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Highlights

Proactive motor control is implicitly adjusted bdsm the global probability of event
occurrence

Contingent Negative Variation is a marker of expacy modulation depending on
the probabilistic context

Delta and Theta bands synchronization signal tleel ier inhibition of pre-activated
motor schemas and the behavioral internal modehtepd

Beta band desynchronization underlies the motorusagient based on the
probabilistic context

Cognitive flexibility can be driven by low level ssciative learning processes.



Abstract

In this study, we investigated the effect of gloteahporal prediction on the brain capability
to implicitly adjust proactive motor control. We ags the Dynamic Temporal Prediction
(DTP), in which local and global predictions of iamperative stimulus were manipulated by
using different stimulus-onset asynchronies (SOAsgsented with several distribution
probabilities. At a behavioural level, the resudt®ow a performance adjustment (reaction
time decrease) depending on the implicit use oba@l@rediction. At a neurophysiological
level, three separate computational steps underlgotor control were investigated. First,
the expectancy implementation was associated viathag) probability-dependent contingent
negative variation (CNV) modulation supported by trecruitment of a frontoparietal
network involving the anterior cingulate, the leftraparietal sulcus, the occipital, and the
premotor areas. Second, the response implementaismodulated by the global prediction
fostering stimulus processing (P3 increase) antbtor response level, as suggested by both
oscillatory (beta desynchronization), as well aarese analysis (frontal cortical network).
Third, the expectancy violation lead to a negatiwitcrease (omission-detection potential)
time locked to the global rule violation and adulilly, to delta and theta power increase
interpreted as inhibitory control and rule violatidetection, respectively. The expectancy
violation further engaged a left lateralized netkvorcluding the temporal parietal junction
(TPJ) and the motor cortex, suggesting involvenoérattentional reorienting and a motor
adjustment. Finally, these findings provide newights on the neurocognitive mechanisms
underlying proactive motor control, suggesting &ertapping between implicit and explicit

processes.

Key words. dynamic temporal prediction task, proactive resgoadjustment, anticipatory

ERP activity, probabilistic context.



1. Introduction

The ability to control our motor behaviour by preaaating (proactive control) or stopping
(reactive inhibition) a response to task-relevdimgli is shaped by both top-down, explicit
instruction and bottom-up, implicit factors thatyrae unbeknownst to participants (Braem
& Egner, 2018). Among these, the possibility to lexpeither local or global temporal
regularities to generate and update a predicti@utathe temporal onset of an imperative
stimulus is crucial (Nobre & Van Ede, 2018; Bekimsn et al., 2009; Chennu et al., 2013;
Marti, Thibault, & Dehaene, 2014). Indeed, localdaglobal statistical rules represent
hierarchically-nested orders of information that te extracted from sequential patterns and
used to build-up a predictive internal model of M@ regularities and, consequently, bias
attention and action. In this study we investigateow distinct neurocomputational
mechanisms underlying motor control are affectedth®y implicit use of global temporal

prediction.

Specifically, in a sequence of sensory events,ldlcal prediction refers to the stimulus
expectancy bias induced by the narrow transitigmababilities, which do not need a long-
term, ‘historical’ statistical knowledge. By condtatheglobal prediction refers to the ability
to extract higher-level rules besides local tramisg. In the case of motor preparation, the
local prediction can be identified as the effectlod stimulus hazard rate on reaction times
(RTs). In fact, the subjective probability of anstilus onset will increase over time given that
it has not occurred yet (Karlin, 1958; Los, 201@icé, 1986; Niemi & Naatdnen, 1981,
Nobre, Correa, & Coull, 2007; Woodrow, 1914). Foestance, in the case of three discrete
foreperiod (FP) intervals (e.g., 0.5, 1 or 1.5 geaticipants will be significantly fastest at

detecting targets occurring at the shortest FP gfoeview, see Los, 2010). By contrast,



global prediction refers to the history-driven probabildf an event occurrence in the long
period (Baumeister & Joubert, 1969; Los, Kruijne Meeter, 2017; Trillenberg, Verleger,
Wascher, Wauschkuhn, & Wessel, 2000). Indeed, gyaamts become faster to detect
shortly-expected targets when these are globallsempeoobable to occur. By contrast, a low
global probability to receive a short preparatarterval implies a slowing down of RTs to
stimuli presented at short FPs (Los et al., 20%illefberg et al., 2000). In summary, the way
participants will prepare to respond to an upconmaugnt will depend not only on how long
they are waiting it (hazards rate or local predittibut also on when this event is overall
more likely to occur on the basis of past expemefgtobal prediction). The first one operates
within-trial while the second onacross-trialsand are supposed to exert independent but

interactive effects on subjective temporal expentaand motor control.

1.1. Temporal prediction turnsinto specific expectancy-related brain activity

A functional implication of the ability to make usé temporal prediction consists in the
possibility to translate this knowledge into stinmulanticipatory brain activity (Cui, Stetson,
Montague, & Eagleman, 2009; Mento, 2013; Miniu$¥ilding, Coull, & Nobre, 1999), a
computational stage defined agpectancy implementatiqiMento & Vallesi, 2016;Caotti,
Rohenkohl, Stokes, Nobre, & Coull, 2011). One o tmost reliable neural marker of
expectancy implementation is the Contingent Negatlariation or CNV, a sustained event-
related potential (ERP) arising between two comily associated sensory events and
reflecting anticipatory processes (Walter, Coopddridge, McCallum, & Winter, 1964;
Mento, Tarantino, Sarlo, & Bisiacchi, 2013; Menff)17). The CNV is locally enhanced
following explicit predictive cues (Miniussi et al1999; Mento, Tarantino, Vallesi, &
Bisiacchi, 2015; Correa, Lupiafez, & Tudela, 20Q&pizzi et al., 2013) but also implicit

predictive information (Coull & Nobre 2008) such t@sporally regular vs. irregular target



presentation (Breska and Deouell 2014; Praamstartls & Oostenveld 2006), sequential
effects (Los & Heslenfeld, 2005; Mento, 2017; CapiZorrea, & Sanabria, 2013) or simple
associative learning (Mento et al.,, 2013; Mento &lahza, 2016). While the neural
generators of this component are not entirely knothiere is converging evidence that a
distributed fronto-parietal cortical network mainhcluding the premotor, the supplementary
motor and the parietal areas is involved in itsegation (Mento et al., 2013, 2015; Mento,

2017; Macar & Vidal, 2004).

In line with behavioural evidence, the pre-allogatiof neural activity translates into the
convey of attentional and motor resources to tatkvant stimuli, a mechanism that can be
defined asresponse implementatiorin the context of motor preparation taskiis is

revealed by the larger post-stimulus late ERP aogsi (i.e., the P3 response) following
predicted than unpredicted stimuli (Capizzi et 2013; Doherty, Rao, Mesulam, & Nobre,

2005; Correa & Nobre, 2008; Mento, 2017; Nobre,2anto et al., 2011).

Finally, besides translating prediction into amgatory activity, in order to flexibly adjust the
behavioral outcome, the brain must also be ableriine update its internal predictive
models according to the incoming environmental glirand requests (Friston, 2010). This
implies that when the system experiences an erredigtion, such as in the case of
expectancy violatignthe internal model needs to be updated (Fris2@10; Clark, 2013;
Wacongne, Changeux, & Dehaene, 2012; Visalli, CapiAmbrosini, Mazzonetto, &
Vallesi, 2019; Zandbelt, Bloemendaal, Neggers, K&wink, 2013). The possibility to gain
advantage from errors allows indeed to re-tunegmu@l and motor processes toward an
optimal re-preparation. This is what happens, fatance, when a response is prepared
shortly but must be stopped since the stimulus adlgtiarrives late. While expectancy

implementation, response implementation and expegtaiolation are crucial mechanisms



for regulating motor control, only few studies havied to address the question whether

these distinct computational stages are differemtbglulated by locals.global prediction.

Noteworthy, while the effect of local prediction emotor control has been well elucidated
(Miniussi et al., 1999; Coull et al. 2011; Mentoa¢t 2015; Mento, 2017; Vallesi, 2010), as
far as we know, only few studies investigated tifiece of global prediction on motor control.
Among these, Trillenberg and colleagues (2000) ntedoa CNV amplitude modulation
related to the FP probability distribution. Thoughis study examined the effect of global
probability neither on the response implementation on the violation expectancy. On the
other side, in a recent study Visalli et al. (20&8ppted a bayesian computational approach
and a neuroimaging method (fMRI) to map the necoatelates of the updating of temporal
expectations in the human brain. Notably, in bdih $tudies mentioned above, the authors
provided participants with explicit instructionsaaib the change in the global FP properties.
Hence, the question whether implicit proactive motontrol draws on similar neural

mechanisms as those described for explicit corgrsiill to be addressed.

To this purpose we recorded and analyzed the hegisity electroencephalographic (hdEEG)
activity from healthy participants undergoing thgnamic Temporal Prediction task (DTP;
Mento & Granziol, 2020; Mento, Scerif, GranziolaReoi, & Lanfranchi, 2020). The DTP is
a task consisting in a changed version of the bbri&P task (Niemi and Naatanen, 1981,
Los, 2010; Vallesi, 2010; Woodraw, 1914) purposetypdified to introduce different
hierarchies of stimulus predictability. In partiaul we manipulated block-wise the
probability distribution of three discrete FP int&ls in order to generate a global expectation
bias toward either the short or the long FP. Tadslght on the neural bases of implicit
proactive motor control we provided a multiple-damlrain investigation. In particular, we

analyzed the ERP activity to depict the effectglobal prediction on the temporal locus of



expectancy implementation, expectancy violation aesponse implementation as three
temporally distinct computational stages underlyipgactive motor control. We also
explored the oscillatory patterns to shed lighttloe functional dynamics in terms of neural
synchronization/desynchronization induced by glob@isk properties. Finally, we
reconstructed the spatial geography of the saneetsfat the source-level to provide a whole

picture of the phenomena and compare our findings pvevious neuroimaging literature.

