467 research outputs found

    Fractal Analysis and Chaos in Geosciences

    Get PDF
    The fractal analysis is becoming a very useful tool to process obtained data from chaotic systems in geosciences. It can be used to resolve many ambiguities in this domain. This book contains eight chapters showing the recent applications of the fractal/mutifractal analysis in geosciences. Two chapters are devoted to applications of the fractal analysis in climatology, two of them to data of cosmic and solar geomagnetic data from observatories. Four chapters of the book contain some applications of the (multi-) fractal analysis in exploration geophysics. I believe that the current book is an important source for researchers and students from universities

    First evidence that intrinsic fetal heart rate variability exists and is affected by hypoxic pregnancy.

    Get PDF
    KEY POINTS: We introduce a technique to test whether intrinsic fetal heart rate variability (iFHRV) exists and we show the utility of the technique by testing the hypothesis that iFHRV is affected by chronic fetal hypoxia, one of the most common adverse outcomes of human pregnancy complicated by fetal growth restriction. Using an established late gestation ovine model of fetal development under chronic hypoxic conditions, we identify iFHRV in isolated fetal hearts and show that it is markedly affected by hypoxic pregnancy. Therefore, the isolated fetal heart has intrinsic variability and carries a memory of adverse intrauterine conditions experienced during the last third of pregnancy. ABSTRACT: Fetal heart rate variability (FHRV) emerges from influences of the autonomic nervous system, fetal body and breathing movements, and from baroreflex and circadian processes. We tested whether intrinsic heart rate variability (iHRV), devoid of any external influences, exists in the fetal period and whether it is affected by chronic fetal hypoxia. Chronically catheterized ewes carrying male singleton fetuses were exposed to normoxia (n = 6) or hypoxia (10% inspired O2 , n = 9) for the last third of gestation (105-138 days of gestation (dG); term ∼145 dG) in isobaric chambers. At 138 dG, isolated hearts were studied using a Langendorff preparation. We calculated basal intrinsic FHRV (iFHRV) indices reflecting iFHRV's variability, predictability, temporal symmetry, fractality and chaotic behaviour, from the systolic peaks within 15 min segments in each heart. Significance was assumed at P < 0.05. Hearts of fetuses isolated from hypoxic pregnancy showed approximately 4-fold increases in the Grid transformation as well as the AND similarity index (sgridAND) and a 4-fold reduction in the scale-dependent Lyapunov exponent slope. We also detected a 2-fold reduction in the Recurrence quantification analysis, percentage of laminarity (pL) and recurrences, maximum and average diagonal line (dlmax, dlmean) and the Multiscale time irreversibility asymmetry index. The iHRV measures dlmax, dlmean, pL and sgridAND correlated with left ventricular end-diastolic pressure across both groups (average R2  = 0.38 ± 0.03). This is the first evidence that iHRV originates in fetal life and that chronic fetal hypoxia significantly alters it. Isolated fetal hearts from hypoxic pregnancy exhibit a time scale-dependent higher complexity in iFHRV.British Heart Foundatio

    Review and classification of variability analysis techniques with clinical applications

    Get PDF
    Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis

    Nonlinear heart rate variability features for real-life stress detection. Case study : students under stress due to university examination

    Get PDF
    Background: This study investigates the variations of Heart Rate Variability (HRV) due to a real-life stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection. Methods: 42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an on-going university examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA). Results: Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively. Conclusions: The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting real-life stress condition, such as a university examination

    Nonlinear Dynamical Systems for Theory And Research In Ergonomics

    Get PDF
    Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system

    From Complex Networks to Time Series Analysis and Viceversa: Application to Metabolic Networks

    Get PDF
    In this work we present a simple and fast approach to generate network structures based on time series recurrence plots and viceversa. In addition, we discuss the application of the different analysis techniques developed in both fields, i.e. complex networks and time series analysis. Concerning the transformation from time series to networks, we propose a deterministic growth procedure which produces a new types of complex network structures that have some interesting features. This simple and fast approach is able to generate deterministic network structures based on time series recurrence plots. The generated networks contain several properties of the original time series. In this case, networks generated from chaotic attractors display interesting features from the point of view of robustness which could help in designing systems with high tolerance against errors and transfer of information. Chaotic networks based on the Lorenz attractor show that they are highly tolerant against attacks and they have a high ability for the transfer of information or on the contrary they are able to transmit infections faster. It is still necessary to investigate if such chaotic networks exist already in natural or man-made systems or, if possible, to construct such networks and test their properties. On the other hand, the transformation from networks to time series presents some problems concerning the selection of the initial time or in our case the initial node and the way in which the nodes are visited. If a network has been generated following a certain growth law it seems logical to choose the first node as the origin and then proceed following the network growth pattern. However, the situation is not so clear for example with metabolic networks, where it is difficult to select which is the first metabolite. Similar concerns would apply to other types of biological networks. In this case several alternatives could be considered, e.g. ordering using the number of connections. However, we have still to find if there are some invariant/preserved properties in the generated time series from the same network. We have found that rescaled range analysis does not preserve the fractal structure in the time series. In any case, if time series parameters would be invariant against the initial node selection, then they could be used to analyze the networks that have generated said time series. Our future work will continue along these lines.JRC.I.6-Systems toxicolog

    Nonlinear dynamics and modeling of heart and brain signals

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore