751 research outputs found

    Convolutional nets for reconstructing neural circuits from brain images acquired by serial section electron microscopy

    Full text link
    Neural circuits can be reconstructed from brain images acquired by serial section electron microscopy. Image analysis has been performed by manual labor for half a century, and efforts at automation date back almost as far. Convolutional nets were first applied to neuronal boundary detection a dozen years ago, and have now achieved impressive accuracy on clean images. Robust handling of image defects is a major outstanding challenge. Convolutional nets are also being employed for other tasks in neural circuit reconstruction: finding synapses and identifying synaptic partners, extending or pruning neuronal reconstructions, and aligning serial section images to create a 3D image stack. Computational systems are being engineered to handle petavoxel images of cubic millimeter brain volumes

    Taramalı electron mikroskobu görüntülerinde mitokondrilerin otomatik olarak bölütlenmesi

    Get PDF
    Many studies have shown that shape of mitochondria indicates the occurrence of diseases. Scanning Electron Microscopy (SEM) enables to obtain image of internal structures of the cell and mitochondria. Automatic segmentation of mitochondria contributes to the decision of diseases by specialists. There is limited study about automatic segmentation of mitochondria in Serial Block-Face Scanning Electron Microscopy (SFBSEM) images. SBFSEM imaging technique provides full automation, well registered images, less time and less effort for data acquisition. Therefore, SBFSEM imaging technique is selected for this study. Recently, deep learning methods have been implemented for image processing of SEM datasets. However, due to requirement of huge datasets, much effort and powerful computers for preparing testing and training data, energy based model is implemented for this study. The algorithms used in this thesis are primarily the algorithms developed by Tasel et al for mitochondria segmentation in TEM images. The method includes preprocessing, ridge detection, energy mapping, curve fitting, snake-based shape extraction, validation and post-processing steps. In this thesis, these algorithms are adapted and refined for SBFSEM images to obtain optimum performance. Evaluations are made by using Dice Similarity Coefficient (DSC), precision, recall and F-Score metrics.Birçok çalışma mitokondri ve kristaların şeklinin hastalıkların oluşumunu belirttiğini göstermektedir. Taramalı Elektron Mikroskobu (SEM), hücrenin iç yapılarının ve mitokondrilerin görüntülerinin elde edilmesini sağlar. Mitokondrilerin otomatik bölütlenmesi uzmanlar tarafından hastalıkların karar verilmesine katkı sağlar. Seri Blok-Yüz Taramalı Elektron Mikroskobu (SFBSEM) görüntülerinde mitokondrinin otomatik segmentasyonu hakkında sınırlı çalışma vardır. SBFSEM görüntüleme tekniği, tam otomasyon, iyi kaydedilmiş görüntüler, veri elde etmek için daha az zaman ve daha az çaba sağlar. Bu nedenle, bu çalışma için SBFSEM görüntüleme tekniği seçilmiştir. Son zamanlarda, derin ögrenme yöntemleri SEM veri setlerinin görüntü işlemesi için uygulanmaktadır. Ancak, büyük veri setlerinin, fazla çabanın ve test ve eğitim verilerinin hazırlanması için güçlü bilgisayarların gerekliliğinden bu çalışma için enerji tabanlı model uygulanmaktadır. Bu tezde kullanılan algoritmalar öncelikle TEM görüntülerinde mitokondri bölütlenmesi için Taşel ve arkadaşları tarafından geliştirilen algoritmalardır. Yöntem, ön işleme, sırt algılama, enerji haritalama, eğri uyumlandırma, yılan temelli şekil çıkarma, doğrulama ve son işlem adımlarını içerir. Bu tezde, bu algoritmalar optimum performans elde etmek için SBFSEM görüntüleri için uyarlanmış ve yeniden düzenlenmiştir. Değerlendirmeler Dice Benzerlik Katsayısı(DSC), kesinlik, hatırlama ve F-Skoru metrikleri kullanılarak yapılır.M.S. - Master of Scienc

    Segmentation in large-scale cellular electron microscopy with deep learning: A literature survey

    Get PDF
    Electron microscopy (EM) enables high-resolution imaging of tissues and cells based on 2D and 3D imaging techniques. Due to the laborious and time-consuming nature of manual segmentation of large-scale EM datasets, automated segmentation approaches are crucial. This review focuses on the progress of deep learning-based segmentation techniques in large-scale cellular EM throughout the last six years, during which significant progress has been made in both semantic and instance segmentation. A detailed account is given for the key datasets that contributed to the proliferation of deep learning in 2D and 3D EM segmentation. The review covers supervised, unsupervised, and self-supervised learning methods and examines how these algorithms were adapted to the task of segmenting cellular and sub-cellular structures in EM images. The special challenges posed by such images, like heterogeneity and spatial complexity, and the network architectures that overcame some of them are described. Moreover, an overview of the evaluation measures used to benchmark EM datasets in various segmentation tasks is provided. Finally, an outlook of current trends and future prospects of EM segmentation is given, especially with large-scale models and unlabeled images to learn generic features across EM datasets

    Methods for the acquisition and analysis of volume electron microscopy data

    Get PDF
    corecore