135 research outputs found

    An Experiment in Interoperable Cryptographic Protocol Implementation Using Automatic Code Generation

    Get PDF
    Spi2Java is a tool that enables semi-automatic generation of cryptographic protocol implementations, starting from verified formal models. This paper shows how the last version of spi2Java has been enhanced in order to enable interoperability of the generated implementations. The new features that have been added to spi2Java are reported here. A case study on the SSH transport layer protocol, along with some experiments and measures on the generated code, is also provided. The case study shows, with facts, that reliable and interoperable implementations of standard security protocols can indeed be obtained by using a code generation tool like spi2Jav

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    An integrated approach to QoS and security in future mobile networks using the Y-Comm framework

    Get PDF
    Future networks will comprise a wide variety of wireless networks. Users will expect to be always connected from anywhere and at any time as connections will be switched to available networks using vertical handover techniques. However, different networks have different Qualities-of-Service (QoS) so a QoS framework is needed to help applications and services deal with this new environment. In addition, since these networks must work together, future mobile systems will have an open, instead of the currently closed, architecture. Therefore new mechanisms will be needed to protect users, servers and network infrastructure. This means that future mobile networks will have to integrate communications, mobility, quality-of-service and security. However, in order to achieve this integration without affecting the flexibility of future networks, there is a need for novel methods that address QoS and security in a targeted manner within specific situations. Also, there is a need for a communication framework wherein these methods along with the communication and handover mechanisms could be integrated together. Therefore, this research uses the Y-Comm framework, which is a communication architecture to support vertical handover in Next Generations Networks, as an example of future communication frameworks that integrate QoS, security, communication and mobility mechanisms. Within the context of Y-Comm, research has been conducted to address QoS and security in heterogeneous networks. To preserve the flexibility of future network, the research in this thesis proposes the concept of Targeted Models to address security and QoS in specific scenarios: to address the QoS issue, a new QoS framework is introduced in this thesis, which will define targeted QoS models that will provide QoS in different situations such as connection initiation and in the case of handover. Similarly, to deal with the security side, targeted security models are proposed to address security in situations like connection initiation and handover. To define the targeted models and map them to actual network entities, research has been conducted to define a potential structure for future networks along with the main operational entities. The cooperation among these entities will define the targeted models. Furthermore, in order to specify the security protocols used by the targeted security models, an Authentication and Key Agreement framework is introduced to address security at different levels such as network and service levels. The underlying protocols of the Authentication and Key Agreement protocol are verified using Casper/FDR, which is a well-known, formal methods- based tool. The research also investigates potential methods to implement the proposed security protocols. To enable the implementation of some of the targeted security models, the research also proposes major enhancements to the current addressing, naming and location systems

