execution time, memory watermark, amount of data transmitted over the
net, etc. Resource usage analysis [15,14,8,2,9] aims at automatically estimating
the resource usage of programs. Static resource analyzers often produce cost
bound functions, which have as input the size of the input arguments and return
bounds on the resource usage (or cost) of running the program on such input.

A well-known mechanism for keeping the size of cost functions manageable
and, thus, facilitate human manipulation and comparison of cost functions is
asymptotic analysis, whereby we focus on the behaviour of functions for large
input data and make a rough approximation by considering as equivalent func-
tions which grow at the same rate w.r.t. the size of the input date. The asymp-
totic point of view is basic in computer science, where the question is typically
how to describe the resource implication of scaling-up the size of a computa-
tional problem, beyond the “toy” level. For instance, the big O notation is used
to define asymptotic upper bounds, i.e, given two functions f and g which map

natural numbers to real numbers, one writes f ∈ O(g) to express the fact that
there is a natural constant m ≥ 1 and a real constant c > 0 s.t. for any n ≥ m
we have that f(n) ≤ c ∗ g(n). Other types of (asymptotic) computational com-
plexity estimates are lower bounds (“Big Omega” notation) and asymptotically
tight estimates, when the asymptotic upper and lower bounds coincide (written
using “Big Theta”). The aim of asymptotic resource usage analysis is to obtain
a cost function fa which is syntactically simple s.t. fn ∈ O(fa) (correctness) and
ideally also that fa ∈ Θ(fn) (accuracy), where fn is the non-asymptotic cost
function.

The scopes of non-asymptotic and asymptotic analysis are complementary.
Non-asymptotic bounds are required for the estimation of precise execution time
(like in WCET) or to predict accurate memory requirements [4]. The motiva-
tions for inferring asymptotic bounds are twofold: (1) They are essential during
program development, when the programmer tries to reason about the efficiency
of a program, especially when comparing alternative implementations for a given
functionality. (2) Non-asymptotic bounds can become unmanageably large ex-
pressions, imposing huge memory requirements. We will show that asymptotic
bounds are syntactically much simpler, can be produced at a smaller cost, and,
interestingly, in cases where their non-asymptotic forms cannot be computed.

The main techniques presented in this paper are applicable to obtain asymp-
totic versions of the cost functions produced by any cost analysis, including lower,
upper and average cost analyses. Besides, we will also study how to perform a
tighter integration with an upper bound solver which follows the classical ap-
proach to static cost analysis by Wegbreit [15]. In this approach, the analysis is
parametric w.r.t. a cost model, which is just a description of the resources whose
usage we should measure, e.g., time, memory, calls to a specific function, etc.
and analysis consists of two phases. (1) First, given a program and a cost model,
the analysis produces cost relations (CRs for short), i.e., a system of recursive
equations which capture the resource usage of the program for the given cost
model in terms of the sizes of its input data. (2) In a second step, closed-form,
i.e., non-recursive, upper bounds are inferred for the CRs. How the first phase is
performed is heavily determined by the programming language under study and
nowadays there exist analyses for a relatively wide range of languages (see, e.g.,
[2,8,14] and their references). Importantly, such first phase remains the same for
both asymptotic and non-asymptotic analyses and thus we will not describe it.
The second phase is language-independent, i.e., once the CRs are produced, the
same techniques can be used to transform them to closed-form upper bounds,
regardless of the programming language used in the first phase. The important
point is that this second phase can be modified in order to produce asymptotic
upper bounds directly. Our main contributions can be summarized as follows:

1. We adapt the notion of asymptotic complexity to cover the analysis of re-
alistic programs whose limiting behaviour is determined by the limiting be-
haviour of its loops.

2. We present a novel transformation from non-asymptotic cost functions into
asymptotic form. After some syntactic simplifications, our transformation

2

detects and eliminates subterms which are asymptotically subsumed by oth-
ers while preserving the complexity order.

3. In order to achieve motivation (2), we need to integrate the above transfor-
mation within the process of obtaining the cost functions. We present a tight
integration into (the second phase of) a resource usage analyzer to gener-
ate directly asymptotic upper bounds without having to first compute their
non-asymptotic counterparts.

4. We report on a prototype implementation within the COSTA system [3]
which shows that we are able to achieve motivations (1) and (2) in practice.

2 Background: Non-Asymptotic Upper Bounds

In this section, we recall some preliminary definitions and briefly describe the
method of [1] for converting cost relations (CRs) into upper bounds in closed-
form, i.e., without recurrences.

2.1 Cost Relations

Let us introduce some notation. The sets of natural, integer, real, non-zero natu-
ral and non-negative real values are denoted respectively by N, Z, R, N+ and R+.
We write x, y, and z, to denote variables which range over Z. A linear expression
has the form v0 + v1x1 + . . . + vnxn, where vi ∈ Z, 0 ≤ i ≤ n. Similarly, a linear
constraint (over Z) has the form l1 ≤ l2, where l1 and l2 are linear expressions.
For simplicity we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and l1 < l2 instead
of l1 + 1 ≤ l2. The notation t̄ stands for a sequence of entities t1, . . . , tn, for
some n>0. We write ϕ, φ or ψ, to denote sets of linear constraints which should
be interpreted as the conjunction of each element in the set and ϕ1 |= ϕ2 to
indicate that the linear constraint ϕ1 implies the linear constraint ϕ2. Now, the
basic building blocks of cost relations are the so-called cost expressions e which
can be generated using this grammar:

e::= r | nat(l) | e + e | e ∗ e | er | log(nat(l)) | nnat(l) | max(S)

where r ∈ R+, n ∈ N+, l is a linear expression, S is a non empty set of cost
expressions, nat : Z → N is defined as nat(v)= max({v, 0}), and the base of
the log is 2 (since any other base can be rewritten to 2). Observe that linear
expressions are always wrapped by nat as we explain below.

Example 1. Consider the simple Java method m shown in Fig. 1, which invokes
the auxiliary method g, where x is a linked list of boolean values implemented
in the standard way. For this method, the COSTA analyzer outputs the cost
expression C+

m=6+nat(n−i)∗max({21+5∗nat(n−1), 19+5∗nat(n−i)}) as an up-
per bound on the number of bytecode instructions that m executes. Each Java
instruction is compiled to possibly several bytecode instructions, but this is not
relevant to this work. We are assuming that an upper bound on the number of
executed instructions in g is C+

g (a, b)=4+5∗nat(b−a). Observe that the use of

3

static void m(List x, int i, int n){
while (i<n){

if (x.data) {g(i,n); i++;}
else {g(0,i); n=n-1;}
x=x.next;

}}

(1) 〈Cm(i, n) = 3
, ϕ1 = {i ≥ n}〉

(2) 〈Cm(i, n) = 15 + Cg(i, n) + Cm(i′, n)
, ϕ2 = {i < n, i′ = i + 1}〉

(3) 〈Cm(i, n) = 17 + Cg(0, i) + Cm(i, n′)
, ϕ3 = {i < n, , n′ = n − 1}〉

Fig. 1. Java method and CR.

nat is required in order to avoid incorrectly evaluating upper bounds to negative
values. When i ≥ n, the cost associated to the recursive cases has to be nulled
out, this effect is achieved with nat(n−i) since it will evaluate to 0. !

W.l.o.g., we formalize our mechanism by assuming that all recursions are direct
(i.e., all cycles are of length one). Direct recursion can be automatically achieved
by applying Partial Evaluation [11] (see [1] for the technical details).

Definition 1 (Cost Relation). A cost relation system S is a set of equations

of the form 〈C(x̄) = e +
∑k

i=1 Di(ȳi),ϕ〉 with k ≥ 0, where C and Di are
cost relation symbols, all variables x̄ and ȳi are distinct variables; e is a cost
expression; and ϕ is a set of linear constraints over x̄ ∪ vars(e)

⋃k
i=1 ȳi.

Example 2. The cost relation (CR for short) associated to method m is shown
in Fig. 1 (right). The relations Cm and Cg capture, respectively, the costs of
the methods m and g. Intuitively, in CRs, variables represent the sizes of the
corresponding data structures in the program and in the case of integer variables
they represent their integer value. Eq. 1 is a base case and captures the case where
the loop body is not executed. It can be observed that we have two recursive
equations (Eq. 2 and Eq. 3) which capture the respective costs of the then and
else branches within the while loop. As the list x has been abstracted to its
length, the values of x.data are not visible in the CR and the two equations have
the same (incomplete) guard, which results in a non-deterministic CR. Also,
variables which do not affect the cost (e.g., x) do not appear in the CR. How to
automatically obtain a CR from a program is the subject of the first phase of
cost analysis as described in Sec. 1. More details can be found in [2,8,14,15]. !

2.2 Non-Asymptotic Upper-Bounds

We now describe the approach of [1] to infer the upper bound of Ex. 1 from
the equations in Ex. 2. It starts by computing upper bounds for CRs which
do not depend on any other CRs, referred to as standalone cost relations, and
continues by replacing the computed upper bounds on the equations which call
such relations. For instance, after computing the upper bound for g shown in
Ex. 1, the cost relation in Ex. 2 becomes standalone:

(1) 〈Cm(i, n) = 3 , ϕ1 = {i ≥ n}〉

(2) 〈Cm(i, n) = 15 + nat(n − i) +Cm(i′, n) , ϕ2 = {i < n, i′ = i + 1}〉

4

(3) 〈Cm(i, n) = 17 + nat(i) +Cm(i, n′) , ϕ3 = {i < n, n′ = n − 1}〉

Given a standalone CR made up of nb base cases of the form 〈C(x̄)=basej ,ϕj〉,

1≤j≤nb and nr recursive equations of the form, 〈C(x̄)=recj+
∑kj

i=1 C(ȳi),ϕj〉,
1≤j≤nr , an upper bound can be computed as:

(∗) C(x̄)+ = Ib ∗worst({base1 , . . . , basenb}) + Ir ∗ worst({rec1 , . . . , recnr})

where Ib and Ir are, respectively, upper bounds of the number of visits to the
base cases and recursive equations and worst({Set}) denotes the worst-case (the
maximum) value that the expressions in Set can take. Below, we describe the
method in [1] to approximate the above upper bound.

Bounds on the Number of Application of Equations. The first dimension
of the problem is to bound the maximum number of times an equation can be
applied. This can be done by examining the structure of the CR (i.e., the number
of explicit recursive calls in the equations), together with how the values of the
arguments change when calling recursively (i.e., the linear constraints).

We first explain the problem for equations that have at most one recursive
call in their bodies. In the above CR, when calling Cm recursively in (2), the first
argument i of Cm increases by 1 and in (3) the second argument n decreases by
1. Now suppose that we define a function f(a, b) = b − a. Then, we can observe
that ϕ2 |= f(i, n) > f(i′, n)∧f(i, n) ≥ 0 and ϕ3 |= f(i, n) > f(i, n′)∧f(i, n) ≥ 0,
i.e, for both equations we can guarantee that they will not be applied more than
nat(f(i0, n0)) = nat(n0 − i0) times, where i0 and n0 are the initial values for
the two variables. Functions such as f are usually called ranking functions [13].
Given a cost relation C(x̄), we denote by fC(x̄) a ranking function for all loops
in C. Now, consider that we add an equation that contains two recursive calls:

