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Highlights 
● Proactive motor control is implicitly adjusted based on the global probability of event 

occurrence 
● Contingent Negative Variation is a marker of expectancy modulation depending on 

the probabilistic context 
● Delta and Theta bands synchronization signal the need for inhibition of pre-activated 

motor schemas and the behavioral internal model update 
● Beta band desynchronization underlies the motor adjustment based on the 

probabilistic context 
● Cognitive flexibility can be driven by low level associative learning processes. 
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Abstract 

In this study, we investigated the effect of global temporal prediction on the brain capability 

to implicitly adjust proactive motor control. We used the Dynamic Temporal Prediction 

(DTP), in which local and global predictions of an imperative stimulus were manipulated by 

using different stimulus-onset asynchronies (SOAs), presented with several distribution 

probabilities. At a behavioural level, the results show a performance adjustment (reaction 

time decrease) depending on the implicit use of global prediction. At a neurophysiological 

level, three separate computational steps underlying motor control were investigated. First, 

the expectancy implementation was associated with global probability-dependent contingent 

negative variation (CNV) modulation supported by the recruitment of a frontoparietal 

network involving the anterior cingulate, the left intraparietal sulcus, the occipital, and the 

premotor areas. Second, the response implementation was modulated by the global prediction 

fostering stimulus processing (P3 increase) at the motor response level, as suggested by both 

oscillatory (beta desynchronization), as well as source analysis (frontal cortical network). 

Third, the expectancy violation lead to a negativity increase (omission-detection potential) 

time locked to the global rule violation and additionally, to delta and theta power increase 

interpreted as inhibitory control and rule violation detection, respectively. The expectancy 

violation further engaged a left lateralized network including the temporal parietal junction 

(TPJ) and the motor cortex, suggesting involvement of attentional reorienting and a motor 

adjustment. Finally, these findings provide new insights on the neurocognitive mechanisms 

underlying proactive motor control, suggesting an overlapping between implicit and explicit 

processes. 

Key words: dynamic temporal prediction task, proactive response adjustment, anticipatory 

ERP activity, probabilistic context. 
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1. Introduction 

The ability to control our motor behaviour by preactivating (proactive control) or stopping 

(reactive inhibition) a response to task-relevant stimuli is shaped by both top-down, explicit 

instruction and bottom-up, implicit factors that may be unbeknownst to participants (Braem 

& Egner, 2018). Among these, the possibility to exploit either local or global temporal 

regularities to generate and update a prediction about the temporal onset of an imperative 

stimulus is crucial (Nobre & Van Ede, 2018; Bekinschtein et al., 2009; Chennu et al., 2013; 

Marti, Thibault, & Dehaene, 2014). Indeed, local and global statistical rules represent 

hierarchically-nested orders of information that can be extracted from sequential patterns and 

used to build-up a predictive internal model of world’s regularities and, consequently, bias 

attention and action. In this study we investigated how distinct neurocomputational 

mechanisms underlying motor control are affected by the implicit use of global temporal 

prediction.  

Specifically, in a sequence of sensory events, the local prediction refers to the stimulus 

expectancy bias induced by the narrow transitional probabilities, which do not need a long-

term, ‘historical’ statistical knowledge. By contrast, the global prediction refers to the ability 

to extract higher-level rules besides local transitions. In the case of motor preparation, the 

local prediction can be identified as the effect of the stimulus hazard rate on reaction times 

(RTs). In fact, the subjective probability of a stimulus onset will increase over time given that 

it has not occurred yet (Karlin, 1958; Los, 2010; Luce, 1986; Niemi & Näätänen, 1981; 

Nobre, Correa, & Coull, 2007; Woodrow, 1914). For instance, in the case of three discrete 

foreperiod (FP) intervals (e.g., 0.5, 1 or 1.5 sec) participants will be significantly fastest at 

detecting targets occurring at the shortest FP (for a review, see Los, 2010). By contrast, 
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global prediction refers to the history-driven probability of an event occurrence in the long 

period (Baumeister & Joubert, 1969; Los, Kruijne, & Meeter, 2017; Trillenberg, Verleger, 

Wascher, Wauschkuhn, & Wessel, 2000). Indeed, participants become faster to detect 

shortly-expected targets when these are globally more probable to occur. By contrast, a low 

global probability to receive a short preparatory interval implies a slowing down of RTs to 

stimuli presented at short FPs (Los et al., 2017; Trillenberg et al., 2000). In summary, the way 

participants will prepare to respond to an upcoming event will depend not only on how long 

they are waiting it (hazards rate or local prediction) but also on when this event is overall 

more likely to occur on the basis of past experience (global prediction). The first one operates 

within-trial while the second one across-trials and are supposed to exert independent but 

interactive effects on subjective temporal expectancy and motor control.  

1.1. Temporal prediction turns into specific expectancy-related brain activity 

A functional implication of the ability to make use of temporal prediction consists in the 

possibility to translate this knowledge into stimulus anticipatory brain activity (Cui, Stetson, 

Montague, & Eagleman, 2009; Mento, 2013; Miniussi, Wilding, Coull, & Nobre, 1999), a 

computational stage defined as expectancy implementation (Mento & Vallesi, 2016; Cotti, 

Rohenkohl, Stokes, Nobre, & Coull, 2011). One of the most reliable neural marker of 

expectancy implementation is the Contingent Negative Variation or CNV, a sustained event-

related potential (ERP) arising between two contingently associated sensory events and 

reflecting anticipatory processes (Walter, Cooper, Aldridge, McCallum, & Winter, 1964; 

Mento, Tarantino, Sarlo, & Bisiacchi, 2013; Mento, 2017). The CNV is locally enhanced 

following explicit predictive cues (Miniussi et al., 1999; Mento, Tarantino, Vallesi, & 

Bisiacchi, 2015; Correa, Lupiáñez, & Tudela, 2006; Capizzi et al., 2013) but also implicit 

predictive information (Coull & Nobre 2008) such as temporally regular vs. irregular target 
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presentation (Breska and Deouell 2014; Praamstra, Kourtis & Oostenveld 2006), sequential 

effects (Los & Heslenfeld, 2005; Mento, 2017; Capizzi, Correa, & Sanabria, 2013) or simple 

associative learning (Mento et al., 2013; Mento & Valenza, 2016). While the neural 

generators of this component are not entirely known, there is converging evidence that a 

distributed fronto-parietal cortical network mainly including the premotor, the supplementary 

motor and the parietal areas is involved in its generation (Mento et al., 2013, 2015; Mento, 

2017; Macar & Vidal, 2004).  

In line with behavioural evidence, the pre-allocation of neural activity translates into the 

convey of attentional and motor resources to task-relevant stimuli, a mechanism that can be 

defined as response implementation. In the context of motor preparation tasks, this is 

revealed by the larger post-stimulus late ERP amplitude (i.e., the P3 response) following 

predicted than unpredicted stimuli (Capizzi et al., 2013; Doherty, Rao, Mesulam, & Nobre, 

2005; Correa & Nobre, 2008; Mento, 2017; Nobre, 2001; Zanto et al., 2011).  