    Development of security strategies using Kerberos in wireless networks

    Get PDF
    Authentication is the primary function used to reduce the risk of illegitimate access to IT services of any organisation. Kerberos is a widely used authentication protocol for authentication and access control mechanisms. This thesis presents the development of security strategies using Kerberos authentication protocol in wireless networks, Kerberos-Key Exchange protocol, Kerberos with timed-delay, Kerberos with timed-delay and delayed decryption, Kerberos with timed-delay, delayed decryption and password encryption properties. This thesis also includes a number of other research works such as, frequently key renewal under pseudo-secure conditions and shut down of the authentication server to external access temporarily to allow for secure key exchange. A general approach for the analysis and verification of authentication properties as well as Kerberos authentication protocol are presented. Existing authentication mechanisms coupled with strong encryption techniques are considered, investigated and analysed in detail. IEEE 802.1x standard, IEEE 802.11 wireless communication networks are also considered. First, existing security and authentication approaches for Kerberos authentication protocol are critically analysed with the discussions on merits and weaknesses. Then relevant terminology is defined and explained. Since Kerberos exhibits some vulnerabilities, the existing solutions have not treated the possibilities of more than one authentication server in a strict sense. A three way authentication mechanism addresses possible solution to this problem. An authentication protocol has been developed to improve the three way authentication mechanism for Kerberos. Dynamically renewing keys under pseudo-secure situations involves a temporary interruption to link/server access. After describing and analysing a protocol to achieve improved security for authentication, an analytical method is used to evaluate the cost in terms of the degradation of system performability. Various results are presented. An approach that involves a new authentication protocol is proposed. This new approach combines delaying decryption with timed authentication by using passwords and session keys for authentication purposes, and frequent key renewal under secure conditions. The analysis and verification of authentication properties and results of the designed protocol are presented and discussed. Protocols often fail when they are analysed critically. Formal approaches have emerged to analyse protocol failures. Abstract languages are designed especially for the description of communication patterns. A notion of rank functions is introduced for analysing purposes as well. An application of this formal approach to a newly designed authentication protocol that combines delaying the decryption process with timed authentication is presented. Formal methods for verifying cryptographic protocols are created to assist in ensuring that authentication protocols meet their specifications. Model checking techniques such as Communicating Sequential Processes (CSP) and Failure Divergence Refinement (FDR) checker, are widely acknowledged for effectively and efficiently revealing flaws in protocols faster than most other contemporaries. Essentially, model checking involves a detailed search of all the states reachable by the components of a protocol model. In the models that describe authentication protocols, the components, regarded as processes, are the principals including intruder (attacker) and parameters for authentication such as keys, nonces, tickets, and certificates. In this research, an automated generation tool, CASPER is used to produce CSP descriptions. Proposed protocol models rely on trusted third parties in authentication transactions while intruder capabilities are based on possible inductions and deductions. This research attempts to combine the two methods in model checking in order to realise an abstract description of intruder with enhanced capabilities. A target protocol of interest is that of Kerberos authentication protocol. The process of increasing the strength of security mechanisms usually impacts on performance thresholds. In recognition of this fact, the research adopts an analytical method known as spectral expansion to ascertain the level of impact, and which resulting protocol amendments will have on performance. Spectral expansion is based on state exploration. This implies that it is subject, as model checking, to the state explosion problem. The performance characteristics of amended protocols are examined relative to the existing protocols. Numerical solutions are presented for all models developed

    Provably correct Java implementations of Spi Calculus security protocols specifications

    Get PDF
    Spi Calculus is an untyped high level modeling language for security protocols, used for formal protocols specification and verification. In this paper, a type system for the Spi Calculus and a translation function are formally defined, in order to formalize the refinement of a Spi Calculus specification into a Java implementation. The Java implementation generated by the translation function uses a custom Java library. Formal conditions on such library are stated, so that, if the library implementation code satisfies such conditions, then the generated Java implementation correctly simulates the Spi Calculus specification. A verified implementation of part of the custom library is further presente

    Formally based semi-automatic implementation of an open security protocol

    Get PDF
    International audienceThis paper presents an experiment in which an implementation of the client side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically derived according to a model-driven development paradigm that leverages formal methods in order to obtain high correctness assurance. The approach used in the experiment starts with the formalization of the protocol at an abstract level. This model is then formally proved to fulfill the desired secrecy and authentication properties by using the ProVerif prover. Finally, a sound Java implementation is semi-automatically derived from the verified model using an enhanced version of the Spi2Java framework. The resulting implementation correctly interoperates with third party servers, and its execution time is comparable with that of other manually developed Java SSH-TLP client implementations. This case study demonstrates that the adopted model-driven approach is viable even for a real security protocol, despite the complexity of the models needed in order to achieve an interoperable implementation

    Security and Performance Verification of Distributed Authentication and Authorization Tools

    Get PDF
    Parallel distributed systems are widely used for dealing with massive data sets and high performance computing. Securing parallel distributed systems is problematic. Centralized security tools are likely to cause bottlenecks and introduce a single point of failure. In this paper, we introduce existing distributed authentication and authorization tools. We evaluate the quality of the security tools by verifying their security and performance. For security tool verification, we use process calculus and mathematical modeling languages. Casper, Communicating Sequential Process (CSP) and Failure Divergence Refinement (FDR) to test for security vulnerabilities, Petri nets and Karp Miller trees are used to find performance issues of distributed authentication and authorization methods. Kerberos, PERMIS, and Shibboleth are evaluated. Kerberos is a ticket based distributed authentication service, PERMIS is a role and attribute based distributed authorization service, and Shibboleth is an integration solution for federated single sign-on authentication. We find no critical security and performance issues

