
Selection of an Attack-Construction Engine to
Enhance Security Protocol Analysis

Simon Lukell and Andrew Hutchison
Department of Computer Science

University of Cape Town
Rondebosch 7701

Ph: (021) 650 3127
Fax: (021) 689 9465

{slukell, hutch}@cs.uct.ac.za

Abstract— In the context of providing an integrated environ-
ment for engineering of security protocols, the incorporation of
an attack-construction analysis engine has been investigated. The
purpose of such an engine is to search protocol specifications
for possible replay attacks against it, returning a description
of the attack if found. This kind of analysis complements the
logic analysis tool already present in the environment, since
it can find protocol vulnerabilities that the existing analysis is
unable to detect. An investigation of six publicly available attack-
construction tools was conducted, considering criteria such as
capability, efficiency and usability. More project-specific factors,
such as suitability for integration, also played an important part.
The outcome of the investigation was that the constraint-based
system by Corin & Etalle (based on an initial system by Millen
& Shmatikov) was the most suitable.

I. I NTRODUCTION

Network security protocols make use of cryptographic tech-
niques to achieve goals such as confidentiality, authentication,
integrity and non-repudiation. However, the fact that strong
cryptographic algorithms exist does not guarantee the security
of a communications system [24]. In fact, it is recognised that
the engineering of security protocols is a very challenging
task, since protocols that appear secure can contain subtle
flaws and vulnerabilities that attackers can exploit [1]. A
number of techniques exist for the analysis of security protocol
specifications. Each of the techniques currently available is
not capable of detecting every possible flaw or attack against
a protocol when used in isolation. However, when combined,
they complement each other and allow a protocol engineer
to obtain a more accurate overview of the security of a
protocol that is being designed [14]. Previous projects of ours,
in particular the Security Protocol Engineering and Analysis
Resource (SPEAR) [5], and its successor, SPEAR II [23],
introduced the concept ofmulti-dimensional security protocol
engineering. Several aspects of cryptographic protocol engi-
neering are collected into one application, which allows an
engineer to rapidly construct, analyse and implement secure
protocol designs.

The aspect of security protocol analysis in these projects
was based on theinference constructiontechniques BAN [8]
and GNY [13] modal logics respectively. As a step towards
augmenting the analysis dimension of SPEAR II, it was
decided that anattack-construction(AC) analysis component
would be a valuable addition to the framework. Such a
tool is capable of detecting protocol flaws that the current
analysis is unable to find, and it gives the engineer a useful

complementing view of a detected vulnerability. An AC tool
searches a model of the protocol system, consisting of honest
participants and a modelled malicious intruder, for possible
replay attacks. If an attack is found, it returns a complete
trace of the event that led to the attack, which is valuable
when ’debugging’ a specification. If no attack is found, the
protocol is deemed secure against the analysed scenarios.

In this paper we present a survey of the attack-construction
tools considered for integration with the SPEAR II framework,
in which it could serve as one of several analysis engines.
We identify functional attributes, which in combination give a
relatively clear picture of the various capabilities of the tools.
Additionally, a set of non-functional properties are considered,
completing the overview. Following the tool survey, each
attribute is given a relative degree of importance, forming the
base on which a selection is made.

The main contribution of this paper is that we emphasise the
application of the tools rather than their theoretical/ algorith-
mic constitution, which is the norm in other surveys such as
in [20] and [26]. For a more technical description of the tools,
these surveys and the original papers are more suitable. This
overview is limited to publicly available AC analysis tools. We
do not consider tools that do not return attack traces, and we
omit analysers for which the software is not publicly available.

The remainder of the paper is organised as follows. In
Section 2, a summary of the SPEAR II project is given fol-
lowed by an overview of attack-construction analysis. Section
3 presents the set of features used in the evaluation, after which
an overview of the considered tools is given in Section 4. The
tool evaluation is described in Section 5, and the paper is
concluded in Section 6.

