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P R E FA C E

The presence of various surveillance systems in many areas of the modern
society is indisputable and the most perceptible are the video surveillance
systems. These vision-based systems cover wide range of applications
like safety, security preventing against dangerous situations, forensic tool,
crime and accident precaution, object tracking, monitoring real-time in-
dustrial processes, and environmental monitoring. In order to automate
all the aforementioned processes, sophisticated image analysis algorithms
need to be carried out.

The history of surveillance cameras dates back to as early as 1965.
Surveillance footage appeared with the introduction of inexpensive tapes
and began to be used as evidence. The most important event in the de-
velopment of this branch of industry was introduction of the charged
coupled device (CCD) cameras enabling footage in low light and at night.
With the continuously increasing computation power of specialized DSP
circuits and general computers more and more tremendous human mon-
itoring started to be superseded by autonomous intelligent surveillance
systems.

This thesis mainly describes novel algorithm for vision-based estima-
tion of the parking lot occupancy and the closely related topics of pre-
processing of images captured under harsh conditions. The developed
algorithms have their practical application in the parking guidance sys-
tems which are still more popular. One part of this work also try to con-
tribute to the specific area of computer graphics denoted as direct volume
rendering (DVR).

v



A C K N O W L E D G M E N T S

I wish to thank all those who helped me with my work. Especially to my
supervisor doc. Dr. Ing. Eduard Sojka for his advice and ideas during
my studies. My thanks also belong to my parents and grandma for their
long lasting support and to Lenka, she virtually gave the meaning to this
pilgrimage full of tremendous doubt and tenuous hope.

vi



C O N T E N T S

1 introduction 1

1.1 Visual Surveillance Systems . . . . . . . . . . . . . . . . . . . 2

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

2 state of the art 5

2.1 Motion Detection . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Object Recognition and Classification . . . . . . . . . . . . . 10

2.3 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Static Traffic Surveillance . . . . . . . . . . . . . . . . . . . . . 12

2.5 A Review of the Current State . . . . . . . . . . . . . . . . . . 20

3 parking spaces occupancy detection 21

3.1 Brief Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Shadows Attenuation . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Occlusion Handling . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Parking Spaces Extraction . . . . . . . . . . . . . . . . . . . . 27

3.5 Features Extraction . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Features Prioritization . . . . . . . . . . . . . . . . . . . . . . 31

3.7 CRF Toolkit for 3-class Cell Labeling . . . . . . . . . . . . . . 38

3.8 Evaluation and Conclusion . . . . . . . . . . . . . . . . . . . 44

4 hog features stabilization 49

4.1 Motivation and Rationale . . . . . . . . . . . . . . . . . . . . 49

4.2 Algorithm of Stabilization . . . . . . . . . . . . . . . . . . . . 51

4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 54

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 direct volume rendering 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Notation of Optical Models . . . . . . . . . . . . . . . . . . . 62

5.4 Interpolation of the Scalar Field . . . . . . . . . . . . . . . . . 63

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



Contents

6 conclusion 67

7 appendix 69

7.1 Parking Lot Scheme . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Parking Lot Occupancy . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Direct Volume Rendering . . . . . . . . . . . . . . . . . . . . 70

7.4 Author’s Bibliography . . . . . . . . . . . . . . . . . . . . . . 72

viii



L I S T O F F I G U R E S

Figure 2.1 Diagram of a generic background subtraction algo-
rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 Aperture problem . . . . . . . . . . . . . . . . . . . . . 10

Figure 3.1 The overview of our parking surveillance system . . 22

Figure 3.2 An example of projection to chromaticity space . . . 24

Figure 3.3 Camera calibration for shadow removal procedure . 25

Figure 3.4 Confidence maps . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.5 Normalized images of individual parking spaces . . 29

Figure 3.6 HOG features . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.7 Planar vector fields of a car hood normals . . . . . . 31

Figure 3.8 Scheme of the initial force field . . . . . . . . . . . . . 33

Figure 3.9 Examples of force and pressure fields . . . . . . . . . 34

Figure 3.10 Snapshots taken during features advection . . . . . . 35

Figure 3.11 Dependency of the parking space total weight on
the distance . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.12 Message passing . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.13 Conditional random field . . . . . . . . . . . . . . . . 42

Figure 3.14 Unary potential posteriors . . . . . . . . . . . . . . . . 43

Figure 3.15 Cells labeling . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.1 Diagram of background subtraction method with
stabilization . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.2 An example of mixture of 9 Gaussians . . . . . . . . . 55

Figure 4.3 Shifts of cells in HOG . . . . . . . . . . . . . . . . . . 56

Figure 4.4 Evaluation of HOG stabilization . . . . . . . . . . . . 57

Figure 4.5 Receiver operating characteristic for three different
search radii . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.1 The scheme for calculation of the line integral . . . . 64

Figure 5.2 Examples of DVR images . . . . . . . . . . . . . . . . 66

Figure 7.1 Parking lot scheme . . . . . . . . . . . . . . . . . . . . 69

Figure 7.2 Parking lot occupancy . . . . . . . . . . . . . . . . . . 70

ix



L I S T O F TA B L E S

Table 3.1 Results of our algorithm without contextual con-
straints . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 3.2 Results of our algorithm with CRF . . . . . . . . . . . 47

Table 3.3 Comparison of our algorithms against the selected
methods . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 4.1 Example of the distance matrix of metric ρ1 . . . . . . 53

Table 4.2 Example of the distance matrix of metric ρ2 . . . . . . 53

Table 4.3 Essential values of presented method’s parameters
used during evaluation . . . . . . . . . . . . . . . . . . 54

Table 4.4 Contingency table of four possible conclusions that
can be drawn in a statistical hypothesis test . . . . . . 56

Table 4.5 The results of original MoG and proposed method
compared with the reference background mask . . . 60

Table 7.1 Coefficients of the trilinear interpolation polynomial 71

x



1
I N T R O D U C T I O N

The aim of the dissertation thesis is to present the actual state of the
algorithms and methods applied in the vision-based traffic surveillance
systems and to propose the concept of the solution of the problems en-
countered in the specific area of the parking guidance systems. Primarily,
we will focus on the algorithms for parking space occupancy detection
and the closely related areas like motion detection and object tracking in
the parking lot environment. The dissertation thesis contains, as the main
part, a new discriminative classifier of parking lot occupancy devised on
the theoretical foundations of random fields. The practical relevance of
this research is encouraged by the interest of automotive industry.

Visual surveillance systems include a wide range of the computer vi-
sion related areas. Some of the most significant areas are motion detec-
tion, moving object classification, tracking, activity understanding and se-
mantic description. Typical applications include traffic surveillance, secu-
rity, classification of activities and behaviours, the pre-crash safety system
of a vehicle, and various commercial applications like license plate recog-
nition, toll road or speeding detection systems. In addition to these com-
mon usages, there are also more exotic applications like a Martian dust
devil tracking. The Jet Propulsion Laboratory, which works closely with
NASA, is investigating the abundance of the dust devils as they moves
across the surface of planet Mars in Argyre Planitia and Hellas Basin [38].
Relevance of autonomous visual systems shows up also in the case of
recent Curiosity rover mission. The mission uses radio relays via Mars
orbiters as the principal means of communication between Curiosity and
the Deep Space Network of antennas on Earth with a round-trip commu-
nications delay of nearly 30 minutes. The new on-board software enables
autonomous navigation giving the rover autonomous hazard avoidance
capabilities during the drives.
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1.1 visual surveillance systems

1.1 visual surveillance systems

Video-based surveillance systems had evolved into sophisticated systems
during the last 70 years. One of the very first closed circuit television
(CCTV) systems was installed for observing the launch of the infamous
ballistic missile V-2 at Peenemünde, Germany in 1942. Since that time,
CCTV systems had successfully spread through many various applica-
tion areas including monitoring dangerous industrial processes, security
systems in banks, streets, stores, systems supporting transport safety and
traffic surveillance. The first generation of the traditional analogue cam-
eras connected by coaxial cables was replaced by the second generation in
the early 1990s. Replacing the videotape recorder with a digital recorder
(DVR) was the first step in the digital transition of video surveillance.
These hybrid systems evolved into completely IP-based third generation
devices and all of their components are digital and all transmissions are
done by IP protocol [68]. There is also the constant discussion about the
loss of privacy and liberty of people under surveillance. Prophetical Or-
well’s dystopia novel Nineteen Eighty-Four was first published in 1949

and introduced the Big Brother phenomenon. We could safely say that
it has come true now. For example, the Great Britain is recognized as a
leading user of CCTV and has roughly 4 million cameras installed in the
streets, i.e. one for every 15 people living in the country. It is also inter-
esting that only a small fraction of installed cameras are ever watched.
According the survey in [49], the ratio of camera to screen is between 1:4
and 1:78. This implies that the records are often watched only in case of
incident or emergency. Every technology can be potentially abused and
visual surveillance is no exception. On the opposite side, the camera sys-
tems play a very important role in gathering evidence of criminal activity
and can be effectively used to protect against vandalism.

Surveillance systems can be designed at various abstraction layers [106].
In some cases, we need only a simple motion detection, and sometimes
sophisticated analysis involving classification and even explanation is re-
quired. The overall capabilities of designed system depend largely on sen-
sors used for vehicle detection. The sensors can be divided into in-road
and over-roadway sensors [108]. Intrusive in-road sensors are embedded
in the pavement of the roadway or otherwise attached to the surface of the
roadway. Examples of in-roadway sensors include inductive loop detec-
tors, which require saw cuts in the pavement, weigh-in-motion sensors,
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1.1 visual surveillance systems

which are directly embedded in the pavement, magnetometers, which
may be embedded or placed underneath a paved roadway or bridge struc-
ture, and tape switches, micro loops, pneumatic road tubes, and piezo-
electric cables, which are mounted on the roadway surface. These sensors
generally represent applications of mature technologies. The drawbacks
to their use include disruption of traffic for installation and repair and
failures associated with installations in poor road surfaces and use of
substandard installation procedures. Non-intrusive over-roadway sensor
is one that is mounted above the surface of the roadway either above the
roadway itself or alongside the roadway, offset from the nearest traffic
lane by some distance. Examples of over-roadway sensors are machine
vision-based sensors that utilize cameras mounted on poles adjacent to
the roadway, on structures that span the roadway, or on traffic signal
mast arms over the roadway, microwave radar sensors mounted adjacent
to the roadway or over the lanes to be monitored, ultrasonic, passive in-
frared, and laser radar sensors normally mounted over the lanes to be
monitored (some passive infrared models can be mounted adjacent to the
roadway), and passive acoustic sensors mounted adjacent to the roadway.
Utilization of RFID for vehicle detection is described in [109]. It provides
the means for low cost installation and maintenance as well as possible
detection at high speed. The inherent drawback is the need to place
transponders in every vehicle [77]. In this thesis, we are exclusively in-
terested in vision-based surveillance technology bringing great flexibility,
wide variety of output data and large area of coverage.

Many of the stated problems are commonly solved in very different
ways. Some of the above mentioned tasks rely on proper motion seg-
mentation provided by reliable background subtraction algorithm. Other
methods are based on completely different approaches and do not use
any kind of explicit segmentation. Such methods utilize classifier or bag
of classifiers positioned at all the possible sub-windows in a given frame
and identifies the location of various objects of our interest in the scene.
We need to put some tracking algorithm on the top of the processing stack
to track the moving objects.

During the development phase, we need to define some reliable eval-
uation methodology. One of the key aspects of real world surveillance
application evaluation is robustness. Robustness is defined by the IEEE
as the degree to which a system or component can function correctly in
the presence of invalid inputs (e.g. data are deviated by the presence of
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1.2 outline of the thesis

noise) or stressful environment conditions (e.g. phase of the day or vari-
ous lighting) [78]. Human visual perception is very accurate and can be
used to generate ground truth data that can be used later to judge the
overall quality of designed algorithms and methods. Also, the choice of
video sequence on which the algorithms are evaluated has a large influ-
ence on the results. Desired computer vision system should imitate the
outcomes of human operator and we also expect that it will be able to
guarantee stable results over a long period of time [106]. The humans,
on the other side, are quite poor performers in the areas like monitoring
crowded areas or fast moving objects. Hoverer, many researchers in com-
puter vision are using different testing datasets making comparisons of
resulting systems a bit difficult.

1.2 outline of the thesis

The rest of the thesis is organized as follows. Chapter 2 brings the state
of the art algorithms and methods used in the area of motion detection,
tracking and vacant parking spaces detection. Author’s contribution and
the achieved results are given in Chapter 3. Partial improvement of well
known histogram of oriented gradient is presented in Chapter 4. Chap-
ter 5 brings the extension of the mathematical methods used for compu-
tation of confidence maps into the field of direct volume rendering. Con-
clusion and final thoughts are summarized in Chapter 6. List of author’s
publications is included in Section 7.4.
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2
S TAT E O F T H E A RT

This chapter deals with the state of the art in the area of motion detection,
object tracking and classification used in visual-based traffic surveillance
systems. We will focus on classical approaches that were successfully
applied in the above mentioned areas as well as in modern approaches
improving the accuracy and reliability of surveillance systems. The at-
tention will be paid especially to the algorithms and methods exploited
in the application area of traffic density evaluation and parking spaces
occupancy estimation.

The motion detection is the key component in the process of suspicious
behaviour analysis. Hence, we will briefly review some of the techniques
for background subtraction in Section 2.1. The basic principles of object
recognition and classification, which are indispensable for semantic label-
ing and image understanding, are mentioned in Section 2.2. The object
tracking aims at establishing the correspondence between objects across
frames. These algorithms also have high relevance for every surveillance
application, hence Section 2.3 is dedicated to this topic. Finally, the review
of vacant parking space detection methods follows in Section 2.4.

2.1 motion detection

The main goal of motion segmentation algorithms is to distinguish be-
tween moving foreground and stationary background. Frame differenc-
ing of temporally adjacent frames has been well studied since the late
70s [80]. The problem domain was originally constrained to segmenting
vehicles from a roadway. A naive approach is to detect the foreground
objects as the difference between the actual frame It (e.g. real function
having a bounded support and a finite nonzero integral) and an image B
representing the static background of analyzed scene. Two major inconve-
niences appear as soon as the image of static background is unavailable
or the background is not strictly static at all. This analysis has led the
researches to think of background image as the spatio-temporal function.
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2.1 motion detection

In fact, both proposed issues are very common and have to be treated by
every successful background subtraction algorithm.

Let us state some of the most fundamental rules and constraints that
must be obeyed. Firstly, the background image has not to be fixed. Sec-
ondly, the background model should also be adaptable to gradual or sud-
den illumination changes caused by various natural processes like Sun’s
movement, clouds, reflections, etc. Thirdly, the model should also ac-
commodate to the permanent observed scene changes. And finally, cam-
era oscillations and moving background objects such as trees or waves
can harm the overall performance of background subtraction process too.
Even small motions can cause large variations in the observed pixel val-
ues. These requirements can be met by building a representation of the
scene called the background model and then we can find deviations from
the model for each incoming frame [146]. We refer to this process as the
background subtraction.

