18 research outputs found

    Automatic bias of temporal expectations following temporally regular input independently of high-level temporal expectation

    No full text
    Exposure to rhythmic stimulation results in facilitated responses to events that appear in-phase with the rhythm and modulation of anticipatory and target-evoked brain activity, presumably reflecting "exogenous," unintentional temporal expectations. However, the extent to which this effect is independent from intentional processes is not clear. In two EEG experiments, we isolated the unintentional component of this effect from high-level, intentional factors. Visual targets were presented either in-phase or out-of-phase with regularly flickering colored stimuli. In different blocks, the rhythm could be predictive (i.e., high probability for in-phase target) or not, and the color could be predictive (i.e., validly cue the interval to the target) or not. Exposure to nonpredictive rhythms resulted in faster responses for in-phase targets, even when the color predicted specific out-of-phase target times. Also, the contingent negative variation, an EEG component reflecting temporal anticipation, followed the interval of the nonpredictive rhythm and not that of the predictive color. Thus, rhythmic stimulation unintentionally induced expectations, even when this was detrimental. Intentional usage of predictive rhythms to form expectations resulted in a stronger behavioral effect, and only predictive cues modulated the latency of the target-evoked P3, presumably reflecting stimulus evaluation. These findings establish the existence of unintentional temporal expectations in rhythmic contexts, dissociate them from intentional expectations, and highlight the need to distinguish between the source of expectation (exogenous-endogenous) and the level of voluntary control involved in it (unintentional-intentional)

    Temporal Dynamics of Visual Attention Allocation

    Get PDF
    We often temporally prepare our attention for an upcoming event such as a starter pistol. In such cases, our attention should be properly allocated around the expected moment of the event to process relevant sensory input efficiently. In this study, we examined the dynamic changes of attention levels near the expected moment by measuring contrast sensitivity to a target that was temporally cued by a five-second countdown. We found that the overall attention level decreased rapidly after the expected moment, while it stayed relatively constant before it. Results were not consistent with the predictions of existing explanations of temporal attention such as the hazard rate or the stimulus-driven oscillations. A control experiment ruled out the possibility that the observed pattern was due to biased time perception. In a further experiment with a wider range of cue-stimulus-intervals, we observed that attention level increased until the last 500 ms of the interval range, and thereafter, started to decrease. Based on the performances of a generative computational model, we suggest that our results reflect the nature of temporal attention that takes into account the subjectively estimated hazard rate and the probability of relevant events occurring in the near future

    Temporal expectancies driven by self- and externally generated rhythms

    Get PDF
    The dynamic attending theory proposes that rhythms entrain periodic fluctuations of attention which modulate the gain of sensory input. However, temporal expectancies can also be driven by the mere passage of time (foreperiod effect). It is currently unknown how these two types of temporal expectancy relate to each other, i.e. whether they work in parallel and have distinguishable neural signatures. The current research addresses this issue. Participants either tapped a 1Hz rhythm (active task) or were passively presented with the same rhythm using tactile stimulators (passive task). Based on this rhythm an auditory target was then presented early, in synchrony, or late. Behavioural results were in line with the dynamic attending theory as RTs were faster for in- compared to out-of-synchrony targets. Electrophysiological results suggested self-generated and externally induced rhythms to entrain neural oscillations in the delta frequency band. Auditory ERPs showed evidence of two distinct temporal expectancy processes. Both tasks demonstrated a pattern which followed a linear foreperiod effect. In the active task, however, we also observed an ERP effect consistent with the dynamic attending theory. This study shows that temporal expectancies generated by a rhythm and expectancy generated by the mere passage of time can work in parallel and sheds light on how these mechanisms are implemented in the brain

    Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation

    Get PDF
    Neuroimaging and transcranial magnetic stimulation (TMS) studies have implicated a dorsal fronto-parietal network in endogenous attention control and a more ventral set of areas in exogenous attention shifts. However, the extent and circumstances under which these cortical networks overlap and/or interact remain unclear. Crucially, whereas previous studies employed experimental designs that tend to confound exogenous with endogenous attentional engagement, we used a cued target discrimination paradigm that behaviourally dissociates exogenous from endogenous attention processes. Participants engaged with endogenous attention cues, while simultaneous apparent motion cues were driving exogenous attention along the motion path towards or away from the target position. To interfere with dorsal or ventral attention networks, we delivered neuronavigated double-pulse TMS over either right intraparietal sulcus (rIPS) or right temporo-parietal junction (rTPJ) towards the end of the cue target interval, and compared the effects to a sham-TMS condition. For sham-TMS, endogenous and exogenous cueing both benefitted discrimination accuracy. Target discrimination was enhanced at validly versus invalidly cued locations (endogenous cueing benefit) as well as when targets appeared in versus out of the motion path (exogenous cueing benefit), despite motion being uninformative and task-irrelevant, replicating previous findings. Interestingly, both rIPS- and rTPJ-TMS abolished attention benefits from exogenous cueing, while endogenous cueing benefits were unaffected. Our findings provide evidence against independent involvement of the dorsal and ventral attention network nodes in exogenous attention processes

