491 research outputs found

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    Алгоритми компенсації оптичних спотворень на цифрових зображеннях

    Get PDF
    До бакалаврської дипломної роботи Перцова Вадим Миколайовича. На тему: «Алгоритми компенсації оптичних спотворень на цифрових зображеннях» Дана дипломна робота присвячена методам компенсації оптичних спотворень на цифрових зображеннях. В роботі зроблено аналіз алгоритмів компенсації оптичних спотворень та визначення найбільш оптимальних методів компенсації для цифрових зображеннях. Аналіз проводиться в пакеті прикладних програм MATLAB.This thesis is devoted to algorithms for compensating optical distortion of digital images. The paper analyzes the methods of optical distortion compensation and determines the most optimal compensation methods for digital images. The analysis is performed in the MATLAB application package

    Analysis of affine motion-compensated prediction and its application in aerial video coding

    Get PDF
    Motion-compensated prediction is used in video coding standards like High Efficiency Video Coding (HEVC) as one key element of data compression. Commonly, a purely translational motion model is employed. In order to also cover non-translational motion types like rotation or scaling (zoom) contained in aerial video sequences such as captured from unmanned aerial vehicles, an affine motion model can be applied. In this work, a model for affine motion-compensated prediction in video coding is derived by extending a model of purely translational motion-compensated prediction. Using the rate-distortion theory and the displacement estimation error caused by inaccurate affine motion parameter estimation, the minimum required bit rate for encoding the prediction error is determined. In this model, the affine transformation parameters are assumed to be affected by statistically independent estimation errors, which all follow a zero-mean Gaussian distributed probability density function (pdf). The joint pdf of the estimation errors is derived and transformed into the pdf of the location-dependent displacement estimation error in the image. The latter is related to the minimum required bit rate for encoding the prediction error. Similar to the derivations of the fully affine motion model, a four-parameter simplified affine model is investigated. It is of particular interest since such a model is considered for the upcoming video coding standard Versatile Video Coding (VVC) succeeding HEVC. As the simplified affine motion model is able to describe most motions contained in aerial surveillance videos, its application in video coding is justified. Both models provide valuable information about the minimum bit rate for encoding the prediction error as a function of affine estimation accuracies. Although the bit rate in motion-compensated prediction can be considerably reduced by using a motion model which is able to describe motion types occurring in the scene, the total video bit rate may remain quite high, depending on the motion estimation accuracy. Thus, at the example of aerial surveillance sequences, a codec independent region of interest- ( ROI -) based aerial video coding system is proposed that exploits the characteristic of such sequences. Assuming the captured scene to be planar, one frame can be projected into another using global motion compensation. Consequently, only new emerging areas have to be encoded. At the decoder, all new areas are registered into a so-called mosaic. From this, reconstructed frames are extracted and concatenated as a video sequence. To also preserve moving objects in the reconstructed video, local motion is detected and encoded in addition to the new areas. The proposed general ROI coding system was evaluated for very low and low bit rates between 100 and 5000 kbit/s for aerial sequences of HD resolution. It is able to reduce the bit rate by 90% compared to common HEVC coding of similar quality. Subjective tests confirm that the overall image quality of the ROI coding system exceeds that of a common HEVC encoder especially at very low bit rates below 1 Mbit/s. To prevent discontinuities introduced by inaccurate global motion estimation, as may be caused by radial lens distortion, a fully automatic in-loop radial distortion compensation is proposed. For this purpose, an unknown radial distortion compensation parameter that is constant for a group of frames is jointly estimated with the global motion. This parameter is optimized to minimize the distortions of the projections of frames in the mosaic. By this approach, the global motion compensation was improved by 0.27dB and discontinuities in the frames extracted from the mosaic are diminished. As an additional