We have addressed the aforementioned problem related to camera os-
cillations and we will treat this in Chapter 4 devoted to the HOG features
stabilization. But, in the following section, we will review some of the
most common techniques for motion detection.

2.1.1 Early Methods for Motion Detection

The basic method is frame differencing (2.1) of temporally adjacent frames.
The estimated background image is just the previous frame It−1. It evi-
dently works well only in the case of particular conditions. The method is
also very sensitive to the choice of threshold τ. The function m represents
a foreground mask in which the value 1 stands for a foreground pixel
and 0 means a background pixel

m(x, y) =


1 |It(x, y)− It−1(x, y)| > τ

0 otherwise
. (2.1)

Ideally, the threshold τ should be a function of the spatial location
(x, y). For example, the threshold should be smaller for the regions with
low contrast. One possible modification is proposed by Fuentes and Ve-
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2.1 motion detection

lastin [66]. They use the relative difference (2.2) rather than absolute
difference (2.1) to emphasize the contrast in the dark areas

m(x, y) =


1 |It(x,y)−Bt(x,y)|

Bt(x,y) > τ

0 otherwise
. (2.2)

Velastin [99] and Cuchiara [43] define the background Bt as the average,
resp. the median of previous n frames. However, such methods are
very memory consuming. Chien et al. [145] surmise that if a pixel is
stationary for the past several frames, then the probability is high that it
belongs to the background region. A background registration technique
is used to construct a reliable background image from the accumulated
frame difference information. They also show the importance of shadow
handling.

Elgammal et al. [53] present a non-parametric background model and
a background subtraction approach. The probability density function of
the pixel intensities is estimated using the normal kernel estimator K as

Px,y(It(x, y) = u) =
1
L

t−1

∑
i=t−L

K(u− Ii(x, y)) . (2.3)

During the subtraction process, the current pixel is matched not only to
the corresponding pixel in the background model, but also to the neigh-
borhood locations. Thus, this model can handle situations where the
background of the scene is cluttered and not completely static but con-
tains small motions such as tree branches and bushes.

Cheung and Kamath [42] propose the survey of existing background
subtraction algorithms supplemented by experimental results. They dis-
criminate background modeling as the heart of any background subtrac-
tion algorithm into two categories. The first one, denoted as non-recursive
techniques, uses a sliding window approach for background estimation
based on temporal variation of each pixel. Such techniques are highly
adaptive and require a large frame buffer. Some of the earlier mentioned
techniques including frame differencing, median filter and linear predic-
tive filter belong to this category. The second one, referred as recursive
techniques, do not maintain a buffer for background estimation. They
recursively update only a single background model derived from the
stream of incoming frames. As a result, all preceding frames affect the
current background model. Most schemes incorporate exponential decay
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2.1 motion detection

to reduce the influence of very old frames on actual model and make
it more flexible. The collection of the most remarkable algorithms that
belong into this category include approximated median filter [105, 119],
Kalman filter [90] and Mixture of Gaussians (MoG) [65, 115].

The work of Friedman [65] explicitly models the values of all the pixels
as one particular type and classify the pixel values into three predeter-
mined distributions. The simple form incorporating only one Gaussian
distribution proposed in [139] is not sufficient to represent multimodal
background. Multimodality is a very natural property of nearly every real
image sequence and occurs in situations when some pixel is periodically
occupied by a small closed set of brightness values. Such behaviour is of-
ten related with the areas containing high frequencies (e.g. tree branches,
water level).

Especially, MoG enjoys tremendous popularity because of its ability to
effectively model multimodal background. Stauffer and Grimson [127]
model the values of a particular pixel as a mixture of Gaussians

fX|k(X|k, Θk) =
1

(2π)
n
2 |Σk|

1
2

e−
1
2 (X−µk)

T ∑−1
k (X−µk) , (2.4)

where Θk = {µk, σk} and the covariance matrix Σk = σ2
k I. The index

k̂ denotes the particular surface appeared on the position of a modeled
pixel and can be obtained with the aim of the Bayes theorem as follows

k̂ = arg max
k

P(k) fX|k(X|k, Θk) . (2.5)

By the 1999, when MoG appeared for the first time, many reimplemen-
tations were created. The tutorial paper [115] describes a practical im-
plementation of the Stauffer-Grimson algorithm and provides adequate
information about the underlying statistical theory. In the report [30],
Bilmes studies the maximum-likelihood parameter estimation problem
and how the Expectation Maximization (EM) algorithm can be used for
its solution.

As can be seen in Fig. 2.1, a generic background subtraction algorithm
consist of few common parts. The most important one is depicted in the
flow diagram as a background modeling process. But for a good overall
tracking performance, the preprocessing and data validation steps are
indispensable.
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2.1 motion detection

Preprocessing

Video 

Frames

Background 

Modeling

Foreground 

Detection

Data 
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Foreground 

Mask

Delay

Figure 2.1: Flow diagram of a generic background subtraction algorithm
[42]

Another approach how to capture the motion in the image sequences
is optical flow. Optical flow is a dense field of displacement vectors that
defines the translation of each pixel [146]. It is computed using the bright-
ness constraint, which assumes brightness constancy of corresponding
pixels in consecutive frames [69]. However, this definition gives rise to
the ill-posed problem. This is the well known aperture problem in optical
flow (see Fig. 3.3). A popular method for computing optical flow is the
differential method of Lucas and Kanade [101] solving the basic optical
flow equations by the least squares method. Horn and Schunck [69] com-
bined the gradient constraint with a global smoothness term to estimate
the velocity field v minimizing the expression

Ω
(∇I · v + It)

2 + λ2(∥vx∥2 + ∥vy∥2)dx dy (2.6)

over the image domain Ω, where λ controls the influence of the smooth-
ness term. In order to handle discontinuities in optical flow, many new
concepts were developed. In [36], the authors proposed a novel varia-
tional approach that integrates coarse-to-fine strategy using the so-called
warping technique with a solid numerical method.

We should also take in account the influence of environment in which
the camera is placed. Unfortunately, complications occur on a regular ba-
sis. One of the most apparent problem in motion detection is an unstable
camera support. In [82], the authors provide a method for reducing cam-
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2.2 object recognition and classification

(a) Rotating barber’s pole (b) Real motion field (c) Optical flow field

Figure 2.2: (a) Barber’s pole is rotating around its length-axis and induces
apparent motion of black strips pattern in the image. Observer
is unable to judge the correct motion field (b) as we are able
to measure only the component of the optical flow (c) that is
in the direction of the intensity gradient. This phenomenon is
known as an aperture problem

era jitter. An object is assumed to be moving if its dynamical behaviour
is different from the average dynamics observed in a reference sequence.

Im et al. in [79] propose wavelet-based moving object segmentation
using high frequency coefficients in wavelet subbands. Antić et al. [25]
propose a novel wavelet-based method for robust feature extraction and
tracking. They also claim that extremely harsh conditions can occur
and violate the premises of the statistical regularity and predictability
of background pixels. The goal of our paper [2] was to eliminate the un-
favourable influence of camera related phenomena like sudden changes
of overall image brightness caused by the auto-exposure control and to
overcome camera jitter from unstable support.

2.2 object recognition and classification

In the previous section, we have mentioned a few common methods spe-
cialized on the detection of motion in image sequences. To some extent,
we considered this process as a classification of independent pixels in
time. The global differential methods for optical flow computation are an
exception. In this section, we will review some higher-level classification
methods that are fundamental for image understanding.
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2.3 object tracking

Associating the regions in images with semantic labels can significantly
improve the overall performance of many computer vision applications.
The main objective is to group the individual pixels into clusters based
on low-level features. These features are crucial for image representa-
tion and should preserve all relevant information of the input imagery
in a compact way. The amount of information in the feature set or fea-
ture vector is also constrained by the learning model. Early works used
the features extracted regularly from the whole image. More recent ap-
proaches exploit the strategy of patches extracted at the points of interest.
The representation can be based only on appearance or the location can
be included. The invariance of features is an another important factor. We
recognize the invariance to rotation, scale, translation, illumination, occlu-
sion, and clutter. From the statistical viewpoint, object categorization can
be divided into discriminative methods modeling posterior probabilities
(i.e. P(class|image)) and generative (or descriptive) methods modeling
likelihood and prior (i.e. P(image|class) and P(class))

P(class|image)
P(¬class|image)

=
P(image|class)

P(image|¬class)
P(class)

P(¬class)
. (2.7)

For example, MoG and other types of mixture models belong to gener-
ative methods. In the case of generative methods training, we are maxi-
mizing the likelihood. Discriminative models include logistic regression,
support vector machines (SVM), boosting, neural networks. For the train-
ing of discriminative methods, we need a set of negative images. Object
classification is also significantly affected by semantic context in image
[118, 117]. Generally speaking, contextual recognition is maximizing a
scene probability function that incorporates the output of individual ob-
ject detectors and pairwise interactions between the objects [88].

2.3 object tracking

The aim of object tracking is to generate the trajectory of a moving object
over a period of time [146]. The main function of object tracker is to
establish the correspondence between the successive instances of tracked
object across the individual frames. Object tracking is still a non trivial
problem by virtue of the projection of 3D real-world coordinates into 2D
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2.4 static traffic surveillance

image plane, complex motion and geometry of nonrigid objects, partial
and full object occlusions.

Tracking can be formulated as frame by frame association of detections
based on geometry and dynamics without particular appearance mod-
els. Other class of trackers utilizes the appearance models coupled with
geometry and dynamics. The most advanced approaches furthermore in-
tegrate detection and tracking in a Bayesian framework, combining the
appearance models with an observation density, dynamics, and proba-
bilistic inference of the posterior state density [56]. The shape and ap-
pearance models significantly affect the motion models. For example, if
an object is represented as a single point, then only a simple translational
model can be used [146]. Most of the rigid objects can be represented by
regular geometric shapes like an ellipse. The shape of nonrigid objects
may be characterized by a silhouette or contour.

The general problem of every object tracking algorithm is how to deal
with multiple targets in the image. One possibility is to generate a joint-
space involving the number of targets and their possible configurations.
Unfortunately, the dimension of state space grows rapidly. In this case,
the computational complexity can be reduced by sophisticated sampling
techniques like Metropolis-Hastings [91]. Another commonly used solu-
tion is to assign one tracker per each object, which simplifies the state
space representation [89]. Recently, Kalal et al. [87] present interest-
ing framework combining median-flow tracker, P-N learning and on-line
trained 1-NN classifier.

2.4 static traffic surveillance

In this section, we will focus on a specific kind of traffic surveillance sys-
tems. So called static transport represents the transport branch special-
ized on stationary aspects of transportation. In the present time, we are
the witnesses of rapidly deteriorating situation in car parking. It is not
just a waste of time for the driver to find a free parking space, it also has
a negative impact on pollution in large agglomerations. From our point
of view, the problem of identifying free parking spaces in a large parking
lot is a quite interesting task. Despite the fact that the parked cars are
mostly static, there is a lot in common with moving cars surveillance.
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2.4 static traffic surveillance

In the past decade, quite a lot of works concerned in vacant park-
ing space detection appeared. There exist four main categories of park-
ing guidance systems using different technologies including the counter-
based, wired-sensor-based, wireless-sensor-based and vision-based ap-
proaches [31]. The vision-based systems promise a number of advantages
over the intrusive sensors, like inductive loops, infra red sensors, a com-
bination of ultrasonic and magnetic sensors [96] and other detectors men-
tioned in Chapter 1. Image analysis provides several effective techniques
to detect the presence of various objects captured within camera’s field
of view. The first parking guidance information system was deployed
in Aachen, Germany in 1971 [98]. The goals of parking lot surveillance
include counting parked cars, identifying the location, size or type of
parked vehicles, monitoring the movement of cars and activities of hu-
mans. In the following text, we will try to give an overview of the state
of the art in parking space detection.

The parking space state is fully described by only two disjoint labels
indicating the place as occupied or vacant. These two states are the ele-
ments of the output set L = {o ≡ occupied, v ≡ vacant}. From this point
of view, the solution seems to be easy. In reality, we are facing to vari-
ous conditions significantly influencing the whole process of parking lot
images analysis. Our main goal is to find a function that will be, under
certain conditions, able to assign a correct state from the set L to each
parking space with high confidence.

The previously published methods can be divided into three distinct
classes that differ in the principle used to determine the parking space
state. The first class of those methods rely on a proper car detector. When
no car is overlapping the area of parking space, the space is marked as
vacant. To detect the location of the object of interest in image we can
use various visual object recognition methods, such as comparison with
reference images using normalized principal component of feature char-
acteristics, path tracking and other methods mentioned in Subsection 2.2.

In [137], Wang and Hanson introduced the parking lot analysis from
aerial images based on extraction of the height features of objects on the
ground with a stereo terrain reconstruction algorithm. The elevation map
is generated from a pair of images and all the elevated areas correspond
with parked vehicles, while the ground areas appear to be flat. The sur-
face inclination can violate simple global thresholding algorithm so the
authors have solved this problem by the surface texture and microstruc-
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ture extraction system where the microstructures (sizes are near the limit
of image resolution) are distinguished from large scale structures (build-
ings). The extracted rectangles may cover more than one vehicle. To sepa-
rate the adjacent cars, the author suggest to utilize the a priori knowledge
of typical car size and the parking spaces markers that can be considered
as regularly aligned microstructure pattern. Usage of this approach is
rather limited for sparsely populated parking lots. This limitation can
be reduced by combination with Chellappa’s et al. system [40]. This
approach is more relevant for a specific use than parking vacancy moni-
toring. More recent paper of Yang et al. [143] introduced the fast cascade
boosting approach for detecting vehicles in 2D grayscale aerial images.

Yamada and Mizuno [142] analyzed the distribution of segments in
parking cell and their work has significantly influenced other researchers.
The level of cell fragmentation is supposed to be related with the presence
of car. Vehicles are composed of numerous components that are usually
rendered as segments and the number of segments, weighted by area, is
used to decide whether a place is vacant or occupied. The following score
g = (∑n

k=1 kSk)/(∑n
k=1 Sk) is used to categorize the state of parking space.

Here n denotes the total number of segments, and S1, . . . , Sn denote the
areas of individual segments in decreasing order. The score g is higher
if the segments are more uniform. Only a single threshold is used to
evaluate the actual state of every monitored parking place. Contrary to
[137, 40], common camera placed at a high position is used instead of
aerial images. The authors reported a 98.7 % successful detection rate.

Funck et al. [67] assume that the constant video streams are not avail-
able in common surveillance installations. Therefore, the techniques like
motion detection and object tracking are not applicable and the entire
process of parking lot analysis rely only on a single image. They also sug-
gest that the detection of individual vehicles is not promising. Instead,
the parking place status is estimated comparing the whole image to the
reference image of empty places. The reference base should contain all
possible illumination situations, but this is not feasible. So the authors
build a model of the empty place by applying PCA on a number of im-
ages under different illuminations. Via eigenspace reconstruction, they re-
construct the image of empty parking lot under the present illumination
conditions and all cars will disappear. The difference image is further
thresholded and morphologically filtered. The authors also admit that
the texture properties of vehicles are very similar to those of the parking
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spaces, which limits the capabilities of texture analysis to the cases where
the cars are distant enough. Testing the system on real world sequences
yields an average error rate of approximately 10 %.