    Temporal expectancies driven by self- and externally generated rhythms

    Get PDF
    The dynamic attending theory proposes that rhythms entrain periodic fluctuations of attention which modulate the gain of sensory input. However, temporal expectancies can also be driven by the mere passage of time (foreperiod effect). It is currently unknown how these two types of temporal expectancy relate to each other, i.e. whether they work in parallel and have distinguishable neural signatures. The current research addresses this issue. Participants either tapped a 1Hz rhythm (active task) or were passively presented with the same rhythm using tactile stimulators (passive task). Based on this rhythm an auditory target was then presented early, in synchrony, or late. Behavioural results were in line with the dynamic attending theory as RTs were faster for in- compared to out-of-synchrony targets. Electrophysiological results suggested self-generated and externally induced rhythms to entrain neural oscillations in the delta frequency band. Auditory ERPs showed evidence of two distinct temporal expectancy processes. Both tasks demonstrated a pattern which followed a linear foreperiod effect. In the active task, however, we also observed an ERP effect consistent with the dynamic attending theory. This study shows that temporal expectancies generated by a rhythm and expectancy generated by the mere passage of time can work in parallel and sheds light on how these mechanisms are implemented in the brain

    Optimal perceived timing: integrating sensory information with dynamically updated expectations

    Get PDF
    The environment has a temporal structure, and knowing when a stimulus will appear translates into increased perceptual performance. Here we investigated how the human brain exploits temporal regularity in stimulus sequences for perception. We find that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted. Stimuli presented earlier than expected are perceptually delayed, whereas stimuli presented on time and later than expected are perceptually accelerated. This result suggests that the brain regularizes slightly deviant stimuli with an asymmetry that leads to the perceptual acceleration of expected stimuli. We present a Bayesian model for the combination of dynamically-updated expectations, in the form of a priori probability of encountering future stimuli, with incoming sensory information. The asymmetries in the results are accounted for by the asymmetries in the distributions involved in the computational process

    Temporal expectancies and rhythmic cueing in touch: the influence of spatial attention

    Get PDF
    Attention resources can be allocated in both space and time. Exogenous temporal attention can be driven by rhythmic events in our environment which automatically entrain periods of attention. Temporal expectancies can also be generated by the elapse of time, leading to foreperiod effects (the longer between a cue and imperative target, the faster the response). This study investigates temporal attention in touch and the influence of spatial orienting. In experiment 1, participants used bilateral tactile cues to orient endogenous spatial attention to the left or right hand where a unilateral tactile target was presented. This facilitated response times for attended over unattended targets. In experiment 2, the cue was unilateral and non-predictive of the target location resulting in inhibition of return. Importantly, the cue was rhythmic and targets were presented early, in synchrony or late in relation to the rhythmic cue. A foreperiod effect was observed in experiment 1 that was independent from any spatial attention effects. In experiment 2, in synchrony were slower compared to out of synchrony targets but only for cued and not uncued targets, suggesting the rhythm generates periods of exogenous inhibition. Taken together, temporal and spatial attention interact in touch, but only when both types of attention are exogenous. If the task requires endogenous spatial orienting, space and time are independent

    Timing in predictive coding: the roles of task relevance and global probability

    Get PDF
    Predictive coding models of attention propose that attention and prediction operate synergistically to optimize perception, as reflected in interactive effects on early sensory neural responses. It is yet unclear whether attention and prediction based on the temporal attributes of expected events operate in a similar fashion. We investigated how attention and prediction based on timing interact by manipulating the task relevance and a priori probability of auditory stimulus onset timing within a go/no-go task while recording EEG. Preparatory activity, as indexed via the contingent negative variation, reflected temporally specific anticipation as a function of both attention and prediction. Higher stimulus probability led to significant predictive N1 suppression; however, we failed to find an effect of task relevance on N1 amplitude and an interaction of task relevance with prediction. We suggest the predictability of sensory timing is the predominant influence on early sensory responses where a priori probabilities allow for strong prior beliefs. When this is the case, we find that the effects of temporal prediction on early sensory responses are independent of the task relevance of sensory stimuli. Our findings contribute to the expansion of predictive coding frameworks to include the role of timing in sensory processing

    Should I stay or should I go? How local-global implicit temporal expectancy shapes proactive motor control: An hdEEG study

    Get PDF
    In this study, we investigated the effect of global temporal prediction on the brain capability to implicitly adjust proactive motor control. We used the Dynamic Temporal Prediction (DTP), in which local and global predictions of an imperative stimulus were manipulated by using different stimulus-onset asynchronies (SOAs), presented with several distribution probabilities. At a behavioural level, the results show a performance adjustment (reaction time decrease) depending on the implicit use of global prediction. At a neurophysiological level, three separate computational steps underlying motor control were investigated. First, the expectancy implementation was associated with global probability-dependent contingent negative variation (CNV) modulation supported by the recruitment of a frontoparietal network involving the anterior cingulate, the left intraparietal sulcus, the occipital, and the premotor areas. Second, the response implementation was modulated by the global prediction fostering stimulus processing (P3 increase) at the motor response level, as suggested by both oscillatory (beta desynchronization), as well as source analysis (frontal cortical network). Third, the expectancy violation lead to a negativity increase (omission-detection potential) time locked to the global rule violation and additionally, to delta and theta power increase interpreted as inhibitory control and rule violation detection, respectively. The expectancy violation further engaged a left lateralized network including the temporal parietal junction (TPJ) and the motor cortex, suggesting involvement of attentional reorienting and a motor adjustment. Finally, these findings provide new insights on the neurocognitive mechanisms underlying proactive motor control, suggesting an overlapping between implicit and explicit processes
    corecore