To investigate how global prediction affects expacy implementation, we targeted the
Contingent Negative Variation (CNV) in relationttee global probabilistic context. In line to
the results reported by Trillenberg et al. (20003, expected to find a CNV increase related
to the global prediction, so that, for the samerwl, a block-wise higher percentage of FP
should lead to a large CNV amplitude. To test tlffleceé of prediction on response
implementation we targeted stimulus-locked neuctiValy. As previously shown for explicit
temporal prediction (Capizzi et al., 2013; Dohestyal., 2005; Mento, 2017), we expected to
observe a global-dependent modulation of the &84 (P3 component) reflecting massive
recruitment of motor resources. Finally, the exgecy violation was investigated by
targeting the omission-evoked potential elicitedfiy missed presentation of the target at the
time when it was expected based on global predictio this case the we hypothesized the
onset of the omission potential synchronized witl tule violation (i.e. the stimulus was
supposed to appear after 500 ms, but the onsetl@laged at 1500). To further unravel the
neural mechanisms underlying the effect of glolrabjction on proactive motor control we
also investigated the event-related oscillatoryviagt According to previous literature we
hypothesized the involvement of the delta, thetd laeta frequency bands. Specifically, we
expected the global prediction to instantiate aalyjgawer desynchronization in both the

prestimulus (expectancy implementation) and podtiswu(response implementation)



windows (Jasper & Penfield, 1949; Tzagarakis, Inteuthold, & Pellizzer, 2010;
Pfurtscheller & Berghold, 1989; Sanes & Donoghu®93t Murthy & Fetz, 1996;
Pfurtscheller & Neuper, 1997; Formaggio et al., &00Furthermore, we expected a
modulation of delta and theta bands, especiallysidemning their relation with inhibitory
control (Prada, Barceld, Herrmann, & Escera, 2@ expectancy violation (Cavanagh &
Frank, 2014), respectively. More specifically, weected to observe a delta and theta rule
violation-dependent power increase, as previousgnahstrated for endogenously-driven
motor control. Finally, we performed the sourceorestruction of all significant ERP effects

to further depict the underlying neural generaiorhe spatial domain.

2. Method

2.1. Participants

The sample size was a priori computed with G*Pow@&iaul, Erdfelder, Lang, & Buchner,
2007). Starting from the effect size reported innkbe& Granziol (2020) and Mento et al.
(2020) we defined an effect size of d= .45. Sarsple was computed using a two tails t-tests
as Test familyp. = .05; power (1) = .90, resulting in a total sample of 44 partits. Data
were collected from 50 healthy adult participarnite:o participants were excluded due to
equipment failure. The final sample included 4&ipgrants (mean age = 22.96 years, [SD =
1.14], range 20-27, 8 males). All participants mgsd normal or corrected-to-normal vision
and had no history of neurological and/or psyclaadisorders. All participants gave their
informed consent before the experiment. All expenial procedures were approved by the
Ethics Committee of the School of Psychology atliméversity of Padua (protocol n° 2536)

and were conducted according to the principlesesgad in the Declaration of Helsinki.



2.2. Experimental Procedure

Stimuli were presented on a 17-inch monitor at soltgion of 1,280 x 1,024 pixels.
Participants were seated comfortably in a chaa atewing distance of around 60 cm from
the monitor. All participants performed a warnethgle reaction time (RT) task adapted
from an experimental paradigm previously employeshf our lab to investigate voluntary
and automatic temporal attention effects in adaltsl school-aged children (Mento &
Tarantino, 2015). This task, defined as Dynamic peral Prediction (DTP) (Mento and
Granziol, 2020; Mento et al., 2020) was originatlgnceived to investigate children’s
behavioral performance in relation to either lomablobal probabilistic rules as two distinct
sources of temporal predictability. We used herenadified version adapted for ERP

investigation.

2.3. Trial Structure

Each trial began with the display of a warning wisstimulus (S1), followed by the
presentation of an imperative visual stimulus (B2} stayed on the screen for a maximum of
3,000 ms. S1 consisted of a picture of a black carnems (see Fig. 1) surrounded by a circle
(total size of the stimulus: 840 x 840 pixels, I, 10.62° x 10.54° of visual angle). S2
consisted of a picture of a cartoon character, winas displayed centrally within the camera
lens. The inter-trial-interval was randomly mangdeld between 600 and 1,500 ms. The task
consisted of speeded target detection. Participaete required to press a button of the
response box with the index finger of the domineahd as quickly as possible at S2

occurrence.

2.4. Local predictive context



To investigate the effect of the local predictietext on behavioral performance, the S1-S2
stimulus-onset-asynchrony (SOA) was varied triatrml within each experimental block so

that three possible fixed FP intervals were creéfiégl 1). These included a short (500 ms), a

S1 S2 \
—— r . \
_(500 ms)

&
Medium SOA
(1000 ms)
—

Long SOA
o (1500 ms) o
\_ Y

medium (1,000 ms), or a long (1,500 ms) FP, rewylith three discrete levels of hazard rate.

(Karlin, 1958; Los, 2010; Luce, 1986; Niemi & Na&#, 1981; Woodrow, 1914).

Fig.l. Trial structure. The circle (S1) warned participants on the priedem of the
imperative S2 stimulus (a cartoon character; hegresented with colored disks for
illustrative purposes due to copyright restrictioRarticipants had to make speeded reaction
times at S2 onset by pressing a button on the lagod he effect of local prediction was
assessed by manipulating S1-S2 stimulus onset la®mc(SOA) within each experimental

block.

2.5. Global predictive context
As illustrated in Fig. 2, to assess the effectha global changes in the predictive context,
different probability distributions per each SOAerval were introduced and manipulated

block-wise, as described below.

2.5.1. Uniform (U) block

10



In this block, a rectangular distribution of thegta SOAs was used (33,3%, for each SOA) so
that the probability of each SOA in the block wagualy distributed. This type of
distribution is the most classic probabilistic disition employed in both adult (Los, 2010;
Mento, 2017; Mento et al., 2015; Vallesi, 2010) aledelopmental (Johnson, Burrowes, &
Coull, 2015; Mento & Tarantino, 2015; Mento & Vale 2016; Vallesi & Shallice, 2007)
SOA literature.

The use of an a priori uniform distribution hasddreen described to translate into a biased a
posteriori temporal preparation. Indeed, as timesgby, the conditional probability of S2
onset increases exponentially in virtue of the fhat it has not occurred yet (Los, 2010; Los
et al., 2017; Luce, 1986). As a consequence, npoparedness will be lowest at the shortest

SOA and highest at the longest SOA.

2.5.2. Short-biased (SB) block
In this case, aa priori distribution biased toward the short SOA was dedide In particular,
the relative percentage was 50%, 33,33%, and 16f67%e short, medium, and long SOA,

respectively.

2.5.3. Long-biased (L B) block

In this block, the relative percentage was 16,7%43%, and 50% for the short, medium, and
long SOA, respectively. This kind of distributioalso known in the literature as aging
distribution (Los et al., 2017; Trillenberg et &Q00), is purposely intended to exacerbate the

hazard-based increment of temporal expectancyiascdon of SOA length.

2.6. Experimental Design

11



The experimental manipulations yielded a factadegign in which either the SOA (shes.

mediumvs.long) and the block type (S#s.U vs. LB) factors were orthogonally contrasted

to investigate the effect of local and global pesigie context, respectively (Fig. 2).

LOCAL
Short (S) Medium (M) Long (L)
(500 ms) (1000 ms) (1500 ms)
B Short-biased (SB) 50% (SB-S) 33,3% (SB-M) | 16,7% (SB-L)
§ Uniform (U) 33,3% (U-S) 33,3% (U-M) | 33,3% (U-L)
@
é Long-biased (LB) 16,7% (LB-S) 33,3% (LB-M) | 50% (LB-L)

Fig. 2. Experimental Design. The effect of global prediction was assessed byipoéating
the between-block, a priori percentage of each $®éreate three probabilistic distributions
in which the SOAs were equally distributed (unifgror skewed toward the short (short-

biased) or long (long-biased) SOA.

Each single block included 60 trials and was dedidethree times, for a total of nine
experimental blocks and 540 trials. Specificalle humber of trial were 90, 60 and 30 for
SB-S, SB-M and SB-L conditions, respectively; Gal$rfor each SOA in the U block and 30,
60 and 90 trials for LB-S, LB-M and LB-L conditionespectively. All blocks were matched
for sensorimotor requirements, as the visual stirandl the required response were always
the same across the experiment. The only diffeseneere related to the changes in the
predictive context experienced through the tasle ol length of the experiment was about
25 minutes. It is important to note that particizawere unbeknownst of both local and

global manipulations since no explicit informatiamere given about this. Furthermore, no
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pauses were introduced between blocks. Insteathnk Blide was inserted at the middle of
each block to allow participant to rest. In thisywae avoided participants to become aware
about global changes occurring at any block swildine block-type order was randomly
sorted between subjects. This ensured that spuefiests due to introducing either local or
global predictive contexts induced by a fixed SOAbbtock sequence did not bias the
performance. To ensure that the experimental méatipan was effective in inducing implicit
prediction, after completing the task we askedpalticipants if they realized that the task
could change in speed, becoming faster or slower titme.Before starting the experimental
session, participants were presented with a bldc0Oatraining trials for each condition to
ensure they understood task instructions. Duriagitng, all participants received a feedback
at every trial according to their performance. $p=dly, a neutral yellow smile was
displayed in cases in which either anticipatoryfdbe target onset) or premature (< 150 ms
before target onset) responses were provided. Wwedmile was displayed if the RT was
between 1,000 and 1,500 ms from target onset.liFjrmabreen smile was displayed if the RT
was between 150 and 1000 ms. E-prime 2 softwangieogy Software Tools, Pittsburgh,
USA) was used to create and administer the stinBdhavioral data are available on

Figshare public repository (10.6084/m9.figshare4622 8.