Foresti et al. [63] focused on the high-level event recognition to analyze
the events observed in the scene of parking lot. The moving objects are
extracted by comparing the input image with a background image and
the background model is updated using the Kalman filter. Blob tracking
is based on the Mean Shift algorithm. Object classification is done by
adaptive high order neural tree (AHNT) learned by feature vector com-
posed of eight distances representing the geometric properties of each
blob. The preliminary object classification obtained on the basis of n con-
secutive frames is analyzed in a winner-take-all fashion. The proposed
system is also able to detect suspicious behaviour of pedestrians. A typ-
ical trajectory of walking pedestrian is almost rectilinear for a long time.
An off-line event database is built of features containing the coefficients of
Bézier curve that approximates the object trajectory. Spatially and tempo-
rally consecutive simple events are further hierarchized creating compos-
ite events. The composite events represent a complex chain of successive
actions, like moving vehicle stopping in a given parking space, a person
exiting that vehicle and moving out of the parking lot area. Any violation
of the predefined rules may cause an alarm.

Lin et al. [98] use an adaptive background model for each parking
space. They suppose that the distribution of parking spaces is known
in advance. To prevent the color from shifting due to different weather
conditions, a color balancing algorithm, more accurately gray world as-
sumption, is used. The background images are obtained with the aim of
median applied on the sequence of 60 images. The background pixels of
every parking place are represented by the mean and standard deviation.
The foreground is extracted based on the difference of the background
image and the actual frame. The influence of shadows is deduced from
the foreground images using chrominance information.

Wu and Zhang [140] introduced a new approach in the sense of shadow
and occlusion handling. Wu et al. also published, in a slightly improved
version, the same approach in [141]. Each parking row is extracted from
the parking lot image. The parking spaces are grouped into detection
patches containing three adjoining parking spaces. During the training
process, the authors manually classify all parking spaces with eight space
statuses encoding the state of each place in the patch. The ground color
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model is represented by a single Gaussian representing the probability of
the pixel value belonging to the parking lot background. Only the three
scanning lines are used to get the values of pixels from the normalized
image of patch. In this way, 75× 3 features per patch are extracted. PCA
reduces the number of critical features to 50. The classification is done
by the general binary SVM classifier adapted by one-against-one strategy
that takes all possible two-class combinations. Therefore, 28 SVMs are
trained. Different labeling of overlapping patches can occur and, basi-
cally, there are three kinds of conflict states: no conflict, one conflict, two
conflicts. The authors applied Markov random field (MRF) to correct this
labeling inconsistency.

In [132], True manually extracts the overhead images of individual
parking spaces. Then the author converts obtained images from RGB
color space to L*a*b and throws away the luminance channel. Afterwards,
the color histograms for both chrominance channels are constructed. Each
histogram contains 32 bins and is classified by k-nearest neighbour classi-
fier equipped with Chi-squared distance χ2. Alternatively, the author also
used a binary SVM to classify the parking spaces based on the assump-
tion that all vacant parking spaces have a similar color. The Harris corner
detector is used to extract significant features that are in a vocabulary of
vehicle features and another of non-vehicle features. Vocabulary consists
of small 25× 25 images centered at each feature point. The individual
features found in the parking space image are compared to the features
in the vocabulary using normalized cross correlation for final classifica-
tion. Unfortunately, the author does not provide a method for combining
the results of color histogram classification and vehicle feature detection.
Classification accuracy varies between 69 % and 91 %.

Sastre et al. [121] propose a methodology to compute a 2D homography
applying the homomorphic method for solving systems of equations over
Z. The Gabor filters are proposed for texture feature extraction of the
background of parking lot since the Gabor filters can be considered as an
edge detector. A two dimensional Gabor function g(x, y) and its Fourier
transform G(x, y) = F{g(x, y)}

G(x, y) = exp


−1

2


u−W

σu

2

+


v
σv

2


, (2.8)

where σu = 1/(2πσx) and σv = 1/(2πσy). The Gaussian’s major and
minor axis are determined through σx and σy. A Gabor feature image
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S(x, y) is obtained by convolution of an input image I(x, y) with the Ga-
bor function g(x, y) as follows

S(x, y) =

Ω

I(ϕ, φ)g(x− ϕ, y− φ)dϕ dφ . (2.9)

To extract the texture features, the authors introduced a generating
function enabling scaling and rotation of the mother Gabor function g(x, y).
Generated dictionary of self-similar Gabor filters forms a complete non-
orthogonal basis set implying the presence of redundant information in
the filtered image.

Huang et al. [71, 70] proposed a robust parking space detection based
on the three-layer Bayesian hierarchical framework (BHF). The detection
framework consists of an observation layer, where each node represents a
local feature, the middle layer is a hidden labeling layer representing the
categorization of local region and the third layer indicates the semantic
hypotheses of the parking spaces. The inter-layer connection is subject
of actual parking spaces adjacency. With the aim of Bayesian statistics,
the parking space detection problem can be solved by determining of
a maximum a posteriori probability (MAP). The authors aim to find the
most reasonable space status SL and pixel labeling HL based on the image
partition DL according to the equation

H∗L, S∗L = arg max
HL,SL

P(HL, SL|DL) . (2.10)

Nallamuthu and Lokala [110] compute, for every pixel in the actual im-
age, the absolute difference with the reference image of the empty park-
ing lot. The individual pixels are considered occluded or unoccluded
according to the resulting values and an experimentally estimated thresh-
old. The interocclusions are handled through manually marked regions
that get occluded only when there is a car parked in particular space. The
ratio of occluded to non occluded pixels indicates the parking space state.
The secondary approach is based on the difference of the 3D color his-
tograms of the background and the current image. The euclidean distance
between these two histograms identifies the parking state as well. In the
third approach, the authors use the texture matching and the morpholog-
ical operators to distinguish between the parking space states. Reported
success rates vary between 59 % and 70 %.
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Bong et al. [31] begin with automatic identification of every parking
spaces in the image. Described approach is restricted to the situation
when white lines separating the individual parking spaces are visible dur-
ing the initialization phase. An unoccupied parking space is represented
only by a single value and actual state is estimated via thresholding. To
minimize the influence of projected shadows the authors suggest the use
of median filtering and Sobel operators for edge detection. The final oc-
cupancy detection accuracy is more than 93 %.

Ichihashi et al. [75, 76] introduced a parking space state classifier based
on fuzzy c-means (FCM) clustering and hyper parameter tuning by parti-
cle swarm optimization (PSO). FCM is an extension of k-means, the pop-
ular simple clustering technique [74, 73]. While k-means discovers hard
clusters (a point belong to only one cluster), FCM is a more statistically
formalized method and discovers soft clusters where a particular point
can belong to more than one cluster with certain probability.

Chen et al. [41] proposed a system with multiple cameras for monitor-
ing a wide parking area. Affine transformations are used to merge the
images obtained from these cameras. The system consists of two compo-
nents. Object tracking is based on background subtraction and connected
component analysis. Parking space detection is carried out by an edge
based scheme. The authors assume that, when a vacant parking space
is occupied by a vehicle, its edge density will increase. To tackle the
occlusion problem, the parking space is divided into four weighted cells.

The method of Dalka et al. [46, 47] works similarly to [41]. The moving
objects are detected by background subtraction utilizing MoG and the
resulting blobs are tracked with Kalman filter. To reduce the false-positive
results, only the objects entering the camera field of view from the outside
are taken into account.

Some specific type of parking lot management system is represented by
automatic parking systems. These systems extend the variety of on board
systems of modern cars and can be regarded as an evolution of com-
mon parking sensors. A vision-based parking assistant systems for au-
tonomous parking [86] is based on L-shaped pattern search in the depth
map. This first estimate is refined by a more sophisticated generic vehicle
surface model minimizing the distance between the object model and the
point cloud.

Jung et al. [83] propose stereo vision-based localization of free park-
ing site for automatic parking system. They use the four-pixel classes
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reflecting the intensity configuration of pixel neighbourhood as features
for stereo matching which is fast and robust to noise. Stereo matching is
performed only on pixels classified as vertical edge. The proposed system
was later extended in [84, 85].

Suhr et al. [131] developed a vacant parking space detection system
using motion stereo based 3D reconstruction. An image sequence is
acquired with a single rear view fish eye camera and the view behind
the automobile is three dimensionally reconstructed by using point corre-
spondences. The detection accuracy of roughly 90 % was achieved.

Bravo et al. [34] considered two kinds of features for the parking space
analysis: edge density [41] and pyramidal histogram of oriented gradi-
ents (PHOG) proposed by Bosch et al. [32]. PHOG features represent an
image by its local shape and the spatial layout of the shape. To classify
every parking space, its PHOG features are concatenated and compared
with training samples of occupied parking spaces using a Chi-squared
distance χ2. On the three 6-hour test sequences, they achieved the accu-
racy ranging from 0.821 to 0.937 for PHOG and 0.523 to 0.853 for the edge
density features.

Recently, Suhr and Jung [130] presented a vacant parking slot detec-
tion and tracking based on around view monitor (AVM) system coupled
with an ultrasonic sensor-based automatic parking system. Parking slot
marking in AVM image sequences are detected with the hierarchical tree
structure-based method [129] while the vehicle is passing by.

It is important to note that some of described approaches used images
with very minimal vehicle to vehicle occlusion [132]. Ablavsky et al. [24,
23] proposed a representation for scenes containing relocatable objects
that can cause partial occlusions. Also, many test sequences are biased
towards ideal weather conditions with the exception of [75, 76].

Seo et al. [125, 124, 123] address the general problem of extracting the
entire parking lot structure from overhead imagery. Their approach is
based on straight lines extraction. The authors suggest to compute the
intensity gradient at each pixel and then quantize the gradient into the
directions using predefined ranges. A connected component algorithm is
then used to group the pixels assigned the same direction to form the line
supporting regions. The first principal eigenvector of a line supporting
region determines the direction of the line. The lines that are either too
short or too long from each of the line clusters are removed. The remain-
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ing lines are used for estimating the parameters of a parking row. SVM
is used to filter out the false parking spots.

2.5 a review of the current state

Visual-based parking guidance systems are experiencing increased inter-
est from parking operators, local authorities and also car manufacturers.
We can expect that this will be a long-term interest. From the view-
point of computer vision community, there are a lot of open questions.
The most recent publications introduced three-layer Bayesian hierarchical
framework [70] and the fuzzy c-means clustering [75] into the parking
space status decision process and at this moment, these two works can
be considered as the most advanced methods in this area. However, the
authors do not reflect the influence of, e.g. pedestrians on the status in-
ference. The performance of vacant parking space detection algorithms
deteriorate in the case of pedestrian presence. Also the influence of the
unpredictable lighting changes caused by car headlights is not solved in
any of the referenced paper. There is also lack of utilization of a priori
information about the parked vehicles geometry. Another problem is con-
nected with inter-object occlusions. Inter-space correlation proposed in
[141] significantly increased the detection accuracy via Markov Random
Field based correction.
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3
PA R K I N G S PA C E S O C C U PA N C Y D E T E C T I O N

In this chapter, we present an algorithm for estimating the occupancy of
individual parking spaces. Our method is based on a computer analy-
sis of images obtained by a camera system monitoring the activities on a
parking lot. The proposed method extensively uses a priori information
about the parking lot layout and the general shape of well-parked cars,
which is incorporated in a simplified probabilistic car model. Discrimi-
native features are extracted from a normalized image of every parking
space, the relevance of these gradient-based features is prioritized via
a selective flow, and furthermore, their spatial relationship is revealed
through an undirected graphical model. In contrary to other methods, we
strive to avoid the training phase to reduce the time required to bring the
system into a fully operational state. The reliability of the here devised
approach is evaluated on the set of video sequences captured during dif-
ferent phases of a day. The results are compared against the ground truth
data and the most profound methods as well.

citation The method presented here was published in [1, 4, 3] and
is cited in 17 conference papers, journal articles and dissertation thesis
among them in [58, 72, 122, 135, 81, 136, 50, 103].

3.1 brief overview

Video-based surveillance systems had evolved into sophisticated systems
during the last 70 years. During that time, CCTV systems had success-
fully spread through many various application areas including monitor-
ing dangerous industrial processes, security systems in banks, streets,
stores, systems supporting transport safety and traffic surveillance. In
this chapter, we will focus on a specific kind of traffic surveillance sys-
tems, on the so-called parking lot guidance systems and the related area
of image analysis as the vision-based systems promise a number of ad-
vantages over the intrusive sensors [96]. The very first parking guidance
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Figure 3.1: The overview of our parking surveillance system. A priori
known parking lot geometry, camera parameters, and proba-
bilistic car model provide all the data necessary to calculate
the confidence map for occlusion handling and expected car
surface normals which form the force field initiating the advec-
tion of HOG features obtained from normalized images. The
resulting flow prioritizes features that are conformal to the ex-
pected shape of a car and assign a weight to each cell. The
final decision about the parking space state is devised from
the labeling produced by CRF minimizing the related Gibbs
energy consisting of potentials based on weight values and
background GMM of an empty parking space

information system was deployed in Aachen, Germany in 1971 [98]. In
the present time, the problem of identifying free parking spaces in a large
parking lot is a quite interesting task. In the past decade, quite a lot of
work concerned in the vacant parking space detection appeared, e.g. [141,
70, 76]. There exist four main categories of parking guidance systems
using different technologies including the counter-based, wired-sensor-
based, wireless-sensor-based and vision-based approaches [31]. The goals
of parking lot surveillance include counting parked cars, identifying the
location, size or type of parked vehicles, monitoring the movement of cars
and the activities of humans.
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3.2 shadows attenuation

3.2 shadows attenuation

Shadow removal can be identified as a critical step in general processes
like object detection and tracking. Related methods can be categorized
according the feature based taxonomy into four categories: chromacity,
physical, geometry, and textures [120]. Here we focus briefly on creating
illumination invariant image from a single image acquired by common
digital still camera. These invariant images are also referred as intrinsic
images to express their independence of lighting. Only the intrinsic re-
flectivity of the object is captured and therefore object look like it has no
shading. Every single pixel of image is made up of two components. Illu-
mination characterizes light source (illuminant) and reflectance, property
of reflecting surface. Color components Rk, k ∈ {R, G, B} of every pixel
R in RGB color space can be described by equation

Rk = σ


ω
E(λ)S(λ)Qk(λ)dλ , (3.1)

where σ denotes Lambertian shading, E represents illumination spectral
power distribution function, S is spectral reflectance function and Qk is
for camera sensor sensitivity [52]. The integral is taken over visible wave-
lengths of light ω. If camera sensors are narrow band (i.e. similar to
Dirac’s delta function) so that Qk(λ) = qkδ(λ− λk), then we can reduce
Equation (3.1) to the form

Rk = σ


ω
E(λ)S(λ)qk dλ , (3.2)

with qk = Qk(λk) [60]. Furthermore, illumination function E can be ap-
proximated by Planck’s law modified for typical temperature ranges of
most light sources

E(λ, T) = Ic1λ−5e−
c2
Tλ , (3.3)

where c1 and c2 are constants, I controls light intensity and T is the tem-
perature of light [60]. Substituting term E(λ, T) in Equation (3.2) by Equa-
tion (3.3), we get narrow-band sensor response

Rk = σIc1λ−5
k e−

c2
Tλ S(λk)qk . (3.4)
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Figure 3.2: An example of projection of vector ρ onto a 2D chromaticity
plane (dashed triangle)

If every color component Rk is divided by it’s geometric mean RM, we
will remove intensity information I and Lambertian surface σ [52]

ck =
Rk

3


∏i∈{R,G,B} Ri

=
Rk
RM

. (3.5)

Now, the log version of ck is taken

ρk = log(ck) . (3.6)

For each color pixel R we get a vector ρ = (ρR, ρG, ρB)
⊤ representing a

point which lies on a plane orthogonal to the vector u = 1/
√

3(1, 1, 1)⊤.
We can project all these points onto a 2D chromaticity space [χ1, χ2]

P⊥u = I− uu⊤ = U⊤ ,
χ = Uρ .