II. BACKGROUND

The rationale for the tool survey presented in this paper
is the incorporation of an AC engine into the SPEAR II
framework. In this section we describe this environment in
more detail, followed by a brief introduction to the area of
AC protocol analysis.

A. The SPEAR II Framework

A schematic overview of the SPEAR II framework is given
in Figure 1. Completed modules within the framework are
indicated by solid outlines, while possible future additions
are denoted by grey outlines. This software engineering view
of the tool is an intuitive representation that shows some

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SPEAR II Framework


Protocol

Design


(
GYPSIE
 )


Inference

Analysis


(
GYNGER
 /

Visual
 GNY
)


Attack

Construction


Analysis


Protocol

Code


Generation


OK


Failed

Goals


OK


Attack

Trace


Requirement

Definition


Protocol

Implementation


Spec
.

Interface


Protocol

Specification


S
pecification


S
pecification &

 goals


F
eedback


Fig. 1. The existing components of SPEAR II with proposed additions

relationships between its components, but it also indicates
how the tool is used. In the figure, the large arrows between
the modules indicate a natural work order when developing a
security protocol, and the thinner arrows show what kind of
information is conveyed between the modules. The figure sug-
gests an iterative approach with the analysis modules feeding
back results from analyses to the specification environment.

Currently SPEAR II consists of the following components
integrated into one unified graphical interface: TheGYPSIE
protocol specification environment is designed for effective
and accurate construction of cryptographic protocols and func-
tions as the main interface of the SPEAR II application.GY-
NGER is a Prolog-based analyserthat performs automatic
analysis of protocols by using the GNY modal logic [13].
The Visual GNY environment was created to facilitate GNY-
based protocol analysis and works in close conjunction with
GYPSIE. In essence, Visual GNY functions as a user-friendly
interface to the GYNGER analyser.

In order to increase the practical value of the tool, a number
of additions can be made to the SPEAR II framework. From a
software engineering perspective, aprotocol requirements tool
would assist the user to obtain an initial protocol specification
from a set of requirements rather than having to define the
specification. On the other end, animplementation genera-
tion tool would complete the protocol engineering process.
We are busy developing such a tool as a specific related
project [27]. One way of increasing the confidence in a
protocol specification is to use external analysis tools. Secu-
rity protocol specification languages, such as (CAPSL) [21]
and HLPSL[16], support interfaces to several analysis tools.
Therefore, aprotocol specification language interfacewould
also be a useful addition to the framework.

B. Attack-Construction Analysis

This method of analysis involves an explicit model of the
protocol and a model of an intruder. There are many available
formalisms that can be used to model the protocol, the
participants, the intruder, their actions and the messages that
they exchange [20]. However, all approaches use essentially
the same basic assumptions about network communication and
the capabilities of the attacker. These assumptions are based
on the model introduced by Dolev and Yao [12], which gives
the intruder the following capabilities:read any message and
block further transmission;decomposea message into parts
and remember them;generatefresh data as needed;compose
a new message from known data and send it.

The intruder is only capable of obtaining encrypted informa-
tion if he possesses the key to decrypt it with. This is referred
to as theperfect encryption assumption[19], which is a means
of isolating the protocol functionality from the cryptographic
operations used in it. There are two different methods of
using this model, namely searching the model forwards and
searching it backwards. AC tools use a forward search strategy.
They start in an initial state of a protocol environment and
search the state space for insecure states exhaustively. The
backward search, calledproof construction, attempts to prove
that a given insecure state of a protocol is unreachable.

The disadvantage with AC analysis lies in the big number
of possible events that must be examined, also referred to
as thestate space explosion problem. Various optimisation
techniques exist that limit the search space to a manageable
size. The main advantage of this approach is that it is largely
automatic, a property that agrees with the philosophy of the
SPEAR II project. Proof construction attempts to avoid the
exponential searches of AC, and to extend analyses to involve
arbitrarily large numbers of participants and messages, with
the disadvantage that it typically requires significant human
insight and guidance.

