6 research outputs found

    Variant-Based Decidable Satisfiability in Initial Algebras with Predicates

    Get PDF
    [EN] Decision procedures can be either theory-specific, e.g., Presburger arithmetic, or theory-generic, applying to an infinite number of user-definable theories. Variant satisfiability is a theory-generic procedure for quantifier-free satisfiability in the initial algebra of an order-sorted equational theory (¿,E¿B) under two conditions: (i) E¿B has the finite variant property and B has a finitary unification algorithm; and (ii) (¿,E¿B) protects a constructor subtheory (¿,E¿¿B¿) that is OS-compact. These conditions apply to many user-definable theories, but have a main limitation: they apply well to data structures, but often do not hold for user-definable predicates on such data structures. We present a theory-generic satisfiability decision procedure, and a prototype implementation, extending variant-based satisfiability to initial algebras with user-definable predicates under fairly general conditions.Partially supported by NSF Grant CNS 14-09416, NRL under contract number N00173-17-1-G002, the EU (FEDER), Spanish MINECO project TIN2015-69175- C4-1-R and GV project PROMETEOII/2015/013. Ra´ul Guti´errez was also supported by INCIBE program “Ayudas para la excelencia de los equipos de investigaci´on avanzada en ciberseguridad”.Gutiérrez Gil, R.; Meseguer, J. (2018). Variant-Based Decidable Satisfiability in Initial Algebras with Predicates. Lecture Notes in Computer Science. 10855:306-322. https://doi.org/10.1007/978-3-319-94460-9_18S30632210855Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. TOCL 10(1), 4 (2009)Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. I&C 183(2), 140–164 (2003)Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability in the theory of inductive data types. JSAT 3, 21–46 (2007)Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_23Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures with Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74113-8Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite variant property. Technical report, CS Dept. University of Illinois at Urbana-Champaign (2014). http://hdl.handle.net/2142/47117Ciobaca., S.: Verification of composition of security protocols with applications to electronic voting. Ph.D. thesis, ENS Cachan (2011)Comon, H.: Complete axiomatizations of some quotient term algebras. TCS 118(2), 167–191 (1993)Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_22Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer Science, North-Holland, vol. B, pp. 243–320 (1990)Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for lists, multisets, compact lists, and sets. TOCL 9(3), 15 (2008)Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding decision procedures to SMT solvers using axioms with triggers. JAR 56(4), 387–457 (2016)Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. JALP 81, 898–928 (2012)Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. TCS 105, 217–273 (1992)Gutiérrez, R., Meseguer, J.: Variant satisfiability in initial algebras with predicates. Technical report, CS Department, University of Illinois at Urbana-Champaign (2018). http://hdl.handle.net/2142/99039Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SICOMP 15, 1155–1194 (1986)Kroening, D., Strichman, O.: Decision Procedures - An algorithmic point of view. Texts in TCS. An EATCS Series. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74105-3Lynch, C., Morawska, B.: Automatic decidability. In: Proceedings of LICS 2002, p. 7. IEEE Computer Society (2002)Lynch, C., Tran, D.-K.: Automatic decidability and combinability revisited. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 328–344. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_22Meseguer, J.: Variant-based satisfiability in initial algebras. SCP 154, 3–41 (2018)Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. TCS 672, 1–35 (2017)Meseguer, J., Goguen, J.: Initiality, induction and computability. In: Algebraic Methods in Semantics, Cambridge, pp. 459–541 (1985)Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, multiple representation and coercion problems. I&C 103(1), 114–158 (1993)Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. TOPLAS 1(2), 245–257 (1979)Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. In: Lucanu, D. (ed.) WRLA 2016. LNCS, vol. 9942, pp. 167–184. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44802-2_10Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an extensional theory of arrays. In: Proceedings of LICS 2001, pp. 29–37. IEEE (2001)Tushkanova, E., Giorgetti, A., Ringeissen, C., Kouchnarenko, O.: A rule-based system for automatic decidability and combinability. SCP 99, 3–23 (2015

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    Variant-Based Satisfiability

    Get PDF
    Although different satisfiability decision procedures can be combined by algorithms such as those of Nelson-Oppen or Shostak, current tools typically can only support a finite number of theories to use in such combinations. To make SMT solving more widely applicable, generic satisfiability algorithms that can allow a potentially infinite number of decidable theories to be user-definable, instead of needing to be built in by the implementers, are highly desirable. This work studies how folding variant narrowing, a generic unification algorithm that offers good extensibility in unification theory, can be extended to a generic variant-based satisfiability algorithm for the initial algebras of its user-specified input theories when such theories satisfy Comon-Delaune's finite variant property (FVP) and some extra conditions. Several, increasingly larger infinite classes of theories whose initial algebras enjoy decidable variant-based satisfiability are identified, and a method based on descent maps to bring other theories into these classes and to improve the generic algorithm's efficiency is proposed and illustrated with examples.Partially supported by NSF Grant CNS 13-19109.Ope

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Automatic Decidability and Combinability Revisited

    No full text
    International audienceWe present an inference system for clauses with ordering constraints, called Schematic Paramodulation. Then we show how to use Schematic Paramodulation to reason about decidability and stable infiniteness of finitely presented theories. We establish a close connection between the two properties: if Schematic Paramodulation for a theory halts then the theory is decidable; and if, in addition, Schematic Paramodulation does not derive the trivial equality X = Y then the theory is stably infinite. Decidability and stable infiniteness of component theories are conditions required for the Nelson-Oppen combination method. Schematic Paramodulation is loosely based on Lynch-Morawska's meta-saturation but it differs in several ways. First, it uses ordering constraints instead of constant constraints. Second, inferences into constrained variables are possible in Schematic Paramodulation. Finally, Schematic Paramodulation uses a special deletion rule to deal with theories for which Lynch-Morawska's meta-saturation does not halt
    corecore