(3.7)

where 3× 2 orthogonal matrix U is defined in [62] as

U =


1/
√

2 −1/
√

2 0
1/
√

6 1/
√

6 −2/
√

6


, (3.8)

and the projector P⊤u has two non-zero eigenvalues [61]. Described situa-
tion is for clarity depicted in Fig. 3.2.

The values (χ1, χ2) across different lighting tend to fall on a set of
straight lines in the 2D scatter plot (Fig. 3.3b). All lines should be parallel
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Figure 3.3: Calibration results: (a) R vectors of color patches from Gretag
Macbeth color checker. (b) Same vectors as projected onto a
2D chromaticity space. Samples of same color patch captured
under different lighting tend to lie on straight lines, e.g. dashed
line. Projecting these samples onto the thick black line we obtain
the shadow-free image

for given camera. As a final step, we get intrinsic image Î with aid of the
following equation

Î = χ1 cos(ϕ) + χ2 sin(ϕ) . (3.9)

To do so, we must find proper value of ϕ in which to project vector
χ such that the effect of illumination is significantly attenuated or com-
pletely removed. This parameter depends on the camera being used. The
simplest way to calibrate camera is to take pictures of multi-color surface
under many different lighting conditions (e.g. during the whole day). In
our experiments, we use Gretag Macbeth color checker. The main idea
behind the process of finding angle ϕ is described in [61].

After evaluating all captured calibration images of color checker under
different Planckian lighting, we get a set of ρ vectors (Fig. 3.3a). One
can reintegrate shadowless intrinsic image back into the original color
image, but this is not our case. Gray-scale image is fully suitable for
the next step. Our tests confirm conclusions from [64], because there
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is the obvious need for narrow band sensor. Sharpening procedure for
commonly used cameras is required.

3.3 occlusion handling

Occlusions significantly affect the performance of object recognition and
tracking algorithms. A lot of effort has been done in the area of occlu-
sion handling in dynamic scenes, e.g. [111, 144]. Occlusions are also very
common in parking lot images due to the spatial arrangement of parked
cars and camera position and also some parking spaces may be heavily
occluded by neighboring parked cars. In order to cope with inter-vehicle
occlusions, we propose a probabilistic 3D model of a vehicle. This model
represents all feasible positions of vehicle inside the parking space. In
the most simplistic way, the model can be represented by a cuboid po-
sitioned at the parking lot surface. The model itself is fully defined by
its width, length, height, position of center and yaw. These parameters
are treated as independent normally distributed random variables. As
a result, we obtain a 3D scalar field of 128× 128× 256 values represent-
ing the probabilities that the particular region inside the volume over a
single parking space belongs to a vehicle. This can be expressed as the
likelihood P(x|vehicle), where x represents some discrete element (voxel)
inside this scalar field. To put this model in the relation with the cam-
era, we can cast a ray through the continuous scalar field ρ : R3 → ⟨0, 1⟩
which is obtained as a trilinear interpolation of the discrete fields of likeli-
hoods P(x|vehicle). With the aim of basic calculus, we can formulate the
expression for the scalar field of occlusions h in terms of the line integral
along a piecewise smooth curve L (line of view made up of the set of
straight segments intersecting affected cells C, see for reference Fig. 5.1
on page 64) as follows

h(x, y) =


x∈C
P(x|vehicle) =


L
ρ(s)ds =

 b

a
ρ(r(t))

r′(t) dt

=
 b

a
ρ(r(t)) ˆ||d||dt =

 b

a
ρ(r(t))dt = · · · = ∑

i∈I

 ti+1

ti

3

∑
j=0

ajtj dt , (3.10)

where the ray r(t) = O + d̂ t is a bijective parameterization of the line
segment originating at the point r(a) coincident with the camera’s origin
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O and the end point r(b) that is the intersection with the parking lot
plane. In addition, the integral over the interval ⟨a, b⟩ is decomposed
into the sum of integrals over the set I of intervals ⟨ti, ti+1⟩ representing
the parametric coordinates of intersections of the ray r with the set of
affected cells C. The analytical derivation of parameters a0, a1, a2 and a3
is devised in Chapter 5 and we left them out of calculation in this chapter
to avoid unnecessary clutter. Returned scalar value of the function h
represents the degree of our believe that the certain position (x, y) in the
image of parking lot surface can be occluded exclusively by a well-parked
car (see Fig. 3.4a). The resulting confidence field for the i-th parking
space equals to ci(x, y) = 2hi(x, y) − h(x, y), where hi is the occlusion
map where only i-th parking place is occupied and h is the occlusion
map generated for the fully engaged parking lot. Figure 3.4b presents the
unprojected confidence field for the first parking space and the projected
version of the same field is in Fig. 3.4c.

3.4 parking spaces extraction

To extract the normalized images of individual parking spaces (see Fig. 3.5),
we use a so-called pinhole camera model

p′ = A [R|t] p (3.11)

projecting a 3D point p in homogeneous coordinates from the world-
space into the image plane using a perspective transformation. The joint
rotation-translation matrix or matrix of extrinsic parameters [R|t] is re-
vealed from a priori known correspondence between the set of at least
four object points and image points. The algorithm applied here is de-
vised in [147]. Furthermore, a camera matrix A contains the camera in-
trinsic parameters like principal point and focal lengths. The wide-angle
camera lenses suffer from perceptible geometric distortion. To reduce this
effect, we use the Brown-Conrady decentering distortion model catering
for both radial and tangential distortions [35].

3.5 features extraction

At this point, we have obtained the rectangular image of every parking
place, the related confidence field and we would like to extract the rele-
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↓ The 1st parking space in the 1st row

(a)

← occluded
part→

(b) (c) (d)

↑
unaffected area

(e)

Figure 3.4: (a) The scalar field h representing the parking lot surface oc-
clusions. Black level refers to completely occluded parts of the
parking ground. (b) The scalar field c1 represents the con-
fidence that the pixels may belong to a vehicle parked exclu-
sively on the first parking space. Black level refers to 100 % con-
fidence. (c) The projected version of the scalar field c1. White
stripe on the side of parking space is due to the occluding ve-
hicle parked on the neighboring slot. (d), (e) Examples of two
other confidence maps for two different parking spaces. (e)
Bottom white area is completely unaffected by a well parked
car and should not be taken into account

vant features that would allow us to discriminate between the two possi-
ble states of parking spaces.

The ability to clearly discriminate the various kinds of objects is the
key point of the robust feature set. Local object appearance and shape
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3.5 features extraction

(a) (b) (c) (d) (e) (f)

Figure 3.5: Normalized images of individual parking spaces. The images
(a)-(c) contain parking spaces from three different parking
rows viewed from different angles and distances. The same
apply to the occupied parking spaces (d)-(f), but the problem
is more pronounced due to the projection of car body parts
outside the corresponding region. For the details about the
parking lot arrangement, we refer the reader to Fig. 7.1

can often be characterized by the distribution of local intensity gradients
or edge directions. Dalal and Triggs [45] showed in their experiments
that the Histogram of Oriented Gradient (HOG) is one of the most suc-
cessful edge and gradient-based descriptor and significantly outperforms
existing feature sets for human or car detection. HOG is also very ro-
bust in the environments exhibiting large variations in appearances and
illuminations. The method is based on evaluating the well normalized
local histograms of image gradient orientations in a dense grid divided
into small spatial regions called cells. The cells can be either rectangular
or circular. Each cell is accumulating a weighted local 1D histogram of
gradient directions over the pixels of the cell. Normalization improves
the invariance to illumination and shadowing.

There also exist other well known and successful algorithms describing
the local features like SIFT descriptors [100], scale and rotation invariant
interest point detector and descriptor coined SURF [28], fast descriptor
for real-time applications BRIEF [37], rectified Haar wavelets [112], Haar-
like wavelets with AdaBoost [133, 134], low bit-rate descriptor CHoG [39],
highly discriminative texture descriptor invariant to monotonic gray level
changes LBP [138], SIFT-like descriptor that considers more spatial re-

29



3.5 features extraction

256

224

192

160

128

96

64

32

1

1 32 64 96 128

y

x

Figure 3.6: The results of HOG features extraction

gions for the histograms called GLOH. The comparison with many other
descriptors of local regions can be found in [107].

Since we know the camera position we can obtain the unwarped (or
normalized) image of every parking space and the related confidence
field ci. We extract the relevant features that would allow us to discrimi-
nate between the two possible states of parking spaces (see Fig. 3.6). We
use 8 × 16 grids of 8 × 8 pixel cells each containing β = 9 orientation
bins corresponding to evenly spread sectors of the half angle ignoring
the direction. We will refer to the HOG of i-th rectangular patch of an
image using the following vector notation hogi =


v0, v1, ..., vβ−1


∈ Nβ,

where hog(k) = vk represents the number of votes for the k-th histogram
channel or bin.

If we compare the image of an occupied parking space with an empty
one, there is obvious difference in the distribution of prevailing edges.
Simply put, the pertinence of the parking space to the given class may be
devised from the total amount of cells, which can be regarded as the parts
of parked car’s edges. Moreover, based on the vector field n obtained by
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3.6 features prioritization

projection of three-dimensional vector field of the car model iso-surface
normals (e.g. for h = 1) onto the parking space image plane, we can
roughly estimate the direction of such edges (i.e. the expected edge will
be perpendicular to the local normal vector).

3.6 features prioritization
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Figure 3.7: (a), (b) Planar vector fields represent the occurrence of a car
hood edges in the normalized parking space image as viewed
from the camera. Vector field is computed from the normals
of the iso-surface of the probabilistic car model

Physically-inspired from the classical fluid dynamics, we may think
of every HOG-cell as an idealized flowing fan-like mass object. Cells
more conformal with the edge model will experience stronger drag force
resulting in a higher velocity of these cells. As a result, these cells will
be easily advected by the flow field from the origin position into the
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3.6 features prioritization

detection zone. On the opposite side, cells with uniformly distributed
bins will resist the flow. This will introduce the desired flexibility of our
discrimination model with respect to the underlying car edge model. The
motion of a Newtonian fluid with a constant density and temperature is
governed by the Navier-Stokes equations (NSE) as follows

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν ∇2u + f , (3.12)

where u represents the velocity vector field, p is the pressure field, ρ is
the fluid density and ν is the kinematic viscosity of the fluid. The vector
field f is an external force field and will be discussed in the following
Section 3.6.1. In the case of incompressible fluids, the conservation of
mass is then stated as the continuity equation ∇ · u = 0 meaning that
the divergence of vector field u is zero. For the sake of brevity, the im-
plementation details of solving the NSE are left uncovered. We adopt the
approach thoroughly described in [126].

The NSE were successfully applied in many fields including image
analysis and in our case, we interpret the resulting pressure and veloc-
ity fields as follows. The low pressure areas correspond to the sources of
strong gradients caused by eventual car edges located at the positions pre-
dicted by the field of projected normals. The high pressure regions will
represent the traps for moving particles. If the particle arrive in the detec-
tion area and has a strong dominant bin in the HOG, then we can suppose
that the origin of the particle is placed somewhere close to a strong edge
of a parked vehicle. The trajectory P in the conjunction with the actual
bins configuration in particle’s HOG should influence the speed of the
moving particle. The new position r of the cell with the total mass m in
the particular time step t + 1 is given by the formula

rt+1 = Ftδt2/m + 2rt − rt−1 . (3.13)

The steady-state drag force F on the cell due to the fluid flow is derived
from the standard quadratic drag equation for an object moving through
a fluid and equals to

Ft =
1
2

ρ u ||u|| max
i∈⟨0,b)


1− |rad2grad


bin2rad(i)


· û|


C(hog(i))


,

(3.14)
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no available data no available data

(a)

trap/detection area

in flow in flowout flow

(b)

Figure 3.8: (a) Illustrative lateral section of the original force field as ob-
tained from the car’s hood normal field n, i.e. the only source
of information about the expected shape (or surface) of a
parked car. Wide black curves represent the speed of advection
and the open arrows represent flow direction of features. (b)
The resulting force field fulfilling the constraints imposed by
the energy functional E . Out flow is selectively expelling fea-
tures from central area into the detection zone which is acting
like a trap or a detector. Unwanted features by, in some sense,
parasitic in flow are effectively attenuated by the confidence
map

where the function rad2grad translates the angle in radians to unit di-
rection vector and bin2rad converts i-th bin to radians. The constant b
represents number of bins per orientation histogram. The hat over the u
means that it is a unit vector and has magnitude equal to 1. The drag
coefficient C is associated with the number of votes vi := hog(i) in the
i-th histogram channel through simple polynomial function C(vi) = α vβ

i .
For the rest of our experiments, the parameters were set as follows: α = 3
and β = 5.
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Figure 3.9: (a) An example of the resulting force field fulfilling the con-
straints imposed by the energy functional E . Horizontal black
line represents possible location of the lateral section from
Fig. 3.8a. (b) The high-pressure field (white iso lines) marks the
detection areas along the car boundaries. Black box represents
a single advected HOG feature traveling across the simulation
domain Ω and receiving votes

3.6.1 Force Field Generation

We expect that the external velocity field will start transferring the fea-
tures from the regions of their abundance into the detection areas (see
Fig. 3.8b). We can start with the gradient of the iso-surface of the h func-
tion which is subsequently projected on every parking place yielding a
2D vector field of normals n. The original normal vector field n is very
close to fulfil the stated requirements on the field f which will initiate the
motion of cells during the CFD steps. In order to assure that the force
field fulfil the stated requirements even closer, we define the force field
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t = 0 t = 30 t = 60

t = 90 t = 120 t = 150

Figure 3.10: The series of six snapshots taken during features advection
of the 30th parking space. Solid lines represent trajectories of
individual cells. The majority of relevant features are accu-
mulated in the detection area
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3.6 features prioritization

to be the vector field f(x, y) = [u(x, y), v(x, y)] that minimizes the global
energy functional

E =


Ω
λ1


||∇u||2 + ||∇v||2


+ λ2 ||n||2 ||f− n||2

+ ||∇c||2 ||f−∇c||2 dx dy , (3.15)

where the first term in the functional follows a standard principle, that
of making the result smooth when there is no data. The second term is
the data attachment term, whose minimization tends to make the force
field to be similar with the normal field especially in the areas where the
normal field is large. The third confidence field c driven term enforces
the presence of an in-flow from border areas and also partially helps to
increase the pressure in the detection areas.