III. E VALUATION FRAMEWORK

In this section, we identify various attributes that play a
role in the evaluation, and ultimately the selection, of an AC
tool. The first aspect considered, is the function of a tool,
i.e. what it is capable (and not capable) of doing. Examples
of such attributes are the cryptographic primitives the tool
can model and which security properties it verifies. The other
equally important aspect is the non-functional properties of a
tool. Examples of non-functional attributes are performance,
platform requirements and licensing.

A. Evaluated Properties

The most significant tool attributes in our study are of course
the ones that form the boundary of the survey itself. Of the two
limiting properties, one is functional, namely the capability
of returning an attack trace to the user. The second limiting
factor is non-functional, since it concerns the availability of
the software.

1) Functional Properties:Functional properties of a system
deal with what it is capable of doing. For our purposes they
can be broken down to cryptographic primitives, bounded/
unbounded sessions, constructed keys, checked security prop-
erties, and termination.



Modelled cryptographic primitivesare the basic building
blocks in a protocol description. They include symmetric-
key encryption/ decryption, public-key encryption/ signature,
secure hash, and nonces. Some protocols use timestamps,
which is a way of guaranteeing freshness without the need
of two-way communication. Other protocols use arithmetic
operations such as Diffie-Hellman exponentiation and XOR,
which are usually not handled by analysis tools.

Some of the available tools can deal with anunbounded
number of sessionsof the protocol, with the benefit that
no manual instantiation of the modelled honest principals is
needed. In such a case, algebraic properties of the model are
utilised to limit the search, which would otherwise continue
indefinitely.

The notion ofconstructed keysis used in some protocols, for
example in the case of the IKE protocol where each participant
constructs only a part of the shared key that is negotiated. If
the model does not support this, such protocols clearly cannot
be verified properly.

A type flaw attack exploits a protocol’s vulnerability to
message component substitutions. A type flaw attack can be
avoided in an implementation by typing the contents of the
messages, but a secure specification is nevertheless preferable.

Two security properties can be verified in the model:secrecy
and authentication. Secrecy is maintained if there is no state
in which the modelled intruder gains knowledge of the secret
message component. Authentication is verified through the
use of a correspondence property of the protocol run. If a
model contains a trace in which a participant has executed the
protocol with a set of messages, and the intended counterpart’s
perception of the message contents does not match, then the
authentication protocol has been attacked.

In the case of models with an unbounded number of parallel
sessions of the protocol, the search space is clearly infinite. If
the method of limiting the search of this model is incomplete,
there is a risk that the search will notterminate. This is of
course undesirable.

2) Non-functional Properties:These properties of a system
describes not what the software will do, but how the software
will do it. The properties for the evaluation are a chosen subset
of the properties given in IEEE/ICS recommendations for
requirements specifications [15]. The omitted non-functional
system properties were deemed either not applicable, or in-
significant for the purposes if this investigation.

Performanceis the one non-functional property that has
been given the most attention in literature, since it is used
as a metric of the quality of the algorithm used in the tool.
It is usually measured in the time taken for an attack to be
discovered in a security protocol specification known to be
flawed.

The interface property describes the language of the text
input and output of the tool. This differs from the functional
attribute, since languages with identical expressiveness can use
different notations.

The operationalproperty describes any aspects of the hu-
man operation of the system, i.e. the usability of the system,
and theresourcesproperty describes what is required for the
system to function. In our case, this is the external software
that the tool depends on.

Portability is the property that describes on which platforms

Casper Constr STA SATMC OFMC Athena
SK Crypto X X X X X X
PK Encrypttion X X X X X X
PK Signature X X X X X X
Secure Hash X X X X X X
Timestamp X × × × × ×
Unb sessions × × × × × X
Constr keys × X × X X ×
Type flaws × X × X X ×
Secrecy X X X X X X
Authentication X X X X X X
Termination X X X X X ×

TABLE I

COMPARISON OF TOOL FEATURES. X: AVAILABLE ,×: NOT AVAILABLE

Casper Constr STA SATMC OFMC Athena
Performance - 0 – + + +
Interface + + – + + –
Operational + 0 – + + –
Resources FDR,H Prolog ML SAT none ∗
Portability L All All L L/S L
Open source X X × × × X
License ? free u/d GPL u/d free

