80,568 research outputs found

    Automatic Music Composition using Answer Set Programming

    Get PDF
    Music composition used to be a pen and paper activity. These these days music is often composed with the aid of computer software, even to the point where the computer compose parts of the score autonomously. The composition of most styles of music is governed by rules. We show that by approaching the automation, analysis and verification of composition as a knowledge representation task and formalising these rules in a suitable logical language, powerful and expressive intelligent composition tools can be easily built. This application paper describes the use of answer set programming to construct an automated system, named ANTON, that can compose melodic, harmonic and rhythmic music, diagnose errors in human compositions and serve as a computer-aided composition tool. The combination of harmonic, rhythmic and melodic composition in a single framework makes ANTON unique in the growing area of algorithmic composition. With near real-time composition, ANTON reaches the point where it can not only be used as a component in an interactive composition tool but also has the potential for live performances and concerts or automatically generated background music in a variety of applications. With the use of a fully declarative language and an "off-the-shelf" reasoning engine, ANTON provides the human composer a tool which is significantly simpler, more compact and more versatile than other existing systems. This paper has been accepted for publication in Theory and Practice of Logic Programming (TPLP).Comment: 31 pages, 10 figures. Extended version of our ICLP2008 paper. Formatted following TPLP guideline

    Relevance of ASR for the Automatic Generation of Keywords Suggestions for TV programs

    Get PDF
    Semantic access to multimedia content in audiovisual archives is to a large extent dependent on quantity and quality of the metadata, and particularly the content descriptions that are attached to the individual items. However, given the growing amount of materials that are being created on a daily basis and the digitization of existing analogue collections, the traditional manual annotation of collections puts heavy demands on resources, especially for large audiovisual archives. One way to address this challenge, is to introduce (semi) automatic annotation techniques for generating and/or enhancing metadata. The NWO funded CATCH-CHOICE project has investigated the extraction of keywords form textual resources related to the TV programs to be archived (context documents), in collaboration with the Dutch audiovisual archives, Sound and Vision. Besides the descriptions of the programs published by the broadcasters on their Websites, Automatic Speech Transcription (ASR) techniques from the CATCH-CHoral project, also provide textual resources that might be relevant for suggesting keywords. This paper investigates the suitability of ASR for generating such keywords, which we evaluate against manual annotations of the documents and against keywords automatically generated from context documents

    Incorporating characteristics of human creativity into an evolutionary art algorithm

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    Incorporating characteristics of human creativity into an evolutionary art algorithm (journal article)

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    CHR(PRISM)-based Probabilistic Logic Learning

    Full text link
    PRISM is an extension of Prolog with probabilistic predicates and built-in support for expectation-maximization learning. Constraint Handling Rules (CHR) is a high-level programming language based on multi-headed multiset rewrite rules. In this paper, we introduce a new probabilistic logic formalism, called CHRiSM, based on a combination of CHR and PRISM. It can be used for high-level rapid prototyping of complex statistical models by means of "chance rules". The underlying PRISM system can then be used for several probabilistic inference tasks, including probability computation and parameter learning. We define the CHRiSM language in terms of syntax and operational semantics, and illustrate it with examples. We define the notion of ambiguous programs and define a distribution semantics for unambiguous programs. Next, we describe an implementation of CHRiSM, based on CHR(PRISM). We discuss the relation between CHRiSM and other probabilistic logic programming languages, in particular PCHR. Finally we identify potential application domains

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning

    The Semantic Web MIDI Tape: An Interface for Interlinking MIDI and Context Metadata

    Get PDF
    The Linked Data paradigm has been used to publish a large number of musical datasets and ontologies on the Semantic Web, such as MusicBrainz, AcousticBrainz, and the Music Ontology. Recently, the MIDI Linked Data Cloud has been added to these datasets, representing more than 300,000 pieces in MIDI format as Linked Data, opening up the possibility for linking fine-grained symbolic music representations to existing music metadata databases. Despite the dataset making MIDI resources available in Web data standard formats such as RDF and SPARQL, the important issue of finding meaningful links between these MIDI resources and relevant contextual metadata in other datasets remains. A fundamental barrier for the provision and generation of such links is the difficulty that users have at adding new MIDI performance data and metadata to the platform. In this paper, we propose the Semantic Web MIDI Tape, a set of tools and associated interface for interacting with the MIDI Linked Data Cloud by enabling users to record, enrich, and retrieve MIDI performance data and related metadata in native Web data standards. The goal of such interactions is to find meaningful links between published MIDI resources and their relevant contextual metadata. We evaluate the Semantic Web MIDI Tape in various use cases involving user-contributed content, MIDI similarity querying, and entity recognition methods, and discuss their potential for finding links between MIDI resources and metadata
    • …
    corecore