The system of corresponding Euler–Lagrange equations for unknown
functions u and v of two real arguments x and y is

∂

∂u
L− ∂

∂x


∂

∂ux
L

− ∂

∂y


∂

∂uy
L

= 0

∂

∂v
L− ∂

∂x


∂

∂vx
L

− ∂

∂y


∂

∂vy
L

= 0 , (3.16)

whose solutions are the functions for which a given functional E is sta-
tionary. Note that ux(x, y) denotes the partial derivative of u w.r.t. the
variable x. Provided that

∂

∂u
L =

∂

∂u


λ2 ||n||2


(u−m)2 + (v− n)2


+ ||∇c||2


(u− cx)

2 +

v− cy

2


= 2λ2 ||n||2 (u−m) + 2 ||∇c||2 (u− cx) ,
∂

∂v
L = 2λ2 ||n||2 (v− n) + 2 ||∇c||2


v− cy


(3.17)

and
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∂

∂x


∂

∂ux
L

=

∂

∂x


∂

∂ux


λ1


u2

x + u2
y + v2

x + v2
y


= 2λ1uxx ,

∂

∂y


∂

∂uy
L

= 2λ1uyy ,

∂

∂x


∂

∂vx
L

= 2λ1vxx ,

∂

∂y


∂

∂vy
L

= 2λ1vyy .

(3.18)

Finaly, after applying the standard methods of the variation calculus
and plugging Eqs. (3.17) and (3.18) into the system of Eqs. (3.16) we obtain
two Euler-Lagrange equations

λ2 ||n||2 (u−m) + ||∇c||2 (u− cx)− λ1∆u = 0 ,

λ2 ||n||2 (v− n) + ||∇c||2

v− cy


− λ1∆v = 0 ,

(3.19)

where ∆ is the Laplace operator. Both Eqs. (3.19) can be solved iteratively
by treating u and v as functions of time t according the time-marching
scheme

d
dt

u(x, y, t) = λ2 ||n(x, y)||2 (u(x, y, t)−m(x, y))

+ ||∇c(x, y)||2 (u(x, y, t)− cx(x, y))− λ1∆u(x, y, t) ,

d
dt

v(x, y, t) = λ2 ||n(x, y)||2 (v(x, y, t)− n(x, y))

+ ||∇c(x, y)||2

v(x, y, t)− cy(x, y)


− λ1∆v(x, y, t) .

(3.20)

These equations are decoupled, and therefore can be solved as separate
scalar partial differential equations in u and v, provided that the par-
tial derivatives with respect to time t on the left side of the Eqs. (3.20)
are approximated by the first-order accurate forward difference formulas
yielding

ut+1(x, y) = ut(x, y) + δt


λ2 ||n(x, y)||2

ut(x, y)

−m(x, y)

+ ||∇c(x, y)||2


ut(x, y)− cx(x, y)


− λ1∆ut(x, y)


,

vt+1(x, y) = vt(x, y) + δt


λ2 ||n(x, y)||2

vt(x, y)

− n(x, y)

+ ||∇c(x, y)||2


vt(x, y)− cy(x, y)


− λ1∆vt(x, y)


.

(3.21)
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3.7 crf toolkit for 3-class cell labeling

The iteration begins by setting u0(x, y) = m(x, y) and v0(x, y) = n(x, y).
To ensure the convergence of the above described iterative process, we re-
strict the time step δt with the Courant-Friedrichs-Lewy (CFL) condition.
An example of the resulting force field is shown in the Fig. 3.9a.

3.6.2 Weight Assignment Procedure

In this section, we will describe how to assign certain weight wi to the
individual cell (i.e. the rate of belonging to the car edge). As stated above,
we track the position r of every cell as it moves across the simulation
domain Ω represented by the normalized image of a parking space. In
accordance with our cells advection model, the most relevant cells travel
across high-pressure areas and should gain the most votes (or weight).
This can be expressed by the following path integral

wi =

Pi

κ(p(s))ds =
 1

0
κ(p(r(t))) ||rt(t)|| dt , (3.22)

where Pi is the trajectory taken by the i-th cell due to the influence of
the flow field u (see Fig. 3.9b). The factor ||rt(t)|| represents the speed of
traversal of the trajectory as the parameter t runs between two endpoints
t = 0 and t = 1. The real-valued function κ converts the pressure into the
weight value. We suggest to define this function as κ(x) =


max(x, 0).

This definition reflects our exclusive interest in the areas with positive
pressure and also reduces the influence of the pressure magnitude on the
resulting weight.

Taking the influence of the parking space distances into account.

The influence of distance of the parking space on the HOG features mag-
nitude must be compensated to retain the possibility to discriminate the
parking space state with only a single threshold. The actual threshold
value depends on the mean of two exponential regression models ap-
proximating the scatter plot of both categories (see Fig. 3.11).

3.7 crf toolkit for 3-class cell labeling

In our approach, parking space status inference can be considered as a la-
beling problem that involves assigning HOG cells (or sites) S a set of three
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Figure 3.11: The plot with a logarithmic scale specified for the vertical
axis shows the dependence of the parking space total weight
∑Ω wi on the parking space distance d from the camera. Two
solid lines represent exponential regression models of mea-
sured (only the first frame of the first test sequence was used)
total weights of vacant (circles) and occupied (triangles) park-
ing spaces. The dashed lines denote the band gap where the
state cannot be reliably assigned to either label

labels L = {0 ≡ no edge, 1 ≡ unknown, 2 ≡ car edge} with a subsequent
decision Λ on the parking space state from the set Σ = {0 ≡ vacant, 1 ≡
occupied}. In other words, we seek for an optimal mapping L : S → L
and a function Λ : L → Σ. The mapping L is represented as a random
field with the nodes aligned to the cells generated over the normalized
image of a parking space. The random field L = {yi : i ∈ S}, where each
random variable yi takes on a value from the set of labels L, is realized as
a Conditional Random Field (CRF). The CRF is an undirected graphical
model originaly developed for labeling sequential data [94]. Later, Kumar
and Herbert [93] introduced the generalized discriminative framework for
2D images which allows the modeling of different types of interactions in
labels and data.

Here, we want to find a configuration of L which maximizes the a
posteriory (MAP) estimate of the underlying field given the observed
data. This problem can be reformulated as a minimization of an energy
function

39



3.7 crf toolkit for 3-class cell labeling

E(y; x, Θ) = ∑
i∈S

ψU
i (yi; w, c, Θ) + ∑

(i, j) ∈ N
ψP

i,j(yi, yj; h) , (3.23)

where the feature vector x contains acquired weights w, representative
colors of individual cells c, and the HOG h. Minimizing the energy func-
tion is known to be NP-hard problem. There exist the approximate so-
lutions such as graph cut (st-MINCUT), generalized belief propagation
(GBP), and the tree re-weighted message passing (TRW).

Maximum a posteriori probability estimate.

The most probable labeling L can be found by means of maximum a
posteriori (MAP) inference or energy minimization

y⋆ = arg max
y

P(y|x) = arg min
y

E(y; x, Θ) . (3.24)

All our experiments are performed with the loopy belief propagation
(LBP). Very briefly described, new message is computed for every possi-
ble label in the following way

mt+1
p→q(yq) = min

yp∈L

ψU
p (yp; x) + ψP

p,q(yp, yq; x) + ∑
s ∈ N4(p) \ q

mt
s→p(yp)

 . (3.25)

After T iterations, when the stationary state is reached, the messages m
do not change anymore, a belief vector b is evaluated for each node

bq(yq) = ψU
q (yq; x) + ∑

p ∈ N4(q)
mT

p→q(yq) . (3.26)

The final step of Eq. (3.24) estimation is carried out by selection of pixel
label minimizing the computed belief individually at each node

y⋆q = arg min
yq∈L

bq(yq) . (3.27)

The time complexity of the above mentioned algorithm equals to O(nk2T),
where n is the number of nodes, k is the number of possible labels, i.e.
k = |L| and T is the number of iterations. More detailed description of
the inference method is beyond the scope of this work and here we follow
with the main ideas of the related potential function design.
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Figure 3.12: The max-product BP algorithm works by passing the mes-
sages around the graph defined by the 4-connected image
grid. The method works in an iterative fashion, with the mes-
sages from all nodes being passed in parallel [59]. To update
the message passing from p to q, we consider all messages
flowing into p, except for the message from q

Unary potential.

We could simply assume that the parked car will introduce a lot of edges
all around the normalized image of a given parking space. Alas, this
assumption may be violated by a strong ground pattern. Therefore, to
assign the site labeling, we rely on the weights w which should be more
resistant to this phenomenon than the original image gradient magnitude.
To verify the edge hypotheses, we also take into account the color ci rep-
resenting each cell. This yields the unary potential

ψU
i (yi; w, c, Θ) = − log Ps(yi|wi, Θ)  

CFD shape prior

−λU logLyi(Pc(kbest|ci, Θ))  
GMM color model

, (3.28)
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Figure 3.13: Conditional random field in the form of regular grid struc-
ture. The 4-connected neighbourhood of the 5th site is em-
phasized by thick line

that consists of two compounds. The first one represents the shape prior

Ps(yi|wi, Θ) =


1− P(yi = ce|wi + τce − τne, Θ) , yi = ne

1− (Ps(yi = ne|wi, Θ) + P(yi = ce|wi, Θ)) , yi = u

P(yi = ce|wi, Θ) , yi = ce

.

(3.29)
where the posterior probability of labeling the i-th site (or cell) equals to
a one-dimensional sigmoidal function as follows

P(yi = car edge|wi, Θ) =
1

1 + exp((τce − wi)/s)
. (3.30)

The probability Ps relates weight values with the probabilities of particu-
lar labels (see Fig. 3.14 for further reference). The second compound Pc is
the likelihood that the given cell color ci match the most probable mixture
component kbest of the actual GMM background model containing a mix-
ture of K = 2 Gaussian densities (for shadowed and unshadowed regions).
Besides the GMM, the set of global parameters Θ contains three experi-
mentally evaluated constants: s is the steepness factor, and the threshold
values τne, τce are the inflection point of the sigmoid function for the no

42



3.7 crf toolkit for 3-class cell labeling

0.0

0.5

1.0

0 20 40 60 80 100

Po
st

er
io

r
pr

ob
.

P s

Weight wi

Ps(yi = no edge|wi, Θ)
Ps(yi = unknown|wi, Θ)

Ps(yi = car edge|wi, Θ)

τne = 15, τce = 50, s = 2
G

M
M

le
ar

ni
ng

G
M

M
bg

.m
od

el

CFD shape prior

Figure 3.14: Posteriors used for defining the shape priors in the unary
potential. The Π-shaped function (dashed line) represents the
range of unreliable weight values originating from the CFD
shape prior

edge label and car edge label. Translation functions Lyi(x) return x, 0,
and 1− x, respectively.

Pairwise potential.

In our approach, to define the pairwise relationship between two neigh-
bouring cells, we need some criterion that will compare histograms of
two given cells. Our dissimilarity measure is defined as follows

ϕ(i, j) =
4
β2

β−1

∑
k=0

β−1

∑
l=0

hogi(k) hogj(l)
hogi(k) + hogj(l)

2
ρ(k, l)
ρmax

, (3.31)

where the metric ρ returns the distance between two bins k and l of a
histogram and is given by the formula

ρ(k, l) = β

u− ⌊u⌋ − u− ⌊u⌋+ 1
2

 , (3.32)

where u = |k− l| /β. The constant ρmax = ⌊β/2⌋ in Eq. (3.31) represents
the maximum possible distance among all bins. Finally, the pairwise
potential ψP is given by the multiplication of the dissimilarity measure
and the delta function

ψP
i,j(yi, yj; h) = λP ϕ(i, j) δyi,yj . (3.33)
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3.8 evaluation and conclusion

We expect that such definition will favour the same labeling in the case
of similar distributions of votes in the histograms of the cells with large
weights. We use the loopy belief propagation (max-sum algorithm) to
approximate the MAP inference and the state of the parking space is
simply devised from the sum of the individual car edge labels of the final
labeling (see Fig. 3.15).

3.8 evaluation and conclusion

In this section, we will evaluate the performance of two variants of the
presented method; with and without contextual constraints imposed by
the CRF. We observed 56 parking spaces in 4 rows with the network HD
camera directly attached to the dedicated video server via Wi-Fi. The
structure of the parking lot was measured and stored in an XML file
(see Fig. 7.1). The camera was calibrated to match the parking lot ge-
ometry and also the geometric distortion (displacement of the pixel loca-
tions) caused by wide angle lens optics was suppressed. The evaluation
is based on the series of seven video sequences (i.e. approx. 14 hours)
captured during the most relevant parts of a day when a lot of cars are
arriving or leaving monitored parking lot (see Fig. 7.2). The results of
the variant without the background color model are summarized in the
Table 3.1. Individual test images contain more than 10000 occupied park-
ing spaces and more than 6000 vacant parking spaces. In addition to
the table, false positive rate (FPR) and false negative rate (FNR) are no
worse than 0.047 and 0.006, respectively. In comparison, other authors
report the final false acceptance rate (FAR) 0.032 and false rejection rate
(FRR) 0.020 [71]. Other method based on a SVM classifier achieves false
detection rate (FDR) 0.048 and FRR 0.071 [48]. Furthermore, the results
point out that the yaw angle φ compensation procedure (i.e. preserving
the yaw of the cell constant as it moves along the path P) is not the criti-
cal part of our algorithm. Columns In and Out represent the number of
incoming, resp. outgoing vehicles. The second Table 3.2 describes exper-
iments with another series of video sequences captured under different
lighting conditions. In this case, the individual test images contain more
than 14000 occupied parking spaces and more than 8000 vacant parking
spaces in total. Our performance evaluation includes confusion matrix,
F1 score, and Matthews correlation coefficient.
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87:40 53:41 115:18

44:48 88:44

108:31 59:23 0:6
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138:1
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(f)

80:7
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Figure 3.15: (first row) Examples of normalized images, (second row) cor-
responding weight maps of selected edges, and (third row)
labeling obtained via the CRF without the background term.
(h) Empty parking spaces containing only a few cells la-
beled as unknown (gray, the second number) provide the
reliable sources of color patches for generating and updat-
ing the background GMM. (fourth row) When enabled, the
background color model strengthens the difference between
vacant and occupied parking spaces in terms of number of
cells labeled as car edges (black, the first number). The pa-
rameters are: λU = 0.45, λP = 50
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3.8 evaluation and conclusion

Table 3.1: Results of our algorithm without CRF as compared against the
ground truth data (sequences #1-#3)
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3.8 evaluation and conclusion