(4) 〈Cm(i, n) = Cm(i, n′) + Cm(i, n′) , ϕ4 = {i < n, n′ = n − 1}〉

then the recursive equations would be applied in the worst-case Ir = 2nat(n−i)−1
times, which in this paper, we simplify to Ir = 2nat(n−i) to avoid having negative
constants that do not add any technical problem to asymptotic analysis. This
is because each call generates 2 recursive calls, and in each call the argument
n decreases at least by 1. In addition, unlike the above examples, the base-
case equation would be applied in the worst-case an exponential number of
times. In general, a CR may include several base-case and recursive equations
whose guards, as shown in the example, are not necessarily mutually exclusive,
which means that at each evaluation step there are several equations that can
be applied. Thus, the worst-case of applications is determined by the fourth
equation, which has two recursive calls, while the worst cost of each application
will be determined by the first equation, which contributes the largest direct
cost. In summary, the bounds on the number of application of equations are
computed as follows:

Ir =

{

nrnat(fC(x̄)) if nr > 1
nat(fC(x̄)) otherwise

Ib =

{

nrnat(fC(x̄)) if nr > 1
1 otherwise

where nr is the maximum number of recursive calls which appear in a single
equation. A fundamental point to note is that the (linear) combination of vari-
ables which approximates the number of iterations of loops is wrapped by nat.

5

This will influence our definition of asymptotic complexity. In logarithmic cases,
we can further refine the ranking function and obtain a tighter upper bound. If
each recursive equation satisfies ϕj |=fC(x̄)≥k∗fC(ȳi), 1≤i≤nr , where k>1 is a
constant, then we can infer that Ir is bounded by +logk(nat(fC(x̄))+1),, as each
time the value of the ranking function decreases by k. For instance, if we replace
ϕ2 by ϕ′

2={i<n, i′=i∗2} and ϕ3 by ϕ′

3={i<n, n′=n/2} (and remove equation 4)
then the method of [1] would infer that Ir is bound by +logk(nat(n−i)+1),.

Bounds on the Worst Cost of Equations. As it can be observed in the above
example, in each application the corresponding equation might contribute a non-
constant number of cost units. Therefore, it is not trivial to compute the worst-
case (the maximum) value of all of them. In order to infer the maximum value
of such expressions automatically, [1] proposes to first infer invariants (linear
relations) between the equation’s variables and the initial values. For example,
the cost relation Cm(i, n) admits as invariant for the recursive equations the
formula I defined as I((i0, n0), (i, n)) ≡ i ≥ i0 ∧ n ≤ n0 ∧ i < n, which captures
that the values of i (resp. n) are greater (resp. smaller) or equal than the initial
value and that i is smaller than n at all iterations. Once we have the invariant,
we can maximize the expressions w.r.t. these values and take the maximal:

worst({rec1 , . . . , recnr}) = max(maximize(I, {rec1 , . . . , recnr}))
The operator maximize receives an invariant I and a set of expressions to be
maximized and computes the maximal value of each expression independently
and returns the corresponding set of maximized expressions in terms of the initial
values (see [1] for the technical details). For instance, in the original CR (without
Eq. (4)), we compute worst({rec1 , rec2})= max(maximize(I, {nat(n−i), nat(i)}))
which results in worst({rec1 , rec2}) = max({nat(n0 − i0), nat(n0−1)}). The same
procedure can be applied to the expressions in the base cases. However, it is un-
necessary in our example, because the base case is a constant and therefore re-
quires no maximization. Altogether, by applying Equation (*) to the standalone
CR above we obtain the upper bounds shown in Ex. 1.

Inter-Procedural. In the above examples, all CRs are standalone and do not
call any other equations. In the general case, a cost relation can contain k calls to
external relations and n recursive calls: 〈C(x̄) = e+

∑k
i=1 Di(ȳi)+

∑n
j=1 C(z̄j),ϕ〉

with k ≥ 0. After computing the upper bounds D+
i (ȳi) for the standalone CRs,

we replace the computed upper bounds on the equations which call such rela-
tions, i.e., 〈C(x̄) = e +

∑k
i=1 D+

i (ȳi) +
∑n

j=1 C(z̄j),ϕ〉.

3 Asymptotic Notation for Cost Expressions

We now present extended versions of the standard definition of the asymptotic
notations big O and big Theta, which handle functions with multiple input ar-
guments, i.e., functions of the form Nn .→ R+.

Definition 2 (big O, big Theta). Given two functions f, g : Nn .→ R+, we
say that f ∈ O(g) iff there is a real constant c > 0 and a natural constant m ≥ 1

6

such that, for any v̄ ∈ Nn such that vi ≥ m, it holds that f(v̄) ≤ c ∗ g(v̄).
Similarly, f ∈ Θ(g) iff there are real constants c1 > 0 and c2 > 0 and a natural
constant m ≥ 1 such that, for any v̄ ∈ Nn such that vi ≥ m, it holds that
c1 ∗ g(v̄) ≤ f(v̄) ≤ c2 ∗ g(v̄).

The big O refers to asymptotic upper bounds and the big Θ to asymptotically
tight estimates, when the asymptotic upper and lower bounds coincide. The
asymptotic notations above assume that the value of the function increases with
the values of the input such that the function, unless it has a constant asymp-
totic order, takes the value ∞ when the input is ∞. This assumption does not
necessarily hold when CRs are obtained from realistic programs. For instance,
consider the loop in Fig. 1. Clearly, the execution cost of the program increases
by increasing the number of iterations of the loop, i.e., n−i, the ranking function.
Therefore, in order to observe the limiting behavior of the program we should
study the case when nat(n − i) goes to ∞, i.e., when, for example, n goes to ∞
and i stays constant, but not when both n and i go to ∞. In order to capture
this asymptotic behaviour, we introduce the notion of nat-free cost expression,
where we transform a cost expression into another one by replacing each nat-
expression with a variable. This guarantees that we can make a consistent usage
of the definition of asymptotic notation since, as intended, after some threshold
m, larger values of the input variables result in larger values of the function.