Finally, besides translating prediction into anticipatory activity, in order to flexibly adjust the 

behavioral outcome, the brain must also be able to online update its internal predictive 

models according to the incoming environmental stimuli and requests (Friston, 2010). This 

implies that when the system experiences an error prediction, such as in the case of 

expectancy violation, the internal model needs to be updated (Friston, 2010; Clark, 2013; 

Wacongne, Changeux, & Dehaene, 2012; Visalli, Capizzi, Ambrosini, Mazzonetto, & 

Vallesi, 2019; Zandbelt, Bloemendaal, Neggers, Kahn, & Vink, 2013). The possibility to gain 

advantage from errors allows indeed to re-tune perceptual and motor processes toward an 

optimal re-preparation. This is what happens, for instance, when a response is prepared 

shortly but must be stopped since the stimulus actually arrives late. While expectancy 

implementation, response implementation and expectancy violation are crucial mechanisms 
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for regulating motor control, only few studies have tried to address the question whether 

these distinct computational stages are differently modulated by local vs. global prediction.  

Noteworthy, while the effect of local prediction on motor control has been well elucidated 

(Miniussi et al., 1999; Coull et al. 2011; Mento et al., 2015; Mento, 2017; Vallesi, 2010), as 

far as we know, only few studies investigated the effect of global prediction on motor control. 

Among these, Trillenberg and colleagues (2000) reported a CNV amplitude modulation 

related to the FP probability distribution. Though, this study examined the effect of global 

probability neither on the response implementation nor on the violation expectancy. On the 

other side, in a recent study Visalli et al. (2019) adopted a bayesian computational approach 

and a neuroimaging method (fMRI) to map the neural correlates of the updating of temporal 

expectations in the human brain. Notably, in both the studies mentioned above, the authors 

provided participants with explicit instructions about the change in the global FP properties. 

Hence, the question whether implicit proactive motor control draws on similar neural 

mechanisms as those described for explicit control is still to be addressed.  

To this purpose we recorded and analyzed the high-density electroencephalographic (hdEEG) 

activity from healthy participants undergoing the Dynamic Temporal Prediction task (DTP; 

Mento & Granziol, 2020; Mento, Scerif, Granziol, Franzoi, & Lanfranchi, 2020). The DTP is 

a task consisting in a changed version of the variable FP task (Niemi and Naatanen, 1981; 

Los, 2010; Vallesi, 2010; Woodraw, 1914) purposely modified to introduce different 

hierarchies of stimulus predictability. In particular, we manipulated block-wise the 

probability distribution of three discrete FP intervals in order to generate a global expectation 

bias toward either the short or the long FP. To shed light on the neural bases of implicit 

proactive motor control we provided a multiple-domain brain investigation. In particular, we 

analyzed the ERP activity to depict the effects of global prediction on the temporal locus of 
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expectancy implementation, expectancy violation and response implementation as three 

temporally distinct computational stages underlying proactive motor control. We also 

explored the oscillatory patterns to shed light on the functional dynamics in terms of neural 

synchronization/desynchronization induced by global task properties. Finally, we 

reconstructed the spatial geography of the same effects at the source-level to provide a whole 

picture of the phenomena and compare our findings with previous neuroimaging literature. 

To investigate how global prediction affects expectancy implementation, we targeted the 

Contingent Negative Variation (CNV) in relation to the global probabilistic context. In line to 

the results reported by Trillenberg et al. (2000), we expected to find a CNV increase related 

to the global prediction, so that, for the same interval, a block-wise higher percentage of FP 

should lead to a large CNV amplitude. To test the effect of prediction on response 

implementation we targeted stimulus-locked neural activity. As previously shown for explicit 

temporal prediction (Capizzi et al., 2013; Doherty et al., 2005; Mento, 2017), we expected to 

observe a global-dependent modulation of the late ERPs (P3 component) reflecting massive 

recruitment of motor resources. Finally, the expectancy violation was investigated by 

targeting the omission-evoked potential elicited by the missed presentation of the target at the 

time when it was expected based on global prediction. In this case the we hypothesized the 

onset of the omission potential synchronized with the rule violation (i.e. the stimulus was 

supposed to appear after 500 ms, but the onset was delayed at 1500). To further unravel the 

neural mechanisms underlying the effect of global prediction on proactive motor control we 

also investigated the event-related oscillatory activity. According to previous literature we 

hypothesized the involvement of the delta, theta and beta frequency bands. Specifically, we 

expected the global prediction to instantiate a beta power desynchronization in both the 

prestimulus (expectancy implementation) and postimulus (response implementation) 
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windows (Jasper & Penfield, 1949; Tzagarakis, Ince, Leuthold, & Pellizzer, 2010; 

Pfurtscheller & Berghold, 1989; Sanes & Donoghue, 1993; Murthy & Fetz, 1996; 

Pfurtscheller & Neuper, 1997; Formaggio et al., 2008). Furthermore, we expected a 

modulation of delta and theta bands, especially considering their relation with inhibitory 

control (Prada, Barceló, Herrmann, & Escera, 2014) and expectancy violation (Cavanagh & 

Frank, 2014), respectively. More specifically, we expected to observe a delta and theta rule 

violation-dependent power increase, as previously demonstrated for endogenously-driven 

motor control. Finally, we performed the source reconstruction of all significant ERP effects 

to further depict the underlying neural generators in the spatial domain. 

2. Method 

2.1. Participants 

The sample size was a priori computed with G*Power3 (Faul, Erdfelder, Lang, & Buchner, 

2007). Starting from the effect size reported in Mento & Granziol (2020) and Mento et al. 

(2020) we defined an effect size of d= .45. Sample size was computed using a two tails t-tests 

as Test family, α = .05; power (1-β) = .90, resulting in a total sample of 44 participants. Data 

were collected from 50 healthy adult participants. Two participants were excluded due to 

equipment failure. The final sample included 48 participants (mean age = 22.96 years, [SD = 

1.14], range 20-27, 8 males). All participants reported normal or corrected-to-normal vision 

and had no history of neurological and/or psychiatric disorders. All participants gave their 

informed consent before the experiment. All experimental procedures were approved by the 

Ethics Committee of the School of Psychology at the University of Padua (protocol n° 2536) 

and were conducted according to the principles expressed in the Declaration of Helsinki. 
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2.2. Experimental Procedure 

Stimuli were presented on a 17-inch monitor at a resolution of 1,280 × 1,024 pixels. 

Participants were seated comfortably in a chair at a viewing distance of around 60 cm from 

the monitor. All participants performed a warned simple reaction time (RT) task adapted 

from an experimental paradigm previously employed from our lab to investigate voluntary 

and automatic temporal attention effects in adults and school-aged children (Mento & 

Tarantino, 2015). This task, defined as Dynamic Temporal Prediction (DTP) (Mento and 

Granziol, 2020; Mento et al., 2020) was originally conceived to investigate children’s 

behavioral performance in relation to either local or global probabilistic rules as two distinct 

sources of temporal predictability. We used here a modified version adapted for ERP 

investigation. 