∗ gcc, GNU make, Perl, CMU SMV, SML, Emacs

TABLE II

NON-FUNCTIONAL TOOL PROPERTIES. –: BELOW AVERAGE, 0: AVERAGE,

+: ABOVE AVERAGE, H : HASKELL , L : L INUX , S: SOLARIS, X:

AVAILABLE ,×: NOT AVAILABLE , ?: UNKNOWN, U/D: USE & DISTRIBUTE

the tool can run on, and in some cases, which platforms it can
be made to run on. Finally, thelegislativeproperty of software
primarily deals with the what kind of licence applies to its
use and distribution. Another significant property of freely
distributable software is whether it isopen source software
(OSS).

IV. ATTACK-CONSTRUCTIONANALYSIS TOOLS

To our knowledge, there are six publicly available security
protocol analysis tools that fall into the category of attack-
construction. These are Casper/FDR, CASRUL/SATMC,
CASRUL/OFMC, a constraints-based verifier (Constraints),
STA and SyMP/Athena. The software together with the ac-
companying documentation and other required software were
acquired via file transfer over the Internet. This section gives
a brief summary of each tool, outlining the major features
and properties of them. For a more technical account of the
tools, the reader is advised to consult the original descriptions
referred to in each case.

Table I gives an overview of the respective functional
properties of the tools as described in the previous section,
represented as a feature matrix. Table II presents the non-
functional properties of the tools. In the table, properties such
as performance and interface are given a + symbol if the
property is ’above average’, 0 for ’average’, and - for ’below
average’. These are relative estimates that are informally
determined either by comparing the available tool descriptions,
or by comparing practical experiences with the tools.

A. Casper/FDR

Casper [17] is a program that takes a description of a
security protocol in a simple, abstract language, and produces
a CSP description of the same protocol, which can be checked
using the FDR general-purpose model checker [18]. FDR
uses a finite state machine formalism. It establishes whether



a property (in our case secrecy or authentication) holds by
testing for the refinement of a transition system capturing the
property by the machine. This tool is one of the most mature
in the area of automatic security protocol analysis. It has found
attacks on 20 protocols previously known to be insecure, as
well as attacks on 10 other protocols originally reported as
secure. Casper/FDR handles the conventional cryptographic
primitives, and also has a formalism for timestamps. However,
it does not model constructed keys and is unable of detecting
type flaw attacks. Casper is open source software, requires
a Haskell interpreter, and runs on Unix/Linux systems only.
FDR is a commercial product provided by Formal Systems
(Europe) Ltd. It runs under FreeBSD, Solaris and Linux.

B. Constraint-Based System

This tool is based on the approach of converting the reach-
ability problem associated with finding an illegal state in the
protocol model into a constraint-solving problem. It was first
introduced in [22] and was later improved in [11]. The honest
principals are modelled with the Strand Space formalism[],
which is a model developed especially for the reasoning about
security protocols, and the attacker is modelled with term set
closure characterisation. The result is an intuitive tool that
takes a simple input without the need of any pre-processing. It
can handle the usual cryptographic primitives, and can model
constructed keys. The tool is implemented in Prolog, so it can
run on most platforms.

C. STA

STA (Symbolic Trace Analyzer) [7] is a symbolic model
checker for security protocol specifications. Protocol proper-
ties are expressed in terms of traces generated by the protocol,
e.g., ”every commit action of principal B happens only after
the corresponding begin action of principal A”. Like most
other analysis tools it has an in-built attacker, but there is no
high-level specification interface, so the specification of pro-
tocols can be quite tedious. It requires a certain acquaintance
with process algebras, although no deeper understanding of
security is needed. STA is written in ML. Currently, shared-
key, public-key cryptography and hashing are supported.