2.7. Behavioral analysis

We used mean accuracy and mean RTs as responsblesrion which testing our
hypotheses. In particular, accuracy refers to teanmpercentage of not anticipated responses
across all experimental conditions (i.e., betwe®d hs and 1,500 ms from target onset). To
calculate response speed, we considered only RBsurexrl in correct trials, i.e., without

premature responses. We analyzed the effects ponss accuracy and speed by setting a 3

X 3 within subject experimental design, that weegsthrough generalized linear mixed-

13



effect models (GLMMSs). In particular, we definedotweparate GLMMs for response speed
and accuracy, respectively. Both SOA (i.e., SkertMediumyvs. Long) and block (i.e., SB
vs. U vs. LB) were considered within subject fixed factdrée set random intercept models,
with participants as the clustering variable. Wedd the procedure suggested by Westfall,
Kenny, and Judd (2014) to calculate Cohen’s d #mhecomparison used the R statistical
software (R Core Team 2018) to run statistical ysed, using the following packages: Ime4
(Bates, Maechler, Bolker, & Walker, 2015) to tdst GLMMs, emmeans (Lenth, 2018) to
test multiple comparisons and car (Fox & Weisb@@L1) to estimate p-value, which were
adjusted with a false discovery rate correctionn{Beini and Hochberg, 1995). Behavioral

analysis code is available on Figshare (10.6084igs@are.12249302

2.8. EEG recordings

We used a Geodesic high-density EEG System (EGI®-GED) with a pre-cabled 128-
channel HydroCel Geodesic Sensor Net (HCGSN-128)ederctrical reference to the vertex.
EEG data were recorded during the entire experimdm sampling rate was 500 Hz. The
impedance was kept below 60 kW for each sensaorder to reduce signal contamination,
participants were instructed to limit eye blinksdagye movements as much as possible
during task trials. EEG data are available on FRgsh public repository

(10.6084/m09.figshare.12246218

2.8.1. EEG preprocessing

Signal preprocessing was performed through EEGLAR..2b (Delorme & Makeig, 2004).
The continuous EEG signal was first downsample2b@tHz and then bandpass-filtered (0.1
to 45 Hz) using a Hamming windowed sinc finite ifgauresponse filter (filter order =
8250). The signal was successively epoched betws@d and 1996 ms from S1 onset.

Epochs related to trials containing premature resps were rejected. Epoched data were

14



subjected to an automated bad-channel and artiieteiction algorithm by using the TBT
plugin (Ben-Shachar, 2020) implemented in EEGLABisTalgorithm identified the channels
that exceeded a differential average amplitude 5u¥ and marked those channels for
rejection. Channels that were marked as bad on thare30% of all epochs were excluded.
Epochs having more than 10 bad channels were aktuded. Successively, we
automatically detected possible flat channels with Trimoutlier EEGLAB plug in, with the
lower bound of V. Data cleaning was performed by means of an iedépnt component
analysis (Stone, 2002), using the Infomax algori{@all & Sejnowski, 1995) implemented
in EEGLAB. The resulting independent componentsewasually inspected in topography
and time-series, and those related to eye blinks,nreovements and muscle artifacts were
discarded. The remaining components were then giemeback to the electrode space to
obtain cleaner EEG epochs. Finally, bad channelse weconstructed with the spherical
spline interpolation method (Ferree, 2006; Pefiernier, Bertrand, & Echallier, 1989). The
data were then re-referenced to the average dflettrodes, and baseline correction was
applied by subtracting the mean signal amplitudehepre-stimulus interval. Epoched data
were imported in Brainstorm (Tadel, Baillet, MoshBantazis, & Leahy, 2011) to generate
the individual average for each electrode site arderimental condition. We applied a
weighted average in order to control for the unbedal number of epochs per condition
(Kotowski, Stapor, & Leski, 2019; Leski, 2002). Theean number of epochs and standard

deviation (SD) in brackets for each condition astet in the Table S1.

SB-S = 89,29 (3,30) SB-M = 57, 35 (2,55) SB-L 98(1,42)
U-S = 56, 26 (3,33) U-M = 57,58 (2,71) U-L = 57,(2,93)
LB-S = 28,66 (1,68) LB-M = 56,25 (3,10) LB-L = 8%,83,96)

15



Tab.1 Mean number of trials and standard deviation betw&ackets of each experimental
condition

2.8.2. Ocillatory EEG analysis

The oscillatory activity of each trial was calc@ldtusing Morlet wavelet analysis (central
frequency = 1 Hz; time resolution (FWHM) = 3 secing the Brainstorm software. The
time-frequency (TF) activity was studied from 14% Hz, diving the frequency range in 60
bins with a logarithmic frequency definition. Datare then averaged obtaining a TF map for
each subject and each experimental condition. Ssoady, event related
synchronization/desynchronization percentage (ERSiBs calculated, according to
Pfurtscheller & Lopes (1999), by using the follogiformula: ERS/ERD =H-p)/ p x 100
where E indicates the power density during the egendition andu indicates the mean of
the power density during the baseline. Finally, greuped TF maps in frequency bands by
averaging the power spectrum density as it follddalta (2-4 Hz); Theta (5-7 Hz), Alpha (8-
12 Hz); Betal (13-21 Hz), Beta2 (21-30 Hz), GamB@45 Hz).

2.8.3. Cortical Source modelling

Baseline-corrected epochs were imported in Brainst®adel et al., 2011) to model their
cortical generators. We used the ICBM152 anatonéaplate to approximate the individual
anatomy of each participant (Evans, Janke, Col&nBaillet, 2012). Co-registration of EEG
electrodes position was performed via Brainstorgnplojecting the digitized EEG sensor
positions GSN Hydrocel 128 E1 available in Brainstoon the head surface. We then
derived an EEG forward model using the three-ld@mdary element method (BEM) from

OpenMEEG implemented as a Brainstorm routine (Kyl@terc, Faugeras, Keriven, &
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Papadopoulo, 2005; Gramfort, Papadopoulo, OliviClerc, 2011). The source space was
constrained to the cortex and modeled as a gritbd¥02 orthogonal current dipole triplets.
We used sLORETA as a source model, with Brainsterdeéfault parameter settings. The
empirical noise covariance model was obtained ftbenaverage of ERP baseline signals.
The sources were projected to the standard anaabteimplate (MNI) and their activity was
transformed in Z scores relative to the baselimealfy, a spatial smooth with a FWHM of 3

mm, was applied to each source.

2.9. EEG statistical analysis

We applied a whole-scalp analysis approach atladitede sites using a paired t-test<
.05) permutation approach to control the familyavesror rate (Groppe, Urbach, & Kutas,
2011). A similar technique was employed in previd@tRP studies (Duma et al., 2019;
Mento, Astle, & Scerif, 2018; Mento, 2017; Straessl., 2015; Capizzi, Ambrosini, Arbula,
Mazzonetto, & Vallesi, 2016). To control for thetybe error we performed 2,000 Monte-
Carlo permutations and applied cluster-based cioreover all 128 electrode locations
using the Fieldtrip functions (Oostenveld, Friesard, & Schoffelen, 2011), accessible via
Brainstorm (Tadel et al., 2011). The ERP effece simas estimated by computing Cohen’s d
of the effect averaged over all the electrodesusietl in the significant clusters for each
comparison (Buiatti et al., 2019). Our experimemtanipulation allowed us to test specific
hypotheses about the effect of the global prediationtext on distinct cognitive mechanisms
underlying proactive motor control. These encompasxpectancy implementation,
expectancy violation and response implementatiogn . The EEG analysis pipeline, with
all the computational steps and the functions fised EEGLAB (Delorme & Makeig, 2004)
and Brainstorm (Tadel et al., 2011), IS available n o Figshare

(10.6084/m?9.figshare.12249302
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2.9.1. Expectancy implementation

To investigate the functional locus of expectanoplementation, the Contingent Negative
Variation (CNV; Walter et al., 1964; Mento, 2013pasvtargeted as a neural signature of
response preparation and measured in the last B06fithe preparatory activity, from S1
onset (Mento, 2017). In line with previous findin@sillenberg et al., 2000), we speculated
that the CNV was affected by the global predicteatext, resulting in larger amplitude for

the SB-S as compared to the LB-S.

2.9.2. Responseimplementation

Finally, in order to investigate response impleragah, we examined the post target onset
activity comparing SB-S and LB-S conditions. Speaify, we expected a modulation in the

amplitude of the P3 potential. Therefore, we foduse the mean activity between 250 and

400 ms from S2 onset, where the P3 is usually sspe

2.9.3. Expectancy violation

As shown in Fig. 3b, in our task the expectancyation occurred in the SB-L condition,
since in this case the participants were impliditigsed to expect the imperative stimulus at
the short SOA but this was actually delivered &rager interval. A violation of the learnt
global probabilistic rule should yield to a moré&idult inhibition of the motor response since
this had been proactively maximally prepared. At iehavioural level, we expected to find
the lowest accuracy (i.e., more premature resppngesthe SB-L condition. The
neurofunctional correlates (both ERP and oscillatactivity) of the expectancy violation
were investigated between 100 and 200 ms from tiseen S2 onset (i.e., 600 to 700 ms
from S1 onset). In particular, we expected to femdjlobal omission-detection potential

(ODP) similar to the one we reported for local estpacy violation in our previous study
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using a similar task (Mento and Vallesi, 2016)otder to partial out any potential diverging
pre-S1 baseline slopes deriving from different 3B-inter-trial preparatory effects, we

applied a baseline correction over the entire prget time window (0-1500 ms) of the long

SOA.
Expectancy implementation Expectancy violation
Expected Short (SB-L)
Expected Short (SB-S) Expected = Onset  Onset
Expected = Onset a Iy
OO O+ 0
CNV _' .
) Expected Long (LLB-S) g:t‘:s;iizﬁ Expected Long (LB-L)
Unexpected Expected Potential EpeRECrs Sl
Onset iy &
oyl:l IIIIII OIIIII-IIIIIIIIIIJIIII
» "a

Response implementation
Expected Short (SB-S)

Expected = Onset
{

O
.
P3 Expected Long (L.B-S)

Unexpected| Expected

Onset 4

Fig. 3. Temporal windows of interest for the statisticahalyses. A) Expectancy

implementation was investigated by comparing the/Gixhplitude in the last 100 ms of the
preparatory activity. B) Expectancy violation wasted by contrasting the condition where
the global probabilistic rule was violated SB-L which the stimulus occurs before the

expected onset) against the LB-L condition, in \whibe global probability was respected.
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We expected to find an ODP wave for the SB-L coaditC) Response implementation was
examined in the P3 time window, comparing the cioowliwith maximum expectancy (SB-S)

to the one with the lowest expectation (LB-S).