2.3. Trial Structure 

Each trial began with the display of a warning visual stimulus (S1), followed by the 

presentation of an imperative visual stimulus (S2) that stayed on the screen for a maximum of 

3,000 ms. S1 consisted of a picture of a black camera lens (see Fig. 1) surrounded by a circle 

(total size of the stimulus: 840 × 840 pixels, 144 dpi, 10.62° × 10.54° of visual angle). S2 

consisted of a picture of a cartoon character, which was displayed centrally within the camera 

lens. The inter-trial-interval was randomly manipulated between 600 and 1,500 ms. The task 

consisted of speeded target detection. Participants were required to press a button of the 

response box with the index finger of the dominant hand as quickly as possible at S2 

occurrence.  

2.4. Local predictive context 
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To investigate the effect of the local predictive context on behavioral performance, the S1–S2 

stimulus-onset-asynchrony (SOA) was varied trial by trial within each experimental block so 

that three possible fixed FP intervals were created (Fig. 1). These included a short (500 ms), a 

medium (1,000 ms), or a long (1,500 ms) FP, resulting in three discrete levels of hazard rate. 

(Karlin, 1958; Los, 2010; Luce, 1986; Niemi & Näätänen, 1981; Woodrow, 1914).  

Fig.1. Trial structure. The circle (S1) warned participants on the presentation of the 

imperative S2 stimulus (a cartoon character; here represented with colored disks for 

illustrative purposes due to copyright restriction). Participants had to make speeded reaction 

times at S2 onset by pressing a button on the keyboard. The effect of local prediction was 

assessed by manipulating S1–S2 stimulus onset asynchrony (SOA) within each experimental 

block.  

2.5. Global predictive context 

As illustrated in Fig. 2, to assess the effect of the global changes in the predictive context, 

different probability distributions per each SOA interval were introduced and manipulated 

block-wise, as described below. 

2.5.1. Uniform (U) block  
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In this block, a rectangular distribution of the three SOAs was used (33,3%, for each SOA) so 

that the probability of each SOA in the block was equally distributed. This type of 

distribution is the most classic probabilistic distribution employed in both adult (Los, 2010; 

Mento, 2017; Mento et al., 2015; Vallesi, 2010) and developmental (Johnson, Burrowes, & 

Coull, 2015; Mento & Tarantino, 2015; Mento & Vallesi, 2016; Vallesi & Shallice, 2007) 

SOA literature. 

The use of an a priori uniform distribution has long been described to translate into a biased a 

posteriori temporal preparation. Indeed, as time goes by, the conditional probability of S2 

onset increases exponentially in virtue of the fact that it has not occurred yet (Los, 2010; Los 

et al., 2017; Luce, 1986). As a consequence, motor preparedness will be lowest at the shortest 

SOA and highest at the longest SOA. 

2.5.2. Short-biased (SB) block 

In this case, an a priori distribution biased toward the short SOA was delivered. In particular, 

the relative percentage was 50%, 33,33%, and 16,67% for the short, medium, and long SOA, 

respectively.  

2.5.3. Long-biased (LB) block 

In this block, the relative percentage was 16,7%, 33,3%, and 50% for the short, medium, and 

long SOA, respectively. This kind of distribution, also known in the literature as aging 

distribution (Los et al., 2017; Trillenberg et al., 2000), is purposely intended to exacerbate the 

hazard-based increment of temporal expectancy as a function of SOA length. 

2.6. Experimental Design 
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The experimental manipulations yielded a factorial design in which either the SOA (short vs. 

medium vs. long) and the block type (SB vs. U vs. LB) factors were orthogonally contrasted 

to investigate the effect of local and global predictive context, respectively (Fig. 2). 

  

Fig. 2. Experimental Design. The effect of global prediction was assessed by manipulating 

the between-block, a priori percentage of each SOA to create three probabilistic distributions 

in which the SOAs were equally distributed (uniform) or skewed toward the short (short-

biased) or long (long-biased) SOA. 

Each single block included 60 trials and was delivered three times, for a total of nine 

experimental blocks and 540 trials. Specifically, the number of trial were 90, 60 and 30 for 

SB-S, SB-M and SB-L conditions, respectively; 60 trials for each SOA in the U block and 30, 

60 and 90 trials for LB-S, LB-M and LB-L conditions, respectively. All blocks were matched 

for sensorimotor requirements, as the visual stimuli and the required response were always 

the same across the experiment. The only differences were related to the changes in the 

predictive context experienced through the task. The total length of the experiment was about 

25 minutes. It is important to note that participants were unbeknownst of both local and 

global manipulations since no explicit information were given about this. Furthermore, no 
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pauses were introduced between blocks. Instead, a blank slide was inserted at the middle of 

each block to allow participant to rest. In this way we avoided participants to become aware 

about global changes occurring at any block switch. The block-type order was randomly 

sorted between subjects. This ensured that spurious effects due to introducing either local or 

global predictive contexts induced by a fixed SOA or block sequence did not bias the 

performance. To ensure that the experimental manipulation was effective in inducing implicit 

prediction, after completing the task we asked all participants if they realized that the task 

could change in speed, becoming faster or slower over time. Before starting the experimental 

session, participants were presented with a block of 20 training trials for each condition to 

ensure they understood task instructions. During training, all participants received a feedback 

at every trial according to their performance. Specifically, a neutral yellow smile was 

displayed in cases in which either anticipatory (before target onset) or premature (< 150 ms 

before target onset) responses were provided. A yellow smile was displayed if the RT was 

between 1,000 and 1,500 ms from target onset. Finally, a green smile was displayed if the RT 

was between 150 and 1000 ms. E-prime 2 software (Psychology Software Tools, Pittsburgh, 

USA) was used to create and administer the stimuli. Behavioral data are available on 

Figshare public repository (10.6084/m9.figshare.12246218). 

2.7. Behavioral analysis 

We used mean accuracy and mean RTs as response variables on which testing our 

hypotheses. In particular, accuracy refers to the mean percentage of not anticipated responses 

across all experimental conditions (i.e., between 150 ms and 1,500 ms from target onset). To 

calculate response speed, we considered only RTs measured in correct trials, i.e., without 

premature responses. We analyzed the effects on response accuracy and speed by setting a 3 

✕ 3 within subject experimental design, that we tested through generalized linear mixed-
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effect models (GLMMs). In particular, we defined two separate GLMMs for response speed 

and accuracy, respectively. Both SOA (i.e., Short vs. Medium vs. Long) and block (i.e., SB 

vs. U vs. LB) were considered within subject fixed factors. We set random intercept models, 

with participants as the clustering variable. We adopted the procedure suggested by Westfall, 

Kenny, and Judd (2014) to calculate Cohen’s d for each comparison used the R statistical 

software (R Core Team 2018) to run statistical analyses, using the following packages: lme4 

(Bates, Maechler, Bolker, & Walker, 2015) to test the GLMMs, emmeans (Lenth, 2018) to 

test multiple comparisons and car (Fox & Weisberg, 2011) to estimate p-value, which were 

adjusted with a false discovery rate correction (Benjamini and Hochberg, 1995). Behavioral 

analysis code is available on Figshare (10.6084/m9.figshare.12249302). 

