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Abstract
Diabetes represents one of the main causes of blindness in developed countries, caused by fluid accumulations in the retinal
layers. The clinical literature defines the different types of diabetic macular edema (DME) as cystoid macular edema (CME),
diffuse retinal thickening (DRT), and serous retinal detachment (SRD), each with its own clinical relevance. These fluid
accumulations do not present defined borders that facilitate segmentational approaches (specially the DRT type, usually not
taken into account by the state of the art for this reason) so a diffuse paradigm is used for its detection and visualization. In
this paper, we propose three novel approaches for the representation and characterization of these types of DME. A baseline
proposal, using a convolutional neural network as backbone, another based on transfer learning from a general domain, and
a third approach exploiting information of regions without a defined label. Overall, our baseline proposal obtained an AUC
of 0.9583 ± 0.0093, the approach pretrained with a general-domain dataset an AUC of 0.9603 ± 0.0087, and the approach
pretrained in the domain taking advantage of uncertainty, an AUC of 0.9619 ± 0.0073.

Keywords Optical coherence tomography · Diabetic macular edema · Confidence map generation · Transfer learning ·
Computer-aided diagnosis

1 Introduction

Due to modern consumption habits, there has been an
increase in prevalence of diabetes where, if all the cases
in the world were a separate country, would be the third
largest in the world (and almost 1% of its population
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would die each year). Moreover, 79% of these cases live
in developed countries, being expected to increase to 84%
by 2045 [1]. The relevance of the study of this pathology
lies not only in its wide prevalence, but also in its long-
term consequences for the quality of life of those affected
by it, as this pathology represents one of the main causes
of blindness in developed countries [2]. This blindness is
due to the deterioration of the delicate vascular network of
the retina. These vascular structures begin to leak fluid into
it, destroying its layered morphology. This type of diabetic
retinopathy is called diabetic macular edema or DME [3].

Currently, in the reference clinical literature, these
fluid accumulations are classified into three main types
according to their textural features, morphology, and
arrangement: cystoid macular edema (CME), serous retinal
detachment (SRD), and diffuse retinal thickening (DRT).
These patterns are based on features studied in optical
coherence tomography (OCT) images [4–7], as they allow
for a non-invasive cross-sectional representation of the
retinal structures. In Fig. 1, we show an example of two
OCT images: one without any fluid accumulation and
other that presents all the three fluid types. Each of these
types represents a different level of severity, as well as
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Fig. 1 OCT images from a healthy retina (left) and a retina presenting the three studied types of DME (right). The limiting membranes of the
retina are also indicated (Inner Limiting Membrane, ILM and Retinal Pigmented Epithelium, RPE)

different complications for its treatment and diagnosis.
The DRT type, as its name implies, represents a diffuse
spongiform accumulation of fluid in the retina. This fluid
accumulation is easier to treat, as the retinal tissues suffer
minor lesions compared to the other two. However, it is
the hardest to diagnose as it does not have defined limits
and can present itself with texture and gray levels similar
to normal retinal tissues. Additionally, this type of DME
usually precedes the appearance of the other two, being
an early indicator of the disease (thus, its identification
and characterization are critical for an early diagnosis
and correct recovery of the afflicted). On the other hand,
the CME type presents fluid accumulations with cellular
barriers and hiporreflective fluid accumulations (usually
with similar patterns as the vitreous humor). Its the easiest to
study, albeit in smaller sizes (called microcysts), its features
and consequences vary in significance and are studied as
a separated scenario in the clinical literature [8]. Finally,
the SRD fluid accumulations usually represent the most
critical type, affecting the central vision in the outermost
layers (near the fovea and photoreceptors). These last two
fluid accumulations are the hardest to treat, as they can
completely deform the retinal structures and even leave
scar tissues when reabsorbed. Depending on the degree of
affliction (or if left untreated), the treatments can range from
pharmacologic to invasive surgical procedures [9].

1.1 Related works

The need of procedures that allow for a robust and
repeatable monitoring of these fluid accumulations resulted
in the proposal of different computer-aided methodologies
for its diagnosis. Originally, the prevalent paradigm was
based on obtaining a defined segmentation of general fluid
accumulations. For this strategy, methodologies based on
classical learning [10–14] were proposed, based on both
shape and texture constraints. On the other hand, more
recent proposals [15–20] base its segmentation on variants
of the U-Net architecture [21]: an encoder/decoder with
skip connections between them (a common strategy in
the medical imaging domain). Additionally, these works
focus only on, at most, the segmentation of the fluid
accumulations depending on their location in the retinal

layers (subretinal fluid, intraretinal fluid, and a pigment
epithelial detachment). Due to the difficulty of identification
of diffuse fluid accumulations (such as in the extreme
case of the DRT), only a limited number of works have
considered it [22–24].