The permutation statistic with cluster correctioasvalso applied in the statistical analyses of
oscillatory activity in the same temporal windowsstioe ERP analysis. Finally, concerning
the source statistic, a permutation paired t-tem$ win over the mean amplitude of the Z-

scored maps, in the same window of interest oE#RE and oscillatory analyses.
3. Results

3.1. Behavioral results- Accuracy

As expected, the mean accuracy was affected byloited predictive context. This was
revealed by the effect of the SOK(Q): 54.99;p < .001). Specifically, participants were
more accurate in trials with short than mediupgydt= 2.56;p = .03; d = 0.27) or long SOA
(ta76)= 7.31;p < .001; d = 0.79) as well as in medium than lo@ASrials (tz76)= 4.74;p <
.001; d = 0.51) (degrees of freedom are calculaedordingly to the kenward-roger
approximation; Kenward and Roger, 1997). The negauracy was affected by the global
predictive context, as suggested by the signifietfeect of the Block )(2(2): 15.34;p <
0.001). The participants showed overall lower agcyiin the SB than in the Udfs = -3.44;

p < .01, d=0.37) or the LB blockss{t = -3.39;p < .001; d = 0.36). On the contrary, the

accuracy was not statistically different betwees thand the LB blocks §te) = -0.1;p = .99;

d = 0.01). We also found a statistically signifit&DA X Block interaction (2= 15.34;p <

.001). As shown in Fig. 4, this was explained bydo accuracy in the SB as compared to the
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LB (tz7e = -5.05;p < .001; d = 0.95) or U blocks4; = -5.11;p < .001; d = 0.96), but only

for long SOA trials. All the other differences didt reach statistical significance.

Fig. 4. The figure shows the rainclouds and box plot of sirggle-subject data for mean
accuracy (panel A) and reaction times (panel B)lpeck-type (SB, U and LB) and SOA
(short, medium and long).

3.1.2. Reaction times
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Also for RTs we observed a statistically significaffect of SOA on RTSXE(Z): 870.4;p <
.001), so that participants were faster in triaihwong than medium (z = -6.15) < .001; d

= 0.51) or short (z = -28.93 < .001; d = 2.63) SOA (with model fitting asymptot
distribution, the emmeans package computes z tgtati® calculate multiple comparisons).
Participants were also faster in medium than sBOA trials (z = -22.94p < .001; d = 2.12).
We observed a statistically significant effect db&k on the RTs)fz= 63.73;p < .001),
since participants were overall faster in SB rathan U ({z76)= -3.33;p < .01; d = 0.29) and
LB trials (fs76) = -8.69;p < .001; d = 0.77). Furthermore, participants waverall faster in

trials administered within the U than the LB blog¢ks= -5,37;p < .001; d = 0.48). The SOA

X Block interaction 2= 30.09;p < .001) further confirmed that the global effeffeated

differently the three SOA intervals. As displayadhe Fig. 4b, the participants were faster in
the SB as compared to the U (z = -4p%5;.001; d = 0.77) and the LB (z = -8.32< .001; d

= 1.43) blocks, as well as in the U as comparethéoLB (z = -3.76)p < .001; d = 0.66)
blocks. Remarkably, these block-related differeneese maximally observed for the short
SOA. A similar, but minor effect was also obserfedthe medium SOA trials, since in this
case participants were slower in the LB as comptrate SB (z = 4.1%) < .001, d = 0.6)
and uniform (z = 3.25p < .001; d = 0.47) blocks. No statistically sigo&nt block-related
differences emerged for the long SOA trials. Imaptty, despite the participants’
performance was significantly affected by the blvgke, none of them reported having
noticed this changes, thus confirming that the glgirediction had an implicit impact on

behaviour.
3.2. EEG results

3.2.1. Expectancy | mplementation
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The permutation analyses in the anticipatory timmdew in which the expectancy
implementation was investigated revealed a negativ&er of centro-parietal electrodgs<
.04; cluster size = -43; cluster statistic = 38; €).32), which exhibited a negativity increase
of the CNV amplitude for the SB-S condition as cangal to the LB-S one (see Fig. 5A). No
significant results in the frequency domain werenid in the same time window of ERP and
source analyses. The statistical analyses of theceomaps reconstructed over the CNV
significant time window showed a larger recruitmenft cortical activity in the SB-S
compared to the LB-S(< .01). This consisted of a distributed network iddhg the left
intraparietal sulcus (IPS), the bilateral suppletagn motor area (SMA), the middle and

caudal cingulate cortex and the bilateral activabbthe cuneus (see Fig. 5B).

Expectancy implementation

A) ERP effects B) Source maps
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Fig. 5. Global prediction effect on expectancy implementation. A) The upper part of the
panel represents the statistically significant tetetes (p < .05) derived from the cluster based
permutation analysis. The negative cluster indgateat CNV mean amplitude is

significantly larger in the short-biased than ie flbng-biased blocks in the last part of the
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preparation, and this difference is expressed ogatro-parietal electrodes. The ERP below
the scalp map shows the time series of the negeltisgter for the contrasted conditions. The
S1 at 0 ms indicates the ERP time locking. The stiadea around the time series represents
the standard erroB) The panel shows the statistical difference of sbarce maps in the
comparison between SB-S and LB-S mean activityainbt in the same time window of the
CNV modulation. Significant clustép < .01) are reported on a template cortex smoacghed

30%.

3.2.2. Response implementation

The statistical analysis highlighted a significanbdulation between 250 and 400 ms
showing a mean amplitude increase of the P3 paleetipressed over centro-parietal
electrodes for the stimuli occurring in the maxipaéxpected temporal interval (SB-S)
compared to those presented in the less probaBleSjL(positive cluster:p = .010; cluster
size = 70, cluster statistic = 50; negative cluster .013; cluster size = 68, cluster statistic =
50; d = 0.34) (see Fig. 6A).

The statistical analysis over the TF maps reveale@synchronization increase in the beta
band over frontal electrodep € .008; cluster size = -182; cluster statistic Z)1ith a
preferential left lateralization (see Fig. 6B). thermore, a significant theta
desynchronization increase has been identifiethenSB-S condition compared to the LB-S
over centralized frontal electrodgs < .008; cluster size = -182; cluster statistic 4)1&ee
Fig. 6C).

Finally, the source statistic revealed an engagéwfesm clear-cut network spreading over the
bilateral motor and premotor areas as well as tdweisuperior and the middle frontal gyrus
(p < .01). Additionally, significant activations havedreidentified in the cingulate cortex

(see Fig. 6D).
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Response implementation

A) ERP effects D) Source maps
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Fig. 6. Global prediction effect on response implementation. A) The upper panel displays
the statistically significant electrodes (p < .@%yeddish or bluish colors, depending on the
direction of the t-test. At the level of responsgpiementation, the P3 amplitude shows a
mean amplitude increase for the expected stimu&B-§ condition) compared to the
unexpected one (LB-S condition). The picture belbw scalp map shows the S2-locked
time-course of the central positive cluster. Thadgd area around the time series represents

the standard erroB) The raster plot displays the power density statiilifference elicited
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by response implementation at E22 electrode (FRAari0-20 system; gray dot on the scalp
map), separately for the betal and beta2 frequkangs. The scalp plots represent the scalp
distribution of these effectsC) The raster plot displays the power density stafsti
difference elicited by response implementation @tetectrode (FCz in the 10-20 system;
gray dot on the scalp map), for the theta frequéraryd. The scalp plot represents the scalp
distribution of this effectD) The panel shows the statistical difference of th&® maps in
the comparison between SB-S and LB-S mean posttaggivity (250-400 ms). Significant

cluster(p < 0.01) are reported on a template cortex smoch80%.

3.2.3. Expectancy violation

We found a transient, significant negative increasthe ERP activity between 600 and 700
ms from S1 onset. This latency corresponded tonéerval between 100 and 200 ms
following the omission of the imperative stimulugiich was expected at 500 ms on the basis
of the global prediction (Fig. 7A). This effect,reedefined as the ODP (Mento and Vallesi,
2016) was observed in the SBvk.the LB-L condition and was expressed over a negativ
central cluster of electrodes (negative clugter:.002 cluster size = -128, cluster statistic =
70;d= -0.76).

The oscillatory results showed that the expectamaation elicited a synchronization in the
delta and theta frequency bangs X .015; clusters size = 186; cluster statistic 8)14
Specifically, the delta increase exhibits a diffgsalp distribution, covering frontal, central
and posterior electrodes while the theta modulagomore localized, closely reflecting the
location of the identified ERP effect (see Fig.7B).

The source analysis revealed a violation-relatedesse in the electrical activity of the left
temporal parietal junction (TPJ), left pre-centggtus and bilateral cuneup & .01) (Fig.

7C).
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Expectancy violation
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Fig. 7. Global prediction effect on expectancy violation. A) The upper part of the panel
represents the statistically significant electro@ies< .05) derived from the cluster based
permutation analysis. The central negative clusbelicates that the omission evoked
potential (ODP) is significantly larger in the $B.LB blocks between 600 and 700 ms. The
ERP below the scalp map shows the Sl-locked tinoeseoof the central negative cluster.
The shaded area around the time series repredentstandard erroB) The raster plot
displays the statistical differential power densdyexpectancy violation at the E55 electrode
(Cz in the 10-20 system; black dot on the scalp)msgparately for the delta (right scalp
map) and theta (left scalp map) frequency band® 3talp plots represent the scalp

distribution of these effects.
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C) The panel shows the statistical difference ofdberce maps in the comparison between
SB-L and LB-L mean activity in the 600-700 ms timandow. Significant cluste(p < .01)

are reported on a template cortex smoothed at 30%.