D. CASRUL/SATMC

Like Casper, CASRUL [9] is also a translator from a
High-Level Protocol Specification Language (HLPSL), which
produces a notation more suitable for analysis tools. It was
developed as part of the European Project AVISS project [2],
with the objective to build an industry-strength tool for effi-
cient protocol analysis. CASRUL takes a protocol specification
together with a definition of the actual system to be checked,
including agents taking part in the system and the roles they
play, the datatypes to be used, and the intruder’s abilities.
The output, called Intermediate Format (IF), is a rewrite
notation that can be handled with by automatic analysers. It is
available for Linux, SunOS and Windows, but no source code
is provided.

SATMC [3] is a SAT-based (boolean satisfiability) model
checker for the analysis of security protocols. This approach
uses the combination of a reduction of protocol insecurity
problems to planning problems and well-known SAT-reduction
techniques, providing an automatic model-checker for security
protocols based on state-of-the-art SAT solvers. It takes either

its own language SATE, or the output language of CASRUL
(IF) as input, then performs the analysis with one of three
SAT solvers. It is developed with SICStus Prolog, compiled
into a stand-alone executable for Linux. It is published under
the GNU licence, but no source code is available.

E. CASRUL/OFMC

The On-the-Fly Model Checker (OFMC) [4], was also
developed as part of the AVISS project, hence it takes as
input the Intermediate Format (IF) that is the output of the
translator CASRUL. It combines the use of lazy data types
and optimisations for modelling a lazy intruder, whose actions
are generated in a demand-driven manner. This way, the
search space is reduced without excluding any attacks, and
the result is a very efficient analysis tool. It has constructed-
key capability and it can detect type flaw attacks. The tool is
is free to use and distribute, and it is available for Linux and
SunOS, with a Windows version being considered.

F. SyMP/Athena

The Athena tool [25] combines model-checking and in-
teractive theorem-proving techniques with the strand-space
model to reduce the search space and automatically prove
the correctness of security protocols with arbitrary numbers
of concurrent runs. Interactive theorem-proving in this setting
allows one to limit the search space drastically by manually
proving lemmas (e.g. ”the intruder cannot find out a certain
private key, as it is never transmitted”). However, the amount
of user interaction necessary to obtain such statements might
be considerable. The unbounded number of runs comes at
a price, since there is no guarantee that the the search will
terminate. Moreover, like Casper/FDR2, Athena supports only
atomic keys, and cannot detect type flaws. Athena forms part
of the Symbolic Model Prover (SyMP) [6] tool, which is
available for Linux, but should work on other Unix platforms
too. It is distributed as SML source code. To compile it, gcc,
GNU make, Perl, CMU SMV, and SML are required. Emacs
is needed to run the interactive prover.

V. A NALYSIS

We have established suitable attributes for the evaluation of
the tools, and completed the tool overview. In this section, we
select the tool most suitable for integration with SPEAR II.
This process is performed in two stages. First, the relative
importance of the attributes is established, after which the
selection analysis is conducted.

A. Weighting of Evaluation Properties

We have identified a set of analysis tool properties, but they
are not all equally important in the context integration with
the SPEAR II environment. What remains is assigning each
attribute with a ’degree of importance’, or a weighting, that
will assist in the evaluation. A simple way of doing this is to
establish three categories for each set of attributes.

1) Functional Properties: For functional properties, the
following categories were used: ’essential’ (¥), ’preferable’
(£) and ’optional’ (¤). ’Essential’ means that the feature must
be provided, ’preferred’, that it should be chosen if possible,
and ’optional’ means that it is a feature that is not required.
Table III gives an overview of the weighting of each category.