However, as stated, these fluid accumulations often
present diffuse limits that cannot be segmented (even more
so regarding the aforementioned DRT type). For this reason,
an alternative paradigm was proposed to study these DME
fluid types. What originally started on the classification of
independent windows of a given size and a library of texture
and intensity features [25, 26], it developed into a way to
generate diffuse representations of the model confidence
by means of a voting strategy [27–29] (albeit only focused
on cystoid fluid accumulations). This paradigm showed
promising results with the three aforementioned reference
types of fluid accumulations [30], albeit presenting some
limitations due to its backbone based on classical learning
approaches which rely on a predefined feature library [31].

1.2 Contributions

In this paper, we propose three novel approaches to
address the challenge of DME fluid characterization with
the aforementioned diffuse paradigm. First, as a baseline
proposal, we introduce the use of deep convolutional
networks as the classifier backbone. This network is trained
to classify the different independent samples that are being
used to generate the confidence map of the respective
fluid accumulations. By using these deep learning networks,
it is possible to completely eliminate the need for a
library of features, creating ad hoc ones for each particular
scenario.

As we previously discussed, these fluid accumulations
present regions where no accurate labeling is possible.
We refer to them as “regions with associated uncertainty,”
since we do not have a clear classification of the specific
fluid type to which they belong, merely their pathological
nature. Our first proposal does not take these regions into
consideration, forcing an inference of their label without any
prior knowledge.

To overcome this inherent uncertainty, we propose two
alternatives. First, a methodology based on a pretraining
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from a generalist domain. Specifically, using the ImageNet
dataset [32, 33]. Subsequently, we perform a knowledge
transfer to our specific domain, in order to adapt the
filters that are learned in said prior training. Thus, the
associated uncertainty of our domain is compensated by
the features learned in a richer domain, allowing to elicit
information not considered by the initial model in order
to determine the most probable class in these regions with
uncertainty.

However, the exploitation and adaptation of features from
a generalist domain do not necessarily account for all the
information gaps associated to the diffuse domain. For this
reason, we propose a third approach to estimate the patterns
associated with these weakly labeled regions. Instead of
conducting a pretraining on a generalist domain, we first
train the model for a binary classification, where samples
are either pathologic or non-pathologic. However, within
the pathological class, we include patterns from regions
with associated uncertainty (which, as we noted above,
present pathological patterns, but we do not know their
associated DME subtype). Then, we replace the head of
the convolutional network to classify the DME subtypes
and resume the training, this time without considering the
samples associated with uncertainty (since we do not have
information for these regions at these levels of granularity).
This way, we obtain a model capable of classifying the fluid
subtypes, but that has already developed filters during the
pretraining stage to take into consideration these regions
with associated uncertainty. Moreover, not only this last
approach allows the model to explicitly consider these
regions, but also requiring significantly less resources
compared to the approximation exploiting a generalist
domain.

Thus, we propose these three novel approaches for the
characterization and representation of different types of
DME. Additionally, we evaluate these proposals on two of
the main OCT devices in the clinical domain, where we test
wether these approaches are able to obtain robust results
even in regions where segmentation-based approaches are
not able to obtain explicit results.

This paper is organized as follows: in Section 2 (Dataset
and resources), we list and describe all the resources needed
to perform this work (both dataset and software resources);
Section 3 (Methodology) presents the steps followed to
develop this work, the characteristics of all the stages
that are involved, and the precise training configuration;
Section 4 (Results and discussion) presents the metrics
resulting from the conducted experiments, example images
of the commented scenarios, and a discussion on the
significance of each case. Finally, Section 5 (Conclusions)
includes a final summary and commentary on the presented
work, as well as future lines of research.

2 Dataset and resources

For this work, to study the capabilities of our proposal
to integrate patterns from multiple devices, a multivendor
dataset composed by 356 OCT images was used. These
images were taken with two representative OCT devices of
the field: a CIRRUSTM HD-OCT 500 Carl Zeiss Meditec
and a HRA+OCT SPECTRALIS® from Heidelberg Engi-
neering, Inc. From the CIRRUS device, a total of 177
images were considered, while 179 from the Spectralis
device. The OCT images were captured from both left and
right eyes with different device configurations and rang-
ing in resolution from 714 × 291 pixels to 1535 × 496
pixels in the Spectralis dataset and 682 × 446 pixels to
1680 ×1050 pixels in the Cirrus dataset. These images con-
tain both images from patients afflicted by different severity
levels by DME and healthy ones. The protocol to obtain
these images from live clinical practice and its study was
conducted in accordance with the Declaration of Helsinki
and approved by the Ethics Committee of Investigation from
A Coruña/Ferrol.