benefit, the generation of long-term mosaics becomes possible, constructed by more than 1500 aerial frames with unknown radial lens distortion and without any calibration or manual lens distortion compensation.Bewegungskompensierte Prädiktion wird in Videocodierstandards wie High Efficiency Video Coding (HEVC) als ein Schlüsselelement zur Datenkompression verwendet. Typischerweise kommt dabei ein rein translatorisches Bewegungsmodell zum Einsatz. Um auch nicht-translatorische Bewegungen wie Rotation oder Skalierung (Zoom) beschreiben zu können, welche beispielsweise in von unbemannten Luftfahrzeugen aufgezeichneten Luftbildvideosequenzen enthalten sind, kann ein affines Bewegungsmodell verwendet werden. In dieser Arbeit wird aufbauend auf einem rein translatorischen Bewegungsmodell ein Modell für affine bewegungskompensierte Prädiktion hergeleitet. Unter Verwendung der Raten-Verzerrungs-Theorie und des Verschiebungsschätzfehlers, welcher aus einer inexakten affinen Bewegungsschätzung resultiert, wird die minimal erforderliche Bitrate zur Codierung des Prädiktionsfehlers hergeleitet. Für die Modellierung wird angenommen, dass die sechs Parameter einer affinen Transformation durch statistisch unabhängige Schätzfehler gestört sind. Für jeden dieser Schätzfehler wird angenommen, dass die Wahrscheinlichkeitsdichteverteilung einer mittelwertfreien Gaußverteilung entspricht. Aus der Verbundwahrscheinlichkeitsdichte der Schätzfehler wird die Wahrscheinlichkeitsdichte des ortsabhängigen Verschiebungsschätzfehlers im Bild berechnet. Letztere wird schließlich zu der minimalen Bitrate in Beziehung gesetzt, welche für die Codierung des Prädiktionsfehlers benötigt wird. Analog zur obigen Ableitung des Modells für das voll-affine Bewegungsmodell wird ein vereinfachtes affines Bewegungsmodell mit vier Freiheitsgraden untersucht. Ein solches Modell wird derzeit auch im Rahmen der Standardisierung des HEVC-Nachfolgestandards Versatile Video Coding (VVC) evaluiert. Da das vereinfachte Modell bereits die meisten in Luftbildvideosequenzen vorkommenden Bewegungen abbilden kann, ist der Einsatz des vereinfachten affinen Modells in der Videocodierung gerechtfertigt. Beide Modelle liefern wertvolle Informationen über die minimal benötigte Bitrate zur Codierung des Prädiktionsfehlers in Abhängigkeit von der affinen Schätzgenauigkeit. Zwar kann die Bitrate mittels bewegungskompensierter Prädiktion durch Wahl eines geeigneten Bewegungsmodells und akkurater affiner Bewegungsschätzung stark reduziert werden, die verbleibende Gesamtbitrate kann allerdings dennoch relativ hoch sein. Deshalb wird am Beispiel von Luftbildvideosequenzen ein Regionen-von-Interesse- (ROI-) basiertes Codiersystem vorgeschlagen, welches spezielle Eigenschaften solcher Sequenzen ausnutzt. Unter der Annahme, dass eine aufgenommene Szene planar ist, kann ein Bild durch globale Bewegungskompensation in ein anderes projiziert werden. Deshalb müssen vom aktuellen Bild prinzipiell nur noch neu im Bild erscheinende Bereiche codiert werden. Am Decoder werden alle neuen Bildbereiche in einem gemeinsamen Mosaikbild registriert, aus dem schließlich die Einzelbilder der Videosequenz rekonstruiert werden können. Um auch lokale Bewegungen abzubilden, werden bewegte Objekte detektiert und zusätzlich zu neuen Bildbereichen als ROI codiert. Die Leistungsfähigkeit des ROI-Codiersystems wurde insbesondere für sehr niedrige und niedrige Bitraten von 100 bis 5000 kbit/s für Bilder in HD-Auflösung evaluiert. Im Vergleich zu einer gewöhnlichen HEVC-Codierung kann die Bitrate um 90% reduziert werden. Durch subjektive Tests wurde bestätigt, dass das ROI-Codiersystem insbesondere für sehr niedrige Bitraten von unter 1 Mbit/s deutlich leistungsfähiger in Bezug auf Detailauflösung und Gesamteindruck ist als ein herkömmliches HEVC-Referenzsystem. Um Diskontinuitäten in den rekonstruierten Videobildern zu vermeiden, die durch eine durch Linsenverzeichnungen induzierte ungenaue globale Bewegungsschätzung entstehen können, wird eine automatische Radialverzeichnungskorrektur vorgeschlagen. Dabei wird ein unbekannter, jedoch über mehrere Bilder konstanter Korrekturparameter gemeinsam mit der globalen Bewegung geschätzt. Dieser Parameter wird derart optimiert, dass die Projektionen der Bilder in das Mosaik möglichst wenig verzerrt werden. Daraus resultiert eine um 0,27dB verbesserte globale Bewegungskompensation, wodurch weniger Diskontinuitäten in den aus dem Mosaik rekonstruierten Bildern entstehen. Dieses Verfahren ermöglicht zusätzlich die Erstellung von Langzeitmosaiken aus über 1500 Luftbildern mit unbekannter Radialverzeichnung und ohne manuelle Korrektur

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Segmentation of neuroanatomy in magnetic resonance images

