99 research outputs found

    Intraretinal Fluid Pattern Characterization in Optical Coherence Tomography Images

    Get PDF
    [Abstract] Optical Coherence Tomography (OCT) has become a relevant image modality in the ophthalmological clinical practice, as it offers a detailed representation of the eye fundus. This medical imaging modality is currently one of the main means of identification and characterization of intraretinal cystoid regions, a crucial task in the diagnosis of exudative macular disease or macular edema, among the main causes of blindness in developed countries. This work presents an exhaustive analysis of intensity and texture-based descriptors for its identification and classification, using a complete set of 510 texture features, three state-of-the-art feature selection strategies, and seven representative classifier strategies. The methodology validation and the analysis were performed using an image dataset of 83 OCT scans. From these images, 1609 samples were extracted from both cystoid and non-cystoid regions. The different tested configurations provided satisfactory results, reaching a mean cross-validation test accuracy of 92.69%. The most promising feature categories identified for the issue were the Gabor filters, the Histogram of Oriented Gradients (HOG), the Gray-Level Run-Length matrix (GLRL), and the Laws’ texture filters (LAWS), being consistently and considerably selected along all feature selector algorithms in the top positions of different relevance rankings.Xunta de Galicia; ED431C 2016-047Xunta de Galicia; ED481A-2019/196This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the DTS18/00136 research projects and by the Ministerio de Ciencia, Innovación y Universidades, Government of Spain through the DPI2015-69948-R and RTI2018-095894-B-I00 research projects. Also, this work has received financial support from the European Union (European Regional Development Fund—ERDF) and the Xunta de Galicia, Grupos de Referencia Competitiva, Ref. ED431C 2016-047 and the Xunta de Galicia predoctoral grant contract ref. ED481A-2019/196

    Automatic macular edema identification and characterization using OCT images

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Samagaio, G., Estévez, A., Moura, J. de, Novo, J., Fernández, M. I., & Ortega, M. (2018). “Automatic macular edema identification and characterization using OCT images” has been accepted for publication in Computer Methods and Programs in Biomedicine, 163, 47–63. The Version of Record is available online at: https://doi.org/10.1016/j.cmpb.2018.05.033.[Abstract]: Background and objective: The detection and characterization of the intraretinal fluid accumulation constitutes a crucial ophthalmological issue as it provides useful information for the identification and diagnosis of the different types of Macular Edema (ME). These types are clinically defined, according to the clinical guidelines, as: Serous Retinal Detachment (SRD), Diffuse Retinal Thickening (DRT) and Cystoid Macular Edema (CME). Their accurate identification and characterization facilitate the diagnostic process, determining the disease severity and, therefore, allowing the clinicians to achieve more precise analysis and suitable treatments. Methods: This paper proposes a new fully automatic system for the identification and characterization of the three types of ME using Optical Coherence Tomography (OCT) images. In the case of SRD and CME edemas, multilevel image thresholding approaches were designed and combined with the application of ad-hoc clinical restrictions. The case of DRT edemas, given their complexity and fuzzy regional appearance, was approached by a learning strategy that exploits intensity, texture and clinical-based information to identify their presence. Results: The system provided satisfactory results with F-Measures of 87.54% and 91.99% for the DRT and CME detections, respectively. In the case of SRD edemas, the system correctly detected all the cases that were included in the designed dataset. Conclusions: The proposed methodology offered an accurate performance for the individual identification and characterization of the three different types of ME in OCT images. In fact, the method is capable to handle the ME analysis even in cases of significant severity with the simultaneous existence of the three ME types that appear merged inside the retinal layers.This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the PI14/02161 and the DTS15/00153 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016–2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-04

    Feature Definition and Comprehensive Analysis on the Robust Identification of Intraretinal Cystoid Regions Using Optical Coherence Tomography Images

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Currently, optical coherence tomography is one of the most used medical imaging modalities, offering cross-sectional representations of the studied tissues. This image modality is specially relevant for the analysis of the retina, since it is the internal part of the human body that allows an almost direct examination without invasive techniques. One of the most representative cases of use of this medical imaging modality is for the identification and characterization of intraretinal fluid accumulations, critical for the diagnosis of one of the main causes of blindness in developed countries: the Diabetic Macular Edema. The study of these fluid accumulations is particularly interesting, both from the point of view of pattern recognition and from the different branches of health sciences. As these fluid accumulations are intermingled with retinal tissues, they present numerous variants according to their severity, and change their appearance depending on the configuration of the device; they are a perfect subject for an in-depth research, as they are considered to be a problem without a strict solution. In this work, we propose a comprehensive and detailed analysis of the patterns that characterize them. We employed a pool of 11 different texture and intensity feature families (giving a total of 510 markers) which we have analyzed using three different feature selection strategies and seven complementary classification algorithms. By doing so, we have been able to narrow down and explain the factors affecting this kind of accumulations and tissue lesions by means of machine learning techniques with a pipeline specially designed for this purpose.Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia e Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project, Ayudas para la formación de profesorado universitario (FPU), grant ref. FPU18/02271; Ministerio de Ciencia e Innovación, Government of Spain through the research project with reference PID2019-108435RB-I00; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, Grupos de Referencia Competitiva, grant ref. ED431C 2020/24 and through the postdoctoral grant contract ref. ED481B 2021/059; Axencia Galega de Innovación (GAIN), Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidade da Coruña/CISUGXunta de Galicia; ED431C 2020/24Xunta de Galicia; ED481B 2021/059Xunta de Galicia; IN845D 2020/38Xunta de Galicia; ED431G 2019/0

    Retinal Vascular Analysis in a Fully Automated Method for the Segmentation of DRT Edemas Using OCT Images

    Get PDF
    [Abstract] Optical Coherence Tomography (OCT) is a well-established medical imaging technique that allows a complete analysis and evaluation of the main retinal structures and their histopathology properties. Diabetic Macular Edema (DME) implies the accumulation of intraretinal fluid within the macular region. Diffuse Retinal Thickening (DRT) edemas are considered a relevant case of DME disease, where the pathological regions are characterized by a “sponge-like” appearance and a reduced intraretinal reflectivity, being visible in OCT images. Additionally, the presence of other structures may alter the OCT image characteristics, confusing the pathological identification process. This is the case of the retinal vessels over all the eye fundus, whose presence produce shadow projections over the retinal layers that may hide the “sponge-like” appearance of the DRT edemas. Thus, in this paper, we present a proposal for the automatic extraction of DRT edemas, also using as reference the information provided by the automatic identifications of the retinal vessels in the OCT images. To do that, firstly, the system delimits three retinal regions of interest. These retinal regions facilitate the posterior identification of the vessel structures and the segmentation of the DRT regions. For the identification of the vessels structures, the method combined the localization of the upper bright vascular profiles with the presence of their corresponding lower dark vascular shadows. Finally, a learning strategy is implemented for the segmentation of the DRT edemas. Satisfactory results were obtained, reaching values of 0.8346 and 0.9051 of Jaccard index and Dice coefficient, respectively, for the extraction of the existing DRT edemas.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-047This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the DTS18/00136 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047

    Caracterización del Edema Macular Diabético mediante análisis automático de Tomografías de Coherencia Óptica