Definition 3 (nat-free cost expressions). Given a set of cost expression E =
{e1, . . . , en}, the nat-free representation of E, is the set Ẽ = {ẽ1, . . . , ẽn} which
is obtained from E in four steps:

1. Each nat-expression nat(a1x1 + · · · + anxn + c) ∈ E which appears as an
exponent is replaced by nat(a1x1 + · · · + anxn);

2. The rest of nat-expressions nat(a1x1 + · · · + anxn + c) ∈ E are replaced by
nat(a1

b
x1 + · · · + an

b
xn), where b is the greatest common divisor (gcd) of

|a1|, . . . , |an|, and | · | stands for the absolute value;
3. We introduce a fresh (upper-case) variable per syntactically different nat-

expression.
4. We replace each nat-expression by its corresponding variable.

Cases 1 and 2 above have to be handled separately because if nat(a1x1+ · · ·
+anxn+c) is an exponent, we can remove the c, but we cannot change the
values of any ai. E.g., 2nat(2x+1) 0∈O(2nat(x)). This is because 4x 0∈O(2x). Hence, we
cannot simplify 2nat(2x) to 2nat(x). In the case that nat(a1x1+ · · ·+anxn+c) does
not appear as an exponent, we can remove c and normalize all ai by dividing them
by the gcd of their absolute values. This allows reducing the number of variables
which are needed for representing the nat-expressions. It is done by using just
one variable for all nat expressions whose linear expressions are parallel and grow
in the same direction. Note that removing the independent term plus dividing all
constants by the gcd of their absolute values provides a canonical representation
for linear expressions. They satisfy this property iff their canonical representation
is the same. This allows transforming both nat(2x+3) and nat(3x+5) to nat(x),
and nat(2x+4y) and nat(3x+6y) to nat(x+2y).

7

Example 3. Given the following cost function:
5+7∗nat(3x + 1)∗max({100∗nat(x)2∗nat(y)4, 11∗3nat(y−1)∗nat(x + 5)2})+
2∗ log(nat(x + 2))∗2nat(y−3)∗ log(nat(y + 4))∗nat(2x−2y)

Its nat-free representation is:
5+7 ∗ A∗max({100 ∗ A2∗B4, 11 ∗ 3B∗A2})+2∗ log(A)∗2B∗ log(B)∗C

where A corresponds to nat(x), B to nat(y) and C to nat(x−y). !

Definition 4. Given two cost expressions e1, e2 and its nat-free correspondence
ẽ1, ẽ2, we say that e1∈O(e2) (resp. e1∈Θ(e2)) if ẽ1∈O(ẽ2) (resp. ẽ1∈Θ(ẽ2)).

The above definition lifts Def. 2 to the case of cost expressions. Basically, it states
that in order to decide the asymptotic relations between two cost expressions, we
should check the asymptotic relation of their corresponding nat-free expressions.
Note that by obtaining their nat-free expressions simultaneously we guarantee
that the same variables are syntactically used for the same linear expressions.

In some cases, a cost expression might come with a set of constraints which
specifies a class of input values for which the given cost expression is a valid
bound. We refer to such set as context constraint. For example, the cost ex-
pression of Ex. 3 might have ϕ={x≥y, x≥0, y≥0} as context constraint, which
specifies that it is valid only for non-negative values which satisfy x≥y. The
context constraint can be provided by the user as an input to cost analysis, or
collected from the program during the analysis.

The information in the context constraint ϕ associated to the cost expression
can sometimes be used to check whether some nat-expressions are guaranteed
to be asymptotically larger than others. For example, if the context constraint
states that x ≥ y, then when both nat(x) and nat(y) grow to the infinite we have
that nat(x) asymptotically subsumes nat(y), this information might be useful
in order to obtain more precise asymptotic bounds. In what follows, given two
nat-expressions (represented by their corresponding nat-variables A and B), we
say that ϕ|=A 1 B if A asymptotically subsumes B when both go to ∞.

4 Asymptotic Orders of Cost Expressions

As it is well-known, by using Θ we can partition the set of all functions defined
over the same domain into asymptotic orders. Each of these orders has an infinite
number of members. Therefore, to accomplish the motivations in Sect. 1 it is
required to use one of the elements with simpler syntactic form. Finding a good
representative of an asymptotic order becomes a complex problem when we deal
with functions made up of non-linear expressions, exponentials, polynomials, and
logarithms, possibly involving several variables and associated constraints. For
example, given the cost expression of Ex. 3, we want to automatically infer the
asymptotic order “3nat(y) ∗ nat(x)3”.

Apart from simple optimizations which remove constants and normalize ex-
pressions by removing parenthesis, it is essential to remove redundancies, i.e.,
subexpressions which are asymptotically subsumed by others, for the final ex-
pression to be as small as possible. This requires effectively comparing subexpres-
sions of different lengths and possible containing multiple complexity orders. In

8

this section, we present the basic definitions and a mechanism for transforming
non-asymptotic cost expressions into non-redundant expressions while preserv-
ing the asymptotic order. Note that this mechanism can be used to transform
the output of any cost analyzer into an non-redundant, asymptotically equiv-
alent one. To the best of our knowledge, this is the first attempt to do this
process in a fully automatic way. Given a cost expression e, the transformations
are applied on its ẽ representation, and only afterwards we substitute back the
nat-expressions, in order to obtain an asymptotic order of e, as defined in Def. 4.