The dataset was labeled by two experts in the domain.
In order for the system and derived metrics to take into
consideration the inherent heterogeneity associated with the
subjectivity of a human expert (critical especially in the
domain of this work with its associated uncertainty), both
experts labeled a random half of the dataset. Nonetheless,
the proportion of images from each device was preserved in
each of the labeled subsets. Both experts agreed beforehand
the labeling protocol and standard to be followed, as well
as a consensus on what defines the different considered
classes. This protocol states that each class was only marked
as positive if the expert had absolute certainty that the pixels
that the mask overlaps belong to the given class. Otherwise,
the label is established as uncertain. Thus, in Fig. 2, we can
see an example of this labeling.

As software resources, for training and downloading
all the models, we used the PyTorch library version
1.9.0+cu111 and Torchvision 0.10.0+cu111. For the calcu-
lation of metrics and data processing, we have used Scikit-
Learn version 0.23.1 and NumPy version 1.19.5. Finally,
for the generation of the maps, it was necessary to use the
OpenCV-Python library version 4.1.2 and SciPy 1.5.2. All
the previously mentioned experiments and libraries were
executed in Python version 3.6.9 (default, Jan 26 2021).
A model trained in ImageNet was used for the knowledge
transfer approach from an external domain [32, 33].

2.1 Dataset creation

In Fig. 3, we present a diagram that represents the process
of creating the dataset. First, we performed the sample
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Fig. 2 Examples of labeled regions in an OCT image and the label mask established by the experts

extraction for each available image (as the map generation
strategy uses windows of this size to generate the final
result). Taking the labeled masks as reference, we randomly
collect 25 samples for each label present in the image:
healthy, CME, DRT, SRD, and region of uncertainty (the
latter including only inner retinal regions, no sample is
obtained from the vitreous humor or choroid except for
the borderline regions of the retina). Each of these samples
are obtained from a 64px × 64px window from the retinal
regions, as performance degrades on larger or smaller
window sizes [26, 34]. In the event that a sample partially
falls outside the image, we mirror the edge patterns to
complete the missing information. After the this process,
we obtain a total of 8900 samples centered in healthy
regions, 7286 samples centered in CME regions, 6241
samples centered in DRT regions, 1975 samples centered
in SRD regions, and 8900 samples centered in regions with
associated uncertainty.

Once we have created the sample library, we divide the
dataset into six folds at image level, so no data leakages
between training, validation, and test sets are possible.
Subsequently, to perform the cross-validation, we explore
all the combinations between these folds into training,
validation, and test. In particular, we select three folds for
training, two for validation, and one for test in each iteration.
This cross-validation allows for the final metrics to be more

robust in case the dataset presents any unbalance, as every
possible combination of the folds is contemplated. This way,
to explore all the possible fold combinations, we perform a
total of 60 experiments.

3Methodology

In this section, we explain each of the steps followed during
the development of the proposed methodology (described
in Fig. 4). In the first section, Section 3.1, we explain
our three proposed approaches. Then, in Section 3.2, we
describe the map generation strategy that is used in each
approach to create the final representation of the DME fluid
accumulations.

3.1 Training of themodels

For each of the experiment folds (explained in Section 2.1),
three different models were trained using the configuration
explained in Section 3.1.4. The first approach, presented
in Section 3.1.1, shows the main proposal using a
deep learning backbone. Then, in Sections 3.1.2 and
3.1.3, two additional proposals using this deep learning
backbone but also taking advantage of transfer learning
strategies.

...
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Fig. 3 Diagram of the strategy followed to extract and distribute the samples in the dataset during experimentation
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Fig. 4 Diagram describing the three proposals and associated methodologies presented in this work

3.1.1 First approach: a deep learning backbone

The first model to be trained is the one considered as
baseline for our proposal. This model is trained from
scratch using the samples extracted from the reference
images and no prior knowledge is used. The four considered
categories (Healthy, CME, DRT, and SRD) were established
as target of the network. During this training, all the samples
that were centered in a region labeled as uncertain were
discarded, and only samples with a defined label are used.

3.1.2 Second approach: transfer learning from a general
domain

As second approach, we use a network trained with the
ImageNet dataset [32, 33]. This dataset consists of a set of
images from the real world, such as from wildlife, food,
and urban landscapes. This way, the dataset contains a total
of 1000 target classes. This dataset is widely employed in
the state of the art for works based on transfer learning
thanks to its wide spectrum of included scenarios and large

number of samples. The idea behind this knowledge transfer
is that, due to its general purpose nature, the learned features
allow for the resolution of a large number of problems
requiring a minimal fine tuning to particular domains. Thus,
the inherent uncertainty of our dataset could be supplied by
features not contemplated in the baseline, as the features
already learnt are adapted to our domain. This way, starting
from the model trained with this wide spectrum dataset,
we replace the classifier head of the network with the four
classes considered in our target domain (keeping the rest
of the network weights) and resume its training with the
samples of each particular fold.