Table 3.2: Results of our algorithm with CRF as compared against the
ground truth data. This sequences (#4-#7) contains inferior
lighting conditions compared to sequences #1-#3
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3.8 evaluation and conclusion

Table 3.3: Comparison of our algorithms against the selected methods
from the state of the art Chapter 2. Ranking of the methods
is based on the average accuracy

Method Sequence FAR FRR Acc. Acc. Ranks

Fabian [4]

1 0.0013 0.0055 0.993

2 0.0043 0.0125 0.983

3 0.0006 0.0090 0.990

Avg 0.0021 0.0090 0.989 #2

Fabian [3]

4 0.0052 0.0054 0.989

5 0.0000 0.0042 0.996

6 0.0001 0.0216 0.978

7 0.0018 0.0154 0.983

Avg 0.0018 0.0116 0.987 #3

Huang [70]

8 0.0004 0.0081 0.999

9 0.0024 0.0324 0.996

10 0.0040 0.0437 0.994

Avg 0.0023 0.0281 0.9963 #1

Huang [71]

8 0.0004 0.1690 0.983

9 0.0002 0.2626 0.985

10 0.0042 0.1019 0.992

Avg 0.0016 0.1778 0.9865 #4

Wu [141]

8 0.0111 0.7115 0.919

9 0.0016 0.7837 0.958

10 0.0018 0.7012 0.974

Avg 0.0048 0.7321 0.9503 #5

Dan [48]

8 0.0307 0.5748 0.915

9 0.0101 0.7061 0.954

10 0.0073 0.6524 0.970

Avg 0.0160 0.6444 0.9464 #6
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4
H O G F E AT U R E S S TA B I L I Z AT I O N

As we stated above, visual surveillance systems include a wide range of
related areas ranging from motion detection, moving object classification
and tracking to activity understanding. Each of the above-mentioned ap-
plications relies greatly on proper motion segmentation method. Many
background subtraction algorithms have been proposed. Simple yet ro-
bust frame differencing, statistically based Mixture of Gaussians (MoG)
which also bear the name of Gaussian mixture model (GMM) in the liter-
ature, sophisticated methods based on wavelets or the optical flow com-
puted by the finite element method. In this chapter, we focus on novel
modification of well known MoG. The intrinsic motivation stems from the
inability of regular MoG implementation to handle many camera related
phenomena. Here presented method exploits Histograms of Oriented
Gradients to significantly reduce the influence of camera jitter, automatic
iris adjustment or exposure control causing severe degradation of fore-
ground mask. The robustness of introduced method is shown on series
of video sequences exhibiting mentioned phenomena.

citation The method presented here was published in [2] and is cited
in the large survey of statistical background modeling methods [33] and
in conference papers [148, 27]. This approach is qualified as HOG feature
improvement of the classical MoG.

4.1 motivation and rationale

During the last two decades, we can see a huge development in area of
video surveillance. Many successful approaches and algorithms had ap-
pear but in spite of the fact that this area of image processing is extremely
various in terms of working environments and objects of interest, there is
still a lack of system capable of working in real-world conditions. In this
section, we focus on a common approach to identify the moving objects
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4.1 motivation and rationale

– a background subtraction and we introduce a novel method for robust
background modeling.

The modeling of background image plays a very important role in the
general process of background subtraction [42]. The resulting foreground
mask is processed afterward by various high–level algorithms realizing
desired functionality of surveillance or tracking systems used in various
places and environments. The fruitfulness of the system depends greatly
on quality of foreground mask which discriminate moving foreground
from static background. Many background subtraction methods work
on per-pixel basis, e.g. Wren et al. [139] treats every pixel as an indepen-
dent Gaussian random variable, Stauffer and Grimson [127] proposed the
mixture of 3 to 5 Gaussians to represent multi-modal pixel distributions,
Elgammal et al. [54] introduced the use of kernel density estimation to
exploit statistical correlation among neighbor pixels. Mentioned methods
suffer from lower foreground mask quality during sudden camera jitter
or auto-exposure control intervention. Preprocessing video sequence be-
fore segmentation is inefficient while stabilization algorithms for camera
motion compensation are unable to restrain sub-pixel motion sufficiently
in most cases. The camera vibration may also suffer from rotation and
scaling as nonlinear motions that may embarrass the matching process
[113].

There also exist methods reflecting the naturalness of pixel adjacency.
Im et al. in [92] propose wavelet based moving object segmentation using
high frequency coefficients in wavelet subbands. Antić et al. [26] propose
a novel wavelet based method for robust feature extraction and tracking.
They also claim, that extremely harsh conditions can occur and violate
the premises of the statistical regularity and predictability of background
pixels.

The goal of this chapter is to eliminate the unfavourable influence of
camera related phenomena like sudden changes of overall image bright-
ness caused by the auto-exposure control and to overcome camera jitter
from unstable support. The rest of this chapter is organized as follows.
The algorithm is described in Section 4.2. Evaluation and experimental
results are shown in Section 4.3. Conclusions are given in Section 4.4.
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4.2 algorithm of stabilization

Figure 4.1: An overview of proposed background subtraction method
with stabilization

4.2 algorithm of stabilization

In previous section, we mentioned two main problems associated with
camera jitter and automatic exposure control. To reduce the unwanted
influence of such events on quality of foreground mask, we replace the
brightness value acting as a random variable in regular MoG algorithm by
a local image gradient. The motivation behind this step is quite easy. Im-
age gradient, and especially its orientation, is invariant against changes in
overall image brightness. Of course, this applies only to a certain extent
given by limited range of pixel values. In practice, this assumption holds
quite well and we are able to reduce the aftereffects of automatic control
over exposure that way. But this still will not help us to achieve the inde-
pendence of foreground mask on camera jitter. We also need to handle
small image movements. To do so, we evaluate the gradient not for every
single position in the image, but for small squared area, e.g. 8× 8 pixels
called cell. Further, we introduce the on-line spatial rearrangement of
cells to minimize the variance of dominant gradient for every cell.

We shall discuss the first step of our approach in more details now. We
need to estimate the locally dominant gradients computed on a dense
grid of uniformly spaced cells. Histograms of Oriented Gradients (HOG)
[44] suits our needs perfectly, i.e. we use a × b grids of c × c pixel cells
each containing β orientation bins corresponding to certain sector to the
full angle. We will refer to the HOG of particular rectangular area i, j
of image f using the following notation hogi,j(∇ f ) →


v0, v1, ..., vβ−1


∈

Nβ, where vk represents weighted votes for individual angle spans. The
weight is proportional to the gradient magnitude. The very first step in
HOG evaluation is to estimate the image intensity gradient ∇ f in every
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4.2 algorithm of stabilization

pixel of input image f . More specifically, the five point central difference
formula is used to calculate the image gradient.

Now we need to evaluate HOG for every cell in the image. This is
quite straight forward process briefly described in previous paragraph.
For more details about computing HOG the reader is referred to [44]. As
a result we obtain the most significant orientation bin for every cell in the
image.

The computation of the mean HOG, denoted by mhogi,j, follows. The
purpose of mean histogram is to provide the reference values for minimiz-
ing the variance of gradients and especially resulting bins. We suppose
that proper cell-shift vector ∆x effectively eliminates camera jitter and
other high frequency noise. If the whole image undergoes some small
movement or is locally disturbed by some opto-physical process then ob-
tained cell-shifts help us to stabilize the dominant bin values across the
time. We also suppose that this will not harm the desired segmentation
ability as the changes of the image gradient caused by transit of detected
object will be much higher. This can be formalized by the following ex-
pression

arg min
∆x

(var


max


hogi,j (∇ ft (x + ∆x))


  
dominant gradient bin

). (4.1)

The validity of both assumptions is discussed in Section 4.3. To esti-
mate the most probable distribution of bins across the histogram we use
on-line averaging as follows mhogt

i,j = (1− α)mhogt−1
i,j +α hogt

i,j, where
α is the learning rate. Obtained histogram mhog represents the charac-
teristic distribution of gradient orientations for a particular image area
during a certain period of time. The similarity of both values mhog and
hog indicates the presence of almost the same pattern in corresponding
cell. We are looking for the best match following the spiral like trajec-
tory until the similar bin is found or the border of search area is reached.
In the later case we use the shift with smallest distance to the reference
value.

Optimal cell-shift can be alternatively found by well-known Lucas-Kanade
image alignment algorithm [102]. Just recall that in this case we are look-
ing for alignment minimizing the difference between template image and
an input image so that ∑x [ f (W(x, p))− f (x)]2, where W represents the
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4.2 algorithm of stabilization

Table 4.1: Example of the distance
matrix of metric ρ1

ρ1 0 1 2 3

0 0 1 1 1

1 1 0 1 1

2 1 1 0 1

3 1 1 1 0

Table 4.2: Example of the distance
matrix of metric ρ2
for particular 4-bin
histogram
ρ2 0 1 2 3

0 0 1 2 1

1 1 0 1 2

2 2 1 0 1

3 1 2 1 0

set of allowable warps parameterized by p. For the simplest case of pure
translation motion it holds that p = ∆x.

To measure the distance between two different bins, we need to intro-
duce some reasonable metrics. We have started with very simple metrics
in a discrete metric space defined as follows

ρ1(x, y) =


0 x = y
1 x ̸= y

. (4.2)

The obvious property of metrics (4.2) is it makes no difference between
two different bins. Two different bins are equally good and don’t matter
if they are very similar or completely different. The positive effect of
such simplified metric is that the evaluation is very fast. The apparent
disadvantage is that in situation when a same bin doesn’t exist (and it is
true for most cases) we have to make an ad-hoc decision (e.g. we pick the
first one). Due to this reason we have defined more complex metric as
follows

ρ2(x, y) =
uv− v ⌊u⌋ − v


u− ⌊u⌋+ 1

2

 , (4.3)

where u = |x− y| /v and v = β. With metric (4.3) we are able to find
the best solution of Expression 4.1 among all valid cell-shifts. As stated
before, such solution minimizes the variance of winning bin for each cell
and we effectively reduce the unwanted influence of camera jitter. Typical
example of resulting cell-shift can be seen in Fig. 4.3.

Now we need to incorporate the dominant bin into the MoG scheme.
The general MoG is very well described in [127, 114] and the related
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4.3 performance evaluation

Table 4.3: Essential values of presented method’s parameters used during
evaluation

a b c r α β metric K σinit ωτ

80 60 8 5 0.001 16 ρ2 9 500.0 0.3

maximum-likelihood parameter estimation problem can be found in [29],
thus we will not repeat here the whole theory again and we restrict our-
selves to only those parts that are different. Authors in [127] consider
the values of particular pixels over time as a ”pixel process”. Similarly in
our approach we can talk about an ”edge process” which consist of time
series of observations {X0, X1, ..., Xt}, where Xi = hogi. The process is
modelled by a mixture of K Gaussian densities with the set of parameters
Θk, one for each state k

fX|k(X|k, Θk) =
1

(2π)
n
2 |Σk|

1
2

e−
1
2 (X−µk)

T ∑−1
k (X−µk), (4.4)

where Θk = {µk, Σk} and Σk is the full covariance matrix (see Fig. 4.2). For
computational reasons and the assumption that the red, green, and blue
pixel values are independent and have the same variances, many authors
assume the covariance matrix to be of the form Σk = σ2

k I. This is not our
case as we need to maintain the ability of general Gaussian distribution
to represents the elongated data sets (as the orientation of bin is likely to
be more stable than the gradient magnitude).

The rest of MoG implementation is same as described in [114]. Estima-
tion of parameters µk and Σk strictly follows [114, 29]. The segmentation
phase depends on proper estimation of value ωτ which represents the
classification threshold. If the probability of certain surface k is higher
than ωτ then the surface is regarded as a background.

4.3 performance evaluation

In this section, we need to define how to assess the quality of foreground
detection. Proposed algorithm, as well as other background subtraction
methods, produces a binary image in which we need to identify correctly
identified pixels. To do so, we have generated a ground truth mask for
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Figure 4.2: An example of mixture of 9 Gaussians. Snapshot was taken
during the early stages of background model adaptation so
the modes are still organized into the initial regular grid. It
is also apparent that corresponding cell covers an image area
without the presence of a significant edge. Also the range of
image gradient is limited

three test sequences. Sequences were captured under different lighting
conditions. Manual generation of ground-truth data in case of long se-
quences is too difficult and time-consuming, so we have decided to gen-
erate reference mask in the following way. Test sequences were captured
under nearly ideal conditions, i.e. no automatic exposure adjustment nor
exposure change nor camera jitter has occurred. In this case, we can use
even simple background subtraction algorithm (e.g. frame differencing
with carefully selected single frame acting as a reference background im-
age) to obtain high quality foreground mask. During the testing phase
we apply predefined filters on original video sequence to simulate de-
sired camera related phenomena. Namely, we use translation to simulate
camera jitter and we also perform both linear and nonlinear point oper-
ations to introduce the effect of automatic camera exposure control (for
further details refer to the Fig. 4.4). In this way, our approach allows us to
control the amount of spurious effects introduced into the test sequences.
Other authors propose the use of semi-synthetic ground-truth sequences
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4.3 performance evaluation

(a) (b)

Figure 4.3: (a) Sample frame from the test sequence and (b) the corre-
sponding histograms of oriented gradients; only the most sig-
nificant bin for each cell is shown. Note the different shifts
of cells minimizing the time-variance of dominant bins. Po-
sition of every cell obey the minimization criterion of Expres-
sion (4.1), hence it will reduce the influence of camera jitter as
well as the high frequency noise

where previously segmented tracked objects are artificially inserted into
real video sequences.

Table 4.4: Contingency table of four possible conclusions that can be
drawn in a statistical hypothesis test

Ground Truth
Real output Foreground Background
Foreground True Positive (TP) False Positive (FP)
Background False Negative (FN) True Negative (TN)

We adopt two types of pixel-based metrics. The first one comes from
[128]. The absolute error ea is defined as follows

ea =
NFP + NFN

a · b . (4.5)
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4.3 performance evaluation

Figure 4.4: Evaluation of proposed method. The first row represents five
selected frames from the first video sequence captured by
the stationary camera, the second row shows reference fore-
ground mask, the third row contains MoG output, the fourth
row presents proposed method’s output, and the fifth row
compares output of presented method with reference mask
(black - TP, white - TN, light grey - FN, dark grey - FP). It
is apparent, that the original MoG cannot handle the sudden
changes of pixel values and the proposed method generates
valid foreground mask (frames 224 and 375). Note that the
reference segmentation also includes shadows, what is slightly
inappropriate, since the proposed method correctly evaluates
shadowed areas as a background. The plot at the bottom of
the figure shows values of three coefficients; δ, resp. δx and
δy - image translation simulating camera jitter, νl - linear point
operation (brightness change equals to 30 · νl), νnl - nonlinear
point operation (gamma correction with γ = 1/ (1 + 0.5νnl)).
Positions of selected frames are also marked. Initialization
phase takes 100 frames and the learning rate α is 100-times
higher during this period

For the meaning of subscripts of number of pixels N please refer to the
Table 4.4. We recall that a and b stand for foreground mask dimensions.
The second metric eg is defined subsequently

eg =
1
|Ω f | ∑

x∈Ω f

min
y∈Ω1

f

||x− y||2, (4.6)

where Ω f represents the set of foreground pixel coordinates in actual
foreground mask, Ω1

f stands for the set of foreground pixels in reference
foreground mask. Simply put, metrics eg returns the average minimum
distance between all pixels of the current mask and the foreground pixels
of the reference mask. Both metrics are calculated for each frame and
overall values are obtained by averaging over the entire test sequence.