Functional Property Weighting
Secret Key Encryption ¥
Public Key Encryption ¥
Public Key Signature ¥
Secure Hash ¥
Timestamp ¤
Unbounded sessions ¤
Constructed keys £
Type Flaw £
Secrecy check ¥
Authentication check ¥
Termination ¥

TABLE III

TOOL FEATURE IMPORTANCE: ¥: ESSENTIAL, £: PREFERABLE, ¤:

OPTIONAL

Non-functional property Weighting
Performance £
Interface £
Operational ¤
Resource £
Portability ¥
Open source ¥
Licence ¥

TABLE IV

TOOL FEATURE IMPORTANCE: ¥: VERY IMPORTANT, £: CONSIDER, ¤:

NOT IMPORTANT

All cryptographic primitives except timestamps are classi-
fied as essential. These constitute the core of the functionality
of a tool. With fewer available primitives, a smaller set of
protocols can be analysed. Timestamps are optional because
of their limited use in protocols, but also for the fact that very
few tools support them.

An unbounded number of sessions in the model is optional,
since it has been shown that two instances achieve the same
result as an infinite model [10]. Even though type flaw attacks
are avoidable if the protocol implementation is typed, they
should be avoided in a specification. Therefore, this attribute
is categorised as preferable. Both secrecy and authentication
checks are essential since they form the basis of the security
protocol analysis. The analysis is required to result in either
an attack trace, or a completed search, which requires that the
engine terminates in all situations.

2) Non-Functional Properties:For These properties, the
following categories were used: ’very important’ (¥), ’con-
sider’ (£) and ’not important’ (¤). ’Very important’ means that
the property is a deciding factor, ’consider’, that it should be
taken into account, and ’not important’ means that the property
can be ignored. Table IV gives an overview of the weighting
of each category.

Performance should be considered. If there is a choice
between two tools, the tool that has a shorter execution time
for the same task will be chosen. The interface property should
be considered in a similar fashion. An output/input interface
will have to be added to the SPEAR II tool, and a notation
that is easier to translate to/from will facilitate this.

The usability of the tool is not important as such, since all
interaction with the tool is intended to be automated via the
SPEAR II user interface. The required resources in form of
software is considered, based on the software engineering prin-
ciple that it is desirable to keep the number of dependencies

as low as possible.
The portability, or rather the ’installability’ is very impor-

tant, since the current SPEAR II implementation runs only
on Windows platforms. The legislative aspect of the tool is
also very important, at least when considering the source
code policy. Open source is desirable because of two reasons.
Firstly, since the software is made for security analysis, it is
essential that it can be verified to carry out what it claims to do.
Secondly, the integration may be facilitated by modifications
to the tool itself.

B. Selection

The tool overview, including the evaluation criteria together
with their individual weighting, are used to select the most
suitable tool. The method for the selection is intuitive: The tool
attributes are considered in descending order of significance,
excluding tools that do not fulfil the requirements. The remain-
ing candidates are then compared on a feature-by-feature basis,
after which the tool that performs the best in this comparison
is selected.

1) Functional Properties:This part of the evaluation is
trivial. All the tools share the ’essential’ features, with the
exception of the Athena tool that does not guarantee termi-
nation of the search. The ’preferable’ attributes are shared by
the Constraints, SATMC, and OFMC tools, with Casper and
STA not offering these features.

2) Non-functional Properties:Of the ’very important’ prop-
erties, the platform requirement is the main factor in the whole
selection process. This arises since the chosen system needs
to co-exist with an existing software base, resulting in the
exclusion of four out of the six candidates. The the only two
remaining tools are the Constraints tool and STA. The open
source property is satisfied by Casper, Constraints and Athena,
and as far as licensing is concerned, the only tool that really
stands out is Casper, not because of Casper itself, but for the
commercial licence that applies to the FDR analyser.

Of the properties that fall into the ’consider’ category, the
two AVISS tools (SATMC and OFMC) stand out in the per-
formance section. This is not surprising considering that they
are the most recently developed tools available. The two tools
that lack in their interfaces, mainly because of their tedious
input notations, are STA and Athena. Finally, the only tool that
can operate without depending on other software is OFMC,
although its use is significantly facilitated by incorporating
the CASRUL pre-processor. The Constraints tool, STA and
SATMC all depend on only one external program, of which
Constraints have the advantage of SPEAR II already using an
external Prolog engine for its logic analysis. Casper has two
dependencies (Haskell and FDR), and Athena is dependent on
even more external resources.

3) Results:The result from this evaluation is unambiguous.
The most suitable tool is actually a sole survivor. The reason
for the exclusion of the other candidates is not because they
performed badly, but is mainly a result of the SPEAR II
platform-dependence. The only exception here is the STA tool
which was excluded mainly because of the open source issue.
However, even in a comparison between Constraints and STA
where the open source property is ignored, the result would
be the same, because of the other non-functional attributes.

In fact, even in a scenario in which SPEAR II could run
on any platform, the result would be the same. In this case



the main deciding factor would be the open source property
coupled with the licensing issue.

This is not to say that platform-versatility does not matter.
An important realisation from this process was that many very
useful tools for security protocol analysis are developed for the
Linux/Unix platform.

VI. CONCLUSIONS

In this paper we have focussed our attention on tools
developed for automatically checking secrecy or authentication
in models of security protocols. The tools we were interested
in were those that return either a confirmation that no flaws
were found in the protocol, or, if a flaw is found, returns a
trace of the attack. The survey was conducted with the view to
select one of the tools for incorporation in a multi-dimensional
security protocol engineering framework. A set of attributes
were identified, which formed a basis for an evaluation of
the tools. The attributes were assigned various degrees of
significance to aid the analysis, after which the selection was
made.

The contribution of this paper is not limited to the selection
of a tool for a specific project, but rather can be generalised
to an attempt at approaching the topic from an application
point of view. Existing surveys provide good insights into
the inner workings of the tools, (many of which are not even
available for practical use), but little attention is given to any
non-functional aspects other than their performance.

A weakness of this overview is the lack of practical com-
parison of the tools, regarding performance and their general
impact on practical cases. Such a task would require a careful
comparison of specifications, security properties, and of all
optimisations used by the different tools. This task, however,
goes beyond the scope of the present survey.

One useful insight gained from this survey is that a cross-
platform implementation of the SPEAR II framework would
further increase its value. A wider range of security protocol
analysis tools could be interfaced with, resulting in a truly
universal security protocol engineering resource.

REFERENCES

[1] R. Anderson and R. Needham. Programming Satan’s Computer.Com-
puter Science Today, Springer LNCS, 1000:426–441, 1995.

[2] A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna,
S. Mdersheim, M. Rusinowitch, M. Turuani, L. Vigano, and L. Vi-
gneron. The aviss security protocol analysis tool. In E. Brinksma and
K. G. Larsen, editors,Computer Aided Verification, 14th International
Conference, volume 2404 ofLecture Notes in Computer Science, pages
349–353, Copenhagen, Denmark, July 2002. Springer.

[3] A. Armando, L. Compagna, and P. Ganty. SAT-based Model-Checking
of Security Protocols using Planning Graph Analysis. In K. Araki,
S. Gnesi, and D. Mandrioli, editors,Proceedings of the 12th Interna-
tional Symposium of Formal Methods Europe (FME), LNCS 2805, pages
875–893. Springer-Verlag, 2003.

[4] D. Basin, S. Mdersheim, and L. Vigan. An On-The-Fly Model-Checker
for Security Protocol Analysis. In E. Snekkenes and D. Gollmann,
editors, Proceedings of ESORICS’03, LNCS 2808, pages 253–270.
Springer-Verlag, Heidelberg, 2003.

[5] J. Bekmann, P. D. Goede, and A. Hutchison. SPEAR: Security Protocol
Engineering and Analysis Resources. InDIMACS Workshop on De-
sign and Formal Verification of Security Protocols. Rutgers University,
September 1997.

[6] S. Berezin. Model Checking and Theorem Proving: a Unified Frame-
work. PhD thesis, Carnegie Mellon University, 2002.

[7] M. Boreale and M. Buscemi. A framework for the analysis of security
protocols, 2001. An abstract appears in Proc. of WSDAAL 2001, Como,
Italy.

[8] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.
ACM Transactions on Computer Systems, 8(1):18–36, 1990.

[9] Y. Chevalier and L. Vigneron. A tool for lazy verification of security
protocols, 2001.

[10] H. Comon-Lundh and V. Cortier. Security properties: two agents are
sufficient. In P. Degano, editor,Programming Languages and Systems,
12th European Symposium on Programming, ESOP 2003, Proceedings,
volume 2618 ofLecture Notes in Computer Science, pages 99 – 113.
Springer, April 2003.

[11] R. Corin and S. Etalle. An improved constraint-based system for the
verification of security protocols. In M. Hermenegildo and G. Puebla,
editors,Int. Static Analysis Symp. (SAS), Madrid, Spain. Springer-Verlag,
Berlin., Sep 2002.

[12] D. Dolev and A. Yao. On the security of public key protocols.IEEE
Transactions on Information Theory, 29(2):198 – 208, 1983.

[13] L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in
Cryptographic Protocols. InProceedings of the 1990 IEEE Symposium
on Research in Security and Privacy, pages 234 – 248, Oakland,
California, 1990. IEEE Computer Society Press.

[14] N. J. Hopper, S. A. Seshia, and J. M. Wing. Combining theory
generation and model checking for security protocol analysis. InPost-
CAV Workshop on Formal Methods in Computer Security, July 2000.

[15] IEEE. Recommended practice for software requirements specifications,
December 1993. IEEE Std 830- 1993.

[16] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and
verifying security protocols. InLogic Programming and Automated
Reasoning, pages 131–160, 2000.

[17] G. Lowe. Casper: A compiler for the analysis of security protocols.
In PCSFW: Proceedings of The 10th Computer Security Foundations
Workshop. IEEE Computer Society Press, 1997.

[18] G. Lowe and A. W. Roscoe. Using CSP to detect errors in the TMN
protocol. Software Engineering, 23(10):659–669, 1997.

[19] W. Marrero, E. Clarke, and S. Jha. A model checker types for
authentication protocols. InDIMACS Workshop on Design and Formal
Verification of Security Protocols. Rutgers University, September 1997.

[20] C. Meadows. Invariant generation techniques in cryptographic protocol
analysis. In PCSFW: Proceedings of The 13th Computer Security
Foundations Workshop. IEEE Computer Society Press, 2000.

[21] J. Millen. CAPSL: Common authentication protocol specification
language. Technical Report MP 97B48, The MITRE Corporation, 1997.

[22] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. InACM Conference on Computer and
Communications Security, pages 166–175, 2001.

[23] E. Saul. Facilitating the modelling and automated analysis of crypto-
graphic protocols. Master’s thesis, DNA Research Group, Computer
Science Department, University of Cape Town, 2001.

[24] B. Schneier. Why cryptography is harder than it looks.Information
Security Bulletin, 2(2):31 – 36, March 1997.

[25] D. X. Song, S. Berezin, and A. Perrig. Athena: A novel approach
to efficient automatic security protocol analysis.Journal of Computer
Security, 9(1/2):47–74, 2001.

[26] P. Syverson and I. Cervesato. The logic of authentication protocols.
Lecture Notes in Computer Science, 2171:63 – 136, 2001.

[27] B. Tobler and A. C. M. Hutchison. Generation, analysis and verifi-
cation of cryptographic protocol implementations. In L. L. Jan Eloff
and H. Venter, editors,3rd annual Information Security South Africa
Conference, pages 297–306, Pretoria, South Africa, July 2003. ISSA,
ISSA.

Simon Lukell is currently pursuing an M. Sc.
degree in the Department of Computer Science at
University of Cape Town, where he also received
his B. Sc. (HONS) degree in 2002. He is special-
ising on network security and more specifically on
facilitating automatic analysis of security protocol
specifications.

Andrew Hutchison received the Ph.D. degree in
computer science from the University of Zurich,
Switzerland, in 1996. He currently works for T-
Systems, South Africa, and he is an Adjunct Pro-
fessor in the Department of Computer Science, Uni-
versity of Cape Town. His research interests include
security protocol analysis, intrusion detection, and
performance modelling.