4.1 Syntactic Simplifications on Cost Expressions

First, we perform some syntactic simplifications to enable the subsequent steps
of the transformation. Given a nat-free cost expression ẽ, we describe how to
simplify it and obtain another nat-free cost expression ẽ ′ such that ẽ ∈ Θ(ẽ ′).
In what follows, we assume that ẽ is not simply a constant or an arithmetic
expression that evaluates to a constant, since otherwise we simply have ẽ ∈ O(1).
The first step is to transform ẽ by removing constants and max expressions, as
described in the following definition.

Definition 5. Given a nat-free cost expression ẽ, we denote by τ(ẽ) the cost
expression that results from ẽ by: (1) removing all constants; and (2) replacing
each subexpression max({ẽ1, . . . , ẽm}) by (ẽ1 + . . . + ẽm).

Example 4. Applying the above transformation on the nat-free cost expression
of Ex. 3 results in: τ(ẽ)=A∗(A2∗B4 + 3B∗A2)+ log(A)∗2B∗ log(B)∗C. !

Lemma 1. ẽ ∈ Θ(τ(ẽ))

Once the τ transformation has been applied, we aim at a further simplification
which safely removes sub-expressions which are asymptotically subsumed by
other sub-expressions. In order to do so, we first transform a given cost expres-
sion into a normal form (i.e., a sum of products) as described in the following
definition, where we use basic nat-free cost expression to refer to expressions of
the form 2r∗A, Ar, or log(A), where r is a real number. Observe that, w.l.o.g.,
we assume that exponentials are always in base 2. This is because an expression
nA where n > 2 can be rewritten as 2log(n)∗A.

Definition 6 (normalized nat-free cost expression). A normalized nat-free
cost expression is of the form Σn

i=1Π
mi

j=1bij such that each bij is a basic nat-free
cost expression.

Since b1 ∗b2 and b2 ∗b1 are equal, it is convenient to view a product as the multi-
set of its elements (i.e., basic nat-free cost expressions). We use the letter M to
denote such multi-set. Also, since M1+M2 and M2+M1 are equal, it is convenient
to view the sum as the multi-set of its elements, i.e., products (represented as
multi-sets). Therefore, a normalized cost expression is a multi-set of multi-sets
of basic cost expressions. In order to normalize a nat-free cost expression τ(ẽ) we
will repeatedly apply the distributive property of multiplication over addition in
order to get rid of all parenthesis in the expression.

9

Example 5. The normalized expression for τ(ẽ) of Ex. 4 is A3∗B4+2log(3)∗B∗A3+
log(A)∗2B∗ log(B)∗C and its multi-set representation is {{A3, B4}, {2log(3)∗B , A3},
{log(A), 2B , log(B), C}} !

4.2 Asymptotic Subsumption

Given a normalized nat-free cost expression ẽ = {M1, . . . ,Mn} and a context
constraint ϕ, we want to remove from ẽ any product Mi which is asymptoti-
cally subsumed by another product Mj , i.e., if Mj ∈ Θ(Mj + Mi). Note that
this is guaranteed by Mi ∈ O(Mj). The remaining of this section defines a deci-
sion procedure for deciding if Mi ∈ O(Mj). First, we define several asymptotic
subsumption templates for which it is easy to verify that a single basic nat-free
cost expression b subsumes a complete product. In the following definition, we
use the auxiliary functions pow and deg of basic nat-free cost expressions which
are defined as: pow(2r∗A) = r, pow(Ar) = 0, pow(log(A)) = 0, deg(Ar) = r,
deg(2r∗A) = ∞, and deg(log(A)) = 0. In a first step, we focus on basic nat-free
cost expression b with one variable and define when it asymptotically subsumes a
set of basic nat-free cost expressions (i.e., a product). The product might involve
several variables but they must be subsumed by the variable in b.

Lemma 2 (asymptotic subsumption). Let b be a basic nat-free cost expres-
sion, M = {b1, · · · , bm} a product, ϕ a context constraint, vars(b) = {A}
and vars(bi) = {Ai}. We say that M is asymptotically subsumed by b, i.e.,
ϕ |= M ∈ O(b) if for all 1 ≤ i ≤ m it holds that ϕ |= A 1 Ai and one of the
following holds:

1. if b = 2r∗A, then
(a) r > Σm

i=1pow(bi); or
(b) r ≥ Σm

i=1pow(bi) and every bi is of the form 2ri∗Ai ;
2. if b = Ar, then

(a) there is no bi of the form log(Ai), then r ≥ Σm
i=1deg(bi); or

(b) there is at least one bi of the form log(Ai), and r ≥ 1 + Σm
i=1deg(bi)

3. if b = log(A), then m = 1 and b1 = log(A1)

Let us intuitively explain the lemma. For exponentials, in point 1a, we capture
cases such as 3A = 2log(3)∗A asymptotically subsumes 2A ∗A2 ∗ . . .∗ log(A) where
in “. . .” we might have any number of polynomial or logarithmic expressions. In
1b, we ensure that 3A does not embed 3A ∗ A2 ∗ log(A), i.e., if the power is the
same, then we cannot have additional expressions. For polynomials, 2a captures
that the largest degree is the upper bound. Note that an exponential would
introduce an ∞ degree. In 2b, we express that there can be many logarithms
and still the maximal polynomial is the upper bound, e.g., A2 subsumes A ∗
log(A)∗ log(A)∗ . . .∗ log(A). In 3, a logarithm only subsumes another logarithm.

Example 6. Let b = A3, M = {log(A), log(B), C}, where A, B and C corre-
sponds to nat(x), nat(y) and nat(x−y) respectively. Let us assume that the con-
text constraint is ϕ = {x ≥ y, x ≥ 0, y ≥ 0}. M is asymptotically subsumed by
b since ϕ |= (A 1 B) ∧ (A 1 C), and condition 2b in Lemma 2 holds. !