4. Discussion

In this study we investigated how different souroésmplicit temporal prediction shape
distinct neurocomputational mechanisms underlyirgagtive motor control. To this purpose
we recorded and analyzed the hdEEG activity froralthg participants undergoing the
Dynamic Temporal Prediction task (DTP; Mento, &t.2820; Mento and Granziol, 2020).
The DTP is a simple reaction time task purposebigied to elicit both local (i.e., within-
trial stimulus hazard rate) and global (i.e., betm#block stimulus expectancy bias) temporal
prediction. Specifically, the preparatory intervads manipulated within the trial to generate
temporal expectancy on the basis of local probstiilirules. In addition, we introduced a
higher-order (global) predictive rule by introdugidifferent types of blocks with different
SOA probabilities, leading to a U (same probabiliey each SOA), an SB (higher probability
of short SOA), and an LB (higher probability of ¢pi$OA) distribution. The behavioural
results revealed that participants were fasteetgaing stimuli when these were preceded by
long than medium or short preparatory intervalsradtwarning signal. This finding replicates
previous literature, confirming that motor prommses proactively biased by the local
probability of stimulus onset, which accumulatesgpessively within each single trial, also
known as the ‘variable foreperiod effect’ (NiemidaNaatanen, 1981; Los, 2010; Vallesi,
2010). As expected, this higher anticipatory predaess occurred at the expenses of reactive
inhibitory control, given that participants comradt more premature responses in the trials

with the longest preparatory foreperiod. In oth@rdsg, the more participants waited for the
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stimulus onset, the faster they were to deteatdt the higher was the number of premature
responses they committed.

In addition to the expected effect of local preidicton behaviour, we showed that the
participants’ performance was shaped by the glgadictive context. This refers to the
overall statistical probability to receive the imgive stimulus after a short or long
foreperiod, which in the present study was imgiramanipulated between-block by creating
block-wise short- and long-biased probabilistictrisitions. Importantly, we observed that
participants were overall faster at detecting slinmuthe short-biased blocks (in which most
of the foreperiods were short) than in the longbs ones. This pattern suggests that
proactive motor control is sensitive to high-les#dtistical regularities, although people were
not explicitly aware of it. As for local predictipreven in this case a higher excitatory
threshold during the anticipatory interval turnad mto a disruption of reactive inhibitory
control. This was revealed by participants commgttinore premature responses in long
trials when these were globally less probable, thatn the short-biased blocks. In other
words, the ability to prepare for a response iglgdinot only by the local accumulation of
preparation but also by the ‘history of events’ pemal occurrence over time. From a
theoretical point of view, our data nicely supptre “multiple trace theory of temporal
preparation” (Los, Kruijne, & Meeter, 2014; Losat, 2017), which assume that a sort of
temporal tag is experienced on each trial and gtayebuild up a predictive internal model
which, in turn, biases attentional and motor resesirtrial-by-trial. Noteworthy, in the
context of the present paradigm it may be importambvestigate the presence of transitional
effects in the behavioural adaptation in terms radl-by-trial task speed changes when
shifting between two global distributions. Howeveéhe use of a random block order
presentation did not allow us to further explorey dme-on-task learning effect. We are

currently planning a follow-up study to address timportant issue.
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To understand the functional bases of global ptiEshémpact on proactive motor control we
analyzed the temporal, oscillatory and spatial alesignatures of different time windows,
corresponding to distinct computational stages.s€éhacluded expectancy implementation,
expectancy violation and response implementatione Effect of global prediction on
expectancy implementation was reflected in the leldependent CNV increase around 100
ms before stimulus onset (see Fig. 5A). Remarkdbiy,marker was modulated as a function
of the block-type, being on average larger in tieds with high-probable short intervals (i.e.,
short-biased blocks) as compared the low-probaiés di.e., long-biased blocks). This ERP
effect nicely aligned with behavioural data, shayvthat globally-induced faster responses
are explained by higher expectancy implementationng the anticipatory interval. The
source-level analysis provided further spatial dlétathis finding, showing that the higher
expectancy implementation is supported by a lamgeuitment of a distributed brain cortical
network. This circuit mainly entailed the left inf@ parietal region (i.e., around the IPS)
together with bilateral frontal areas (i.e., the Slind the motor/premotor cortex) (see Fig.
5B). Notably, these findings replicate our previalsctrical source-based studies on the
effect of temporal expectancy when this is promgigcither explicit cueing task (Mento et
al., 2015; Mento & Vallesi, 2016; Mento, 2017; Mermstt al., 2018) or implicit manipulations
(i.e., sequential effects; Mento, 2017). As wedlleyt replicate findings from independent
research groups using other neuroimaging techni¢@esll & Nobre, 1998; Coull, Frith,
Bichel, & Nobre, 2000; Coull, 2004; Coull, Davraachazarian, & Vidal, 2013; Cotti et al.,
2011; Nobre, 2001; Davranche, Nazarian, Vidal, &lc2011; Bolger, Coull, & Schon,
2014). This fronto-parietal network has been adiextato functionally mediate the
feedforward generation and orientation of attergioand motor resources toward future
expected events (see Coull, 2011 for a review)ci@ly, for the first time here we report

that a similar network is involved when attentiondamotor preparation are forecasted
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implicitly on the basis of global predictive infoation. A theoretical implication of this is
that the implementation of expectancy, whether ihigenerated explicitly or implicitly, is
independent from the mechanisms accounting for thosvexpectation has been generated
over time. In other words, the left fronto-parietabtwork engaged by expectancy
implementation may be akin a by-product of therimaétemporal predictive model generated
on the basis of the environmental experience. titad to the above mentioned left fronto-
parietal network we reported an engagement of itigutate cortex. Although the role of this
structure has been not exhaustively elucidateditgeinvolvement may reflect an enhanced
need for reactive inhibitory control (Bokura, Yamabi, & Kobayashi, 2001; Braver, Barch,
Gay, Molfese, & Snyder, 2001; Shen et al., 2018patTs, the more participants will engage
fronto-parietal activity to speed-up their respompseactively, the more they will need to
exert reactive inhibitory control to overcome imgué responses.

The expectancy implementation translates into anease of neural resources allocated to
stimulus detection, as confirmed by a larger PB¥ahg high- than low-predicted targets on
the basis of the global predictive context (see BW). The neural sources of this effect
encompassed several anterior brain areas, includm@MA, the SFG and the ACC. This
pattern strongly suggests that part of the netwomi-activated during the expectancy
implementation was actually involved in the resgoimplementation stage too, reflecting a
continuity between the proactive and the reactie¢omcontrol.

As an alternative hypothesis, this effect may l@erésult of an attenuation of the P300 in the
LB-S condition, which may be caused by a higher laoge of motor activity recruited
following the relatively unexpected response sigmalthe LB-S condition. Although
interesting, this idea is not entirely supportedthy oscillatory patterns we found. Indeed,
this showed globally-induced predictive effect, wixpected targets triggering an increased

beta-band desynchronization in frontal electrodestralateral to the response hand (right
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hand) (see Fig. 6B). The Beta band power decreasebken usually related to the motor
preparation and execution, and seems to be gedemstehe contralateral peri-rolandic
regions (Jasper & Penfield, 1949; Tzagarakis et28l10; (Pfurtscheller & Berghold, 1989;
Sanes & Donoghue, 1993; Murthy & Fetz, 1996; Ptimetler & Neuper, 1997; Formaggio et
al., 2008). Noteworthy, it has been shown that th&rophysiological mechanism is
regulated by the local temporal predictability,heit when this is induced voluntarily or
implicitly (Mento et al., 2018). Our data furtherpand upon previous findings by showing a
beta desynchronization also for stimuli that areliaitly predicted on the basis of a global
predictive context. We also observed an increasthenfrontal theta power for the LB-S
compared to the SB-S (see Fig. 6C). The frontallinadtheta has been interpreted as a
general neural hallmark reflecting cognitive cohtfGavanagh & Frank, 2014) and rule
violation detection (Tzur & Berger, 2009, 2007). Wpeculate that in the LB condition,
where participants were biased to expect stimudiptpear late, the unexpected delivery of the
targets in the short interval represented a viotatif the global rule, requiring an increase of
reactive control demand to adjust behaviour, agyestgd by the increase of premature
responses. This interpretation may also explaintwhka observed for the expectancy
violation stage, which was investigated comparihg brain activity when the stimulus
occurred when expected (LB-L) vs. the rule violatioondition (delayed onset; SB-L).
Indeed, the participants implicitly generate a glointernal predictive model which drives
them to be more prepared for the stimulus onsBb@tms, ergo, a target delay represents a
violation of the expectation based on the glob&dmtion. The analyses revealed that the
missed target presentation yielded a central naggapeaking between 100 and 200 ms from
the expected target onset time (see Fig. 7A). Tieigral marker has been defined the
omission-detection potential (ODP), in line witletBRP we previously reported in response

to a violation of local expectancy (Mento and Vsille2016). The expectancy violation was
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also associated to a synchronization increasedmétta and theta frequency bands (see Fig.
7B). A delta synchronization enhancement has bekated to transient inhibitory control of
contextual novelty independently from the exogenousndogenous origin (Prada et al.,
2014). A fundamental role of delta has been alspgrted in the evaluation of internal and
external events based on their behavioural saligiayazev, 2012). According to this
hypothesis, the augmented delta activity couldeotfhigh behavioral relevance of a change
in task context or in the saliency of a stimulusugtér, Enriquez-Geppert, Lavallee,
Falkenstein, & Herrmann, 2013). Moreover, delta potas been shown to be sensible to the
stimulus sequence context information (Harper, MaJBachman, & Bernat, 2016). On the
other side, as above mentioned, the theta frequbany seems to reflect general control
process, conveying the information that somethiegds to be done, although without
necessarily carrying the content of what has taldwee (Cavangh and Frank, 2014). In our
experimental design, the theta synchronization igpal the need for an update of the
internal predictive model and a consequential bieinalv schema adjustment, such as the
inhibition of a prepared response and a subseqeenienting of the attention to the next
time interval. On the other hand, delta synchraimenacan be related to the active inhibition
of the pre-activated motor schema in order to adaptbehaviour to the environmental
requests. Accordingly with this hypothesis, we obseé an increased activity over of the left
precentral gyrus and the TPJ (see Fig. 7C). Thagsmgent of the motor cortex could be
explained as the effects of the inhibition of theton response, on the other side the
involvement of TPJ can be linked to the reorienpingcess. Neuroimaging studies advocated
a role for TPJ as a core node of the ventral atteal control network engaged in exogenous
(automatic) attentional-reorienting towards unexgecvisual target (Corbetta & Shulman,
2002; Chica, Bartolomeo, & Lupiafiez, 2013; Wu et 2015; Downar, Crawley, Mikulis, &

Davis, 2002). A complementary interpretation sustathat TPJ engagement can be better

33



understood in terms of ‘contextual updating’ of iaternal model of the environmental
setting based on new incoming sensory informatwoitani & Knight, 2000, Polich, 2007;
Geng & Vossel, 2013). Our results nicely suppotthbibhe above interpretations, since the
expectancy violation-dependent TPJ activity mayeule an internal model update based on
the experience of the new sensory information (he. absence of the expected stimulus
onset) and a subsequent attentional re-orientinguri the next, most probable target onset
time.