2.8. EEG recordings 

We used a Geodesic high-density EEG System (EGI® GES-300) with a pre-cabled 128-

channel HydroCel Geodesic Sensor Net (HCGSN-128) and electrical reference to the vertex. 

EEG data were recorded during the entire experiment. The sampling rate was 500 Hz. The 

impedance was kept below 60 kW for each sensor. In order to reduce signal contamination, 

participants were instructed to limit eye blinks and eye movements as much as possible 

during task trials. EEG data are available on Figshare public repository 

(10.6084/m9.figshare.12246218). 

2.8.1. EEG preprocessing 

Signal preprocessing was performed through EEGLAB 14.1.2b (Delorme & Makeig, 2004). 

The continuous EEG signal was first downsampled at 250 Hz and then bandpass-filtered (0.1 

to 45 Hz) using a Hamming windowed sinc finite impulse response filter (filter order = 

8250). The signal was successively epoched between -500 and 1996 ms from S1 onset. 

Epochs related to trials containing premature responses were rejected. Epoched data were 
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subjected to an automated bad-channel and artifact detection algorithm by using the TBT 

plugin (Ben-Shachar, 2020) implemented in EEGLAB. This algorithm identified the channels 

that exceeded a differential average amplitude of 250μV and marked those channels for 

rejection. Channels that were marked as bad on more than 30% of all epochs were excluded. 

Epochs having more than 10 bad channels were also excluded. Successively, we 

automatically detected possible flat channels with the Trimoutlier EEGLAB plug in, with the 

lower bound of 1μV. Data cleaning was performed by means of an independent component 

analysis (Stone, 2002), using the Infomax algorithm (Bell & Sejnowski, 1995) implemented 

in EEGLAB. The resulting independent components were visually inspected in topography 

and time-series, and those related to eye blinks, eye movements and muscle artifacts were 

discarded. The remaining components were then projected back to the electrode space to 

obtain cleaner EEG epochs. Finally, bad channels were reconstructed with the spherical 

spline interpolation method (Ferree, 2006; Perrin, Pernier, Bertrand, & Echallier, 1989). The 

data were then re-referenced to the average of all electrodes, and baseline correction was 

applied by subtracting the mean signal amplitude in the pre-stimulus interval. Epoched data 

were imported in Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011) to generate 

the individual average for each electrode site and experimental condition. We applied a 

weighted average in order to control for the unbalanced number of epochs per condition 

(Kotowski, Stapor, & Leski, 2019; Leski, 2002). The mean number of epochs and standard 

deviation (SD) in brackets for each condition are listed in the Table S1.  

SB-S = 89,29 (3,30) SB-M = 57, 35 (2,55)  SB-L = 28,91 (1,42) 

U-S = 56, 26 (3,33)  U-M = 57,58 (2,71)  U-L = 57,14 (2,93)  

LB-S = 28,66 (1,68) LB-M = 56,25 (3,10) LB-L = 85,89 (3,96) 
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Tab.1 Mean number of trials and standard deviation between brackets of each experimental 
condition 

 

 

 

2.8.2. Oscillatory EEG analysis 

The oscillatory activity of each trial was calculated using Morlet wavelet analysis (central 

frequency = 1 Hz; time resolution (FWHM) = 3 sec) using the Brainstorm software. The 

time-frequency (TF) activity was studied from 1 to 45 Hz, diving the frequency range in 60 

bins with a logarithmic frequency definition. Data were then averaged obtaining a TF map for 

each subject and each experimental condition. Successively, event related 

synchronization/desynchronization percentage (ERSD) was calculated, according to 

Pfurtscheller & Lopes (1999), by using the following formula: ERS/ERD = (E-μ)/ μ × 100 

where E indicates the power density during the event condition and μ indicates the mean of 

the power density during the baseline. Finally, we grouped TF maps in frequency bands by 

averaging the power spectrum density as it follows: Delta (2-4 Hz); Theta (5-7 Hz), Alpha (8-

12 Hz); Beta1 (13-21 Hz), Beta2 (21-30 Hz), Gamma (30-45 Hz).  

2.8.3. Cortical Source modelling 

Baseline-corrected epochs were imported in Brainstorm (Tadel et al., 2011) to model their 

cortical generators. We used the ICBM152 anatomical template to approximate the individual 

anatomy of each participant (Evans, Janke, Collins, & Baillet, 2012). Co-registration of EEG 

electrodes position was performed via Brainstorm, by projecting the digitized EEG sensor 

positions GSN Hydrocel 128 E1 available in Brainstorm on the head surface. We then 

derived an EEG forward model using the three-layer boundary element method (BEM) from 

OpenMEEG implemented as a Brainstorm routine (Kybic, Clerc, Faugeras, Keriven, & 



 

17 

Papadopoulo, 2005; Gramfort, Papadopoulo, Olivi, & Clerc, 2011). The source space was 

constrained to the cortex and modeled as a grid of 15.002 orthogonal current dipole triplets. 

We used sLORETA as a source model, with Brainstorm’s default parameter settings. The 

empirical noise covariance model was obtained from the average of ERP baseline signals. 

The sources were projected to the standard anatomical template (MNI) and their activity was 

transformed in Z scores relative to the baseline. Finally, a spatial smooth with a FWHM of 3 

mm, was applied to each source. 

2.9. EEG statistical analysis 

We applied a whole-scalp analysis approach at all electrode sites using a paired t-test (α = 

.05) permutation approach to control the family-wise error rate (Groppe, Urbach, & Kutas, 

2011). A similar technique was employed in previous ERP studies (Duma et al., 2019; 

Mento, Astle, & Scerif, 2018; Mento, 2017; Strauss et al., 2015; Capizzi, Ambrosini, Arbula, 

Mazzonetto, & Vallesi, 2016). To control for the 1-type error we performed 2,000 Monte-

Carlo permutations and applied cluster-based correction over all 128 electrode locations 

using the Fieldtrip functions (Oostenveld, Fries, Maris, & Schoffelen, 2011), accessible via 

Brainstorm (Tadel et al., 2011). The ERP effect size was estimated by computing Cohen’s d 

of the effect averaged over all the electrodes included in the significant clusters for each 

comparison (Buiatti et al., 2019). Our experimental manipulation allowed us to test specific 

hypotheses about the effect of the global predictive context on distinct cognitive mechanisms 

underlying proactive motor control. These encompassed expectancy implementation, 

expectancy violation and response implementation (Fig. 3). The EEG analysis pipeline, with 

all the computational steps and the functions used from EEGLAB (Delorme & Makeig, 2004) 

and Brainstorm (Tadel et al., 2011), is available on Figshare 

(10.6084/m9.figshare.12249302). 
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2.9.1. Expectancy implementation 

To investigate the functional locus of expectancy implementation, the Contingent Negative 

Variation (CNV; Walter et al., 1964; Mento, 2013) was targeted as a neural signature of 

response preparation and measured in the last 100 ms of the preparatory activity, from S1 

onset (Mento, 2017). In line with previous findings (Trillenberg et al., 2000), we speculated 

that the CNV was affected by the global predictive context, resulting in larger amplitude for 

the SB-S as compared to the LB-S.  