    Get PDF
    Segmentation in neurological Magnetic Resonance Imaging (MRI) is necessary for volume measurement, feature extraction and for the three-dimensional display of neuroanatomy. This thesis proposes several automated and semi-automated methods which offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. Work has concentrated on the use of dual echo multi-slice spin-echo data sets in order to take advantage of the intrinsically multi-parametric nature of MRI. Such data is widely acquired clinically and segmentation therefore does not require additional scans. The literature has been reviewed. Factors affecting image non-uniformity for a modem 1.5 Tesla imager have been investigated. These investigations demonstrate that a robust, fast, automatic three-dimensional non-uniformity correction may be applied to data as a pre-processing step. The merit of using an anisotropic smoothing method for noisy data has been demonstrated. Several approaches to neurological MRI segmentation have been developed. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing, two threshold based techniques and a fast radial CSF identification approach are proposed to identify the intracranial region contour in each slice of the data set. Once isolated, the intracranial region is further processed to identify CSF, and, depending upon the MRI pulse sequence used, the brain itself may be sub-divided into grey matter and white matter using semiautomatic contrast enhancement and clustering methods. The segmentation of Multiple Sclerosis (MS) plaques has also been considered. The utility of the stack, a data driven multi-resolution approach to segmentation, has been investigated, and several improvements to the method suggested. The factors affecting the intrinsic accuracy of neurological volume measurement in MRI have been studied and their magnitudes determined for spin-echo imaging. Geometric distortion - both object dependent and object independent - has been considered, as well as slice warp, slice profile, slice position and the partial volume effect. Finally, the accuracy of the approaches to segmentation developed in this thesis have been evaluated. Intracranial volume measurements are within 5% of expert observers' measurements, white matter volumes within 10%, and CSF volumes consistently lower than the expert observers' measurements due to the observers' inability to take the partial volume effect into account

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    Algorithms for Image Analysis in Traffic Surveillance Systems

    Get PDF
    Import 23/07/2015The presence of various surveillance systems in many areas of the modern society is indisputable and the most perceptible are the video surveillance systems. This thesis mainly describes novel algorithm for vision-based estimation of the parking lot occupancy and the closely related topics of pre-processing of images captured under harsh conditions. The developed algorithms have their practical application in the parking guidance systems which are still more popular. One part of this work also tries to contribute to the specific area of computer graphics denoted as direct volume rendering (DVR).Přítomnost nejrůznějších dohledových systémů v mnoha oblastech soudobé společnosti je nesporná a systémy pro monitorování dopravy jsou těmi nejviditelnějšími. Hlavní část této práce se věnuje popisu nového algoritmu pro detekci obsazenosti parkovacích míst pomocí analýzy obrazu získaného z kamerového systému. Práce se také zabývá tématy úzce souvisejícími s předzpracováním obrazu získaného za ztížených podmínek. Vyvinuté algoritmy mají své praktické uplatnění zejména v oblasti pomocných parkovacích systémů, které se stávají čím dál tím více populárními. Jedna část této práce se snaží přispět do oblasti počítačové grafiky označované jako přímá vizualizace objemových dat.Prezenční460 - Katedra informatikyvyhově

    Medical image registration and soft tissue deformation for image guided surgery system

    Get PDF
    In parallel with the developments in imaging modalities, image-guided surgery (IGS) can now provide the surgeon with high quality three-dimensional images depicting human anatomy. Although IGS is now in widely use in neurosurgery, there remain some limitations that must be overcome before it can be employed in more general minimally invasive procedures. In this thesis, we have developed several contributions to the field of medical image registration and brain tissue deformation modeling. From the methodology point of view, medical image registration algorithms can be classified into feature-based and intensity-based methods. One of the challenges faced by feature-based registration would be to determine which specific type of feature is desired for a given task and imaging type. For this reason, a point set registration using points and curves feature is proposed, which has the accuracy of registration based on points and the robustness of registration based on lines or curves. We have also tackled the problem on rigid registration of multimodal images using intensity-based similarity measures. Mutual information (MI) has emerged in recent years as a popular similarity metric and widely being recognized in the field of medical image registration. Unfortunately, it ignores the spatial information contained in the images such as edges and corners that might be useful in the image registration. We introduce a new similarity metric, called Adaptive Mutual Information (AMI) measure which incorporates the gradient spatial information. Salient pixels in the regions with high gradient value will contribute more in the estimation of mutual information of image pairs being registered. Experimental results showed that our proposed method improves registration accuracy and it is more robust to noise images which have large deviation from the reference image. Along with this direction, we further improve the technique to simultaneously use all information obtained from multiple features. Using multiple spatial features, the proposed algorithm is less sensitive to the effect of noise and some inherent variations, giving more accurate registration. Brain shift is a complex phenomenon and there are many different reasons causing brain deformation. We have investigated the pattern of brain deformation with respect to location and magnitude and to consider the implications of this pattern for correcting brain deformation in IGS systems. A computational finite element analysis was carried out to analyze the deformation and stress tensor experienced by the brain tissue during surgical operations. Finally, we have developed a prototype visualization display and navigation platform for interpretation of IGS. The system is based upon Qt (cross-platform GUI toolkit) and it integrates VTK (an object-oriented visualization library) as the rendering kernel. Based on the construction of a visualization software platform, we have laid a foundation on the future research to be extended to implement brain tissue deformation into the system
    corecore