10

The basic idea now is that, when we want to check the subsumption relation
on two expression M1 and M2 we look for a partition of M2 such that we can
prove the subsumption relation of each element in the partition by a different
basic nat-free cost expression in M1. Note that M1 can contain additional basic
nat-free cost expressions which are not needed for subsuming M2.

Lemma 3. Let M1 and M2 be two products, and ϕ a context constraint. If there
exists a partition of M2 into k sets P1, . . . , Pk, and k distinct basic nat-free cost
expressions b1, . . . , bk ∈ M1 such that Pi ∈ O(bi), then M2 ∈ O(M1).

Example 7. Let M1 = {2log(3)∗B, A3} and M2 = {log(A), 2B , log(B), C}, with
the context constraint ϕ as defined in Ex. 6. If we take b1 = 2log(3)∗A, b2 = A3,
and partition M2 into P1 = {2B}, P2 = {log(A), log(B), C} then we have that
P1 ∈ O(b1) and P2 ∈ O(b2). Therefore, by Lemma 3, M2 ∈ O(M1). Also, for
M ′

2 = {A3, B4} we can partition it into P ′

1 = {B4} and P ′

2 = {A3} such that
P ′

1 ∈ O(b1) and P ′

2 ∈ O(b2) and therefore we also have that M ′

2 ∈ O(M1). !

Definition 7 (asymp). Given a cost expression e, the overall transformation
asymp takes e and returns the cost expression that results from removing all
subsumed products from the normalized expression of τ(ẽ), and then replace each
nat-variable by the corresponding nat-expression.

Example 8. Consider the normalized cost expression of Ex. 5. The first and
third products can be removed, since they are subsumed by the second one, as
explained in Ex. 7. Then asymp(e) would be 2log(3)∗nat(y) ∗ nat(x)3 = 3nat(y) ∗
nat(x)3, and it holds that e ∈ Θ(asymp(e)). !

In the following theorem, we ensure that after eliminating the asymptotically
subsumed products, we preserve the asymptotic order.

Theorem 1 (soundness). Given a cost expression e and a context constraint
ϕ, then ϕ |= e ∈ Θ(asymp(e)).

4.3 Implementation in COSTA

We have implemented our transformation and it can be used as a back-end
of existing non-asymptotic cost analyzers for average, lower and upper bounds
(e.g., [9,2,12,5,7]), and regardless of whether it is based on the approach to
cost analysis of [15] or any other. We plan to distribute it as free software soon.
Currently, it can be tried out through a web interface available from the COSTA
web site: http://costa.ls.fi.upm.es. COSTA is an abstract interpretation-
based COSt and Termination Analyzer for Java bytecode which receives as input
a bytecode program and (a choice of) a resource of interest, and tries to obtain
an upper bound of the resource consumption of the program.

In our first experiment, we use our implementation to obtain asymptotic
forms of the upper bounds on the memory consumption obtained by [4] for the
JOlden suite [10]. This benchmark suite was first used by [6] in the context of

11

memory usage verification and is becoming a standard to evaluate memory usage
analysis [5,4]. None of the previous approaches computes asymptotic bounds. We
are able to obtain accurate asymptotic forms for all benchmarks in the suite and
the transformation time is negligible (less than 0.1 milliseconds in all cases). As
a simple example, for the benchmark em3d, the non-asymptotic upper bound
is 8∗nat(d−1)∗nat(b)+8∗nat(d)+8∗nat(b) +56∗nat(d−1)+16∗nat(c) +73 and we
transform it to nat(d)∗nat(b)+nat(c). The remaining examples can be tried online
in the above url.

5 Generation of Asymptotic Upper Bounds

In this section we study how to perform a tighter integration of the asymptotic
transformation presented Sec. 4 within resource usage analyses which follow the
classical approach to static cost analysis by Wegbreit [15]. To do this, we reformu-
late the process of inferring upper bounds sketched in Sect. 2.2 to work directly
with asymptotic functions at all possible (intermediate) stages. The motivation
for doing so is to reduce the huge amount of memory required for constructing
non-asymptotic bounds and, in the limit, to be able to infer asymptotic bounds
in cases where their non-asymptotic forms cannot be computed.

Asymptotic CRS. The first step in this process is to transform cost relations
into asymptotic form before proceeding to infer upper bounds for them. As be-
fore, we start by considering standalone cost relations. Given an equation of the
form 〈C(x̄)=e+

∑k
i=1 C(ȳi),ϕ〉 with k ≥ 0, its associated asymptotic equation

is 〈CA(x̄)=asymp(e)+
∑k

i=1 CA(ȳi),ϕ〉. Given a cost relation C, its asymptotic
cost relation CA is obtained by applying the above transformation to all its equa-
tions. Applying the transformation at this level is interesting in order to simplify
both the process of computing the worst case cost of the recursive equations and
the base cases when computing Eq. (∗) as defined in Sect. 2.2.

Example 9. Consider the following CR:
〈C(a, b) = nat(a + 1)2 , {a≥0, b≥0}〉

〈C(a, b) = nat(a−b)+ log(nat(a−b))+C(a′, b′) , {a≥0, b≥0, a′=a−2, b′=b+1}〉

〈C(a, b) = 2nat(a+b)+nat(a)∗ log(nat(a))+C(a′, b′) , {a≥0, b≥0, a′=a+1, b′=b−1}〉

By replacing the underlined expressions by their corresponding asymp expres-
sions as explained in Theorem 1, we obtain the asymptotic relation:

〈CA(a, b) = nat(a)2 , {a≥0, b≥0}〉

〈CA(a, b) = nat(a−b)+CA(a′, b′) , {a≥0, b≥0, a′=a−2, b′=b+1}〉

〈CA(a, b) = 2nat(a+b)+CA(a′, b′) , {a≥0, b≥0, a′=a+1, b′=b−1}〉
In addition to reducing their sizes, the process of maximizing the nat expressions
is more efficient since there are fewer nat expressions in the asymptotic CR. !

