Neural circuits can be reconstructed from brain images acquired by serial
section electron microscopy. Image analysis has been performed by manual labor
for half a century, and efforts at automation date back almost as far.
Convolutional nets were first applied to neuronal boundary detection a dozen
years ago, and have now achieved impressive accuracy on clean images. Robust
handling of image defects is a major outstanding challenge. Convolutional nets
are also being employed for other tasks in neural circuit reconstruction:
finding synapses and identifying synaptic partners, extending or pruning
neuronal reconstructions, and aligning serial section images to create a 3D
image stack. Computational systems are being engineered to handle petavoxel
images of cubic millimeter brain volumes