3.1.3 Third approach: transfer learning with uncertainty

As third approach, we first train a binary model to
differentiate healthy from pathological samples. In this case,
the healthy class corresponds to the same samples as in the
previous scenarios, while the pathological class this time
also includes the samples labeled as uncertainty in addition
to the three clinical types of fluid accumulations (CME,
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DRT, and SRD). This forces the network to consider these
regions, learning the filters and features associated with
the uncertainty albeit not necessarily giving them a defined
label. This way, by not assigning a defined class for it during
the pretraining with uncertainty, the final network is aware
of the patterns present in these mixed regions. Thus, in the
next refinement stage, despite not explicitly being labeled
and presented to the model, these patterns are taken into
account when adjusting the gradients of the network.

Finally, after this initial pretraining in the domain,
the fully connected classification layer of the network is
replaced to one with the target DME subtypes: healthy,
CME, DRT, and SRD types. We proceed with the
knowledge transfer following the same configuration as in
the other two scenarios: excluding the samples belonging to
the uncertainty domain and exclusively using samples with
a defined label by the experts. This approach is especially
interesting for DRT, since it is mostly composed of vague
patterns and their accumulations in the dataset are often
labeled as uncertainty.

3.1.4 Training configuration

To train the four models, for the sake of repeatability
and fair comparison, we employed the same configuration
parameters. All the four networks were based on the
DenseNet [35], as it demonstrated to be successful in works
of similar domains [36, 37]. In particular, we used the
DenseNet-161 configuration depicted in Table 1, where
the convolutional layers were initialized using Kaiming
initialization [38] and a random uniform distribution for
linear layers. Additionally, before each Transition Layer and
convolution in the Dense Blocks, a batch normalization and
ReLU units are used. Before the classifier layer, the results
are also batch-normalized. Each model was trained using
a batch size of 250, as significantly smaller batch sizes
stagnated without reaching convergence and were highly
prone to overfitting. This value represented a good trade-
off between training time and resource requirements, while
higher batch sizes did not improve the results of the training.
To further compensate for the dataset imbalance present
(as some labels were more represented in the images than
others), during the training, the samples were weighted
proportionally to the number of remaining samples. For
example, for the healthy class, the weight of a given sample
is shown in Eq. 1.

Healthy label weight = CME + DRT + SRD

Healhty samples
(1)

For the training of the binary model (healthy versus
CME, DRT, SRD, and uncertainty class), this weight
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strategy is also used, but including this new label as shown
in Eq. 2.

Healthy label weight = Uncertainty + CME + DRT + SRD

Healhty samples
(2)

Additionally, the samples are randomly flipped horizon-
tally with a probability of 50% to artificially increase the
number of available samples in the dataset. This data aug-
mentation strategy was chosen as the patterns present in the
samples can appear in reality in both orientations.

As optimizer, we used the decoupled weight decay
regularization Adam or AdamW [39] with AMSGrad
stochastic optimization to improve convergence [40]. The
initial learning rate and weight decay was set to 0.01 and
the beta parameters as 0.9 and 0.999 with an epsilon of
1e − 08. A scheduler was implemented, so the learning
rate was progressively reduced whenever the validation loss
stagnated in factors of 0.66. This allows for smaller gradient
steps the closer to the optimum valley the training got. The
patience to reduce this learning rate was set to 10 epochs
without validation loss improvement. Finally, the number of
epochs of the training was also dynamically set, employing
an early stopping strategy: the system would automatically
stop if the validation loss did not improve for 25 epochs
(which would allow for two learning rate scheduler steps
and a margin of extra five epochs). The final model returned
from the training is the one that obtained the best validation
loss along all the epochs.

To evaluate the metrics, we use the area under the
receiver operating characteristic curve (AUC), the F1
score, the accuracy, the precision and recall, and the
Matthew’s correlation coefficient. The accuracy indicates
the proportion of correctly classified samples, its formula
being shown in Eq. 3 where TP are the true positives, TN
the true negatives, FP the false positives, and FN the false
negatives.

Accuracy = TP + TN

TP + TN + FP + FN
(3)

The Precision, in Eq. 4, evaluates the proportion of real
positive samples from the total returned. On the other hand,
the Recall, in Eq. 5, measures the proportion of real positive
samples from the total in the dataset.