Another evaluation metrics can be derived from Table 4.4; true positive
rate and false positive rate. A receiver operating characteristic (ROC), or
simply ROC curve, enables evaluation of optimal parameter settings for
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generic algorithm (a binary classifier), and the objective comparison of
two or more algorithms [95]. In Fig. 4.5 we show that the TPR and FPR
values are sensitive to the presence of noise in the foreground mask.
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Figure 4.5: Receiver operating characteristic for three different search
radii (0, 1 and 2 pixels). The plot shows that larger search
radii lead to better results

The most important columns in Table 4.5 are FP and eg. We can see
that the number of pixels falsely marked as a foreground is significantly
lower in the case of presented method and direct observation from Fig. 4.4
is consistent with the measured values. Higher values of FN can be ex-
plained by the presence of shadows in reference foreground mask.

4.4 conclusion

In this chapter, we have proposed a new algorithm for background sub-
traction which is based on two well known methods: Mixture of Gaus-
sians and Histograms of Oriented Gradients. Resulting method is signif-
icantly less vulnerable to the most common camera related phenomena
like jitter and automatic exposure control. Higher level algorithms may
benefit from the more reliable foreground mask and may track the mov-
ing objects even during the moments, when the ordinal MoG is failing.
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4.4 conclusion

Table 4.5: The results of original MoG and proposed method compared
with the reference background mask
Method TP TN FN FP ea eg

seq. 1 MoG 95.8 4462.5 146.5 95.2 5.0 % 1755.5
MoG + HOG 82.1 4528.3 160.2 29.4 3.9 % 81.7

seq. 2 MoG 398.8 3637.2 665.8 98.2 15.9 % 832.4
MoG + HOG 333.7 3657.0 730.9 78.3 16.9 % 199.0

seq. 3 MoG 44.3 4651.5 63.2 41.0 2.2 % 692.8
MoG + HOG 55.3 4669.2 52.2 23.3 1.6 % 186.3

Tests performed on three video sequences with a total length of 1500

frames confirmed the assumptions made in the introductory section. Pre-
sented method is computationally more expensive then ordinal MoG. Fo-
cus should be placed on more effective implementation of this method
and especially on evaluation of the gradient histograms and probabil-
ity density functions with full covariance matrix. In the context of the
parking lot surveillance, we have used this approach in two directions.
Firstly, we have used this algorithm to stabilize the obtained features and
secondly, we utilize devised metrics to compute the bin distance of two
hog-cells.
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5
D I R E C T V O L U M E R E N D E R I N G

In this section, we attempt to solve the so called standard volume ren-
dering integral (VRI) from the Section 2.4. In the our context, we need to
solve this integral to obtain probabilistic maps of occlusions (see Fig. 3.4b).
But in general, the VRI is the merit of the direct volume rendering (DVR),
the area of computer graphics dealing with visualization of scalar data.
The most common approach is to approximate the integral by a Riemann
sum with a fixed step size. Contrary to the traditional approaches, we try
to devise its solution in an analytical form. Our volume rendering method
employs trilinear interpolation of a discrete data set to reconstruct a cu-
bic polynomial of densities along the ray segment passing through each
cell of the volume. We obtain analytical expression of the densities across
the ray-volume intersection segment. This form allow us to simply eval-
uate the accumulation of density along the ray path simply by taking the
integral of polynomial. First order differential quantity like analytical gra-
dient is provided as well. Results from this chapter are also applicable
for computing vector fields (see Fig. 3.9a). Furthermore, we also define
an emission term which allow us to carry out an closed form of the afore-
mentioned integral for a simple case of Lambertian reflectance with a
single directional light. As a result, we obtain an image of analytically
ray casted structures inside the volume.

5.1 introduction

Direct volume rendering (DVR) is a wide spread method for direct visual-
ization, analysis and classification of the structures inside scalar volume
data sets. Its applications range from medical imaging, oil and gas in-
dustry, mechanical engineering, fluid dynamics, astrophysics, chemistry
to various special effects in the film industry and games. Volume data
sets are often acquired by scanning the using magnetic resonance imag-
ing (MRI), computional tomography (CT), positron emission tomography
(PET), and also by physical simulations. DVR may be regarded as a ma-
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5.2 motivation

ture technique since the publication of the pioneering works of Levoy [97],
Drebin et al. [51] in late 1980s. In comparison to iso-surface rendering of
2-dimensional manifolds, the DVR deals with volume as a participating
medium in which light can be absorbed, scattered, or emitted, as it passes
through the volume of scalar values organized into structured on unstruc-
tured grid. Optical properties of various materials captured in the volume
are classified by the so called transfer function.

Basically, there exist four main techniques of volume rendering: vol-
ume ray casting, splatting, hybrid strategies such as the shear warp al-
gorithm, and texture-based rendering. Volume ray casting is considered
to be the most versatile method providing very high quality images. In
short, clipped ray passing the volume is sampled at regular or adaptive
intervals. Interpolated data are plugged into the transfer functions and
obtained color and opacity values are successively composed in front-to-
back or back-to-front scheme.

5.2 motivation

Discretization errors introduced by Newton-Cotes formulas and approxi-
mation errors of the VRI is widely studied topic. Etiene et al. [57] focused
on the order of accuracy of the numerical solutions of the VRI when the
number of samples increases. We try to devise closed form formulas for
computing Eq. 3.10 from Section 3.3 to eliminate this kind of errors for
our special case of occlusion maps (see Fig. 3.4).

5.3 notation of optical models

To preserve the consistency with the existing literature, we adopt the
Max’s derivation of optical models for DVR [104]. For the sake of brevity,
we omit simple cases when the participating medium is treated as a
mass of cold and non-radiant perfectly black particles (i.e. absorption
only model) or contrary, as an almost transparent hot tenuous gas (i.e.
emission only model). Instead, we focus on the most common situation
of participating medium containing particles that glow and also occlude
passing radiant flux. Notice that even pure emission would be sufficient
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5.4 interpolation of the scalar field

for our purpose. This low albedo emission with absorption model for a
single light ray is described by the differential equation

dI
dt

= q(t)− τ(t)I(t) , (5.1)

which relates the change in the rate of radiance I at the position t to
the emissivity q of the particles located at the same infinitesimally small
area and the radiance itself attenuated by the extinction coefficient τ, i.e.
the rate that light is occluded. Solving the emission-absorption optical
model in Eq. 5.1, describing the light transport through the participating
medium, leads to the well known volume rendering integral (VRI)

I(D) = I0 exp

−κ

 D=tn

t0

τ(t)dt

+
 D

t0

q(s) exp

−κ

 D

s
τ(t)dt


ds ,

(5.2)
returning the radiance I of the volume at the exit point D aiming toward
the camera [55]. Optical property κ is absorption coefficient, q is source
term representing emission and the scalar field of densities is embodied
in the function τ also known as an extinction coefficient and has units of
number of particles per unit length at the parametric position t. Integra-
tion is taken from the entry point t0 into the volume, to the exit point D
toward the camera. This definite integral, more precisely Riemann inte-
gral as t is restricted to lie on the real line, cannot be solved analytically in
general, instead, numerical methods are applied to find an approximation
[55, 116]. In the following section, we will introduce the parametrization
that will allow us do devise closed form solution for Eq. (5.2) for purposes
of occlusion map evaluation.

5.4 interpolation of the scalar field

Firstly, let us define the volume Ω which comprises of cells and vertices.
To address individual cells, we define a set of all possible cell indices I
as a triplet (i, j, k), i.e. the Cartesian product of cell indices ranges in all
directions {0, . . . , M− 1} × {0, . . . , N − 1} × {0, . . . , K− 1}, where M, N,
and K are numbers of vertices in give directions. To the each vertex we
assign a value of interpolated quantity. This quantity may represent the
density of a participating medium or, as in our case, the probability of a
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Figure 5.1: The scheme for calculation of the line integral through i-th
cell. Voxels are treated as vertices of cells, and cells fill the
space between voxels

car’s presence at each vertex location. From now, i will denote the entire
cell indices triplet to simplify the notation.

Now, in accordance with Fig 5.1 we can introduce the following parametriza-
tion

u(t) =

u(t)
v(t)
w(t)

 = (r(t)− A)⊘ (G− A) = (O + d̂t− A)⊗ k

= (O− A)⊗ k  
p

+ (d̂⊗ k)  
s

t = p + st
(5.3)

which returns the relative position u of a sample against the cell’s vertex
A. Symbols ⊘ and ⊗ stand for element-wise division, resp. element-wise
multiplication. We follow with the traditional trilinear interpolation

γ(t) = β0(u(t), v(t))(1− w(t)) + β1(u(t), v(t))w(t) , (5.4)
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5.4 interpolation of the scalar field

where the subsequent functions are defined as follows

β0(u, v) = αAB(u)(1− v) + αDC(u)v ,
β1(u, v) = αEF(u)(1− v) + αHG(u)v ,

(5.5)

and

αAB(u) = ρ(A)(1− u) + ρ(B)u ,
αDC(u) = ρ(D)(1− u) + ρ(C)u ,
αEF(u) = ρ(E)(1− u) + ρ(F)u ,

αHG(u) = ρ(H)(1− u) + ρ(G)u .

(5.6)

This parametrization leads to simple polynomial representation of tri-
linear interpolation of the scalar function over the given cell

γ(t) =
3

∑
i=0

aiti (5.7)

where the individual coefficients ai are listed in the Appendix, Table 7.1.
Furthermore, for common shading algorithms the expression for normal
at given point (i.e. ∇γ/||∇γ||) is required. With the aim of chain rule

d
dt

γ(u(t), v(t), w(t)) =
∂γ

∂u
du
dt

+
∂γ

∂v
dv
dt

+
∂γ

∂w
dw
dt

= ∇γ ·


du
dt

,
dv
dt

,
dw
dt


  

s
(5.8)

and Eq. 5.7, we can provide the first compounds of the ∇γ as follows

∂

∂u
γ(t) = (ρ(A)− ρ(B))(v(t) + w(t)− v(t)w(t)− 1)

+ (ρ(C)− ρ(D))(v(t)− v(t)w(t))
+ (ρ(E)− ρ(F))(v(t)w(t)− w(t))
+ (ρ(G)− ρ(H))v(t)w(t) .

(5.9)
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(a) (b)

Figure 5.2: (a) Example of a simple cube analytical ray tracing. (b) CT
scan of a body visualized by the emission only model

The remaining two compounds are listed in Appendix, Eqs (7.1) and (7.2).
Just for the sake of completeness of useful orders of derivatives, we also
include the second derivative of γ

d2

dt2 (γ) =
d
dt

(∇γ) · s =

syτ1 + szτ2 + (pysz + pzsy + 2syszt)τ3,

sxτ1 + szτ4 + (pxsz + pzsx + 2sxszt)τ3,
sxτ2 + syτ4 + (pxsy + pysx + 2sxsyt)τ3


· s

(5.10)

where

τ1 = ρ(A)− ρ(B) + ρ(C)− ρ(D) ,
τ2 = ρ(A)− ρ(B)− ρ(E) + ρ(F) ,
τ3 = ρ(E)− ρ(F) + ρ(G)− ρ(H)− τ1 ,
τ4 = ρ(A)− ρ(D)− ρ(E) + ρ(H) .

(5.11)

5.5 conclusion

In this chapter, we have devised the analytical solution for Eq. 5.7 which
appeared in the Eq. 3.10. This allows us to obtain the occlusion maps for
parking spaces (see Fig. 3.4) in straight analytical way without utilizing
numerical approximations. Devised formulas may be further applied in
the more general area of DVR (see Fig. 5.2).
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6
C O N C L U S I O N

The main objective of this dissertation thesis was to devise a new algo-
rithm for estimating the occupancy of individual parking spaces from the
static camera images of observed parking lot. One of the reasons that
motivated our interest in this branch of static traffic surveillance was the
collaboration with one car manufacturing company which was carried
out between the years 2011 and 2012. This helped us to further particu-
larize the requirements and constrains imposed on the desired parking
guidance system. It is also worth to note that the parking lot occupa-
tion detection is an active research topic and has received attention from
the computer vision community during the last decade. Tens of com-
petitive approaches based on different principles was mentioned in the
state of the art section but one feature they all have in common. They
rely on carefully prepared data sets which are afterwards used during
the training phase. This makes setup of those methods quite challenging
and horrendous time consuming chore, especially for those who are not
familiar with various caveats of particular method. To distinguish our-
selves from this, and in reaction to it, we decided that our method should
be parametric-based. Because of this, we tried to utilize as much of a pri-
ori known information about both the parking lot geometry and parked
cars, to overcome the tedious process of training data set acquisition. Al-
though this could be alleviated by semi-supervised learning techniques,
the problem still prevails. Especially in the environment of outdoor park-
ing lot, it could be very difficult to build a representative learning dataset
covering all possible combinations of parking spaces states and surround-
ing conditions. As a consequence, the training process may introduce
some level of unintentional bias.

As the main part of this work, we presented a new algorithm for the
vision-based evaluation of parking lot utilization based on the analysis of
the spatial arrangement of HOG features in the normalized image of a
single parking space. The hypothesis about their expected arrangement
in the case of occupied parking space is build upon the probabilistic car
model which comprises the available data about the layout of the parking
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lot and the camera system. The utilization of a priori known informa-
tion allows us to remove the problematic learning phase, and as a result,
the method does not require preparation of any training data set. The
consistency of obtained features with an expected shape of potentially
parked car is evaluated by the means of features prioritization through
the adopted CFD technique that adds the flexibility to adapt the parked
car appearance model to various possible configurations (e.g. car size,
position, and yaw). The contextual constraints represented by the CRF
ensure the spatial consistency of the final labeling. The integration of the
self-learned parking lot background color model ensures the correctness
of the inferred labeling in cases when the shape-prior is not reliable.

The experiments show that the algorithm performs well over the wide
range of lighting conditions and the achieved F1 score was no lower than
98.1% in case of all parking rows. This result is comparable to the results
of the most profound methods found in the literature. In our future
work, we also plan to address an effective utilization of GPUs to reduce
the overall latency of our parking lot surveillance system.

We also try to improve the HOG features which were used as a main
descriptor for estimating the state of a parking space. This improvement
renders the background subtraction to be significantly less vulnerable to
the most common camera related phenomena like jitter and automatic
exposure control.

In conjunction with the probabilistic car model, we have devised analyt-
ical solution to the related line integral. This result is directly applicable
in the area of direct volume rendering.

