34 research outputs found

    Automated Estimation Parasitemia of Plasmodium berghei Infected Mice using CellProfiler Software

    Get PDF
    In this paper, we propose a technique for automatically recording parasitemia of mice infected with Plasmodium berghei by using Cellprofiler. Our purpose is to identify the difference number of parasitemia obtained by CellProfiler and manual assessment. We conducted a T-test analysis with p 0.05). It can be concluded that based on this research that automated quantification of parasitemia using CellProfiler was comparable but not better than manual.keywords: Automation, CellProfiler, Parasitemia, Plasmodium berghei, Thin blood smearPada tulisan ini, penghitungan parasitemia pada mencit yang diinfeksi dengan Plasmodium berghei dengan CellProfiler diusulkan. Tujuan penelitian yang dilakukan adalah untuk mengetahui apakah terdapat perbedaan antara nilai parasitemia yang diperoleh dengan menggunakan CellProfiler dibandingkan dengan secara manual. Uji T digunakan untuk analisis statistik dengan p 0, 05) . Dengan demikian dapat disimpulkan bahwa nilai persentase parasitemia yang diperoleh secara otomatis menggunakan CellProfiler sebanding tetapi tidak lebih baik dibandingkan dengan teknik manual.kata kunci: CellProfiler, Otomatisasi, Parasitemia, Plasmodium berghei, Preparat Apusan Tipi

    Computer vision for microscopy diagnosis of malaria

    Get PDF
    This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided

    A quantitative image analysis for the cellular cytoskeleton during in vitro tumor growth

    Get PDF
    The cellular cytoskeleton is a dynamic subcellular structure that can be a marker of key biological phenomena including cell division, organelle movement, shape changes and locomotion during the avascular tumor phase. Little attention is paid to quantify changes in the cytoskeleton while nuclei and cytoplasmic both are present in subcellular microscopic images. In this paper, we proposed a quantitative image analysis method to analyze subcellular cytoskeletal changes using a texture analysis method preceded by segmentation of nuclei, cytoplasm and ruffling regions (area except nuclei and cytoplasm). To test and validate this model we hypothesized that Mammary Serine Protease Inhibitor (maspin) acts as cytoskeleton regulator that mediates cell-extracellular matrix (ECM) adhesion in tumor. Maspin-a tumor suppressor gene shows multiple tumor suppressive properties such as increasing tumor cell apoptosis and reducing migration, proliferation, invasion, and overall tumor metastasis. The proposed method obtained separated ruffling regions from segmentation steps and then adopted gray–level histograms (GLH) and grey-level co-occurrence matrix (GLCM) texture analysis techniques. In order to verify the reliability, the proposed texture analysis method was used to compare the control and maspin expressing cells grown on different ECM components: plastic, collagen I, fibronectin and laminin. The results show that the texture parameters extracted reflect the different cytoskeletal changes. These changes indicate that maspin acts as a regulator of the cell-ECM enhancement process, while it reduces the cell migration. Overall, this paper not only presents a quantitative image analysis approach to analyze subcellular cytoskeletal architectures but also provides a comprehensive tool for the biologist, pathologist, cancer specialist, and computer scientist to understand cellular and subcellular organization of cells. In long term, this method can be extended to be used in live cell tracking in vivo, image informatics based point-of-care expert system and quantification of various complex architectures in organisms

    Semi-automated learning strategies for large-scale segmentation of histology and other big bioimaging stacks and volumes

    Get PDF
    Labelled high-resolution datasets are becoming increasingly common and necessary in different areas of biomedical imaging. Examples include: serial histology and ex-vivo MRI for atlas building, OCT for studying the human brain, and micro X-ray for tissue engineering. Labelling such datasets, typically, requires manual delineation of a very detailed set of regions of interest on a large number of sections or slices. This process is tedious, time-consuming, not reproducible and rather inefficient due to the high similarity of adjacent sections. In this thesis, I explore the potential of a semi-automated slice level segmentation framework and a suggestive region level framework which aim to speed up the segmentation process of big bioimaging datasets. The thesis includes two well validated, published, and widely used novel methods and one algorithm which did not yield an improvement compared to the current state-of the-art. The slice-wise method, SmartInterpol, consists of a probabilistic model for semi-automated segmentation of stacks of 2D images, in which the user manually labels a sparse set of sections (e.g., one every n sections), and lets the algorithm complete the segmentation for other sections automatically. The proposed model integrates in a principled manner two families of segmentation techniques that have been very successful in brain imaging: multi-atlas segmentation and convolutional neural networks. Labelling every structure on a sparse set of slices is not necessarily optimal, therefore I also introduce a region level active learning framework which requires the labeller to annotate one region of interest on one slice at the time. The framework exploits partial annotations, weak supervision, and realistic estimates of class and section-specific annotation effort in order to greatly reduce the time it takes to produce accurate segmentations for large histological datasets. Although both frameworks have been created targeting histological datasets, they have been successfully applied to other big bioimaging datasets, reducing labelling effort by up to 60−70% without compromising accuracy