    Selection of an Attack-Construction Engine to Enhance Security Protocol Analysis

    Get PDF
    In the context of providing an integrated environment for engineering of security protocols, the incorporation of an attack-construction analysis engine has been investigated. The purpose of such an engine is to search protocol specifications for possible replay attacks against it, returning a description of the attack if found. This kind of analysis complements the logic analysis tool already present in the environment, since it can find protocol vulnerabilities that the existing analysis is unable to detect. An investigation of six publicly available attackconstruction tools was conducted, considering criteria such as capability, efficiency and usability. More project-specific factors, such as suitability for integration, also played an important part. The outcome of the investigation was that the constraint-based system by Corin & Etalle (based on an initial system by Millen & Shmatikov) was the most suitable

    Proceedings of the 2nd International Workshop on Security in Mobile Multiagent Systems

    Get PDF
    This report contains the Proceedings of the Second Workshop on Security on Security of Mobile Multiagent Systems (SEMAS2002). The Workshop was held in Montreal, Canada as a satellite event to the 5th International Conference on Autonomous Agents in 2001. The far reaching influence of the Internet has resulted in an increased interest in agent technologies, which are poised to play a key role in the implementation of successful Internet and WWW-based applications in the future. While there is still considerable hype concerning agent technologies, there is also an increasing awareness of the problems involved. In particular, that these applications will not be successful unless security issues can be adequately handled. Although there is a large body of work on cryptographic techniques that provide basic building-blocks to solve specific security problems, relatively little work has been done in investigating security in the multiagent system context. Related problems are secure communication between agents, implementation of trust models/authentication procedures or even reflections of agents on security mechanisms. The introduction of mobile software agents significantly increases the risks involved in Internet and WWW-based applications. For example, if we allow agents to enter our hosts or private networks, we must offer the agents a platform so that they can execute correctly but at the same time ensure that they will not have deleterious effects on our hosts or any other agents / processes in our network. If we send out mobile agents, we should also be able to provide guarantees about specific aspects of their behaviour, i.e., we are not only interested in whether the agents carry out-out their intended task correctly. They must defend themselves against attacks initiated by other agents, and survive in potentially malicious environments. Agent technologies can also be used to support network security. For example in the context of intrusion detection, intelligent guardian agents may be used to analyse the behaviour of agents on a firewall or intelligent monitoring agents can be used to analyse the behaviour of agents migrating through a network. Part of the inspiration for such multi-agent systems comes from primitive animal behaviour, such as that of guardian ants protecting their hill or from biological immune systems

    Scyther : semantics and verification of security protocols

    Get PDF
    Recent technologies have cleared the way for large scale application of electronic communication. The open and distributed nature of these communications implies that the communication medium is no longer completely controlled by the communicating parties. As a result, there has been an increasing demand for research in establishing secure communications over insecure networks, by means of security protocols. In this thesis, a formal model for the description and analysis of security protocols at the process level is developed. At this level, under the assumption of perfect cryptography, the analysis focusses on detecting aws and vulnerabilities of the security protocol. Starting from ??rst principles, operational semantics are developed to describe security protocols and their behaviour. The resulting model is parameterized, and can e.g. capture various intruder models, ranging from a secure network with no intruder, to the strongest intruder model known in literature. Within the security protocol model various security properties are de??ned, such as secrecy and various forms of authentication. A number of new results about these properties are formulated and proven correct. Based on the model, an automated veri??cation procedure is developed, which signi ??cantly improves over existing methods. The procedure is implemented in a prototype, which outperforms other tools. Both the theory and tool are applied in two novel case studies. Using the tool prototype, new results are established in the area of protocol composition, leading to the discovery of a class of previously undetected attacks. Furthermore, a new protocol in the area of multiparty authentication is developed. The resulting protocol is proven correct within the framework
    • ā€¦
    corecore