    Get PDF
    Programa Oficial de Doctorado en Computación. 5009V01[Abstract] Diabetic Macular Edema (DME) is one of the most important complications of diabetes and a leading cause of preventable blindness in the developed countries. Among the di erent image modalities, Optical Coherence Tomography (OCT) is a non-invasive, cross-sectional and high-resolution imaging technique that is commonly used for the analysis and interpretation of many retinal structures and ocular disorders. In this way, the development of Computer-Aided Diagnosis (CAD) systems has become relevant over the recent years, facilitating and simplifying the work of the clinical specialists in many relevant diagnostic processes, replacing manual procedures that are tedious and highly time-consuming. This thesis proposes a complete methodology for the identi cation and characterization of DMEs using OCT images. To do so, the system combines and exploits di erent clinical knowledge with image processing and machine learning strategies. This automatic system is able to identify and characterize the main retinal structures and several pathological conditions that are associated with the DME disease, following the clinical classi cation of reference in the ophthalmological eld. Despite the complexity and heterogeneity of this relevant ocular pathology, the proposed system achieved satisfactory results, proving to be robust enough to be used in the daily clinical practice, helping the clinicians to produce a more accurate diagnosis and indicate adequate treatments[Resumen] El Edema Macular Diabético (EMD) es una de las complicaciones más importantes de la diabetes y una de las principales causas de ceguera prevenible en los países desarrollados. Entre las diferentes modalidades de imagen, la Tomografía de Coherencia Óptica (TCO) es una técnica de imagen no invasiva, transversal y de alta resolución que se usa comúnmente para el análisis e interpretación de múltiples estructuras retinianas y trastornos oculares. De esta manera, el desarrollo de los sistemas de Diagnóstico Asistido por Ordenador (DAO) se ha vuelto relevante en los últimos años, facilitando y simplificando el trabajo de los especialistas clínicos en muchos procesos diagnósticos relevantes, reemplazando procedimientos manuales que son tediosos y requieren mucho tiempo. Esta tesis propone una metodología completa para la identificación y caracterización de EMDs utilizando imágenes TCO. Para ello, el sistema desarrollado combina y explota diferentes conocimientos clínicos con estrategias de procesamiento de imágenes y aprendizaje automático. Este sistema automático es capaz de identificar y caracterizar las principales estructuras retinianas y diferentes afecciones patológicas asociadas con el EMD, siguiendo la clasificación clínica de referencia en el campo oftalmológico. A pesar de la complejidad de esta relevante patología ocular, el sistema propuesto logró resultados satisfactorios, demostrando ser lo sufi cientemente robusto como para ser usado en la práctica clínica diaria, ayudando a los médicos a producir diagnósticos más precisos y tratamientos más adecuados.[Resumo] O Edema Macular Diabético ( EMD) é unha das complicacións máis importantes da diabetes e unha das principais causas de cegueira prevenible nos países desenvoltos. Entre as diferentes modalidades de imaxe, a Tomografía de Coherencia Óptica ( TCO) é unha técnica de imaxe non invasiva, transversal e de alta resolución que se usa comunmente para a análise e interpretación de múltiples estruturas retinianas e trastornos oculares. Desta maneira, o desenvolvemento dos sistemas de Diagnóstico Asistido por Computador ( DAO) volveuse relevante nos últimos anos, facilitando e simplificando o traballo dos especialistas clínicos en moitos procesos diagnósticos relevantes, substituíndo procedementos manuais que son tediosos e requiren moito tempo. Esta tese propón unha metodoloxía completa para a identificación e caracterización de EMDs utilizando imaxes TCO. Para iso, o sistema desenvolto combina e explota diferentes coñecementos clínicos con estratexias de procesamento de imaxes e aprendizaxe automático. Este sistema automático é capaz de identificar e caracterizar as principais estruturas retinianas e diferentes afeccións patolóxicas asociadas co EMD, seguindo a clasificación clínica de referencia no campo oftalmolóxico. A pesar da complexidade desta relevante patoloxía ocular, o sistema proposto logrou resultados satisfactorios, demostrando ser o sufi cientemente robusto como para ser usado na práctica clínica diaria, axudando aos médicos para producir diagnósticos máis precisos e tratamentos máis adecuados

    Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images

    Get PDF
    [Abstract] Diabetic Retinopathy and Diabetic Macular Edema (DME) represent one of the main causes of blindness in developed countries. They are characterized by fluid deposits in the retinal layers, causing a progressive vision loss over the time. The clinical literature defines three DME types according to the texture and disposition of the fluid accumulations: Cystoid Macular Edema (CME), Diffuse Retinal Thickening (DRT) and Serous Retinal Detachment (SRD). Detecting each one is essential as, depending on their presence, the expert will decide on the adequate treatment of the pathology. In this work, we propose a robust detection and visualization methodology based on the analysis of independent image regions. We study a complete and heterogeneous library of 375 texture and intensity features in a dataset of 356 labeled images from two of the most used capture devices in the clinical domain: a CIRRUSTM HD-OCT 500 Carl Zeiss Meditec and 179 OCT images from a modular HRA + OCT SPECTRALIS® from Heidelberg Engineering, Inc. We extracted 33,810 samples for each type of DME for the feature analysis and incremental training of four different classifier paradigms. This way, we achieved an 84.04% average accuracy for CME, 78.44% average accuracy for DRT and 95.40% average accuracy for SRD. These models are used to generate an intuitive visualization of the fluid regions. We use an image sampling and voting strategy, resulting in a system capable of detecting and characterizing the three types of DME presenting them in an intuitive and repeatable way.Xunta de Galicia; ED431G 2019/01This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia, Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project, Ayudas para la formación de profesorado universitario (FPU), grant ref. FPU18/02271; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%)

    Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images

    Get PDF
    Diabetic Retinopathy and Diabetic Macular Edema (DME) represent one of the main causes of blindness in developed countries. They are characterized by fluid deposits in the retinal layers, causing a progressive vision loss over the time. The clinical literature defines three DME types according to the texture and disposition of the fluid accumulations: Cystoid Macular Edema (CME), Diffuse Retinal Thickening (DRT) and Serous Retinal Detachment (SRD). Detecting each one is essential as, depending on their presence, the expert will decide on the adequate treatment of the pathology. In this work, we propose a robust detection and visualization methodology based on the analysis of independent image regions. We study a complete and heterogeneous library of 375 texture and intensity features in a dataset of 356 labeled images from two of the most used capture devices in the clinical domain: a CIRRUSTM HD-OCT 500 Carl Zeiss Meditec and 179 OCT images from a modular HRA + OCT SPECTRALIS(R) from Heidelberg Engineering, Inc. We extracted 33,810 samples for each type of DME for the feature analysis and incremental training of four different classifier paradigms. This way, we achieved an 84.04% average accuracy for CME, 78.44% average accuracy for DRT and 95.40% average accuracy for SRD. These models are used to generate an intuitive visualization of the fluid regions. We use an image sampling and voting strategy, resulting in a system capable of detecting and characterizing the three types of DME presenting them in an intuitive and repeatable way

    Multivendor fully automatic uncertainty management approaches for the intuitive representation of DME fluid accumulations in OCT images

    Get PDF
    [Abstract]: Diabetes represents one of the main causes of blindness in developed countries, caused by fluid accumulations in the retinal layers. The clinical literature defines the different types of diabetic macular edema (DME) as cystoid macular edema (CME), diffuse retinal thickening (DRT), and serous retinal detachment (SRD), each with its own clinical relevance. These fluid accumulations do not present defined borders that facilitate segmentational approaches (specially the DRT type, usually not taken into account by the state of the art for this reason) so a diffuse paradigm is used for its detection and visualization. In this paper, we propose three novel approaches for the representation and characterization of these types of DME. A baseline proposal, using a convolutional neural network as backbone, another based on transfer learning from a general domain, and a third approach exploiting information of regions without a defined label. Overall, our baseline proposal obtained an AUC of 0.9583 ± 0.0093, the approach pretrained with a general-domain dataset an AUC of 0.9603 ± 0.0087, and the approach pretrained in the domain taking advantage of uncertainty, an AUC of 0.9619 ± 0.0073.Ministerio de Ciencia e Innovación; RTI2018-095894-B-I00Instituto de Salud Carlos III; DTS18/00136Ministerio de Ciencia e Innovación; FPU18/02271Ministerio de Ciencia e Innovación; PID2019-108435RB-I00Xunta de Galicia; ED431C 2020/24Xunta de Galicia; ED481B 2021/059Axencia Galega de Innovación; IN845D 2020/38Xunta de Galicia; ED431G 2019/0

    En face optical coherence tomography of foveal microstructure in full-thickness macular hole: a model to study perifoveal müller cells.

    Get PDF
    PURPOSE: To characterize perifoveal intraretinal cavities observed around full-thickness macular holes (MH) using en face optical coherence tomography and to establish correlations with histology of human and primate maculae. DESIGN: Retrospective nonconsecutive observational case series. METHODS: Macular en face scans of 8 patients with MH were analyzed to quantify the areas of hyporeflective spaces, and were compared with macular flat mounts and sections from 1 normal human donor eye and 2 normal primate eyes (Macaca fascicularis). Immunohistochemistry was used to study the distribution of glutamine synthetase, expressed by Müller cells, and zonula occludens-1, a tight-junction protein. RESULTS: The mean area of hyporeflective spaces was lower in the inner nuclear layer (INL) than in the complex formed by the outer plexiform (OPL) and the Henle fiber layers (HFL): 5.0 × 10(-3) mm(2) vs 15.9 × 10(-3) mm(2), respectively (P < .0001, Kruskal-Wallis test). In the OPL and HFL, cavities were elongated with a stellate pattern, whereas in the INL they were rounded and formed vertical cylinders. Immunohistochemistry confirmed that Müller cells followed a radial distribution around the fovea in the frontal plane and a "Z-shaped" course in the axial plane, running obliquely in the OPL and HFL and vertically in the inner layers. In addition, zonula occludens-1 co-localized with Müller cells within the complex of OPL and HFL, indicating junctions in between Müller cells and cone axons. CONCLUSION: The dual profile of cavities around MHs correlates with Müller cell morphology and is consistent with the hypothesis of intra- or extracellular fluid accumulation along these cells
    corecore