    Automatic analysis of malaria infected red blood cell digitized microscope images

    Get PDF
    Malaria is one of the three most serious diseases worldwide, affecting millions each year, mainly in the tropics where the most serious illnesses are caused by Plasmodium falciparum. This thesis is concerned with the automatic analysis of images of microscope slides of Giemsa stained thin-films of such malaria infected blood so as to segment red-blood cells (RBCs) from the background plasma, to accurately and reliably count the cells, identify those that were infected with a parasite, and thus to determine the degree of infection or parasitemia. Unsupervised techniques were used throughout owing to the difficulty of obtaining large quantities of training data annotated by experts, in particular for total RBC counts. The first two aims were met by optimisation of Fisher discriminants. For RBC segmentation, a well-known iterative thresholding method due originally to Otsu (1979) was used for scalar features such as the image intensity and a novel extension of the algorithm developed for multi-dimensional, colour data. Performance of the algorithms was evaluated and compared via ROC analysis and their convergence properties studied. Ways of characterising the variability of the image data and, if necessary of mitigating it, were discussed in theory. The size distribution of the objects segmented in this way indicated that optimisation of a Fisher discriminant could be further used for classifying objects as small artefacts, singlet RBCs, doublets, or triplets etc. of adjoining cells provided optimisation was via a global search. Application of constraints on the relationships between the sizes of singlet and multiplet RBCs led to a number of tests that enabled clusters of cells to be reliably identified and accurate total RBC counts to be made. Development of an application to make such counts could be very useful both in research laboratories and in improving treatment of malaria. Unfortunately, the very small number of pixels belonging to parasite infections mean that it is difficult to segment parasite objects and thus to identify infected RBCs and to determine the parasitemia. Preliminary attempts to do so by similar, unsupervised means using Fischer discriminants, even when applied in a hierarchical manner, though suggestive that it may ultimately be possible to develop such a system remain on the evidence currently available, inconclusive. Appendices give details of material from old texts no longer easily accessible

    Método computacional para segmentação não supervisionada de imagens histológicas de linfoma

    Get PDF
    Histological image analysis represents a major evolutionary step in modern medicine. Associated with this step, computational methods are being widely developed to help specialists during the analysis of these images to determine diagnostics, prognostics and appropriate treatments in accordance with the condition of the patient. However, when it is performed by specialists, this task becomes time-consuming and susceptible to inter- and intra-pathologist variability. To improve this traditional practice for diagnostics of Mantle Cell Lymphoma, Follicular Lymphoma and Chronic Lymphocytic Leukemia, this study proposes a method for the unsupervised segmentation of nuclear components in indicative cells of such neoplasias using histological images stained with Hematoxylin-Eosin. The proposed method was divided into preprocessing, segmentation and post processing. In the preprocessing step, the techniques used in histogram equalization and Gaussian filter were applied to the channels from RGB color model. In the segmentation, a thresholding technique was applied combining the methods of fuzzy 3-partition entropy and genetic algorithm. Finally, for the improvement of the segmentation results, morphological operations and the valley-emphasis technique were used. For evaluating the developed method, histological images of lymphoma with magnification 20x were selected and manually segmented by a specialist. Those reference images (gold standard) allowed the extraction of quantitative measures in order to compare this method with different techniques proposed in the literature. Furthermore, a qualitative evaluation was conducted leading to relevant and improved results over those from compared studies. Its application was also analysed considering the steps of feature extraction and classification of the lesions, obtaining results of accuracy close to 100%FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorMestre em Ciência da ComputaçãoA análise de imagens histológicas representa uma das maiores evoluções da medicina moderna. Aliados a essa evolução, métodos computacionais vêm sendo amplamente desenvolvidos para auxiliar especialistas na análise dessas imagens para determinar diagnósticos, prognósticos e tratamentos adequados à condição do paciente. Porém, ao ser realizada por especialistas, essa tarefa torna-se dispendiosa e suscetível a variabilidades inter e intrapatologistas. Para aperfeiçoar tal prática tradicional para diagnósticos de Linfoma de Células do Manto, Linfoma Folicular e Leucemia Linfóide Crônica, este trabalho propõe um método para a segmentação não supervisionada dos componentes nucleares de células indicativas de tais neoplasias utilizando imagens histológicas coradas com Hematoxilina-Eosina. O método proposto foi dividido nas etapas de pré-processamento, segmentação e pós-processamento. Na etapa de pré-processamento, as técnicas de equalização do histograma e filtro gaussiano foram aplicadas sobre os canais componentes do modelo de cores RGB. Na segmentação, foi aplicada uma técnica de limiarização resultante da combinação entre os métodos fuzzy 3-partition entropy e algoritmo genético. Por fim, para aperfeiçoamento dos resultados da segmentação, foram utilizadas operações morfológicas e a técnica valley-emphasis. Para avaliar o método desenvolvido, imagens histológicas de linfoma com magnificação 20x foram selecionadas e segmentadas manualmente por um especialista. Essas imagens de referência (padrão-ouro) permitiram a extração de medidas quantitativas para a comparação entre este método e diferentes técnicas propostas na literatura. Além disso, uma avaliação qualitativa foi realizada levando a resultados relevantes e superiores aos trabalhos comparados. Também foi analisada a sua aplicação sobre as etapas de extração de características e classificação das diferentes lesões consideradas, obtendo resultados de acurácia próximos a 100%