Overall, the present results suggest that cognairegrol of motor response can be implicitly
driven by both first- (local) or second-order (ghbbpredictive rules. The capability to
implicitly extract global statistical patterns @gularities and use them to shift from different
proactive control sets is likely linked to the midiual cognitive flexibility. Cognitive
flexibility has been recognized as a core functaincognitive control (Diamond, 2013;
Miyake et al., 2000) and considered a top-down ggsable to guide the action based on
internal goals and external context, requiring ¢fme volition and attention to down-
regulate behaviour (Diamond, 2013; Miller & Cohe&01; Norman & Shallice, 1986).
However, our results better support a most rechebretical framework positing that
cognitive control can indeed be guided by low leagsociative learning processes (Braem &
Egner, 2018; Crump & Logan, 2010; Sali, AndersonY&ntis, 2015; Farooqui & Manly,
2015). As we recently proposed in the context ajaptive motor control development
(Mento and Granziol, 2020), cognitive flexibilitaic be seen as being rooted in the learning
process of ‘stimulus-response’ associations itsglfer than conceived as the by-product of a
sort of homuncular, stand-alone superordinate navditucture. An implication of this view
is a putative overlapping between the neurocomioumait mechanisms underlying voluntary
vs. implicit proactive motor control. Here we providemgirical support to this hypothesis,

showing for the first time that, when high or lowotor preparation is implicitly induced by
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global prediction, the neural signatures in thetiahatemporal and oscillatory domains
largely mimic those observed for endogenous contnoluced by explicit predictive
information. This suggests that the two processesiot separated but indeed the two faces
of the same coin, providing further support for @eening the dichotomic contraposition

between voluntary-driven cognitive control vs. an&ic processes.

5. Conclusions

In this study we provided electrophysiological ende suggesting that the brain is capable
to implicitly adjust proactive motor control based a simple, low-level associative learning
mechanism, i.e., the probabilistic context of aergvwccurrence. Specifically, the implicit
use of global predictive rule translates into apestancy implementation (CNV increase)
and response implementation adjustment (P3 increassulting in a better behavioural
performance (RT decrease). The expectancy violatidnced by the omission of expected
target resulted in a general alerting system ambingfronto-central theta synchronization),
signaling the need to update the internal predicthodel, and to inhibit the pre-activated
motor schema (delta synchronization), in ordetdrilbly adapt motor behaviour. Brain areas
engaged during expectancy and response implen@antadéive been identified as part of the
fronto-parietal network including inferior parieti@bule, SMA, motor and cingulate cortex.
On the other side, left motor cortex and TPJ waminavolved in the expectancy violation,
probably related to the pre-activated motor scherhiition and internal model update. The
limitations in the spatial resolution of the soun@xonstruction requires caution in the
interpretation of the results. Nonetheless, comsigethe convergence with other source
reconstruction and fMRI studies, the present rescttuld be used as a starting point for

future confirmatory studies. Our lab is currentlgirdy further research to explore the
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transitional effects in the behavioural adaptatidren shifting between global distributions,

resulting in the possibility to model individuablming effects.

Acknowledgements

The authors wish to thank Matteo Invidia, AgnesenBbucci and Antonio Cataneo for
helping with data collection. A thank goes alsdPt@f. Quintana who inspired the present
study. The present study was funded by the Unityersi Padova (Supporting TAlent in
ReSearch @ University of Padova - STARS Grants 2013M). This work was carried out
the scope of the research program “Dipartimentckellenza” 970 (art.1, commi 314-337
legge 232/2016), which was supported by 971 a dirmamh MIUR to the Department of

General Psychology, 972 University of Padua.

References

Bates, D., Machler, M., Bolker, B., and Walker(&)15). Fitting Linear Mixed-Effects

Models Using Ime4. J. Stat. Softw. 67, 1-48. d6i18637/jss.v067.i101

Baumeister, A. A., & Joubert, C. E. (1969). Intéhae effects on reaction time of preparatory
interval length and preparatory interval frequermurnal of Experimental Psycholagy

82(2), 393-395. hitps://doi.org/10.1037/h0028119

Bekinschtein, T. A., Dehaene, S., Rohaut, B., TdéelCohen, L., & Naccache, L. (2009).
Neural signature of the conscious processing oit@ydegularitiesProceedings of the

National Academy of Sciences of the United Stdtésnericg 1065), 1672—-1677.

36



https://doi.org/10.1073/pnas.0809667106

Bell, A. J., & Sejnowski, T. J. (1995). An inforn@at-maximization approach to blind
separation and blind deconvolutidseural Computation/(6), 1129-1159.

https://doi.org/10.1162/nec0.1995.7.6.1129

Bokura, H., Yamaguchi, S., & Kobayashi, S. (20@l&ctrophysiological correlates for
response inhibition in a Go/NoGo tagHinical Neurophysiologyl12(12), 2224-2232.

https://doi.org/10.1016/S1388-2457(01)00691-5

Bolger, D., Coull, J. T., & Schén, D. (2014). Mesi rhythm implicitly orients attention in
time as indexed by improved target detection afidi&erior parietal activation.
Journal of Cognitive Neurosciencs(3), 593-605.

https://doi.org/10.1162/jocn_a 00511

Braem, S., & Egner, T. (2018). Getting a Grip orgQitve Flexibility. Current Directions in

Psychological Scieng@7(6), 470-476. https://doi.org/10.1177/0963721418757

Braver, T. S., Barch, D. ., Gay, J. ., Molfese,,[% Snyder, A. (2001). Anterior cingulate
cortex and response conflict: effects of frequeiyibition and errorsCerebral

Cortex 11(9), 825-836.

Breska, A., & Deouell, L. Y. (2014). Automatic biastemporal expectations following
temporally regular input independently of high-letemporal expectatiodournal of

Cognitive Neuroscien¢6(7), 1555-1571.

Buiatti, M., Di Giorgio, E., Piazza, M., Polloni,Menna, G., Taddei, F., ... Vallortigara, G.
(2019). Cortical route for facelike pattern proegegsn human newborn®roceedings

of the National Academy of Sciences of the UnitateS of Americal1610), 4625—

37



4630. https://doi.org/10.1073/pnas.1812419116

Coull, J. T., & Nobre, A. C. (2008). Dissociatingpdcit timing from temporal expectations

with fMRI. Current Opinion in Neurobiologyi,8, 137-144.

Capizzi, M., Ambrosini, E., Arbula, S., Mazzonettg& Vallesi, A. (2016).
Electrophysiological Evidence for Domain-Generald@sses in Task-Switching.
Frontiers in Human Neuroscience)(March), 1-14.

https://doi.org/10.3389/fnhum.2016.00124

Capizzi, M., Correa, A., & Sanabria, D. (2013). Taral orienting of attention is interfered
by concurrent working memory updatideuropsychologigb1(2), 326-339.

https://doi.org/10.1016/j.neuropsychologia.2012006.

Cavanagh, J. F., & Frank, M. J. (2014). Frontaldles a mechanism for cognitive control.

Trends in Cognitive Sciences3(8), 414—-421. https://doi.org/10.1016/j.tics.208400.2

Chennu, S., Noreika, V., Gueorguiev, D., BlenkmahnKochen, S., Ibanez, A, ...
Bekinschtein, T. A. (2013). Expectation and Attentin Hierarchical Auditory
Prediction.Journal of Neuroscien¢83(27), 11194-11205.

https://doi.org/10.1523/JNEUROSCI.0114-13.2013

Chica, A. B., Bartolomeo, P., & Lupiafez, J. (20IB8)o cognitive and neural systems for
endogenous and exogenous spatial atterfehavioural Brain Resear¢cB37(1), 107—

123. https://doi.org/10.1016/j.bbr.2012.09.027

Clark, A. (2013). Whatever next? Predictive brasigjated agents, and the future of
cognitive scienceBehavioral and Brain Science36(3), 181-204.

https://doi.org/10.1017/S0140525X12000477

38



Corbetta, M., & Shulman, G. L. (2002). Control @fadrdirected and stimulus-driven
attention in the brairfNature Reviews. Neuroscien8¢s), 201-215.

https://doi.org/10.1038/nrn755

Correa, A., Lupiafiez, J., & Tudela, P. (2006). &ltentional mechanism of temporal
orienting: Determinants and attributéxperimental Brain Research691), 58—68.

https://doi.org/10.1007/s00221-005-0131-x

Correa, A., & Nobre, A. C. (2008). Neural modulatioy regularity and passage of time.

Journal of Neurophysiology0Q(3), 1649-1655. https://doi.org/10.1152/jn.9065620

Cotti, J., Rohenkohl, G., Stokes, M., Nobre, A.&Coull, J. T. (2011). Functionally
dissociating temporal and motor components of nesp@reparation in left intraparietal
sulcus.Neurolmage54(2), 1221-1230.

https://doi.org/10.1016/j.neuroimage.2010.09.038

Coull, J. T. (2004). fMRI studies of temporal atien: Allocating attention within, or
towards, timeCognitive Brain ResearcR1(2), 216—226.

https://doi.org/10.1016/j.cogbrainres.2004.02.011

Coull, J. T., Davranche, K., Nazarian, B., & Vidal,(2013). Functional anatomy of timing
differs for production versus prediction of timedrvals.Neuropsychologigb1(2), 309—

319. https://doi.org/10.1016/j.neuropsychologia208.017

Coull, J. T., Frith, C. D., Buchel, C., & Nobre, &. (2000). Orienting attention in time:
Behavioural and neuroanatomical distinction betweergenous and endogenous shifts.

Neuropsychologia38(6), 808—819. https://doi.org/10.1016/S0028-3931{0232-3

Coull, J. T., & Nobre, A. C. (1998). Where and wherpay attention: the neural systems for

39



directing attention to spatial locations and todtimtervals as revealed by both PET and

fMRI. Journal of Neuroscien¢d 8(18), 7426-7435.

Crump, M. J. C., & Logan, G. D. (2010). Hierarchi€antrol and Skilled Typing: Evidence
for Word-Level Control Over the Execution of Indival KeystrokesJournal of
Experimental Psychology: Learning Memory and Cagnjt36(6), 1369—1380.

https://doi.org/10.1037/a0020696

Cui, X., Stetson, C., Montague, P. R., & Eaglenfanyl. (2009). Ready...go: Amplitude of
the fMRI signal encodes expectation of cue arrivaé. PLoS Biology7(8).

https://doi.org/10.1371/journal.pbio.1000167

Davranche, K., Nazarian, B., Vidal, F., & Coull(3011). Orienting attention in time
activates left intraparietal sulcus for both petaapand motor task goal¥ournal of

Cognitive Neuroscieng@3(11), 3318-3330. https://doi.org/10.1162/jocn_a 3100

Delorme, A., & Makeig, S. (2004). EEGLAB: An opeousce toolbox for analysis of single-
trial EEG dynamics including independent comporagralysis.Journal of Neuroscience

Methods 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2Q03009

Doherty, J. R., Rao, A., Mesulam, M. M., & Nobre,@ (2005). Synergistic effect of
combined temporal and spatial expectations on Vedtention.Journal of

Neuroscience25(36), 8259-8266. https://doi.org/10.1523/INEURO$&21-05.2005

Downar, J., Crawley, A. P., Mikulis, D. J., & Dayls. D. (2002). A cortical network
sensitive to stimulus salience in a neutral behavicontext across multiple sensory
modalities Journal of Neurophysiologg7(1), 615-620.

https://doi.org/10.1152/jn.00636.2001

40



Duma, G. M., Mento, G., Cutini, S., Sessa, P.,IB&iS., Brigadoi, S., & DellAcqua, R.
(2019). Functional dissociation of anterior cingaleortex and intraparietal sulcus in
visual working memoryCortex 121, 277-291.

https://doi.org/10.1016/j.cortex.2019.09.009

Evans, A. C., Janke, A. L., Collins, D. L., & Bai| S. (2012). Brain templates and atlases.

Neurolmage62(2), 911-922. https://doi.org/10.1016/j.neuroimagé2.01.024

Farooqui, A. A., & Manly, T. (2015). Anticipatoryddtrol Through Associative Learning of
Subliminal Relations: Invisible May Be Better Théisible. Psychological Sciencge

26(3), 325-334. https://doi.org/10.1177/0956797614584

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner,(8007). G*Power 3: A flexible statistical
power analysis program for the social, behavi@adl biomedical sciences. Behavior

Research Methods, 39, 175-191

Ferree, T. C. (2006). Spherical splines and averaigeencing in scalp
electroencephalographBrain Topographyl19(1-2), 43-52.

https://doi.org/10.1007/s10548-006-0011-0

Formaggio, E., Storti, S. F., Avesani, M., CerRi, Milanese, F., Gasparini, A., ...
Manganotti, P. (2008). EEG and fMRI coregistrationnvestigate the cortical
oscillatory activities during finger movemestrain Topography21(2), 100-111.

https://doi.org/10.1007/s10548-008-0058-1

Friston, K. (2010). The free-energy principle: Afied brain theoryNature Reviews

Neurosciencel1(2), 127-138. https://doi.org/10.1038/nrn2787

Geng, J. J., & Vossel, S. (2013). Re-evaluatingdihee of TPJ in attentional control:

41



Contextual updatingReuroscience and Biobehavioral Revie@&10), 2608-2620.

https://doi.org/10.1016/j.neubiorev.2013.08.010

Gramfort, A., Papadopoulo, T., Olivi, E., & CleM, (2011). Forward field computation
with OpenMEEG Computational Intelligence and Neurosciej2@ll

https://doi.org/10.1155/2011/923703

Groppe, D. M., Urbach, T. P., & Kutas, M. (2011)a$4 univariate analysis of event-related
brain potentials/fields I: A critical tutorial resiv. Psychophysiology8(12), 1711—

1725. https://doi.org/10.1111/j.1469-8986.2011.(BLR7

Harper, J., Malone, S. M., Bachman, M. D., & BeratM. (2016). Stimulus sequence
context differentially modulates inhibition-relatdteta and delta band activity in a

go/no-go taskPsychophysiologyp3(5), 712—-722. https://doi.org/10.1111/psyp.12604

Huster, R. J., Enriquez-Geppert, S., Lavallee,.CF&lkenstein, M., & Herrmann, C. S.
(2013). Electroencephalography of response inbibitasks: Functional networks and
cognitive contributionsinternational Journal of Psychophysiola@/(3), 217-233.

https://doi.org/10.1016/}.ijpsycho.2012.08.001

Jasper, H., & Penfield, W. (1949). Electrocortia@ys in man: Effect of voluntary
movement upon the electrical activity of the precargyrus.Archiv Fir Psychiatrie

Und Nervenkrankheite1831-2), 163-174. https://doi.org/10.1007/BF01062488

Johnson, K. A., Burrowes, E., & Coull, J. T. (201Ghildren can implicitly, but not
voluntarily, direct attention in timé&LoS ONE10(4), 1-15.

https://doi.org/10.1371/journal.pone.0123625

Karlin, L. (1958). Reaction time as a function ofdperiod duration and variabilityournal

42



of Experimental Psychology8(2), 185-191.

Knyazev, G. G. (2012). EEG delta oscillations asmelate of basic homeostatic and
motivational processebleuroscience and Biobehavioral Revie8&1), 677-695.

https://doi.org/10.1016/j.neubiorev.2011.10.002

Kotowski, K., Stapor, K., & Leski, J. (2019). Immed robust weighted averaging for event-
related potentials in EE@iocybernetics and Biomedical EngineeriB§4), 1036—

1046. https://doi.org/10.1016/].bbe.2019.09.002

Kybic, J., Clerc, M., Faugeras, O., Keriven, R.P&padopoulo, T. (2005). Fast multipole
acceleration of the MEG/EEG boundary element metRbgsics in Medicine and

Biology, 50(19), 4695-4710. https://doi.org/10.1088/0031-956A/9/018

teski, J. M. (2002). Robust weighted averagifitiEE Transactions on Biomedical

Engineering49(8), 796—804. https://doi.org/10.1109/TBME.2002.B35D

Los, S. A. (2010). Foreperiod and sequential esteEheory and data. In J. Coull & A. C.
Nobre (Eds.). IAttention and Timé€pp. 289-302). Oxford,UK: Oxford University

Press.

Los, S. A., & Heslenfeld, D. J. (2005). Intentioaald unintentional contributions to
nonspecific preparation: Electrophysiological evickee Journal of Experimental

Psychology: Generall34(1), 52—72. https://doi.org/10.1037/0096-3445.1521

Los, S. A, Kruijne, W., & Meeter, M. (2014). Outés of a multiple trace theory of temporal
preparationFrontiers in Psychologys(SEP), 1-13.

https://doi.org/10.3389/fpsyg.2014.01058

43



Los, S. A., Kruijne, W., & Meeter, M. (2017). Hadarersus history: Temporal preparation is
driven by past experiencéournal of Experimental Psychology: Human Percepaad

Performance43(1), 78-88. https://doi.org/10.1037/xhp0000279

Macar, F., & Vidal, F. (2004). Event-related potalstas indices of time processing: A
review.Journal of Psychophysiolog¥8(2—3), 89—-104. https://doi.org/10.1027/0269-

8803.18.23.89

Marti, S., Thibault, L., & Dehaene, S. (2014). Hdees the extraction of local and global
auditory regularities vary with contexf2.0S ONE9(9).

https://doi.org/10.1371/journal.pone.0107227

Mento, G. (2013). The passive CNV: Carving outdbetribution of task-related processes to
expectancyfFrontiers in Human NeurosciencgDecember), 1-5.

https://doi.org/10.3389/fnhum.2013.00827

Mento, G. (2017). The role of the P3 and CNV congras in voluntary and automatic
temporal orienting: A high spatial-resolution ERBdy. Neuropsychologia

107(September), 31-40. https://doi.org/10.1016/j.npsychologia.2017.10.037

Mento, G., Astle, D. E., & Scerif, G. (2018). Crdssquency phase—amplitude coupling as a
mechanism for temporal orienting of attention idiood. Journal of Cognitive

Neuroscience30(4), 594—-602. https://doi.org/10.1162/jocn_a 01223

Mento, G., & Granziol, U. (2020). The Developing#ictive Brain: How Implicit Temporal
Expectancy Induced by Local and Global Predictibaggs Action Preparation Across
DevelopmentDevelopmental Scienc@April 2019), 1-13.

https://doi.org/10.1111/desc.12954

44



Mento, G., Scerif, G., Granziol, U., Franzoi, M. L&nfranchi, S. (2020). The Effect of
Probabilistic Context on Implicit Temporal Expeatats in Down Syndroméd=rontiers

in Psychologyl1(March), 1-10. https://doi.org/10.3389/fpsyg.202369

Mento, G., & Tarantino, V. (2015). Developmentaléctories of internally and externally
driven temporal predictiol?LoS ONE10(8), 1-18.

https://doi.org/10.1371/journal.pone.0135098

Mento, G., Tarantino, V., Sarlo, M., & Bisiacchi, . (2013). Automatic Temporal
Expectancy: A High-Density Event-Related Poterfiialdy.PL0oS ONES8(5).

https://doi.org/10.1371/journal.pone.0062896

Mento, G., Tarantino, V., Vallesi, A., & Bisiaccli, S. (2015). Spatiotemporal
neurodynamics underlying internally and externdtiyen temporal prediction: A high
spatial resolution ERP studjournal of Cognitive Neuroscienc®/(3), 425-439.

https://doi.org/10.1162/jocn_a 00715

Mento, G., & Valenza, E. (2016). Spatiotemporalmeynamics of automatic temporal
expectancy in 9-month old infantScientific Repori(January), 1-10.

https://doi.org/10.1038/srep36525

Mento, G., & Vallesi, A. (2016). Spatiotemporalligsiociable neural signatures for
generating and updating expectation over time ildi@n: A High Density-ERP study.
Developmental Cognitive Neuroscient8, 98—106.

https://doi.org/10.1016/j.dcn.2016.02.008

Miller, E. K., & Cohen, J. D. (2001). An Integra¢éivi heory of Prefrontal Cortex Function.

Annual Review of Neuroscien@(1), 167-202.

45



https://doi.org/10.1146/annurev.neuro.24.1.167

Miniussi, C., Wilding, E. L., Coull, J. T., & Nobyd. C. (1999). Orienting attention in time.
Modulation of Brain Potentia|sl228), 1507-1518.

https://doi.org/10.1093/brain/122.8.1507

Miyake, A., Friedman, N. P., Emerson, M. J., Wiizki H., Howerter, A., & Wager, T. D.
(2000). The Unity and Diversity of Executive Fucts and Their Contributions to
Complex “Frontal Lobe” Tasks: A Latent Variable Ayss. Cognitive Psychology

41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734

Murthy, V. N., & Fetz, E. E. (1996). Synchronizatiof neurons during local field potential
oscillations in sensorimotor cortex of awake morsk@gurnal of Neurophysiology

76(6), 3968—3982. https://doi.org/10.1152/jn.1996578068

Niemi, P., & Naatanen, R. (1981). Foreperiod anab$e reaction timePsychological

Bulletin, 89(1), 133-162. https://doi.org/10.1037/0033-2909.8%B3

Nobre, A. C., & Van Ede, F. (2018). Anticipated nmamts: Temporal structure in attention.

Nature Reviews Neurosciend®(1), 34—48. https://doi.org/10.1038/nrn.2017.141

Nobre, A., Correa, A., & Coull, J. (2007). The haimof time.Current Opinion in

Neurobiology 17(4), 465-470. https://doi.org/10.1016/j.conb.2007006

Oostenveld, R., Fries, P., Maris, E., & Schoffel&nM. (2011). FieldTrip: Open source
software for advanced analysis of MEG, EEG, andsnxe electrophysiological data.
Computational Intelligence and Neuroscien2@ll

https://doi.org/10.1155/2011/156869

46



Perrin, F., Pernier, J., Bertrand, O., & Echallier-. (1989)Perrin_1989 m4.pdfl84-187.

Pfurtscheller, G., & Berghold, A. (1989). Patteafgortical activation during planning of
voluntary movemenglectroencephalography and Clinical Neurophysiologg(3),

250-258. https://doi.org/10.1016/0013-4694(89)96250

Pfurtscheller, G., & Lopes, F. H. (1999). Eventatetl EEG / MEG synchronization and.

Clinical Neurophysiology110, 10576479.

Pfurtscheller, G., & Neuper, C. (1997). Motor imagactivates primary sensorimotor area in
humansNeuroscience Letter2392-3), 65-68. https://doi.org/10.1016/S0304-

3940(97)00889-6

Polich, J. (2007). Updating P300: An integrativedty of P3a and P3klinical

Neurophysiology118§10), 2128-2148. https://doi.org/10.1016/].clin@02.04.019

Praamstra P, Kourtis D, Kwok HF, Oostenveld R. @00leurophysiology of implicit
timing in serial choice reaction-time performanthke Journal of Neuroscienc2§(20):

5448-5455.

Prada, L., Barceld, F., Herrmann, C. S., & Esc€rg2014). EEG delta oscillations index
inhibitory control of contextual novelty to bothretevant distracters and relevant task-

switch cuesPsychophysiologyp1(7), 658—672. https://doi.org/10.1111/psyp.12210

Sali, A. W., Anderson, B. A., & Yantis, S. (2015parned states of preparatory attentional
control.Journal of Experimental Psychology: Learning Memangl Cognition41(6),

1790-1805. https://doi.org/10.1037/xIm0000146

Sanes, J. N., & Donoghue, J. P. (1993). Oscillatiariocal field potentials of the primate

47



motor cortex during voluntary movemeRroceedings of the National Academy of
Sciences of the United States of Amel9€410), 4470-4474.

https://doi.org/10.1073/pnas.90.10.4470

Shen, C., Ardid, S., Kaping, D., Westendorff, Sigling, S., & Womelsdorf, T. (2015).
Anterior Cingulate Cortex Cells Identify Processe8ific Errors of Attentional Control
Prior to Transient Prefrontal-Cingulate Inhibitidderebral Cortex2%8), 2213-2228.

https://doi.org/10.1093/cercor/bhu028

Soltani, M., & Knight, R. T. (2000). Neural origid the P300Critical Reviews in

Neurobiology 14(3—-4), 199-224. https://doi.org/10.1615/critrevimdninl.v14.i3-4.20

Strauss, M., Sitt, J. D., King, J.-R., Elbaz, Mzi4, L., Buiatti, M., ... Dehaene, S. (2015).
Disruption of hierarchical predictive coding durigigep.Proceedings of the National

Academy of Sciencekl211), E1353-E1362. https://doi.org/10.1073/pnaslD26112

Tadel, F., Baillet, S., Mosher, J. C., Pantazis&Leahy, R. M. (2011). Brainstorm: A user-
friendly application for MEG/EEG analysi€omputational Intelligence and

Neuroscience2011 https://doi.org/10.1155/2011/879716

Trillenberg, P., Verleger, R., Wascher, E., Wausitink B., & Wessel, K. (2000). CNV and
temporal uncertainty with “ageing” and “non-ageir81-S2 intervalClinical

Neurophysiologyl11(7), 1216—-1226. https://doi.org/10.1016/S1388-206)Y{0274-1

Tzagarakis, C., Ince, N. F., Leuthold, A. C., &IRekr, G. (2010). Beta-band activity during
motor planning reflects response uncertaidgurnal of Neuroscien¢g80(34), 11270—

11277. https://doi.org/10.1523/INEUROSCI.6026-02(20

Tzur, G., & Berger, A. (2007). When things look wgp Theta activity in rule violation.

48



Neuropsychologigd5(13), 3122-3126.

https://doi.org/10.1016/j.neuropsychologia.2007008.

Tzur, G., & Berger, A. (2009). Fast and slow brdigthms in rule/expectation violation
tasks: Focusing on evaluation processes by exdudotor actionBehavioural Brain

Researchl19§2), 420-428. https://doi.org/10.1016/j.bbr.2008041

Vallesi, A. (2010). Neuro-anatomical substratetooéperiod effects. In J. T. Coull & A. C.
Nobre (Eds.). IAttention and Tim€op. 303-316). Oxford, UK: Oxford University

Press.

Vallesi, A., & Shallice, T. (2007). DevelopmentaisBociations of Preparation Over Time:
Deconstructing the Variable Foreperiod Phenoménarnal of Experimental
Psychology: Human Perception and Performari36), 1377-1388.

https://doi.org/10.1037/0096-1523.33.6.1377

Visalli, A., Capizzi, M., Ambrosini, E., Mazzoneftb, & Vallesi, A. (2019). Bayesian
modeling of temporal expectations in the humanrbideurolmage202July), 116097.

https://doi.org/10.1016/j.neuroimage.2019.116097

Wacongne, C., Changeux, J. P., & Dehaene, S. (2812uronal model of predictive
coding accounting for the mismatch negativityurnal of Neuroscien¢82(11), 3665—

3678. https://doi.org/10.1523/JNEUROSCI.5003-11201

Walter, W. G., Cooper, R., Aldridge, V. J., McCalluw. C., & Winter, A. L. (1964).
Contingent negative variation: An electric sigrsefisori-motor association and
expectancy in the human braiature 2034943), 380-384.

https://doi.org/10.1038/203380a0

49



Woodrow, H. (1914). The measurement of attentidre Psychological Monographk7(5),

1-158.

Wu, Q., Chang, C. F., Xi, S., Huang, I. W., Liu, 4uan, C. H., ... Fan, J. (2015). A critical
role of temporoparietal junction in the integratimitop-down and bottom-up attentional

control.Human Brain Mapping36(11), 4317-4333. https://doi.org/10.1002/hbm.22919

Zandbelt, B. B., Bloemendaal, M., Neggers, S. F.Kdhn, R. S., & Vink, M. (2013).
Expectations and violations: Delineating the nenslvork of proactive inhibitory

control.Human Brain Mapping34(9), 2015-2024. https://doi.org/10.1002/hbm.22047

Zanto, T. P., Pan, P., Liu, H., Bollinger, J., NebA. C., & Gazzaley, A. (2011). Age-related
changes in orienting attention in tinhe Journal of Neuroscience,(35), 12461-

12470. doi:10.1523/jneurosci.1149-11.2011

50



Supplementary material

Expectancy Implementation Response Implementation Expectancy Violation
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Supplementary Fig.1l. Single subject ERP effects. The figure shows the single-subject
mean ERP amplitude in the two contrasted conditionthe expectancy implementation, the

expectancy violation and the response implememtatio
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Supplementary Fig.2. Global prediction effect on expectancy violation in medium time
interval. The figure shows the effect of the expectancyation in the medium SOA. It is

worth to notice that: i) the direction of the effeit) the waveform morphology and iii) the
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scalp distribution are the same of the SB-L LB-lnttast. The upper part of the figure
represents the statistically significant electro@es< .05) derived from the cluster based
permutation analysis. The central negative clustelicates that the omission evoked
potential (ODP) mean amplitude is significantlygar in the short-biaseds. long-biased
blocks between 600 and 700 ms. The ERP below thlp scap shows the time series of the
central negative cluster for the contrasted cooidsti The shaded area around the time series

represents the standard error.
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Expectancy violation
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Response implementation
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