At the time of writing, the here presented methods were published in
[1, 2, 3, 4] and were provably cited in more than 20 conference papers,
technical reports, journal articles, or dissertation thesis.
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A P P E N D I X

7.1 parking lot scheme

Figure 7.1: Scheme shows the parking lot layout, the camera position, and
the calibration points
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7.2 parking lot occupancy

7.2 parking lot occupancy

Figure 7.2: Parking lot with highlighted states of parking places as ob-
tained from our method with both contextual constraints and
background color model

7.3 direct volume rendering

∂

∂v
γ(t) = (ρ(A)− ρ(D))(u(t) + w(t)− u(t)w(t)− 1)

+ (ρ(B)− ρ(C))(u(t)w(t)− u(t))
+ (ρ(G)− ρ(F))(u(t)w(t))
+ (ρ(H)− ρ(E))(w(t)− u(t)w(t)) .

(7.1)

∂

∂w
γ(t) = (ρ(A)− ρ(E))(u(t) + v(t)− u(t)v(t)− 1)

+ (ρ(B)− ρ(F))(u(t)v(t)− u(t))
+ (ρ(G)− ρ(C))(u(t)v(t))
+ (ρ(D)− ρ(H))(u(t)v(t)− v(t)) .

(7.2)
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7.3 direct volume rendering

Table 7.1: Coefficients of the cubic polynomial representing the trilinear
interpolation of scalar values inside the cell. Notice that these
are constants for the given ray and cell

i = 0

τ01 = px py τ02 = px pz τ03 = py pz τ04 = τ01pz

a0 = ρ(E)(τ04 − τ02 − τ03 + pz)
+ρ(F)(τ02 − τ04)
+ρ(G)(τ04)
+ρ(H)(τ03 − τ04)
+ρ(A)(τ01 + τ02 + τ03 − τ04 − px − py − pz + 1)
+ρ(B)(τ04 − τ01 − τ02 + px)
+ρ(C)(τ01 − τ04)
+ρ(D)(τ04 − τ01 − τ03 + py)

i = 1

τ05 = τ01sz + τ02sy + sxτ03 τ08 = pxsz τ09 = sx pz
τ10 = pysz τ11 = sy pz τ12 = pxsy τ13 = sx py

a1 = ρ(E)(τ05 − τ08 − τ09 − τ10 − τ11 + s.z)
+ρ(F)(τ09 + τ08 − τ05)
+ρ(G)τ05
+ρ(H)(τ11 + τ10 − τ05)
+ρ(A)(τ12 − τ05 + τ08 + τ13 + τ09 + τ10 + τ11
−s.x− s.y− s.z)
+ρ(B)(τ05 − τ12 − τ08 − τ13 − τ09 + s.x)
+ρ(C)(τ13 + τ12 − τ05)
+ρ(D)(τ05 − τ12 − τ13 − τ10 − τ11 + s.y)

i = 2

τ14 = sxsz τ15 = sysz τ16 = sxsy
τ17 = τ14py + pxτ15 + τ16pz

a2 = ρ(E)(τ17 − τ14 − τ15)
+ρ(F)(τ14 − τ17)
+ρ(G)τ17
+ρ(H)(τ15 − τ17)
+ρ(A)(τ15 + τ16 + τ14 − τ17)
+ρ(B)(τ17 − τ16 − τ14)
+ρ(C)(τ16 − τ17)
+ρ(D)(τ17 − τ16 − τ15)

i = 3
a3 = sxsysz(ρ(E)− ρ(F) + ρ(G)− ρ(H)

−ρ(A) + ρ(B)− ρ(C) + ρ(D))
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Montréal, Québec, Kanada, April 2009.

[69] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial
Intelligence, 17:185–203, 1981. ISSN 0004-3702.

[70] C.-C. Huang and S.-J. Wang. A hierarchical bayesian generation
framework for vacant parking space detection. IEEE Transactions on
Circuits and Systems for Video Technology, 20(12):1770–1785, Decem-
ber 2010. ISSN 1051-8215.

[71] C.-C. Huang, S.-J. Wang, Y.-J. Chang, and T. Chen. A bayesian
hierarchical detection framework for parking space detection. In
Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2097–2100, Las Vegas, Nevada,
USA, March 2008.

[72] C.-C. Huang, Y.-S. Tai, and S.-J. Wang. Vacant parking space detec-
tion based on plane-based bayesian hierarchical framework. IEEE
Transactions on Circuits and Systems for Video Technology, 23(9):1598–
1610, September 2013. ISSN 1051-8215.

81



Bibliography

[73] H. Ichihashi, K. Nagaura, A. Notsu, and K. Honda. Benchmarking
parameterized fuzzy c-means classifier. In Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ), pages 1137–1144,
Jeju Island, Korea, August 2009.

[74] H. Ichihashi, A. Notsu, and K. Honda. Triplet of fcm classifiers.
In Proceedings of the IEEE International Conference on Fuzzy Systems
(FUZZ), pages 1826–1833, Jeju Island, Korea, August 2009.

[75] H. Ichihashi, A. Notsu, K. Honda, T. Katada, and M. Fujiyoshi.
Vacant parking space detector for outdoor parking lot by using
surveillance camera and fcm classifier. In Proceedings of the IEEE In-
ternational Conference on Fuzzy Systems (FUZZ), pages 127–134, Jeju
Island, Korea, August 2009.

[76] H. Ichihashi, T. Katada, M. Fujiyoshi, A. Notsu, and K. Honda. Im-
provement in the performance of camera based vehicle detector for
parking lot. In Proceedings of the IEEE International Conference on
Fuzzy Systems (FUZZ), pages 1–7, Barcelona, Spain, July 2010.

[77] M. Y. I. Idris, Y. Leng, E. M. Tamil, N. M. Noor, and Z. Razak. Car
park system: A review of smart parking system and its technology.
Information Technology Journal, 8(2):101–113, 2009. ISSN 1812-5638.

[78] IEEE. IEEE standard computer dictionary: a compilation of IEEE stan-
dard computer glossaries 610. Institute of Electrical and Electronics
Engineers, 1990. ISBN 978-1559370790.

[79] T. H. Im, I. K. Eom, and Y. S. Kim. Wavelet-based moving object seg-
mentation using background registration technique. In Proceedings
of the 9th IASTED International Conference on Signal and Image Process-
ing (SIP), pages 84–88, Honolulu, Hawaii, USA, August 2007.

[80] R. Jain and H. Nagel. On the analysis of accumulative difference
pictures from image sequences of real world scenes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI), 1(2):206–
214, 1979. ISSN 0162-8828.

[81] J. Jermsurawong, U. Ahsan, A. Haidar, H. Dong, and N. Mavridis.
One-day long statistical analysis of parking demand by using
single-camera vacancy detection. Journal of Transportation Systems

82



Bibliography

Engineering and Information Technology, 14(2):33–44, May 2014. ISSN
1570-6672.

[82] P.-M. Jodoin, J. Konrad, V. Saligrama, and V. Veilleux-Gaboury. Mo-
tion detection with an unstable camera. In Proceedings of the Inter-
national Conference on Image Processing (ICIP), pages 229–232, San
Diego, California, USA, October 2008.

[83] H. Jung, D. Kim, P. Yoon, and J. Kim. Stereo vision based local-
ization of free parking site. In Proceedings of the 11th International
Conference on Computer Analysis of Images and Patterns (CAIP), pages
231–239, Paris, France, September 2005.

[84] H. G. Jung, C. G. Choi, P. J. Yoon, and J. Kim. Semi-automatic
parking system recognizing parking lot markings. In Proceedings of
the 8th International Symposium on Advanced Vehicle Control (AVEC),
pages 947–952, Taipei, Taiwan, August 2006.

[85] H. G. Jung, D. S. Kim, P. J. Yoon, and J. Kim. Two-touch type
parking slot marking recognition for target parking position desig-
nation. In Proceedings of the IEEE Symposium on Intelligent Vehicles
(IV), pages 1161–1166, Eindhoven, Netherlands, June 2008.

[86] N. Kaempchen, U. Franke, and R. Ott. Stereo vision based pose esti-
mation of parking lots using 3d vehicle models. In Proceedings of the
IEEE Symposium on Intelligent Vehicles (IV), pages 459–464, Versailles,
France, June 2002.

[87] Z. Kalal, K. Mikolajczyk, and J. Matas. Face-TLD: Tracking-
Learning-Detection Applied to Faces. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), pages 3789–3792,
Hong Kong, September 2010.

[88] F. Kalaycilar. An object recognition framework using contextual
interactions among objects. Master’s thesis, Bilkent University,
Ankara, Turkey, 2009.

[89] H. Kang, D. Kim, and S. Y. Bang. Real-time multiple people tracking
using competitive condensation. In Proceedings of the International
Conference on Image Processing (ICIP), pages 325–328, Rochester, New
York, USA, September 2002.

83



Bibliography

[90] K. P. Karmann and A. von Brandt. Moving object recognition using
and adaptive background memory. In Time-Varying Image Process
Moving Object Recognition, volume 2, pages 289–307. Elsevier, Ams-
terdam, The Netherlands, 1990.

[91] Z. Khan, T. Balch, and F. Dellaert. Mcmc-based particle filtering
for tracking a variable number of interacting targets. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI), 27(11):
1805–1819, 2005. ISSN 0162-8828.

[92] T. H. Kim, I. K. Eom, and Y. S. Kim. Wavelet-based moving object
segmentation using background registration technique. In Proceed-
ings of the International Conference on Signal and Image Processing (SIP),
pages 84–88, Honolulu, Hawaii, USA, August 2007.

[93] S. Kumar and M. Hebert. Discriminative fields for modeling spatial
dependencies in natural images. In NIPS. MIT Press, 2003.

[94] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th International Conference on
Machine Learning (ICML), pages 282–289, San Francisco, California,
USA, June 2001.

[95] N. Lazarevic-McManus, J. Renno, D. Makris, and G. A. Jones. An
object-based comparative methodology for motion detection based
on the f-measure. Computer Vision and Image Understanding, 111(1):
74–85, 2008. ISSN 1077-3142.

[96] S. Lee, D. Yoon, and A. Ghosh. Intelligent parking lot application
using wireless sensor networks. In Proceedings of the International
Symposium on Collaborative Technologies and Systems (CTS), pages 48–
57, Irvine, California, USA, May 2008.

[97] M. Levoy. Display of surfaces from volume data. IEEE Computer
Graphics and Applications, 8(3):29–37, 1988. ISSN 0272-1716.

[98] S.-F. Lin, Y.-Y. Chen, and S.-C. Liu. A vision-based parking lot man-
agement system. In Proceedings of the International Conference on Sys-
tems, Man and Cybernetics (SMC), pages 2897–2902, Taipei, Taiwan,
October 2006.

84



Bibliography

[99] B. P. L. Lo and S. A. Velastin. Automatic congestion detection
system for underground platforms. In Proceedings of the Interna-
tional Symposium on Intelligent Multimedia, Video and Speech Process-
ing (ISIMP), pages 158–161, Kowloon Shangri-La, Hong Kong, May
2001.

[100] D. G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision (IJCV), 60(2):91–110,
2004. ISSN 0920-5691.

[101] B. D. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of the
DARPA Image Understanding Workshop, pages 121–130, Washington,
DC, USA, April 1981.

[102] B. D. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of the 7th
International Joint Conference on Artificial Intelligence (IJCAI), pages
674–679, Vancouver, Canada, August 1981.

[103] I. Masmoudi, A. Wali, and A. M. Alimi. Parking spaces modelling
for inter spaces occlusion handling. In Proceedings of the 22nd Inter-
national Conferences in Central Europe on Computer Graphics, Visualiza-
tion and Computer Vision (WSCG), pages 1–6, Pilsen, Czech Republic,
June 2014.

[104] N. Max. Optical models for direct volume rendering, 1995.

[105] N. J. B. McFarlane and C. P. Schofield. Segmentation and tracking
of piglets in images. Machine Vision and Applications, 8(3):187–193,
1995.

[106] P. Meer. Robust computer vision: An interdisciplinary challenge.
Computer Vision and Image Understanding, 78:1–7, 2000. ISSN 1077-
3142.

[107] K. Mikolajczyk and C. Schmid. A performance evaluation of lo-
cal descriptors. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 27(10):1615–1630, 2005. ISSN 0162-8828.

85



Bibliography

[108] L. E. Y. Mimbela and L. A. Klein. A summary of vehicle detection
and surveillance technologies used in intelligent transportation sys-
tems. Technical report, Southwest Technology Development Insti-
tute at New Mexico State University, Las Cruces, New Mexico, USA,
August 2007.

[109] K. C. Mouskos, M. Boile, and M. Boile. Technical solutions to over-
crowded park and ride facilities. Technical report, The City College
of New York, New York, New York, USA, May 2007.

[110] A. Nallamuthu and S. Lokala. Vision based parking space clas-
sification. Technical report, Clemson University, Clemson, South
Carolina, USA, December 2008.

[111] J. Pan and B. Hu. Robust occlusion handling in object tracking.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–8, Minneapolis, Minnesota, USA, June
2007.

[112] C. Papageorgiou and T. Poggio. A trainable system for object de-
tection. International Journal of Computer Vision (IJCV), 38(1):15–33,
2000. ISSN 0920-5691.

[113] M. A. Z. Pisheh and A. Sheikhi. Detection and compensation of im-
age sequence jitter due to an unstable ccd camera for video tracking
of a moving target. In Proceedings of the 2nd International Symposium
on 3D Data Processing, Visualization, and Transmission (3DPVT), pages
258–261, Thessaloniki, Greece, September 2004.

[114] P. W. Power and J. A. Schoonees. Understanding background mix-
ture models for foreground segmentation. In Proceedings of the Im-
age and Vision Computing, pages 267–271, Auckland, New Zealand,
November 2002.

[115] P. W. Power and J. A. Schoonees. Understanding background mix-
ture models for foreground segmentation. In Proceedings of the Im-
age and Vision Computing, pages 267–271, Auckland, New Zealand,
November 2002.

86



Bibliography

[116] B. Preim and D. Bartz. Visualization in Medicine: Theory, Algorithms,
and Applications. Morgan Kaufmann, 1st edition, 2007. ISBN 978-
0123705969.

[117] A. Rabinovich and S. Belongie. Scenes vs. objects: a compara-
tive study of two approaches to context based recognition. In Pro-
ceedings of the International Workshop on Visual Scene Understanding
(ViSU), pages 92–99, Miami, Florida, USA, June 2009.

[118] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Be-
longie. Objects in context. In Proceedings of the 11th International Con-
ference on Computer Vision (ICCV), pages 1–8, Rio de Janeiro, Brazil,
October 2007.

[119] P. Remagnino, A. Baumberg, T. Grove, D. Hogg, T. N. Tan, A. D.
Worrall, and K. D. Baker. An integrated traffic and pedestrian
model-based vision system. In Proceedings of the British Machine
Vision Conference (BMVC), Essex, UK, 1997.

[120] A. Sanin, C. Sanderson, and B. C. Lovell. Shadow detection: A
survey and comparative evaluation of recent methods. Journal of
Pattern Recognition, 45(4):1684–1695, April 2012. ISSN 0031-3203.
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