2.9.2. Response implementation 

Finally, in order to investigate response implementation, we examined the post target onset 

activity comparing SB-S and LB-S conditions. Specifically, we expected a modulation in the 

amplitude of the P3 potential. Therefore, we focused on the mean activity between 250 and 

400 ms from S2 onset, where the P3 is usually expressed.  

2.9.3. Expectancy violation 

As shown in Fig. 3b, in our task the expectancy violation occurred in the SB-L condition, 

since in this case the participants were implicitly biased to expect the imperative stimulus at 

the short SOA but this was actually delivered at a longer interval. A violation of the learnt 

global probabilistic rule should yield to a more difficult inhibition of the motor response since 

this had been proactively maximally prepared. At the behavioural level, we expected to find 

the lowest accuracy (i.e., more premature responses) in the SB-L condition. The 

neurofunctional correlates (both ERP and oscillatory activity) of the expectancy violation 

were investigated between 100 and 200 ms from the missed S2 onset (i.e., 600 to 700 ms 

from S1 onset). In particular, we expected to find a global omission-detection potential 

(ODP) similar to the one we reported for local expectancy violation in our previous study 
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using a similar task (Mento and Vallesi, 2016). In order to partial out any potential diverging 

pre-S1 baseline slopes deriving from different SB-LB inter-trial preparatory effects, we 

applied a baseline correction over the entire pre-target time window (0-1500 ms) of the long 

SOA. 

 

Fig. 3. Temporal windows of interest for the statistical analyses. A) Expectancy 

implementation was investigated by comparing the CNV amplitude in the last 100 ms of the 

preparatory activity. B) Expectancy violation was tested by contrasting the condition where 

the global probabilistic rule was violated SB-L in which the stimulus occurs before the 

expected onset) against the LB-L condition, in which the global probability was respected. 
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We expected to find an ODP wave for the SB-L condition. C) Response implementation was 

examined in the P3 time window, comparing the condition with maximum expectancy (SB-S) 

to the one with the lowest expectation (LB-S). 

 

The permutation statistic with cluster correction was also applied in the statistical analyses of 

oscillatory activity in the same temporal windows of the ERP analysis. Finally, concerning 

the source statistic, a permutation paired t-test was run over the mean amplitude of the Z-

scored maps, in the same window of interest of the ERP and oscillatory analyses. 

3. Results 

3.1. Behavioral results - Accuracy 

As expected, the mean accuracy was affected by the local predictive context. This was 

revealed by the effect of the SOA (χ2
(2)= 54.99; p <  .001). Specifically, participants were 

more accurate in trials with short than medium (t(376) = 2.56; p = .03; d = 0.27) or long SOA 

(t(376) = 7.31; p < .001; d = 0.79) as well as in medium than long SOA trials (t(376) = 4.74; p < 

.001; d = 0.51) (degrees of freedom are calculated accordingly to the kenward-roger 

approximation;  Kenward and Roger, 1997). The mean accuracy was affected by the global 

predictive context, as suggested by the significant effect of the Block (χ2
(2)= 15.34; p < 

0.001). The participants showed overall lower accuracy in the SB than in the U (t(376 )= -3.44; 

p <  .01; d = 0.37) or the LB blocks (t(376 )= -3.39; p <  .001; d = 0.36). On the contrary, the 

accuracy was not statistically different between the U and the LB blocks (t(376) = -0.1; p = .99; 

d = 0.01). We also found a statistically significant SOA ✕ Block interaction (χ2(4)= 15.34; p < 

.001). As shown in Fig. 4, this was explained by lower accuracy in the SB as compared to the 
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LB (t(376 )= -5.05; p <  .001; d = 0.95) or U blocks (t(376) = -5.11; p < .001; d = 0.96), but only 

for long SOA trials. All the other differences did not reach statistical significance. 

 

Fig. 4. The figure shows the rainclouds and box plot of the single-subject data for mean 

accuracy (panel A) and reaction times (panel B) per block-type (SB, U and LB) and SOA 

(short, medium and long). 

 

3.1.2. Reaction times 
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Also for RTs we observed a statistically significant effect of SOA on RTs (χ2
(2)= 870.4; p < 

.001), so that participants were faster in trials with long than medium (z = -6.15;  p < .001; d 

= 0.51) or short (z = -28.93; p < .001; d = 2.63) SOA (with model fitting asymptotic 

distribution, the emmeans package computes z statistics to calculate multiple comparisons). 

Participants were also faster in medium than short SOA trials (z = -22.94; p < .001; d = 2.12). 

We observed a statistically significant effect of Block on the RTs (χ2
(2)= 63.73; p < .001), 

since participants were overall faster in SB rather than U (t(376) = -3.33; p < .01; d = 0.29) and 

LB trials (t(376) = -8.69; p < .001; d = 0.77). Furthermore, participants were overall faster in 

trials administered within the U than the LB blocks (z = -5,37; p < .001; d = 0.48). The SOA 

✕ Block interaction (χ2(4)= 30.09; p < .001) further confirmed that the global effect affected 

differently the three SOA intervals. As displayed in the Fig. 4b, the participants were faster in 

the SB as compared to the U (z = -4.55; p < .001; d = 0.77) and the LB (z = -8.32; p < .001; d 

= 1.43) blocks, as well as in the U as compared to the LB (z = -3.76; p < .001; d = 0.66) 

blocks. Remarkably, these block-related differences were maximally observed for the short 

SOA. A similar, but minor effect was also observed for the medium SOA trials, since in this 

case participants were slower in the LB as compared to the SB (z = 4.12, p < .001, d = 0.6) 

and uniform (z = 3.25; p < .001; d = 0.47) blocks. No statistically significant block-related 

differences emerged for the long SOA trials. Importantly, despite the participants’ 

performance was significantly affected by the block-type, none of them reported having 

noticed this changes, thus confirming that the global prediction had an implicit impact on 

behaviour. 

3.2. EEG results 

3.2.1. Expectancy Implementation 
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The permutation analyses in the anticipatory time window in which the expectancy 

implementation was investigated revealed a negative cluster of centro-parietal electrodes (p = 

.04; cluster size = -43; cluster statistic = 38; d = -0.32), which exhibited a negativity increase 

of the CNV amplitude for the SB-S condition as compared to the LB-S one (see Fig. 5A). No 

significant results in the frequency domain were found in the same time window of ERP and 

source analyses. The statistical analyses of the source maps reconstructed over the CNV 

significant time window showed a larger recruitment of cortical activity in the SB-S 

compared to the LB-S (p < .01). This consisted of a distributed network including the left 

intraparietal sulcus (IPS), the bilateral supplementary motor area (SMA), the middle and 

caudal cingulate cortex and the bilateral activation of the cuneus (see Fig. 5B). 