Precision = TP

TP + FP
(4)

Recall = TP

TP + FN
(5)

The AUC (Eq. 6, where x represents a given score of
the network from which a sample is considered positive)
returns the probability of a given system of, when faced with

a random positive sample, giving it a higher score than to
another random negative sample.

AUC =
∫ 1

x=0
Precision(FPR−1(x))dx, FPR = 1 − Recall

(6)

Given this definition, to better understand its meaning,
we can also define this AUC in terms of the Mann-Whitney-
Wilcoxon test presented in Eq. 7, where n represents the
positive-labeled scores and m the negative-labeled scores.
This way, if the null hypothesis is rejected, we can infer
that the values of the n distribution tend to exceed the
m distribution (thus affirming its greater discriminative
potential).

AUC =
∑n

i=1
∑m

j=1 I (xi, yj )

nm
, I (a, b) =

⎧⎨
⎩

1, if a > b
1
2 , if a = b

0, if a < b

⎫⎬
⎭

(7)

The F1 score (Eq. 8) represents an alternative accuracy
metric, being the harmonic mean of the Precision and the
Recall. More robust to outliers and dataset imbalances than
the traditional accuracy.

F1 score = 2 × Precision × Recall

Precision + Recall
(8)

Finally, the Matthew’s correlation coefficient or MCC
(Eq. 9) represents the correlation between the real labels
versus the results returned by the methodology. In contrast
with the other metrics, it ranges from −1 to 1, where 0 MCC
represents a random classifier, 1 MMC a perfect classifier,
and −1 MMC an inverse relationship between the real
values and the ones returned by the classifier.

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(9)

Where possible, the metrics have been weighted as a per
class basis to compensate for the imbalance present in the
generated dataset.

3.2 Confidencemap generation

To analyze the behavior of the network, we only consider
images where the network has not used even one window
for training on a given fold. To generate said maps, we
divide each retina into a series of overlapping samples
of a given size (same as during training). After this
extraction of overlapping samples, they are classified by
the backbone convolutional neural network and assigned
a label. Then, once all the samples have been labeled, a
pixel-level voting is performed, where each pixel in the
region of interest is assigned a confidence value. This value
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Table 2 Mean test and standard deviation of the cross-validation for the baseline proposal

AUC F1 score Accuracy Precision Recall MCC

Healthy 0.9744 ± 0.0043 93.92% ± 0.79 93.96% ± 0.78 94.01% ± 0.75 93.96% ± 0.78 0.8694 ± 0.0168

CME 0.9478 ± 0.0115 90.15% ± 1.16 90.19% ± 1.15 90.20% ± 1.14 90.19% ± 1.15 0.7652 ± 0.0262

DRT 0.9187 ± 0.0121 87.38% ± 1.11 87.19% ± 1.07 87.78% ± 0.91 87.19% ± 1.07 0.6760 ± 0.0264

SRD 0.9923 ± 0.0091 99.06% ± 0.41 99.06% ± 0.41 99.07% ± 0.41 99.06% ± 0.41 0.9361 ± 0.0275

Overall 0.9583 ± 0.0093 92.63% ± 0.87 92.60% ± 0.85 92.77% ± 0.80 92.60% ± 0.85 0.8117 ± 0.0832

is defined as the proportion of windows that overlapped
a given pixel that were classified belonging to a given
class. Thus, a confidence of 80% in a CME region would
indicate that 80% of the windows that had that pixel were
classified as CME. Finally, since the system is intended for
deployment in a real clinical environment, a cold-to-warm
color mapping is applied with steep gradients. This will
allow the expert to evaluate the nuances of the detections
more easily to perform their diagnostic labor.

This way, in our work, these windows are uniformly
acquired from the retinal region inside the OCT images
with an overlap of 60px and a window size of 64px
× 64px. This overlap represented a compromise between
the number of total windows to be classified by the
network and the quality of the final generated map. The
number of windows that overlap a pixel is what determines
the resolution of the final map confidence levels. Thus,
lesser windows and the difference between the confidence
levels in the map becomes steep, generating less robust
maps (as fewer windows were used in the voting process,
so misclassifications become more impactful in the final
result). The same way, increasing the overlap between
windows results into an exponential increase in resources
needed for the generation of the maps.

4 Results and discussion

We now proceed to analyze the results obtained for each exper-
iment. First of all, in Section 4.1, we study the behavior
and test metrics of the trained models for each approach (to
consult the training and validation metrics, please refer to
the Appendix in the Supplementary Material). In this first

analysis of these results, we only take into account labeled
samples towards the metrics, as the associated uncertainty
values cannot be studied without a reference labeling. To
fully study the behavior and performance of the approaches,
we perform a fine-grained analysis of the final generated
confidence maps in Section 4.2, where all the regions are
taken into account to generate the final representation of the
fluid regions.