    A critical review of the current state of forensic science knowledge and its integration in legal systems

    Get PDF
    Forensic science has a significant historical and contemporary relationship with the criminal justice system. It is a relationship between two disciplines whose origins stem from different backgrounds. It is trite that effective communication assist in resolving underlying problems in any given context. However, a lack of communication continues to characterise the intersection between law and science. As recently as 2019, a six-part symposium on the use of forensic science in the criminal justice system again posed the question on how the justice system could ensure the reliability of forensic science evidence presented during trials. As the law demands finality, science is always evolving and can never be considered finite or final. Legal systems do not always adapt to the nature of scientific knowledge, and are not willing to abandon finality when that scientific knowledge shifts. Advocacy plays an important role in the promotion of forensic science, particularly advocacy to the broader scientific community for financial support, much needed research and more testing. However, despite its important function, advocacy should not be conflated with science. The foundation of advocacy is a cause; whereas the foundation of science is fact. The objective of this research was to conduct a qualitative literature review of the field of forensic science; to identify gaps in the knowledge of forensic science and its integration in the criminal justice system. The literature review will provide researchers within the field of forensic science with suggested research topics requiring further examination and research. To achieve its objective, the study critically analysed the historical development of, and evaluated the use of forensic science evidence in legal systems generally, including its role regarding the admissibility or inadmissibility of the evidence in the courtroom. In conclusion, it was determined that the breadth of forensic scientific knowledge is comprehensive but scattered. The foundational underpinning of the four disciplines, discussed in this dissertation, has been put to the legal test on countless occasions. Some gaps still remain that require further research in order to strengthen the foundation of the disciplines. Human influence will always be present in examinations and interpretations and will lean towards subjective decision making.JurisprudenceD. Phil

    Computer aided diagnosis algorithms for digital microscopy

    Get PDF
    Automatic analysis and information extraction from an image is still a highly chal- lenging research problem in the computer vision area, attempting to describe the image content with computational and mathematical techniques. Moreover the in- formation extracted from the image should be meaningful and as most discrimi- natory as possible, since it will be used to categorize its content according to the analysed problem. In the Medical Imaging domain this issue is even more felt because many important decisions that affect the patient care, depend on the use- fulness of the information extracted from the image. Manage medical image is even more complicated not only due to the importance of the problem, but also because it needs a fair amount of prior medical knowledge to be able to represent with data the visual information to which pathologist refer. Today medical decisions that impact patient care rely on the results of laboratory tests to a greater extent than ever before, due to the marked expansion in the number and complexity of offered tests. These developments promise to improve the care of patients, but the more increase the number and complexity of the tests, the more increases the possibility to misapply and misinterpret the test themselves, leading to inappropriate diagnosis and therapies. Moreover, with the increased number of tests also the amount of data to be analysed increases, forcing pathologists to devote much time to the analysis of the tests themselves rather than to patient care and the prescription of the right therapy, especially considering that most of the tests performed are just check up tests and most of the analysed samples come from healthy patients. Then, a quantitative evaluation of medical images is really essential to overcome uncertainty and subjectivity, but also to greatly reduce the amount of data and the timing for the analysis. In the last few years, many computer assisted diagno- sis systems have been developed, attempting to mimic pathologists by extracting features from the images. Image analysis involves complex algorithms to identify and characterize cells or tissues using image pattern recognition technology. This thesis addresses the main problems associated to the digital microscopy analysis in histology and haematology diagnosis, with the development of algorithms for the extraction of useful information from different digital images, but able to distinguish different biological structures in the images themselves. The proposed methods not only aim to improve the degree of accuracy of the analysis, and reducing time, if used as the only means of diagnoses, but also they can be used as intermediate tools for skimming the number of samples to be analysed directly from the pathologist, or as double check systems to verify the correct results of the automated facilities used today
    corecore