 

 

Fig. 5. Global prediction effect on expectancy implementation.  A) The upper part of the 

panel represents the statistically significant electrodes (p < .05) derived from the cluster based 

permutation analysis. The negative cluster indicates that CNV mean amplitude is 

significantly larger in the short-biased than in the long-biased blocks in the last part of the 
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preparation, and this difference is expressed over centro-parietal electrodes. The ERP below 

the scalp map shows the time series of the negative cluster for the contrasted conditions. The 

S1 at 0 ms indicates the ERP time locking. The shaded area around the time series represents 

the standard error. B) The panel shows the statistical difference of the source maps in the 

comparison between SB-S and LB-S mean activity, obtained in the same time window of the 

CNV modulation. Significant cluster (p < .01) are reported on a template cortex smoothed at 

30%.   

3.2.2. Response implementation 

The statistical analysis highlighted a significant modulation between 250 and 400 ms 

showing a mean amplitude increase of the P3 potential expressed over centro-parietal 

electrodes for the stimuli occurring in the maximally expected temporal interval (SB-S) 

compared to those presented in the less probable (LB-S) (positive cluster:  p = .010; cluster 

size = 70, cluster statistic = 50; negative cluster:  p = .013; cluster size = 68, cluster statistic = 

50; d = 0.34) (see Fig. 6A).  

The statistical analysis over the TF maps revealed a desynchronization increase in the beta 

band over frontal electrodes (p = .008; cluster size = -182; cluster statistic = 144) with a 

preferential left lateralization (see Fig. 6B). Furthermore, a significant theta 

desynchronization increase has been identified in the SB-S condition compared to the LB-S 

over centralized frontal electrodes (p = .008; cluster size = -182; cluster statistic = 144) (see 

Fig. 6C).  

Finally, the source statistic revealed an engagement of a clear-cut network spreading over the 

bilateral motor and premotor areas as well as over the superior and the middle frontal gyrus 

(p < .01). Additionally, significant activations have been identified in the cingulate cortex 

(see Fig. 6D).  
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Fig. 6. Global prediction effect on response implementation. A) The upper panel displays 

the statistically significant electrodes (p < .05) in reddish or bluish colors, depending on the 

direction of the t-test. At the level of response implementation, the P3 amplitude shows a 

mean amplitude increase for the expected stimulus (SB-S condition) compared to the 

unexpected one (LB-S condition). The picture below the scalp map shows the S2-locked 

time-course of the central positive cluster. The shaded area around the time series represents 

the standard error. B) The raster plot displays the power density statistical difference elicited 
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by response implementation at E22 electrode (FP1 in the 10-20 system; gray dot on the scalp 

map), separately for the beta1 and beta2 frequency bands. The scalp plots represent the scalp 

distribution of these effects. C) The raster plot displays the power density statistical 

difference elicited by response implementation at E6 electrode (FCz in the 10-20 system; 

gray dot on the scalp map), for the theta frequency band. The scalp plot represents the scalp 

distribution of this effect. D) The panel shows the statistical difference of the source maps in 

the comparison between SB-S and LB-S mean post target activity (250-400 ms). Significant 

cluster (p < 0.01) are reported on a template cortex smoothed at 30%. 

3.2.3. Expectancy violation 

We found a transient, significant negative increase in the ERP activity between 600 and 700 

ms from S1 onset. This latency corresponded to an interval between 100 and 200 ms 

following the omission of the imperative stimulus, which was expected at 500 ms on the basis 

of the global prediction (Fig. 7A). This effect, here defined as the ODP (Mento and Vallesi, 

2016) was observed in the SB-L vs. the LB-L condition and was expressed over a negative 

central cluster of electrodes (negative cluster: p = .002 cluster size = -128, cluster statistic = 

70; d =     -0.76).  

The oscillatory results showed that the expectancy violation elicited a synchronization in the 

delta and theta frequency bands (p = .015; clusters size = 186; cluster statistic = 148). 

Specifically, the delta increase exhibits a diffuse scalp distribution, covering frontal, central 

and posterior electrodes while the theta modulation is more localized, closely reflecting the 

location of the identified ERP effect (see Fig.7B).   

The source analysis revealed a violation-related increase in the electrical activity of the left 

temporal parietal junction (TPJ), left pre-central gyrus and bilateral cuneus (p < .01) (Fig. 

7C). 
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Fig. 7. Global prediction effect on expectancy violation. A) The upper part of the panel 

represents the statistically significant electrodes (p < .05) derived from the cluster based 

permutation analysis. The central negative cluster indicates that the omission evoked 

potential (ODP) is significantly larger in the SB vs. LB blocks between 600 and 700 ms. The 

ERP below the scalp map shows the S1-locked time course of the central negative cluster. 

The shaded area around the time series represents the standard error. B) The raster plot 

displays the statistical differential power density for expectancy violation at the E55 electrode 

(Cz in the 10-20 system; black dot on the scalp map), separately for the delta (right scalp 

map) and theta (left scalp map) frequency bands. The scalp plots represent the scalp 

distribution of these effects. 
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C) The panel shows the statistical difference of the source maps in the comparison between 

SB-L and LB-L mean activity in the 600-700 ms time window. Significant cluster (p < .01) 

are reported on a template cortex smoothed at 30%. 

4. Discussion 

In this study we investigated how different sources of implicit temporal prediction shape 

distinct neurocomputational mechanisms underlying proactive motor control. To this purpose 

we recorded and analyzed the hdEEG activity from healthy participants undergoing the 

Dynamic Temporal Prediction task (DTP; Mento, et. al, 2020; Mento and Granziol, 2020). 

The DTP is a simple reaction time task purposely designed to elicit both local (i.e., within-

trial stimulus hazard rate) and global (i.e., between-block stimulus expectancy bias) temporal 

prediction. Specifically, the preparatory interval was manipulated within the trial to generate 

temporal expectancy on the basis of local probabilistic rules. In addition, we introduced a 

higher-order (global) predictive rule by introducing different types of blocks with different 

SOA probabilities, leading to a U (same probability per each SOA), an SB (higher probability 

of short SOA), and an LB (higher probability of long SOA) distribution. The behavioural 

results revealed that participants were faster at detecting stimuli when these were preceded by 

long than medium or short preparatory intervals after a warning signal. This finding replicates 

previous literature, confirming that motor promptness is proactively biased by the local 

probability of stimulus onset, which accumulates progressively within each single trial, also 

known as the ‘variable foreperiod effect’ (Niemi and Naatanen, 1981; Los, 2010; Vallesi, 

2010). As expected, this higher anticipatory preparedness occurred at the expenses of reactive 

inhibitory control, given that participants committed more premature responses in the trials 

with the longest preparatory foreperiod. In other words, the more participants waited for the 



 

29 

stimulus onset, the faster they were to detect it and the higher was the number of premature 

responses they committed.  

In addition to the expected effect of local prediction on behaviour, we showed that the 

participants’ performance was shaped by the global predictive context. This refers to the 

overall statistical probability to receive the imperative stimulus after a short or long 

foreperiod, which in the present study was implicitly manipulated between-block by creating 

block-wise short- and long-biased probabilistic distributions. Importantly, we observed that 

participants were overall faster at detecting stimuli in the short-biased blocks (in which most 

of the foreperiods were short) than in the long-biases ones. This pattern suggests that 

proactive motor control is sensitive to high-level statistical regularities, although people were 

not explicitly aware of it. As for local prediction, even in this case a higher excitatory 

threshold during the anticipatory interval turned out into a disruption of reactive inhibitory 

control. This was revealed by participants committing more premature responses in long 

trials when these were globally less probable, that is, in the short-biased blocks. In other 

words, the ability to prepare for a response is guided not only by the local accumulation of 

preparation but also by the ‘history of events’ temporal occurrence over time. From a 

theoretical point of view, our data nicely support the “multiple trace theory of temporal 

preparation” (Los, Kruijne, & Meeter, 2014; Los et al., 2017), which assume that a sort of 

temporal tag is experienced on each trial and stored to build up a predictive internal model 

which, in turn, biases attentional and motor resources trial-by-trial. Noteworthy, in the 

context of the present paradigm it may be important to investigate the presence of transitional 

effects in the behavioural adaptation in terms of trial-by-trial task speed changes when 

shifting between two global distributions. However, the use of a random block order 

presentation did not allow us to further explore any time-on-task learning effect. We are 

currently planning a follow-up study to address this important issue. 
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To understand the functional bases of global prediction impact on proactive motor control we 

analyzed the temporal, oscillatory and spatial neural signatures of different time windows, 

corresponding to distinct computational stages. These included expectancy implementation, 

expectancy violation and response implementation. The effect of global prediction on 

expectancy implementation was reflected in the block-dependent CNV increase around 100 

ms before stimulus onset (see Fig. 5A). Remarkably, this marker was modulated as a function 

of the block-type, being on average larger in the trials with high-probable short intervals (i.e., 

short-biased blocks) as compared the low-probable ones (i.e., long-biased blocks). This ERP 

effect nicely aligned with behavioural data, showing that globally-induced faster responses 

are explained by higher expectancy implementation during the anticipatory interval. The 

source-level analysis provided further spatial detail to this finding, showing that the higher 

expectancy implementation is supported by a larger recruitment of a distributed brain cortical 

network. This circuit mainly entailed the left inferior parietal region (i.e., around the IPS) 

together with bilateral frontal areas (i.e., the SMA and the motor/premotor cortex) (see Fig. 

5B). Notably, these findings replicate our previous electrical source-based studies on the 

effect of temporal expectancy when this is prompted by either explicit cueing task (Mento et 

al., 2015; Mento & Vallesi, 2016; Mento, 2017; Mento et al., 2018) or implicit manipulations 

(i.e., sequential effects; Mento, 2017). As well, they replicate findings from independent 

research groups using other neuroimaging techniques (Coull & Nobre, 1998; Coull, Frith, 

Büchel, & Nobre, 2000; Coull, 2004; Coull, Davranche, Nazarian, & Vidal, 2013; Cotti et al., 

2011; Nobre, 2001; Davranche, Nazarian, Vidal, & Coull, 2011; Bolger, Coull, & Schön, 

2014). This fronto-parietal network has been advocated to functionally mediate the 

feedforward generation and orientation of attentional and motor resources toward future 

expected events (see Coull, 2011 for a review). Crucially, for the first time here we report 

that a similar network is involved when attention and motor preparation are forecasted 
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implicitly on the basis of global predictive information. A theoretical implication of this is 

that the implementation of expectancy, whether this is generated explicitly or implicitly, is 

independent from the mechanisms accounting for how this expectation has been generated 

over time. In other words, the left fronto-parietal network engaged by expectancy 

implementation may be akin a by-product of the internal temporal predictive model generated 

on the basis of the environmental experience. In addition to the above mentioned left fronto-

parietal network we reported an engagement of the cingulate cortex. Although the role of this 

structure has been not exhaustively elucidated yet, its involvement may reflect an enhanced 

need for reactive inhibitory control (Bokura, Yamaguchi, & Kobayashi, 2001; Braver, Barch, 

Gay, Molfese, & Snyder, 2001; Shen et al., 2015). That is, the more participants will engage 

fronto-parietal activity to speed-up their response proactively, the more they will need to 

exert reactive inhibitory control to overcome impulsive responses.  

The expectancy implementation translates into an increase of neural resources allocated to 

stimulus detection, as confirmed by a larger P3 following high- than low-predicted targets on 

the basis of the global predictive context (see Fig. 6A). The neural sources of this effect 

encompassed several anterior brain areas, including the SMA, the SFG and the ACC. This 

pattern strongly suggests that part of the network pre-activated during the expectancy 

implementation was actually involved in the response implementation stage too, reflecting a 

continuity between the proactive and the reactive motor control.  

As an alternative hypothesis, this effect may be the result of an attenuation of the P300 in the 

LB-S condition, which may be caused by a higher amplitude of motor activity recruited 

following the relatively unexpected response signal in the LB-S condition. Although 

interesting, this idea is not entirely supported by the oscillatory patterns we found.  Indeed, 

this showed globally-induced predictive effect, with expected targets triggering an increased 

beta-band desynchronization in frontal electrodes contralateral to the response hand (right 
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hand) (see Fig. 6B). The Beta band power decrease has been usually related to the motor 

preparation and execution, and seems to be generated by the contralateral peri-rolandic 

regions (Jasper & Penfield, 1949; Tzagarakis et al., 2010; (Pfurtscheller & Berghold, 1989; 

Sanes & Donoghue, 1993; Murthy & Fetz, 1996; Pfurtscheller & Neuper, 1997; Formaggio et 

al., 2008). Noteworthy, it has been shown that this neurophysiological mechanism is 

regulated by the local temporal predictability, either when this is induced voluntarily or 

implicitly (Mento et al., 2018). Our data further expand upon previous findings by showing a 

beta desynchronization also for stimuli that are implicitly predicted on the basis of a global 

predictive context. We also observed an increase in the frontal theta power for the LB-S 

compared to the SB-S (see Fig. 6C). The frontal midline theta has been interpreted as a 

general neural hallmark reflecting cognitive control (Cavanagh & Frank, 2014) and rule 

violation detection (Tzur & Berger, 2009, 2007). We speculate that in the LB condition, 

where participants were biased to expect stimuli to appear late, the unexpected delivery of the 

targets in the short interval represented a violation of the global rule, requiring an increase of 

reactive control demand to adjust behaviour, as suggested by the increase of premature 

responses. This interpretation may also explain what we observed for the expectancy 

violation stage, which was investigated comparing the brain activity when the stimulus 

occurred when expected (LB-L) vs. the rule violation condition (delayed onset; SB-L). 

Indeed, the participants implicitly generate a global internal predictive model which drives 

them to be more prepared for the stimulus onset at 500 ms, ergo, a target delay represents a 

violation of the expectation based on the global prediction. The analyses revealed that the 

missed target presentation yielded a central negativity peaking between 100 and 200 ms from 

the expected target onset time (see Fig. 7A). This neural marker has been defined the 

omission-detection potential (ODP), in line with the ERP we previously reported in response 

to a violation of local expectancy (Mento and Vallesi, 2016). The expectancy violation was 
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also associated to a synchronization increase in the delta and theta frequency bands (see Fig. 

7B). A delta synchronization enhancement has been related to transient inhibitory control of 

contextual novelty independently from the exogenous or endogenous origin (Prada et al., 

2014). A fundamental role of delta has been also purported in the evaluation of internal and 

external events based on their behavioural saliency (Knyazev, 2012). According to this 

hypothesis, the augmented delta activity could reflect high behavioral relevance of a change 

in task context or in the saliency of a stimulus (Huster, Enriquez-Geppert, Lavallee, 

Falkenstein, & Herrmann, 2013). Moreover, delta power has been shown to be sensible to the 

stimulus sequence context information (Harper, Malone, Bachman, & Bernat, 2016). On the 

other side, as above mentioned, the theta frequency band seems to reflect general control 

process, conveying the information that something needs to be done, although without 

necessarily carrying the content of what has to be done (Cavangh and Frank, 2014). In our 

experimental design, the theta synchronization may signal the need for an update of the 

internal predictive model and a consequential behavioral schema adjustment, such as the 

inhibition of a prepared response and a subsequent reorienting of the attention to the next 

time interval. On the other hand, delta synchronization can be related to the active inhibition 

of the pre-activated motor schema in order to adapt the behaviour to the environmental 

requests. Accordingly with this hypothesis, we observed an increased activity over of the left 

precentral gyrus and the TPJ (see Fig. 7C). The engagement of the motor cortex could be 

explained as the effects of the inhibition of the motor response, on the other side the 

involvement of TPJ can be linked to the reorienting process. Neuroimaging studies advocated 

a role for TPJ as a core node of the ventral attentional control network engaged in exogenous 

(automatic) attentional-reorienting towards unexpected visual target (Corbetta & Shulman, 

2002; Chica, Bartolomeo, & Lupiáñez, 2013; Wu et al., 2015; Downar, Crawley, Mikulis, & 

Davis, 2002). A complementary interpretation sustains that TPJ engagement can be better 
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understood in terms of ‘contextual updating’ of an internal model of the environmental 

setting based on new incoming sensory information (Soltani & Knight, 2000, Polich, 2007; 

Geng & Vossel, 2013). Our results nicely support both the above interpretations, since the 

expectancy violation-dependent TPJ activity may underlie an internal model update based on 

the experience of the new sensory information (i.e. the absence of the expected stimulus 

onset) and a subsequent attentional re-orienting toward the next, most probable target onset 

time. 

Overall, the present results suggest that cognitive control of motor response can be implicitly 

driven by both first- (local) or second-order (global) predictive rules. The capability to 

implicitly extract global statistical patterns of regularities and use them to shift from different 

proactive control sets is likely linked to the individual cognitive flexibility. Cognitive 

flexibility has been recognized as a core function of cognitive control (Diamond, 2013; 

Miyake et al., 2000) and considered a top-down process able to guide the action based on 

internal goals and external context, requiring therefore volition and attention to down-

regulate behaviour (Diamond, 2013; Miller & Cohen, 2001; Norman & Shallice, 1986). 

However, our results better support a most recent theoretical framework positing that 

cognitive control can indeed be guided by low level associative learning processes (Braem & 

Egner, 2018; Crump & Logan, 2010; Sali, Anderson, & Yantis, 2015; Farooqui & Manly, 

2015). As we recently proposed in the context of proactive motor control development 

(Mento and Granziol, 2020), cognitive flexibility can be seen as being rooted in the learning 

process of ‘stimulus-response’ associations itself rather than conceived as the by-product of a 

sort of homuncular, stand-alone superordinate modular structure. An implication of this view 

is a putative overlapping between the neurocomputational mechanisms underlying voluntary 

vs. implicit proactive motor control. Here we provide empirical support to this hypothesis, 

showing for the first time that, when high or low motor preparation is implicitly induced by 
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global prediction, the neural signatures in the spatial, temporal and oscillatory domains 

largely mimic those observed for endogenous control induced by explicit predictive 

information.  This suggests that the two processes are not separated but indeed the two faces 

of the same coin, providing further support for overcoming the dichotomic contraposition 

between voluntary-driven cognitive control vs. automatic processes.    

 

5. Conclusions 

In this study we provided electrophysiological evidence suggesting that the brain is capable 

to implicitly adjust proactive motor control based on a simple, low-level associative learning 

mechanism, i.e., the probabilistic context of an event occurrence. Specifically, the implicit 

use of global predictive rule translates into an expectancy implementation (CNV increase) 

and response implementation adjustment (P3 increase), resulting in a better behavioural 

performance (RT decrease). The expectancy violation induced by the omission of expected 

target resulted in a general alerting system activation (fronto-central theta synchronization), 

signaling the need to update the internal predictive model, and to inhibit the pre-activated 

motor schema (delta synchronization), in order to flexibly adapt motor behaviour. Brain areas 

engaged during expectancy and response implementation have been identified as part of the 

fronto-parietal network including inferior parietal lobule, SMA, motor and cingulate cortex. 

On the other side, left motor cortex and TPJ was mainly involved in the expectancy violation, 

probably related to the pre-activated motor schema inhibition and internal model update. The 

limitations in the spatial resolution of the source reconstruction requires caution in the 

interpretation of the results. Nonetheless, considering the convergence with other source 

reconstruction and fMRI studies, the present results could be used as a starting point for 

future confirmatory studies. Our lab is currently doing further research to explore the 
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transitional effects in the behavioural adaptation when shifting between global distributions, 

resulting in the possibility to model individual learning effects.  
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Supplementary material 

 

Supplementary Fig.1. Single subject ERP effects. The figure shows the single-subject 

mean ERP amplitude in the two contrasted conditions for the expectancy implementation, the 

expectancy violation and the response implementation.  

 

Supplementary Fig.2. Global prediction effect on expectancy violation in medium time 

interval. The figure shows the effect of the expectancy violation in the medium SOA. It is 

worth to notice that: i) the direction of the effect; ii) the waveform morphology and iii) the 
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scalp distribution are the same of the SB-L LB-L contrast. The upper part of the figure 

represents the statistically significant electrodes (p < .05) derived from the cluster based 

permutation analysis. The central negative cluster indicates that the omission evoked 

potential (ODP) mean amplitude is significantly larger in the short-biased vs. long-biased 

blocks between 600 and 700 ms. The ERP below the scalp map shows the time series of the 

central negative cluster for the contrasted conditions. The shaded area around the time series 

represents the standard error. 

 

 

 
