4.1 Training results

In this section, we present and analyze the final overall
results of all three approaches. Then, we compare them with
the state of the art and between themselves in Section 4.1.4.

4.1.1 Results of the baseline proposal with deep learning

The results of the model that was chosen following the
early stopping strategy are shown in Table 2. While AUC
indicates that the system consistently identifies positive
samples with a higher value than negative samples, the
MCC also confirms the strong positive relationship between
most of the classes and their real value. Additionally, as
established, DRT is the most complex case, obtaining lesser
values in all the metrics compared to the other DME
subtypes.

4.1.2 Results of the transfer learning from a general domain

In Table 3, we present the test results of the cross-validation
with transfer learning from the general domain. As we
can see, overall, all the considered metrics have improved
in comparison with the baseline proposal (and, as this

Table 3 Mean test and standard deviation of the cross-validation for the proposal based on transfer learning from a general domain

AUC F1 score Accuracy Precision Recall MCC

Healthy 0.9757 ± 0.0047 94.08% ± 0.65 94.11% ± 0.64 94.15% ± 0.62 94.11% ± 0.64 0.8727 ± 0.0142

CME 0.9499 ± 0.0094 90.34% ± 0.96 90.40% ± 0.94 90.39% ± 0.96 90.40% ± 0.94 0.7693 ± 0.0229

DRT 0.9235 ± 0.0103 87.67% ± 0.90 87.48% ± 0.98 88.09% ± 0.77 87.48% ± 0.98 0.6840 ± 0.0225

SRD 0.9922 ± 0.0103 99.10% ± 0.45 99.10% ± 0.45 99.11% ± 0.45 99.10% ± 0.45 0.9402 ± 0.0280

Overall 0.9603 ± 0.0087 92.80% ± 0.74 92.77% ± 0.753 92.94% ± 0.70 92.77% ± 0.75 0.8166 ± 0.0219
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Table 4 Mean test and standard deviation of the cross-validation for the proposal based on transfer learning with uncertainty

AUC F1 score Accuracy Precision Recall MCC

Healthy 0.9742 ± 0.0043 94.20% ± 0.74 94.24% ± 0.72 94.29% ± 0.68 94.24% ± 0.72 0.8755 ± 0.0157

CME 0.9553 ± 0.0084 90.39% ± 0.74 90.47% ± 1.00 90.44% ± 1.00 90.47% ± 1.00 0.7704 ± 0.0238

DRT 0.9264 ± 0.0083 87.51% ± 0.82 87.27% ± 0.89 88.04% ± 0.71 87.27% ± 0.89 0.6821 ± 0.0191

SRD 0.9915 ± 0.0083 99.05% ± 0.47 99.04% ± 0.48 99.07% ± 0.44 99.04% ± 0.48 0.9368 ± 0.0294

Overall 0.9619 ± 0.0073 92.79% ± 0.69 91.76% ± 0.77 92.96% ± 0.71 92.76% ± 0.77 0.8162 ± 0.0220

baseline already surpassed the state of the art, this model
surpasses it too). The transfer learning from the general
domain has favored all points of view, improving all of
them approximately the same percentage while slightly
reducing their standard deviation (and, thus, indicating that
the generated results are more robust than the baseline
proposal).

4.1.3 Results of the transfer learning with uncertainty

As shown in Table 4, the model that was trained taking
advantage from regions with inherent uncertainty is able
to attain comparable performance to the model pretrained
from the general domain, but only requiring a reduced
set of images. However, as mentioned, these test metrics
only consider labeled samples, not taking into account the
samples with uncertainty. Thus, while we can assess that
the behavior of this model is comparable to the model
pretrained with ImageNet in labeled regions, we further
study the advantages of this pretraining with uncertainty
in the fine-grained analysis of the generated maps in
Section 4.2.

4.1.4 Performance comparison with previous works and
between approaches

In Table 5, we present the results comparing our three
proposals with the state of the art. To the best of our
knowledge, the only work that addressed the issue of the
characterization of DME with this diffuse paradigm is Vidal
et al. [30]. As shown, our proposals based on a deep
learning backbone surpass the performance reported in said
work. Moreover, we see how both approaches based on

transfer learning are able to reach similar performance.
Additionally, the approach pretrained with uncertainty
required a significantly lesser number of samples.

While the approaches based on knowledge transfer seem
to attain a slight improvement over our baseline proposal,
in the following fine-grained analysis of the generated
confidence maps with each of the models, we further study
their differences.