An important point to note is that, while we can remove all constants from e, it
is essential that we keep the constants in the size relations ϕ to ensure soundness.
This is because they are used to infer the ranking functions and to compute the

12

invariants, and removing such constants might introduce imprecision and more
important soundness problems as we explain in the following examples.

Example 10. The above relation admits a ranking function f(a, b)=nat(2a +
3b+1) which is used to bound the number of applications of the recursive equa-
tions. Clearly, if we remove the constants in the size relations, e.g., transform
a′=a−2 into a′=a, the resulting relation is non-terminating and we cannot find
a ranking function. Besides, removing constants from constraints which are not
necessarily related to the ranking function also might result in incorrect invari-
ants. For example, changing n′=n+1 to n′=n in the following equation:

〈C(m,n) = nat(n) + C(m′, n′) , {m>0,m′<m,n′=n+1}〉

would result in an invariant which states that the value of n is always equal to the
initial value n0, which in turn leads to the upper-bound nat(m0)∗nat(n0) which
is clearly incorrect. A possible correct upper-bound is nat(m0)∗nat(n0 + m0)
which captures that the value of nat(n) increases up to nat(n0+m0). !

Asymptotic Upper Bounds. Once the standalone CR is put into asymptotic
form, we proceed to infer an upper bound for it as in the case of non-asymptotic
CRs and then we apply the transformation to the result. Let CA(x̄) be an asymp-
totic cost relation. Let C+

A (x̄) be its upper bound computed as defined in Eq. (∗).
Its asymptotic upper bound is C+

asymp(x̄) = asymp(C+
A (x̄)). Observe that we are

computing C+
A (x̄) in a non-asymptotic fashion, i.e., we do not apply asymp to

each Ib, Ir, worst in (∗), but only to the result of combining all elements. We
could apply asymp to the individual elements and then to the result of their
combination again. In practice, it almost makes no difference as this operation
is really inexpensive.

Example 11. Consider the second CR of Ex. 9. The analyzer infers the invariant
I = {0≤a≤a0, 0≤b≤b0, a≥0, b≥0}, from which we maximize nat(a)2 to nat(a0)2,
nat(a−b) to nat(a0) (since the maximal value occurs when b becomes 0), and
2nat(a+b) to 2nat(a0+b0). The number of applications of the recursive equations is
nat(2a0+3b0+1) (see Ex. 10). By applying Eq. (∗), we obtain the upper bound:
C+

A (a, b) = nat(2a+3b+1) ∗ max({nat(a), 2nat(a+b)}) + nat(a)2. Applying asymp
to the above upper bound results in: C+

asymp(a, b) = 2nat(a+b) ∗ nat(2a + 3b). !

Inter-procedural. The practical impact of integrating the asymptotic trans-
formation within the solving method comes when we consider relations with
calls to external relations and compose their asymptotic results. This is because,
when the number of calls and equations grow, the fact that we manipulate more
compact asymptotic expressions is fundamental to enable the scalability of the
system. Consider a cost relation with k calls to external relations and n recursive
calls: 〈C(x̄)=e+

∑k
i=1 Di(ȳi)+

∑n
j=1 C(z̄j),ϕ〉 with k ≥ 0. Let D+

iasymp
(ȳi) be the

asymptotic upper bound for Di(ȳi). C+
asymp(x̄) is the asymptotic upper bound

of the standalone relation 〈C(x̄)=e+
∑k

i=1 D+
iasymp

(ȳi)+
∑n

j=1 C(z̄j),ϕ〉.

Theorem 2 (soundness). C+(x̄) ∈ O(C+
asymp(x̄)).

13

Bench. Tub Taub Sizeub Sizeaub #Eq Sizeub

#Eq
Sizeaub

#Eq
Sizeub

Sizeaub

BST 0 0 23 4 31 0.74 0.13 5.75
Fibonacci 0 0 47 9 39 1.21 0.23 5.22
Hanoi 0 0 67 14 48 1.39 0.29 4.78
MatMult 0 0 152 38 67 2.27 0.56 4.00
Delete 0 4 320 65 100 3.20 0.65 4.92
FactSum 4 4 717 95 117 6.12 0.81 7.54
SelectOrd 0 4 1447 155 136 10.63 1.14 9.33
ListInter 4 16 3804 257 173 21.98 1.48 14.80
EvenDigits 4 20 7631 400 191 39.95 2.09 19.07
Cons 12 32 15268 585 214 71.34 2.73 26.09
Power 24 40 24265 588 223 108.81 2.63 41.26
MergeList 96 60 48536 828 245 198.10 3.37 58.61
ListRev 140 76 48545 829 254 191.12 3.26 58.55
Incr × 112 × 1126 282 × 3.99 ×
Concat × 164 × 1538 296 × 5.19 ×
ArrayRev × 232 × 2127 305 × 6.97 ×
Factorial × 284 × 2130 314 × 6.78 ×
DivByTwo × 328 × 2135 323 × 6.60 ×
Polynomial × 436 × 2971 346 × 8.58 ×
MergeSort × 440 × 3234 385 × 8.40 ×

Table 1. Scalability of asymptotic cost expressions

Note that the soundness theorem, unlike Th. 1, guarantees only that the asymp-
totic expression is O and not Θ. Let us show an example.

Example 12. Consider ub=nat(a−b+1)∗2nat(c)+5 and asymp(ub)=nat(a−b)∗2nat(c).
Plugging ub in a context where b=a+1 results in 5 (since then nat(a−b+1)=0).
Plugging asymp(ub) in the same context results in 2nat(c) which is clearly less
precise. !