4.2 Test map analysis

Below, in Figs. 5, 6, and 7, we present an analysis
of the confidence from the test maps. In said figures,
we examine each of the connected components of the
reference labeling and study the maximum confidence
assigned to it by generated the map. In each of the figures,
for each type of pathology, we show a point cloud for
each maximum confidence assigned to each connected
component according to its size. Additionally, we include a
trend line to facilitate its visualization. This trend line has
been calculated using a sliding window strategy based on
the median value and covering a range of 1000 pixels of
connected component sizes, advancing the window by 10
units in 10 units. This sliding window has been smoothed
by an interpolation by b-splines of degree 3 and 10 points of
resolution.

First of all, in Fig. 5, we note a logarithmic trend between
the relationship of the connected component size and the
maximum confidence assigned to it for the CME class.
Thus, we can infer that the system tends to assign lower
confidence to microcystic fluid accumulations. On the other
hand, in Fig. 6, the models are shown to be more stable
for the DRT class. We also see a higher confidence per

Table 5 Accuracy results of all three proposals and most recent work of the literature for each of the DME categories

Vidal et al. [30] Deep baseline General domain From uncertainty

CME 84.04% ± 3.67 90.19% ± 1.15 90.40% ± 0.94 90.47% ± 1.00

DRT 78.94% ± 3.64 87.19% ± 1.07 87.48% ± 0.98 87.27% ± 0.89

SRD 95.40% ± 2.02 99.06% ± 0.41 99.10% ± 0.45 99.04% ± 0.48
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Fig. 5 Maximum confidence
attained inside each labeled
connected component for the
CME class

connected component as its size increases, the same way
as with CME. However, overall, the results show a slightly
lower maximum confidence for the DRT class.

In Fig. 7, we present the analysis for the third type of
DME fluid accumulation: SRD. Unlike in the previously
mentioned cases, in this scenario, we do not see the
logarithmic relationship between size and performance of
the model. Thanks to the morphological consistency of this
type of fluid accumulation, the model does not depend on
texture and intensity constraints alone for its classification.

This type of fluid accumulation usually appears in a
region where the retinal layers exhibit very characteristic
patterns and, at the same time, the fusiform deformation
is very recurrent in the vast majority of instances. Because
of these factors, the associated confidence is able to
remain largely stable regardless of its size. In the other
two types of DME (CME and DRT), the irregular shapes
that the accumulations may present negatively affects their
detection, depending almost exclusively on texture and
intensity features (which, as stated, often are intermingled
between classes). Additionally, these patterns are especially
sensitive to the device capture conditions, which can affect
brightness, contrast, and even device noise in the generated
OCT image. Finally, SRD presents a mean confidence
around 60–70%, below the metrics that are obtained in
the other cases. This is due to the reduced number of
samples available for this particular pathology compared to
the other two cases, which possibly decreases its weight

during training (despite the established data augmentation
and weighting strategies to compensate this phenomenon).

Below, we present different cases of test maps generated
by each of the proposals to illustrate the aforementioned
scenarios, as well as a commentary relating them to
scenarios seen in this previous analysis. First of all, as
we can see in Fig. 8, the three models find all the
fluid accumulations established in the reference labeling.
However, as shown in the previous analysis of connected
components, the confidence levels are lower in the smaller
fluid accumulations. It is in the particular case of the model
pretrained with uncertainty that this confidence is more
homogeneously preserved within the region indicated as
pathological.

We can speculate that, given the maps are generated
based on the overlapping of windows, in these smaller
fluid accumulations the maps present an inherent lesser
maximum confidence value. A sampling density based on
extraction by connected component rather than a fixed
density would help to compensate for the sampling of this
subtype of DME.

In that same image, we can also see the effect gener-
ated in the SRD, even in the rare scenario where its extent
is considerable. The maximum confidence associated with
this type of DME is lower than in other cases. However, the
confidence along the connected component is very homo-
geneous. Thus, despite the lower maximum confidence, the
methodology still offers robustness and repeatability for the

Fig. 6 Maximum confidence
attained inside each labeled
connected component for the
DRT class
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Fig. 7 Maximum confidence
attained inside each labeled
connected component for the
SRD class

analysis by clinical experts, successfully integrating infor-
mation from numerous independent windows and domains
for the generation of the current representation.

In Fig. 9, we see an example where DRT, the most
complex type of fluid accumulation (and usually associated
with uncertainty) is the one that benefited the most by
the approach based on transfer learning from uncertainty.
Not only the extent of the region indicated as DRT is also
significantly larger than in the other two proposals, it also
presents higher overall confidence. This improvement is
especially explicit in the images coming from the Cirrus
device, since the processing this device performs on the
images tends to be detrimental to the DRT texture and
intensity patterns.

This same phenomenon can be seen in Fig. 10, a quite
complex scenario where the class with DRT is better
represented in the uncertainty-based model. Moreover, it
can be seen how the training including samples from

the regions labeled as uncertain has prevented it from
incorrectly classifying the dark regions caused by dense
bodies to the left of the retina (as happened in both the
model trained from scratch and the transfer learning from
an external domain). Similarly, the transfer learning from
the external domain also returned additional false positives
in the SRD type. These detections are overlapping small
retinal deformations (probably caused by an incipient DRT)
that adopt an slight dome-like shape. This indicates that
this model has favored the morphological descriptor over
the indicators from the texture features from the outermost
layers of the retina. Albeit this strategy returns satisfactory
results as well as the other two models in the correct regions,
we see how the patterns derived from a generalist domain
make the model more prone to these false positives.

Finally, in Fig. 11, we present an illustrative case
where no fluid accumulations are present. All models (and
especially the model with uncertainty) have returned a

Fig. 8 Example of generated maps from the Spectralis device with the three considered types of fluid accumulations
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Fig. 9 Example of generated maps from the Cirrus device with CME and DRT fluid accumulations

negligible confidence in a healthy region for the DRT
category. This phenomenon is possibly a consequence of the
previous cases, in which the model trained with uncertainty
favors the DRT class. It is possible that the same thing that
gives it an advantage when detecting more complex cases,
also has the trade-off of negligible false positive responses

when analyzing completely healthy scenarios. However,
we see that none of the approaches wrongly detected the
shadow caused by a vessel passing through the retina.

Overall, the experiments demonstrate that all the
approaches outperform the state of the art and how the
transfer learning approaches help to improve the behavior

Fig. 10 Example of generated maps from the Spectralis device with an advanced stage of all three types of fluid accumulations. Yellow represents
lipidic fluid accumulations, in this work considered as belonging to regions with uncertainty
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Fig. 11 Example of generated maps from the Spectralis device without fluid accumulations

of the system regardless of the device with which the
images were taken. In addition, the approach that takes
advantage of the inherent uncertainty of the system is able
to obtain similar results than with transfer learning from a
domain with thousands of images, but needing significantly
less samples and resources. However, this approach has
also demonstrated to outperform the other two in regions
with remarkable complexity and uncertainty. Finally, this
approach also suffered the least in regions with microcysts
(although obtaining dim detections nonetheless). Thus, all
three approaches have demonstrated their suitability for
helping clinicians to detect and classify the diffuse regions
considered in the domain (that would, otherwise, be subject
to the subjectivity of the clinician).

5 Conclusions

In this work, we present three approaches for the detection
and characterization of the three types of DME in reti-
nal OCT images, one of the main causes of blindness in
developed countries. Due to the diffuse nature of these accu-
mulations, in the literature, a specific paradigm has been
developed to address their detection and characterization.
However, until now, said paradigm was only contemplated
with classical learning strategies. Furthermore, the informa-
tion of the regions with uncertainty was not explicitly con-
sidered in such works and, usually, the inference on these
regions was left to the criterion of the intelligent system.

Thus, in this work, we have presented the first work
capable of characterizing the three types of DME on
this diffuse paradigm using a deep learning backbone.
Additionally, we addressed the problem of associated
uncertainty by means of two other approaches based on
transfer learning. One of them by means of a knowledge
transfer from a general domain and other from the same
domain taking advantage of patterns usually lost in regions
with an undefined label.

The results of our three proposals are highly satisfactory.
The approach with a backbone based on deep learning has
proven to far surpass the state of the art based on classical
learning methodologies. The same way, the approaches
that take advantage of transfer learning strategies have
outperformed this baseline in particular complex scenarios
such as the difficult DRT. Moreover, the performance
obtained with our approach pretrained in the same domain
taking advantage of the uncertainty is able to achieve similar
results to the pretrained model in a generalist domain with
significantly fewer images. Finally, the fine-grained study
on the performance of the generated confidence maps shows
that this approach, while obtaining similar results overall,
shows a more robust behavior in boundary regions with
associated uncertainty.

As future work, we plan to address the particular
challenge of microcysts, a subset of cystic bodies with
their own unique properties. This subset of cystic bodies
seems to significantly increase the sparsity of the models,
suggesting that their features should be considered as a
distinct class (as is done in the clinical domain) rather than
as part of the CME subtype of DME. In the same way, it
would be interesting to study a mixed approach between
the generalist domain pretraining and the one that considers
uncertainty, to address their weaknesses and complement
their strengths. Finally, it would be interesting to adapt
our proposals to other pathologies and medical imaging
domains with similar diffuse features and associated
uncertainty.
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