Intuitively, the source of the loss of precision is that, when we compute the
asymptotic upper bound, we are looking at the cost in the limiting behavior
only and we might miss a particular point in which such cost becomes zero. In
our experience, this does not happen often and it could be easily checked before
plugging in the asymptotic result, replacing the upper bound by zero.

5.1 Experimental Results on Scalability

In this section, we aim at studying how the size of cost expressions (non-
asymptotic vs. asymptotic) increases when larger CRs are used, i.e., the scal-
ability of our approach. To do so, we have used the benchmarks of [1] shown
in Table 1. These benchmarks are interesting because they cover the different
complexity order classes, as it can be seen, the benchmarks range from constant

14

to exponential complexity, including polynomial and divide and conquer. The
source code of such programs is also available at the COSTA web site.

As in [1], in order to assess the scalability of the approach, we have connected
together the CRs for the different benchmarks by introducing a call from each
CR to the one appearing immediately above it in the table. Such call is always
introduced in a recursive equation. Column #Eq shows the number of equations
in the corresponding benchmarks. Reading this column top-down, we can see that
when we analyze BST we have 31 equations. Then, for Fibonacci, the number
of equations is 39, i.e., its 8 equations plus the 31 which have been previously
accumulated. Progressively, each benchmark adds its own number of equations
to the one above. Thus, in the last row we have a CR with all the equations
connected, i.e., we compute an upper bound of a CR with at least 20 nested
loops and 385 equations.

Columns Tub and Taub show, respectively, the times of composing the non-
asymptotic and asymptotic bounds, after discarding the time common part for
both, i.e., computing the ranking functions and the invariants. It can be observed
that the times are negligible from BST to EvenDigits, which are the simplest
benchmarks and also have few equations. The interesting point is that when cost
expressions start to be considerably large, Tub grows significantly, while Taub

remains small. This is explained by the sizes of the expressions they handle, as
we describe below. For the columns that contain “×”, COSTA has not been
able to compute a non-asymptotic upper bound because the underlying Prolog
process has run out of memory.

Columns Sizeub and Sizeaub show, respectively, the sizes of the computed
non-asymptotic and asymptotic upper bounds. This is done by regarding the
upper bound expression as a tree and counting its number of nodes, i.e., each
operator and each operand is counted as one. As for the time, the sizes are quite
small for the simplest benchmarks, and they start to increase from SelectOrd.
Note that for these examples, the size of the non-asymptotic upper bounds is sig-
nificantly larger than the asymptotic. Columns Sizeub

#Eq
and Sizeaub

#Eq
show, resp., the

size of the non-asymptotic and asymptotic bounds per equation. The important
point is that while this ratio seems to grow exponentially for non-asymptotic up-
per bounds, Sizeaub

#Eq
grows much more slowly. We believe that this demonstrates

that our approach is scalable, even if the implementation is still preliminary.

6 Conclusions and Future Work

We have presented a general asymptotic resource usage analysis which can be
combined with existing non-asymptotic analyzers by simply adding our trans-
formation as a back-end or, interestingly, integrated into the mechanism for
obtaining upper bounds of recurrence relations. This task has been traditionally
done manually in the context of complexity analysis. When it comes to apply it
to an automatic analyzer for a real-life language, there is a need to develop the
techniques to infer asymptotic bounds in a precise and effective way. To the best
of our knowledge, our work is the first one which presents a generic and fully

15

automatic approach. In future work, we plan to adapt our general framework to
infer asymptotic lower-bounds on the cost and also to integrate our work into a
proof-carrying code infrastructure.

Acknowledgments. This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-231620 HATS project, by the MEC under the TIN-
2008-05624 DOVES and HI2008-0153 (Acción Integrada) projects, by the UCM-
BSCH-GR58/08-910502 (GPD-UCM) , and the CAM under the S-0505/TIC/0407
PROMESAS project.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper
Bounds for Recurrence Relations in Cost Analysis. In 15th International Sym-
posium on Static Analysis (SAS’08), volume 5079 of Lecture Notes in Computer
Science, pages 221–237, 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In ESOP, LNCS 4421, pages 157–172. Springer, 2007.

3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In
FMCO’07, number 5382 in LNCS, pages 113–133. Springer, 2008.

4. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for
Languages with Garbage Collection. In ISMM. ACM Press, 2009.

5. V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Parametric Predic-
tion of Heap Memory Requirements. In ISMM. ACM Press, 2008.

6. W.-N. Chin, H. H. Nguyen, S. Qin, and M. C. Rinard. Memory Usage Verification
for OO Programs. In Proc. of SAS’05, volume 3672 of LNCS, pages 70–86, 2005.

7. W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory Resource
Bounds for Low-Level Programs. In ISMM. ACM Press, 2008.

8. S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM TOPLAS,
15(5):826–875, November 1993.

9. S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: precise and efficient static
estimation of program computational complexity. In POPL, pages 127–139. ACM,
2009.

10. JOlden Suite Collection. http://www-ali.cs.umass.edu/DaCapo/benchmarks.html.
11. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-

gram Generation. Prentice Hall, New York, 1993.
12. J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Resource Usage

Bounds Analysis for Java Bytecode. In BYTECODE. Elsevier, 2009.
13. A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis of Linear

Ranking Functions. In 5th International Conference on Verification, Model Check-
ing and Abstract Interpretation (VMCAI’04), Lecture Notes in Computer Science,
pages 239–251. Springer, 2004.

14. D. Sands. Complexity Analysis for a Lazy Higher-Order Language. In ESOP’00,
volume 432 of LNCS, pages 361–376. Springer, 1990.

15. B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9),
1975.

16

	Asymptotic Resource Usage Bounds
	E. Albert1, D. Alonso1, P. Arenas1, S. Genaim1, and G. Puebla2

